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Abstract

Voldemort, a clone of Amazon’s Dynamo, is a high performance, open-sourced, distributed, scalable,
reliable, fault-tolerant, and highly available key value store (KVS). Currently, MapReduce can’t run
directly on a Voldemort cluster. Data must be piped from Voldemort to an offline Hadoop cluster,
which delays MapReduce analysis and consumes massive bandwidth. Aside from reporting delays,
maintaining another entirely separate Hadoop cluster for offline reporting can be cost-prohibitive.
Horcrux solves these problems by adding MapReduce functionality to a Voldemort cluster. This allows
real-time reporting and this could supplement or potentially even replace the need for a separate oftline
Hadoop cluster. Horcrux has a built-in level of fault tolerance, scalability, and performance due to the
well-engineered foundation that Voldemort provides. Our goal was to remain aligned as much as
possible with the original goals and design choices that Voldemort offers, but to also allow new
MapReduce functionality without losing scalability, fault tolerance, or availability.

1 Motivation

MapReduce, first introduced in 2004 by Jeff Dean and Sanjay Ghemawat!'!, is a programming model
and associated engineering implementation for running batch computations on clusters of commodity
machines in parallel. The MapReduce algorithm applies a divide and conquer strategy by partitioning a
query with key/value pairs into much smaller buckets, which are then mapped to other nodes in the
cluster. After the nodes complete their map tasks, the system then completes a reduce phase where data
is aggregated. Running small jobs throughout a cluster in parallel greatly speeds up batch computing
tasks. MapReduce has proven to be an effective means of running data intensive parallel distributed
jobs on a server cluster and Hadoop has become the most popular open-source implementation.

Although MapReduce only offers a low level interface which must be extended to run any
given task, it still continues to grow in popularity because it provides a simple interface which
simplifies the programming of otherwise complex parallel computations. Many popular key value store
(KVS) systems have built-in MapReduce support including: HBase, Riak, Cassandra and others.
Unfortunately, the Voldemort KVS does not have any known existing MapReduce support;
open-source or otherwise. Most likely, this is because adding MapReduce functionality to Voldemort is
a non-trivial task.

As shown in Figure 1, Voldemort KVS is a clone of Amazon’s Dynamo; a highly available,
fault tolerant, and scalable distributed store. Voldemort gives up ACID properties of a traditional
database, as well as some immediate consistency in order to provide a level of availability which would
otherwise not be possible. Key features of both Dynamo and Voldemort are zero-hop DHT routing for



low latency, merkle trees for anti-entropy, vector clocks for conflict resolution, hinted handoff for
partition tolerance, and consistent hashing for load balancing. Although Voldemort is based on
Dynamo, it is not identical. One key difference between the two systems is Voldemort’s built-in
caching system.
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Figure 1: The architecture of Figure 2: Pushing KVS data to a separate Hadoop cluster to

a Voldemort KVS cluster run MapReduce tasks

Currently, as shown in Figure 2, LinkedIn uses Azkaban'*, an open source scheduler to operate
a multi-terabyte data pipeline between Voldemort and their oftline Hadoop cluster. MapReduce
computations are only run on the offline cluster, and any reporting must be delayed until the data
transfer is completed. The problem with this design is that there will always be some delay between the
time data is added to the Voldemort KVS and when it becomes available in the offline Hadoop cluster.

The motivation for Horcrux is to reduce hardware, software, and bandwidth requirements by
adding MapReduce functionality directly to the existing Voldemort cluster. By adding direct
MapReduce support, an organization can avoid the need for building and maintaining an entire separate
offline Hadoop cluster (and associated software complexity, and bandwidth consumption) just for
offline MapReduce computations. Also, the added ability to obtain real-time results from MapReduce
operations is an additional, and possibly more significant benefit, especially for financial markets or
other industries with extremely time sensitive needs.

2 Design Goals

Our goal is to provide a MapReduce system on the high performance foundation that Voldemort
provides. The system must scale with few required configuration changes; it will remain easy to add or
remove nodes (as it is already with Voldemort). The system must be fault tolerant and allow any node
to be acting master. The system must also be able to recover from failures; for example by using a
distributed commit system for log based recovery. The system should also use Voldemort’s distributed
hash map for scheduling tasks to exploit locality.

3 Architectural Challenges

In order to add MapReduce functionality to the Voldemort KVS, we had to overcome a number of
significant design challenges, most of which arise because Voldemort is built on a set of assumptions
which are completely different from that of Hadoop and the original MapReduce paper written in
2004, Numerous complications arise due to these differences in the core foundational systems. The
three most significant difficulties we faced with adding MapReduce to Voldemort were:



1. No single master: we have no global view of the file system, which complicates scheduling.
2. Large file assumption®: we can’t assume contiguous or large files like GFS or HDFS.
3. Algorithm file assumption: the MapReduce algorithm assumes files will be used at each step.

