
1

ME 759: Project Report

Parallel Implementation of VLSI Gate

Placement in CUDA

Movers and Placers

Kai Zhao

Snehal Mhatre

December 21, 2015

2

Table of Contents

1. Introduction………………………………………...………………………………………... 3

2. Problem Formulation………………………………………...……………………………… 4

3. Methods and Procedure………………………………….………………………….………. 5

3.1 CPU Implementation…………………………………………………………………... 8

3.2 GPU1 Implementation…………………………………………………………………. 9

3.3 GPU2 Implementation…………………………………………………………………10

3.4 GPU3 Implementation…………………………………………………………………12

3.5 GPU4 Implementation…………………………………………………………………14

4. Simulation Results….…………………………………………………………………….....15

5. Conclusion………………………………………………………………………………..…17

6. References………………………………………………………………………………..….18

3

Abstract: It is critical that Electronic Design Automation algorithms explore the possibilities of

using GPU computing for extensive time consuming applications. This paper focuses on

implementing gate placement algorithms for obtaining optimal wire length using CUDA and

comparing it with a CPU implementation. GPU is approximately 3900 times faster than CPU for

a similar algorithm for larger benchmarks. Optimizing GPU implementation further by hiding

memory access latency and using shared memory is approximately 6400 times faster than CPU.

This paper lays a foundation for doing gate placement on GPU kernel, and provides a game

changing paradigm in VLSI EDA.

1. INTRODUCTION

A modern Very-Large Scale Integration (VLSI) chip is extraordinarily complex with billions of

transistors, millions of logic blocks, big blocks of memory, and routing to connect them all

together. These chips must be designed by using abstraction and a sequence of electronic design

automation (EDA) or computer aided design (CAD) tools to manage the design complexity.

Each EDA tool takes an abstract description of the chip and refines it step-wise. Multiple EDA

tools are used to achieve the final design as shown in Figure 1.1.

Figure 1.1: VLSI design flow.

One of the steps in VLSI design flow is placing gates on the layout (grid). Placing connected

gates closer to each other results in shorter wires, thereby reducing total wire length. This, in

turn, reduces delay and power consumption [1].

4

Many of the problems that arise in EDA for VLSI, are NP-complete that require an exponentially

expensive amount of time. The trends of EDA often require either heuristic solutions or

partitioning into smaller tractable problems. Graphics Processing Units (GPUs) are being

extensively used because of their high performance capabilities, especially in extensive time

consuming, large data applications. Therefore, VLSI can greatly benefit from high parallelization

of GPU computing [3]. This paper focusses on a case study of gate placement on GPU.

2. PROBLEM FORMULATION

Input: netlist (list of interconnected logic gates) and random gate placement on grid

Figure 2.1: c17 benchmark. The figure on top is the visual representation of the netlist of c17. The figure

on the bottom left is the text representation of the same netlist. The figure on the bottom right shows how

these gates are actually routed together. Gate 10 is connected to gate 11 because they share common input

3. Likewise, gate 10 is connected to gate 22 because the output of gate 10 feeds directly into gate 22.

Constraints: non-overlapping gates and time limit

5

Goal/Output: location of each gate for near-minimum total wire length

Figure 2.2: Goal of gate placement. The figure on the left shows an initial random location of each gate.

The figure on the right shows each gate at an optimal location after a few swappings.

2. METHODS AND PROCEDURE

Figure 3.1: A high level overview of each step in GPU gate placement.

Benchmarks: ISCAS ’85 benchmark circuits are used as a basis for comparison

Parser: takes the list of each gate and stores into a hash map of gate to netlist

Hash map of gate to netlist: shows all netlists (every gate’s connected list of gates)

Fisher-Yates Shuffle: linear runtime to shuffle the location of each gate

6

Initial Random Placement: initial starting point for CPU and each GPU kernel

Memcpy: malloc every array, copy array data, and then copy the pointers

Wire Length: used as a comparison measurement to determine which location is better

Swapping: move gate from one location to another

CPU: pick a gate, do sequential computation, and move gate to its optimal location

