

CS 341 : http://www.joehummel.net/cs341.html Page 1 of 10

CS 341 / Spring 2014
HW #6
Complete By: Monday March 3rd @ 9pm
Policy: Individual work only, late work not accepted
Submission: electronic via Blackboard (see below)

Background

You are going to write a program to perform various operations on images stored in PPM format, such as
this lovely image of a piece of cake:

There are many image formats you are no doubt familiar with: JPG, PNG, etc. The advantage of PPM is that
the file format is human-readable, so you can open PPM files in a text editor. This makes it easier to write
programs that manipulate the images, and it also makes it easier to debug your output — you can simply open
the image file in a text editor and “see” what’s wrong. First some background on PPM files, and then the
details of the assignment…

PPM Image Format

The PPM (or Portable Pix Map) image format is encoded in human-readable ASCII text. For those of you
who enjoy reading documentation, the formal image specification can be found here 1. Here is a sample ppm
file, representing a very small 4x4 image:

 P3
 4 4
 255
 0 0 0 100 0 0 0 0 0 255 0 255
 0 0 0 0 255 175 0 0 0 0 0 0
 0 0 0 0 0 0 0 15 175 0 0 0
 255 0 255 0 0 0 0 0 0 255 255 255

1
 http://netpbm.sourceforge.net/doc/ppm.html

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/ppm.html

CS 341 : http://www.joehummel.net/cs341.html Page 2 of 10

Here is what this image looks like, magnified 5,000%. Notice it consists of 16 pixels, laid out in 4 rows with 4
pixels per row:

You can think of an image as having two parts, a header and a body. The header consists of information about
the image such as width and height, GPS location, time, date, etc.. For PPM images, the header is very simple,
and has only 4 entries:

 P3
 4 4
 255

P3 is a "magic number". It indicates what type of PPM image this is (full color, ASCII encoding). For this
assignment it will always be P3. The next two values, 4 4, represent the width and height of the image — or
more accurately from a programming perspective, the number of pixels and the number of rows in the image,
respectively. The final value, 255, is the maximum color depth (value) for the image. For images in “P3”
format, this is a value in the range 0..255.

The image body contains the pixel data — i.e. the color of each pixel in the image. For the image shown
above, which is a 4x4 image, we have 4 rows of pixel data:

 0 0 0 100 0 0 0 0 0 255 0 255
 0 0 0 0 255 175 0 0 0 0 0 0
 0 0 0 0 0 0 0 15 175 0 0 0
 255 0 255 0 0 0 0 0 0 255 255 255

Look at this data closely… First, notice the values range from 0 .. maximum color depth (in this case 255).
Second, notice that each row contains exactly 12 values, with at least one space between each value. Why
12? Because each row contains 4 columns of pixels, but each pixel in PPM format consists of 3 values: the
amount of RED, the amount of GREEN, and the amount of BLUE. This is more commonly known as the pixel’s
RGB value. Black, the absence of color, has an RGB value of 0 0 0 — the minimum amount of each color.
White, the presence of all colors, has an RGB value of depth depth depth — the maximum amount of each
color. As shown above, notice the first pixel in the 4x4 image is black, and the last pixel is white.

In general a pixel’s RGB value is the mix of red, green, and blue needed to make that color. For example,

CS 341 : http://www.joehummel.net/cs341.html Page 3 of 10

here are some common RGB values, assuming a maximum color depth of 255:

 Yellow: 255 255 0
 Maroon: 128 0 0
 Navy Blue: 0 0 128
 Purple: 128 0 128

You can read more about RGB on the web2. The course web page contains 5 sample PPM images for you to
work with. The image shown above is “tiny4by4.ppm”:

 blocks.ppm

 cake.ppm

 square.ppm

 tiny4by4.ppm

 tinyred4by4.ppm

Viewing PPM Images

On Windows you can view PPM images using Irfanview 3, a free image utility. If the installation fails, note
that I had to download the installer and then run as administrator for it to install properly on Windows 7:
right-click on setup program and select “run as administrator”. Irfanview will also allow you to convert your
own images to PPM so you work on your own pictures — keep in mind that you may need to resize your
images to be smaller before converting to PPM, otherwise the PPM files become quite large.

On the Mac, I downloaded ToyViewer from the App store, a free app for image processing, including PPM

files. You can use ToyViewer to view the output from your program to see the results. However, I was unable
to convert my own images to the proper PPM “P3” format, so if you want to convert your own images, you
need to find another utility for the Mac.