First, the traditional MapReduce algorithm is built on the assumption of an underlying file
system such as HDFS or GFS™. Both of these file systems have a global master server which knows
the locations of all files on all nodes in the cluster. This assumption is built into the core of the
MapReduce algorithm, and it simplifies the scheduling during the map task, and it makes it trivial to
exploit locality by sending jobs to the nodes that have the right files. In contrast, with Voldemort, we
have no master, so although we have additional fault-tolerance with no single point of failure, we do
not have a global view of the file system. Instead, we have a distributed hash map that only tells us
which key belongs to which node. This makes it more difficult to exploit locality while scheduling a
MapReduce job, and it means we can't use any of the traditional MapReduce scheduling algorithms.

Second, file systems like GFS and HDFS assumes file sizes of 100 MB or greater, which
minimizes the bandwidth and computation required to schedule and communicate MapReduce jobs to
the various nodes in the cluster. In contrast, with Voldemort we have no sense of which keys are in
which files, so we can’t assume large, contiguous files. This unfortunately means that even if we
exploit locality, we will still need to communicate a large number of keys over the network. Once each
server receives a set of keys for a Map or Reduce job, we are potentially forced to make many random
disk accesses (unless the various values are cached in memory). In order to produce results with low
latency, either the working sets must fit in aggregate memory or Horcrux must be deployed on servers
that exclusively use flash storage.

A typical HDD is only capable of delivering around 1 MB/s of throughput for random access
reads, while a commodity SSD can deliver over 30 MB/s per second. We believe that using persistent
flash storage will generally prevent disk throughput from becoming the bottleneck on Horcrux.
However, this is not required if Voldemort’s cache is already warmed up with the data we need. In fact,
this can provide a substantial advantage over a traditional MapReduce system that must go to disk
multiple times during the course of a job. Regardless, our system is built on the assumption that
persistent flash storage will be used. We believe that this is a reasonable assumption as the price of
SSDs continues to drop.

We decided to add MapReduce functionality inside of Voldemort cluster because that would
expose the internal API of the system and allow us to run functions natively, with maximum efficiency
while also providing a scalable, fault tolerant, foundation with no inherent single point of failure. We
considered running the Horcrux system as a separate process on top of Voldemort, but we found this
prevented us from directly accessing internal system calls to structures such as the distributed hash map
(which contains the locations of all keys in the cluster). We could have built a new interface which
would allow us to do this outside Voldemort, but this meant we would have to build an entirely
separate system which would replicate a lot of the work Voldemort was already performing (such as
caching key locations, etc.). This would create unnecessary complexity because we would have to add
new Voldemort API interfaces to provide system information to our MapReduce functions.

Traditional MapReduce assumes a global view of the file system. However, Voldemort only
knows which node contains which keys, but not the file locations within the nodes. We explored
options that could address this by allowing Horcrux to have a global view of all files, such as an
overlay file system. However, maintaining a global index of all file locations would incur a significant
performance penalty since Voldemort does not run on HDFS. Most values in Voldemort are likely to be
very small; less than 128KB on average, and in contrast, HDFS often has file sizes of 100 MB or
greater. Using a small number of large files for scheduling is very efficient for Hadoop, but this is not
practical in Voldemort since a large job might require millions of small files.



Even if we could tolerate the performance penalty that would indexing millions (of small files
would incur, there is an additional problem of staleness. Most likely, maintaining a global index for all
the millions of small files in the Voldemort system would result in a perpetual level of staleness for
some percentage of files in the overlay system. More significantly, an overlay file system does not
address an important issue, which is random disk access. In general, the keys on our server tend to be
spread out randomly due to the consistent hashing, which Voldemort uses for load balancing. Due to
the inherent randomness of the system, reading large contiguous file chunks would generally not be
feasible for our MapReduce jobs, and hence, most reads would likely still be random access (in spite of
an overlay system).

We decided that adding an overlay file indexing system would add efficiency to the system
without providing any real benefit since files are small where staleness and random access are
inevitable. By not maintaining a global view of the file system, we keep our design simpler, and more
scalable, and this also keeps our design in alignment with Voldemort (which intentionally has no global
file index). This also prevents us from having to make any assumptions about the file system in order to
achieve efficient and scalable MapReduce performance.