GPU1: pick a gate, have each thread compute wire length at an available location, move gate to its

optimal location

GPU2: pick 2 non-connected gates, have each thread compute wire length at an available location for

both gates, and move both gates to their optimal location

GPU3: pick 2 non-connected gates, schedule more threads to compute wire length at an available location

for each gate, and move both gates to their optimal location

GPU4: repeat GPU3, but move the location of each gate into shared memory since each thread uses it to

compute wire length

Benchmarks: ISCAS ’85 benchmarks circuits are combinational circuits distributed at the 1985

International Symposium on Circuits and Systems for comparing results in test generation. The

ISCAS ’85 circuits have been widely used in the research community as a basis for comparison

[4].

Table 3.1: ISCAS’85 Benchmarks

Circuit Name Circuit Function Number of Gates

c17 small example 6

c432 27-channel interrupt controller 160

c499 32-bit SEC circuit 202

c880 8-bit ALU 383

c1355 32-bit SEC circuit 546

c1908 16-bit SEC/DED circuit 880

c2670 12-bit ALU and controller 1193

c3540 8-bit ALU 1669

c5315 9-bit ALU 2307

c6288 16-bit Multiplier 2406

c7552 32-bit adder/comparator 3512

7

Wire length: Wire length is used as a criteria to determine which location is better. The total wire

length is the sum of the wire length of each net. Half perimeter wire length (HPWL) [1] is used

to estimate the wire length of each net.

Figure 3.2: Half Perimeter Wire Length (HPWL)

Put smallest bounding box around all gates in the net.

Find the location with minX, maxX, minY, and maxY.

∆𝑋 = 𝑚𝑎𝑥𝑋 − 𝑚𝑖𝑛𝑋; ∆𝑌 = 𝑚𝑎𝑥𝑌 − 𝑚𝑖𝑛𝑌

𝐻𝑃𝑊𝐿 = ∆𝑋 + ∆𝑌

𝑇𝑜𝑡𝑎𝑙 𝑤𝑖𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = ∑ 𝐻𝑃𝑊𝐿

Swapping: Swapping moves a gate to a different location. The swap will be committed if the

wire length is shorter, otherwise, the swap will be reverted. When computing wire length for

swaps, only the half perimeter wire length of changed nets are computed.

Figure 3.3: Swapping gates

A part of an iteration for finding a better gate placement. Swapping gate 1 and 2 will result in a shorter

wire length for net k (purple) at the cost of a higher wire length of net i (blue). The heuristic should

keep this swap if the total wire length decreases.

8

3.1 CPU Implementation
Select a gate, sequentially compute wire length for all available locations, and move gate to its

optimal location.

void doIterationOnCPU(gateToMove) {

 locationWithMinWireLength = location(gateToMove);

 minWireLength = getWireLength();

 for every availableLocation L {

 move gateToMove to availableLocation

 if (getWireLength() < minWireLength) {

 minWireLength = getWireLength();

 locationWithMinWireLength = L;

 }

 move gateToMove back

 }

 swap(location(gateToMove), locationWithMinWireLength);

}

Figure 3.4: Pseudo code for an iteration on CPU.

A: Location before iteration B: Compute wire length if

gate is not moved
C: Compute changed wire length

if gate is moved to top middle

D: Compute changed wire length

if gate is moved middle right

E: Compute changed wire length

if gate is moved to bottom left

F: Move gate to location with

minimum wire length.

Figure 3.5: A CPU iteration does sub-figures A to F sequentially.

The gate to move is 10.

9

3.2 GPU1 Implementation
Pick a gate, have each thread compute wire length at an available location, and move gate to its

optimal location [2].

__device doIterationOnGPU1(gateToMove) {

 if (threadId < numAvailableLocation) {

 d_globalMemory[threadId] = getPartialWirelengthIfMoved();

 }

 if (threadId == 0) {

 locationWithMinWireLength = location(gateToMove);

 minWireLength = d_globalMemory[0];

 for every availableLocation L {

 if (d_globalMemory[L] < minWireLength) {

 minWireLength = d_globalMemory[L];

 locationWithMinWireLength = L;

 }

 }

 swap(location(gateToMove), locationWithMinWireLength);

 }

}
Figure 3.6: Pseudo code for an iteration on GPU1.