Keep in mind you can also “view” PPM files in your local text editor: File menu, Open command, and then

browse to the file and open it — you will see lots of integers :-) If you do not see the PPM files listed, in the
Open File dialog window change the drop-down list to “view all files” as highlighted below. Then select the
PPM file and open it:

2
 http://www.rapidtables.com/web/color/RGB_Color.htm

3
 http://www.irfanview.com/

http://www.irfanview.com/
http://www.irfanview.com/

CS 341 : http://www.joehummel.net/cs341.html Page 4 of 10

Getting Started

To make life more interesting (and realistic), we are going to be working with a GUI-based, multi-language
application. Here’s a snapshot:

The Visual Studio solution contains 2 parts (“projects”), one representing the GUI front-end written in C#, and
the image processing code representing the back-end written in F#:

When you want to work on the C# code, you’ll open the “Form1.cs” file in the Visual Studio editor. When you
want to work on the F# code, you’ll open the “ImageLibrary.fs” file.

To get started, browse to the course web page, and download the .zip file of the PPM Image Editor

application: “PPMImageEditor.zip”. After the download, double-click on the .zip file to open, and *extract*
the folder by dragging to your desktop. Close and discard the .zip file. Open the folder you extracted, which

CS 341 : http://www.joehummel.net/cs341.html Page 5 of 10

represent the entire Visual Studio solution to the program. You should see this:

Now open the program in Visual Studio by double-clicking the Visual Studio Solution (.sln) file highlighted
above. Once in Visual Studio, run with debugging by pressing F5. The program should compile and run
successfully, and you’ll see the GUI:

Click the Open button ― the sample PPM files are already installed in the bin\Debug sub-folder of the GUI
project (PPMImageEditor). Selected the simplest file, “tinyred4by4.ppm”. This is a tiny image, but the GUI
stretches the image to fill the image area, so you’ll see something like this:

Finally, click the “Test F#” button, and if you look carefully, you’ll notice that the first line of the image is
changed to be all white. Open other images such as “cake.ppm”, and test F#...

CS 341 : http://www.joehummel.net/cs341.html Page 6 of 10

Your Assignment

In Visual Studio, open the “ImageLibrary.fs” file, and you’ll see the following code:

module PPMImageLibrary

#light

//
// DebugOutput:
//
// Outputs to console, which appears in the "Output" window pane of
// Visual Studio when you run with debugging (F5).
//
let rec private OutputImage(image:int list list) =
 match image with
 | [] -> printfn "**END**"
 | _ -> printfn "%A" image.Head
 OutputImage(image.Tail)

let DebugOutput(width:int, height:int, depth:int, image:int list list) =
 printfn "**HEADER**"
 printfn "W=%A, H=%A, D=%A" width height depth
 printfn "**IMAGE**"
 OutputImage(image)

//
// TransformFirstRowWhite:
//
// An example transformation: replaces the first row of the given image
// with a row of all white pixels.
//
let TransformFirstRowWhite(depth:int, image:int list list) =
 let numCols = image.Head.Length // number of columns in first row
 let AllWhite = [for i in 1 .. numCols -> depth] // white is RGB = depth depth depth
 AllWhite :: image.Tail // first row all white :: followed by rest of original image

//
// WriteP3Image:
//
// Writes the given image out to a text file, in "P3" format. Returns true if successful,
// false if not.
//
let WriteP3Image(filepath:string, width:int, height:int, depth:int, image:int list list) =
 //
 //
 // TODO!
 //
 //
 true // success

Your assignment is to modify and extend this code by implementing the following *six* functions. Use
whatever features you want in F#, except functions that perform direct image manipulations:

1. WriteP3Image(…): as documented above. Test by making sure you can open and display the new file.

CS 341 : http://www.joehummel.net/cs341.html Page 7 of 10

2. TransformGrayscale(image:int list list): converts the image into grayscale and returns the resulting

image as a list of lists. Conversion to grayscale is done by averaging the RGB values for a pixel, and
then replacing them all by that average. So if the RGB values were 25 75 250, the average would be
116, and then all three RGB values would become 116 — i.e. 116 116 116. Here’s the cake in gray:

3. TransformInvert(depth:int, image:int list list): To invert a pixel, you invert each of its RGB values. To
invert an RGB value, you perform the following computation:

newValue = MaxColorDepth – currentValue;

For example, if a pixel has the values 255 128 0 and the image header has a max color depth of 255,
then the inverted pixel is 0 127 255. Do not assume the max color depth is 255, use the depth value
passed to your function. Here’s the cake inverted:

4. TransformFlipHorizontal(image:int list list): flips an image so that what’s on the left is now on the

right, and what’s on the right is now on the left. That is, the pixel that is on the far left end of the row
ends up on the far right of the row, and the pixel on the far right ends up on the far left. This is

CS 341 : http://www.joehummel.net/cs341.html Page 8 of 10

repeated as you move inwards toward the center of the row; remember to preserve RGB order for
each pixel as you flip ― you flip pixels, not individual RGB colors. Here’s the cake flipped horizontally:

5. TransformFlipVertical(image:int list list): flip the rows at the top of the image with the corresponding
rows at the bottom — flip the first row and the last row, then flip the second row with the next to last
row, and so on. Here’s the cake flipped vertically:

6. Add a transform function of your choice. Here are some suggestions if you want a challenge:

I. Rotate the image 90 degrees.

II. Encode / decode messages in an image, or obscure the real image. There are a variety of
techniques for doing these kinds of things, e.g. http://nifty.stanford.edu/2011/parlante-image-
puzzle discusses 3 techniques for obscure images within the RGB values, and

http://nifty.stanford.edu/2011/parlante-image-puzzle
http://nifty.stanford.edu/2011/parlante-image-puzzle

CS 341 : http://www.joehummel.net/cs341.html Page 9 of 10

http://nifty.stanford.edu/2009/heeringa-murtagh-secrets-in-images discusses how to encode
messages within an existing image. Feel free to add 2 operations if necessary, one to
encode/obscure the image, and another to decode the image so you can see if it was
encoded/obscured correctly.

III. Look in the menu of your favorite image manipulation program and see what effects are available
— blur, soften, etc. Then google and get a feel for how these operations are performed.

In order to test each function, you will need to add a button to the GUI ― use the Test F# button to help you
get started. As you create new buttons, mimic the coding style you see for the Click event handler associated
with the Test F# button ― i.e. the code for cmdFS1_Click. Note that the Save as… button is already coded to
call your WriteP3Image function; that GUI code should be complete and you should be able to use as is.

If you look at the functions provided, the parameters are mostly self-explanatory. For example, the
WriteP3Image function takes a string-based filepath as the filename, along with data you need to write to the
file: width, height, depth, and the image data. The image data is the interesting one… The format is a list of
lists, where each element is an integer color value. For example, on pages 1-2 we presented the file format for
the “tiny4by4.ppm” image:

 P3
 4 4
 255
 0 0 0 100 0 0 0 0 0 255 0 255
 0 0 0 0 255 175 0 0 0 0 0 0
 0 0 0 0 0 0 0 15 175 0 0 0
 255 0 255 0 0 0 0 0 0 255 255 255

The image data passed to the F# Image Library in this case is a list of 4 lists, one sub-list per row:

 [[0; 0; 0; 100; 0; 0; 0; 0; 0; 255; 0; 255] ;
 [0; 0; 0; 0; 255; 175; 0; 0; 0; 0; 0; 0] ;
 [0; 0; 0; 0; 0; 0; 0; 15; 175; 0; 0; 0] ;
 [255; 0; 255; 0; 0; 0; 0; 0; 0; 255; 255; 255]]

Note each sub-list contains the same number of color values ― 12 in this case. You must work with this
format for communication between the GUI front-end and the F# back-end.

Electronic Submission

The first step is to create a .zip file / compressed folder of your *entire* Visual Studio project folder: this
should be the folder that you downloaded initially called “PPMImageEditor”. Then, using Blackboard, submit
this .zip file / compressed under the assignment “HW6”. We expect your F# code to be commented, including
a header comment at the top along the lines of

//
// F#-based PPM image library.
//

http://nifty.stanford.edu/2009/heeringa-murtagh-secrets-in-images

CS 341 : http://www.joehummel.net/cs341.html Page 10 of 10

// <<YOUR NAME HERE>>
// U. of Illinois, Chicago
// CS341, Spring 2014
// Homework 6
//

You may submit as many times as you want before the due date, but we grade the last version submitted.

Policy

Late work is not accepted. All work is to be done individually ― group work is not allowed. Academic
dishonesty is unacceptable, and all parties involved will be immediately subject to the official academic
integrity review process. The University’s policy is quite clear, and can be read here:
http://www.uic.edu/depts/dos/studentconduct.html. In particular, note that you are guilty of academic
dishonesty if you extend or receive any kind of unauthorized assistance. Examples of academic dishonesty
include emailing your program to another student, copying-pasting code from the internet, working in a group
on a homework assignment, and allowing a tutor, TA, or another individual to write an answer for you.

http://www.uic.edu/depts/dos/studentconduct.html