4 Horcrux Architecture

The Horcrux MapReduce system has four main components: the Acting Master, the Job Manager,
Worker Managers, and Workers. The architecture consists of a heavyweight thread spawning many
smaller threads to manage or execute tasks within an event driven framework.

1) The Acting Master accepts job requests from the User Program and spawns a Job Manager
for each job request. The Acting Master also distributes Worker Managers to Job Managers. The
Acting Master also sends the MapReduce results back to the client (as a set of keys).

2) The Job Manager communicates with the Acting Master to reserve available Worker
Managers. The Job Manager also uses the Load Balancer in Voldemort to obtain a balanced schedule
for each reserved Worker Manager. Job slices are then sent to the various Worker Managers to be
executed. After the map phase, results are aggregated into sets of intermediate keys and finally reduced.

3) Worker Managers run on all the nodes of the cluster (one per node). The Worker Manager
distributes the workload throughout the worker thread pool in round robin fashion. The Worker
Manager also keeps track of the workers and collects the resulting keys. Finally, the Worker Manager
sends the resulting keys to the Job Manager when a job is complete.

4) Workers run the scheduled jobs. Many workers run in a worker thread pool, and worker
threads report to the Worker Manager on their respective nodes.

Like Voldemort, the Horcrux system is masterless with no single point of failure. As mentioned
previously, Voldemort has no global view of the file system, which makes our system incompatible
with current versions of the MapReduce algorithm. However, like Amazon Dynamo, all Voldemort
nodes know where all keys are located throughout the cluster. The master node ‘maps’ the MapReduce
request by equitably partitioning the requested Keys into buckets which favor key locality but also
consider overall fairness (this way, nodes that have no locality for any keys may still participate in a
MapReduce task). Instead of partitioning and scheduling jobs based on file locations (as in traditional
MapReduce), we perform similar calculations but based on the node locations of the individual keys.
These locations are provided by the distributed hash table (DHT) which Voldemort uses to store the
node locations of all keys. In general, the job scheduling tends to be relatively equitable within a degree
of error.

Once the scheduling is complete, the acting master sends jobs to the various nodes in the
cluster. Requests are compressed before being sent and decompressed upon arrival to prevent
unnecessary bandwidth consumption (effectively trading CPU cycles for bandwidth). Unlike the



original MapReduce algorithm, we implement a form of Resilient Distributed Data sets (RDD) based
on ideas from Spark!®. The key difference is that Voldemort does all the caching for us, and we cache

key-value pairs instead of files. In Horcrux, each node caches the intermediate representation it builds,
as well as any relevant keys in order to speed up iterative tasks. The results of each map job are also

stored in each respective node so that only keys must be sent over the network at each step of the

process.
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Figure 3: The Horcrux system architecture. A user program sends a job which is routed to the acting master, which
spawns a new job manager for each respective job. The job manager then runs the jobs in parallel across the cluster.

5 Horcrux Implementation

New methods were added to the Voldemort shell client as well as the core client to pass MapReduce
request messages to and from the internal Horcrux system. Horcrux uses a centralized load balancing
algorithm which to achieve a near optimal workload distribution of keys to mappers. Although
Voldemort’s consistent hashing already provides a good overall load distribution, users might want to
MapReduce only a subset of keys that could possibly be mapped to the same node.

The load balancer uses consistent hashing to create a table with all keys are initially assigned to
its primary partition along with the number of keys assigned to each mapper. Then, the load balancer
examines the workload of all the respective nodes. If there are any sizeable imbalances, the load
balancer will scan for keys that are currently assigned to the heavily loaded node and shift them to a
more lightly loaded replica. Load balancing is very beneficial when there is a small number of mappers
because finding a key to exchange is faster if both mappers have a higher portion of keyset. The
threshold for what constitutes as a balanced workload is set as a proportion in a configuration file and
can be adjusted if needed by the user. We achieved only a near optimal load balance because it does not
consider cascaded load balancing, where a more optimal load balance could be accomplished if Node A
can pass keys to Node B, which in turn, can pass keys to Node C.

Horcrux consists of two distinct clusters running on separate nodes:

1. MapReduce cluster: (Akka) which runs on top of the Voldemort cluster

2. Multi-broker cluster: for Katka which runs on separate nodes

The MapReduce cluster is modeled after Akka cluster singleton class which is P2P cluster with
a single master. The Akka cluster singleton provides message routing to the acting leader, leader
election on leader failure, gossip protocol for membership changes and dead letter queues for retrying



messages. The MapReduce cluster is bootstrapped using pre-configured cluster seeds. As part of
bootstrapping, the cluster elects a leader. The acting master node in the MapReduce / Akka cluster is

not predefined. It is elected during bootstrapping or when present leader fails. The acting master is the

supervisor for all the Job Managers and Worker Managers. In turn, the Worker Managers act as
supervisor to the worker thread pools (which are in fact Akka actor thread pools). When a node is

elected as leader, the Worker Manager running on the node is removed from the pool of available

Worker Managers.

