
CS 202 Programming Project # 1

RSet: A Class For Representing and Manipulating Sets

Part I: Due Wed, Feb 6 by 8:59AM
Part II: Due Wed, Feb 13 by 8:59AM

Overview
For this project you implement a group of Java classes for representing and manipulating finite sets in a
rather general way. As you know from CS201, an element of a set may itself be a set. Thus, you may
have “sets of sets of sets...” – i.e., a recursive structure. The java classes you implement will enable
this kind of representation.

The project may be a bit different from past projects you have done in that I will specify for you
“templates” for each class including the public method signatures and their required semantics, but (in
most cases) no implementation of the body of the method. Another type of “template” is represented by
abstract methods that you will have to implement in a concrete subclass (that you must create) that
extends the abstract class SetElem. This subclass must be called RSet.

One way to think of this is that we have already completed the first phase of the design process and
determined how we want our classes to interface with the outside world (or clients of the classes). Now
the job is to complete the implementation to meet the specifications.

Objectives
You will gain experience and practice in the following areas.

• Inheritance, Abstract Classes, and Interfaces in Java.
• Linked list implementation and manipulation
• Recursion, recursion, recursion.
• Meeting specified runtime requirements
• Mutability vs. Immutability

Elements of a Set
An element of a set can be either an atom or another set. An atom is either an integer or a string. For
example, the set {12, "xyz", "zzz", {}, {1, 2, {3, 4}}, {{}, {"xyz"}}} has 6 elements: 1 integer,
two strings and 3 sets.

We will use the term leaf for any element which itself contains no other elements – i.e., leaves are
either atoms or the empty set {}.

Class Organization
In order to represent such sets, I have specified a class organization summarized in the following
figure.

The only class you will
modify/implement is RSet. But you will need to understand the others. You
will be provided a template for the RSet class containing stubs of methods you need to implement.

Rules

● You may not change the signatures of any of the methods in the given files.
● You may not add any public data members, except for when implementing abstract methods in

a concrete subclass.
● You may not add private data members.
● You may add private helper methods.
● You may add inner classes.
● You may create additional classes which your implementation uses although it shouldn’t be

necessary. Most non-trivial existing Java classes are disallowed for this project – i.e., I expect
you to build most everything from scratch. As an example, you cannot use the LinkedList class
for this project. You may ultimately thank me for this requirement as you will probably find that
some natural ways to approach this project become cumbersome (maybe impossible) if you use
the LinkedList class instead of your own implementation. Exceptions to the “No java classes”
rule: String and all of the boxing classes (Integer, etc.).

Canonical Ordering
As you know, the order of elements in a set does not matter in a mathematical sense. However, this
does not mean that enforcing a particular ordering scheme in the representation of sets is not useful as
a convention. In this project, you will adopt such an ordering scheme in part to enable you to meet
some of the runtime requirements and also to give some uniformity when displaying sets to the screen.
The ordering on set elements you will follow is defined as follows.

● Atoms come before sets.
● IntAtoms come before StringAtoms
● The ordering of two IntAtoms is determined by their respective values.
● The ordering of two StringAtoms is determined by their alphabetical ordering.
● The empty set {} comes before all other sets.(but after all atoms).
● When comparing two non-empty sets, we apply recursive lexicographic rules. Suppose the two

sets are:
 A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} (both in canonical order)

If a1 ≠ b1then the relative ordering of A and B is the same as the relative ordering of a1 and b1..
If they are equal, then we move to a2 and b2 – precisely in the same way that we do
alphabetical ordering. Also, in the same way we do alphabetical ordering, if we exhaust one of
the sequences, the exhausted sequence precedes the other (e.g., "abc" comes before "abcd"
in dictionary ordering).

These ordering rules will be encoded in your implementations of the compareTo() method (note that
SetElem implements the Comparable interface).

The invariant that all sets are represented with this ordering will be key in meeting some of the runtime
requirements.

Immutability
All of the classes you will implement must be immutable. The Wikipedia definition of immutability:

“In object-oriented and functional programming, an immutable object
is an object whose state cannot be modified after it is created.”

The String class in Java is an example of an immutable class; the boxed types like Integer are also
immutable.

Note for example that the union operation creates a new set – the calling object and the parameter are
unchanged. You can and will exploit the fact that set elements are immutable to safely save some
storage. For example, suppose two sets have an element x in common (x may be an atom or a set
itself). Since we know that the object representing x is immutable, both sets can actually refer to the
same object without worrying about it being modified through the other set. Thus you can avoid some
deep copying.

The EMPTY_SET
If you take a look at the file RSet.java, you will find a static, private and constant data member
EMPTY_SET that is pre-initialized.

This may be puzzling at first, but consider the following:

● Since the class is immutable, if a client has multiple RSet instances that are the empty set, then
why not just let them all point to the same object?

● Notice that an RSet instance is really a linked list node. This is possible because the empty set
is represented by this special node. Otherwise, what would the empty set be? We could use
null, but that isn’t an actual class instance. So we would then have to add another layer of
complexity by defining RSet to be an object containing a data member giving us access to our
linked list (which could then be null).

● This allows us to see more naturally the recursive structure of a set: if s is a non-empty RSet
{a1, a2, . . . , an} then s.next is also an RSet: {a2, . . . , an}. Kind of nice don’t you think?

● By terminating all RSet instances with the EMPTY_SET node, we also reduce the number of
cases we have to handle. We are using EMPTY_SET as a sentinel. This also makes sense: a
singleton set {a}, then this set without its first element is the empty set {}; using the sentinel
approach mimics this property: if RSet s is a singleton set, then s.next is EMPTY_SET.

Phases
You will complete the project in two phases. See the source file for the breakpoint between the phase-
1 and phase-2 methods.

	CS 202 Programming Project # 1
	RSet: A Class For Representing and Manipulating Sets
	Overview
	Objectives
	Elements of a Set
	Class Organization
	Rules
	Canonical Ordering
	Immutability
	The EMPTY_SET
	Phases