The second cluster mentioned above is based on Kafka, which is used to provide a distributed
commit log which provides a basis for component recovery on system failure. To improve reliability
and performance, instead of using single-broker, multi-broker is used. Kafka multi-broker runs on a
separate cluster. If any components fail, the supervisors contact Kafka brokers to get relevant log and
schedule their functionalities on other equivalent components. The entries in the multi-broker commit
log are then used to restore the state of the broken component.

The client process for sending a MapReduce job is fault tolerant to match the fault tolerance of
the cluster which could have an arbitrary number of dead nodes. The client maintains a list of live
nodes with a heartbeat system. Any live node will route the client’s MapReduce request to the acting
master. The job request is comprised of map and reduce instructions, as well as a set of input keys.

When a job request is received, the acting master creates a Job Manager to run the MapReduce
task. The Job Manager then contacts the master for a set of available Worker Managers for scheduling.
If there are not enough Worker Managers available, the job is queued. Once the Job Manager reserves
enough Worker Managers to complete the request, it contacts the Voldemort scheduler with this
information to get a partition map which tells which keys should be assigned to which Worker Manager
for processing. The Job Manager creates job slice requests with this information and sends them to the
relevant Worker Managers. When each respective Worker Manager receives the job slice requests, the
input keys are divided uniformly throughout the worker thread pool (there is one Worker Manager and
one Threadpool per node). When a job is completed, the Worker Manager stores the results in
Voldemort and only the keys are sent to the next phase. Worker Manager waits till all the worker nodes
have finished their assigned tasks. Then they sends results to the Job Manager.

The Job Manager waits until all the Worker Managers have completed their assigned job slices.
Once they are done, it aggregates all the intermediate keys. Using these intermediate keys as input keys
Job Manager schedules the reduce phase.
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Figure 4: The implementation of the map phase. The User Program sends a job request to the Job Manager. In turn, the
Job Manager uses the scheduler implemented in Voldemort to assigns mapping tasks for the Worker Manager. Then,
Workers read KV, map, and store the intermediate KVs back into Voldemort.
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Figure 5: The implementation of the reduce phase. The Job Manager uses the scheduler implemented in Voldemort to
assigns reduce tasks for the Worker Manager. Then, workers read iKV, reduce, store the resulting KV back in
Voldemort, and return the resulting keys to the Job Manager. In turn, the Job Manager returns the resulting keys to the
User Program.

6 Contrasting Horcrux vs Traditional MapReduce
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Figure 6: MapReduce on GFS Figure 7: Horcrux: MapReduce on a KVS

There are five fundamental differences between MapReduce on GFS and Horcrux. First, MapReduce
on GFS relies on a global view of GFS file system and can exploit the large file assumption for
scheduling tasks. On the other hand, Horcrux does not make any file size assumptions and algorithms
has to work efficiently on small key values. Second, MapReduce on GFS operates on large files for fast
sequential reads. However, Horcrux operates on small keys, which tends to result in random disk
access. To counteract this slow random access, Horcrux assumes persistent flash storage (although



Voldemort’s built-in caching can help mitigate this as well). Third, MapReduce on GFS has a master
that schedules tasks very efficiently with a few large files, but the master is also a single point of
failure. Horcrux as uses a master with automatic failover for fault tolerance on the master node
Furthermore, with many small keys on Horcrux, Horcrux needs to balance between balancing load and
running map and reduce tasks. Fourth, as shown in the Figure 6, files must be transferred between
every node for shuffle and sort. In contrast, as shown in Figure 7, Horcrux’s KVS has a built-in shuffle
and sort when storing the intermediate key values back into the KVS. Fifth, adding new nodes to GFS
MapReduce is laborious and requires reconfiguration. However, adding new nodes to Horcrux /
Voldemort is simple because Horcrux exploits Akka without a name server, and minimal configuration
is required.

7 Horcrux Performance Results

The performance measurements were conducted on computers in University of Wisconsin-Madison
Computer Sciences Department’s instructional labs. We use galapagos-20 through galapagos-35, each
of which has 15-4570 quad-core processors @ 3.20GHz with 6 MB cache and 16 GB of main memory.

Tweets were collected from a live Twitter data stream to a local file in the /tmp directory. Then, we

pushed collected Tweets data into HDFS and into the Voldemort cluster. When pushing Tweets into
HDEFS, we split the 10 million Tweets into 16 files, so each file contains 625,000 Tweets, each of
which consumes about 313 MB of storage. When pushing Tweets into the Voldemort cluster, we use

each key to store a set of 128 Tweets each, each of which consumes about 64 KB of storage.

Running Times of Word Count on 10 Million Tweets
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Figure 8: The performance results of running word count on 10 million tweets partitioned equally among the number
of nodes.

The test suite benchmarks the performance of running word count on Hadoop with large 313
MB files and on Horcrux with small 64 KB keys. The 10 million Tweets were partitioned equally
among the number of nodes. The results shown in Figure 8 is the minimum running time of word count
out of 5 trials. The good news is that Hadoop outperforms Horcrux by only factor of two, probably
because the Voldemort has built-in caching, which was warm after the first trial. We believe this a fair
comparison because both, Hadoop and Horcrux, were ran on warm cache. However, the bad news is
that Hadoop is still able to outperform Horcrux, probably because of Horcrux trades performance for
high reliability, high availability, and fault tolerance on many small files.

8 Related Work

Apache Hadoop!” is the most popular open-source implementation of MapReduce. Hadoop uses
HDFS as the underlying file system, and the Hadoop ecosystem includes HBase, Pig, and Hive as well.
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Our performance evaluation was done to contrast Horcrux with Hadoop since this is somewhat of a
generally accepted baseline (for batch jobs).

The paper by Lakshman presents Apache Cassandra, a distributed KVS. Originally Cassandra
was built by Facebook, although they later abandoned it. Cassandra is very similar to Voldemort (since
it is also based on Amazon’s Dynamo). Unlike Voldemort, Cassandra has no built-in cache, although
MapReduce functionality is built-in to Cassandra. Generally, performance is very close between the
two systems: Voldemort has lower latency and Cassandra has higher throughput.

The paper by Ogawa presents SSSP!, another implementation of MapReduce on KVS. SSS
implements MapReduce on Tokyo Cabinet, which does not satisfy the CAP and ACID properties as
well as Voldemort. For example, SSS only stores one copy of each key-value and cannot utilize a load
balancer in case many keys maps to the same node.

The paper by Zaharia presents Spark!®, which partitions resilient distributed datasets (RDDs)
and accumulators. Spark is ideal for iterative workloads, such as machine learning since the system
both pre-loads and caches data (RDDs). This results in a factor of 10 to 100 in overall speed
improvements for iterative workloads. On batch oriented jobs, traditional MapReduce frameworks like
Hadoop tend to perform better.

The paper by Ekanayake presents Twister'”, which similar to Spark, also attempts faster
iterative MapReduce by storing data in main memory. However, loading data to main memory would
incur large amount of delay, which partially defeats the purpose of implementing MapReduce on the
KVS cluster in the first place.

The paper by Isard presents Dryad'®, which offers a low level, efficient graph based version of
MapReduce. Dryad offers finer task granularity, which may implement MapReduce on top of a KVS if
we specify how to parse the input files. However, programming the parse phase with a KVS is not
straightforward.

9 Conclusion

We have demonstrated that Horcrux can provide MapReduce functionality on top of Voldemort storage
layer. The benchmark results show that building MapReduce on top of a KVS can have reasonably
comparable performance when the entire working set can be cached in memory. The data processing
benchmark likewise shows visible performance gains as the number of processing nodes increases.

Although Horcrux has achieved our project goals of building MapReduce with a Voldemort
KVS backend, there is a fundamental requirement that keys must be stored in cache in order to obtain
comparable performance (although we think persistent flash storage can also provide similar results as
well). Storing data in cache is feasible for live data analysis because data recently stored in the KVS
will be stored in cache as well. However, if data were removed from cache, and traditional slow hard
disks are used, then Horcrux with small keys can be expected to run much slower than traditional
MapReduce with large files. In the future we would like to benchmark Horcrux performance on solid
state drives with a cold cache to confirm whether the system can compete with Hadoop.

We also believe our system can be optimized to further improve performance. One future
optimization might involve never sending partitioned buckets to a node that already has the data cached
in memory. A SHAT1 fingerprint hash could be used to reliably identify the bucket (since the chance of
a collision is less than 1 in a billion) to save bandwidth. Another optimization might involve running
scheduling tasks on multiple nodes to better utilize bandwidth and CPU cycles available in the cluster
to speed up the scheduling process.
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