A: Location before iteration B: Thread 0 computes wire

length if gate is not moved
C: Thread 1 computes changed wire

length if gate is moved to top middle

D: Thread 2 computes changed

wire length if gate is moved

middle right

E: Thread 3 computes changed

wire length if gate is moved to

bottom left

F: Thread 0 moves gate to

location with minimum wire

length

Figure 3.7: A GPU1 iteration is similar to a CPU iteration, but does sub-figures B to E in parallel.

The gate to move is 10.

10

3.3 GPU2 Implementation
Pick 2 non-connected gates, have each thread compute wire length at an available location for

both gates, and move both gates to their optimal location.

__device doIterationOnGPU2(gateToMove, anotherGateToMove) {

 if (threadId < numAvailableLocation) {

 d_globalMemory[threadId] = getPartialWirelengthIfMoved();

 d_globalMemory[threadId + numAvailableLocation] = getPartialWirelengthIfMoved();

 }

 if (threadId == 0) {

 for both gateToMove G {

 locationWithMinWireLength = location(G);

 minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time

 for every availableLocation L {

 if (d_globalMemory[L] < minWireLength) {

 minWireLength = d_globalMemory[L];

 locationWithMinWireLength = L;

 }

 }

 swap(location(G), locationWithMinWireLength);

 }

 }

}

Figure 3.8: Pseudo code for an iteration on GPU2.

A: Location before iteration B: Thread 0 computes wire

length if first gate is not

moved

C: Thread 1 computes changed

wire length if first gate is moved

to top middle

11

D: Thread 2 computes changed

wire length if first gate is moved

middle right

E: Thread 3 computes changed

wire length if first gate is moved

to bottom left

F: Thread 0 computes wire

length if second gate is not

moved

G: Thread 1 computes

changed wire length if second

gate is moved to top middle

H: Thread 2 computes

changed wire length if second

gate is moved to middle right

 I: Thread 3 computes changed

wire length if second gate is

moved to middle right

J: Thread 0 moves first gate to

location with minimum wire

length

K: Thread 0 moves second

gate to location with minimum

wire length

Figure 3.9: A GPU2 iteration does sub-figures B to E in parallel, and then sub-figure F to I in parallel.

The two non-connected gates are 10 and 19.

12

3.4 GPU3 Implementation
Pick 2 non-connected gates, schedule twice the number of threads (compared to GPU2

implementation) to compute wire length at an available location for each gate, and move both

gates to their optimal location.

__device doIterationOnGPU3(gateToMove, anotherGateToMove) {

 if (threadId < 2 × numAvailableLocation) {

 d_globalMemory[threadId] = getPartialWirelengthIfMoved();

 }

 if (threadId == 0) {

 for both gateToMove G {

 locationWithMinWireLength = location(G);

 minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time

 for every availableLocation L {

 if (d_globalMemory[L] < minWireLength) {

 minWireLength = d_globalMemory[L];

 locationWithMinWireLength = L;

 }

 }

 swap(location(G), locationWithMinWireLength);

 }

 }

}

Figure 3.10: Pseudo code for an iteration on GPU3.

A: Location before iteration B: Thread 0 computes wire

length if first gate is not

moved

C: Thread 1 computes changed

wire length if first gate is moved

to top middle

13

D: Thread 2 computes changed

wire length if first gate is moved

middle right

E: Thread 3 computes changed

wire length if first gate is moved

to bottom left

F: Thread 4 computes wire

length if second gate is not

moved

G: Thread 5 computes

changed wire length if second

gate is moved to top middle

H: Thread 6 computes

changed wire length if second

gate is moved to middle right

 I: Thread 7 computes changed

wire length if second gate is

moved to middle right

J: Thread 0 moves first gate to

location with minimum wire

length

K: Thread 0 moves second

gate to location with minimum

wire length

Figure 3.11: A GPU3 iteration does sub-figures B to I in parallel.

The two non-connected gates are 10 and 19.

14

3.5 GPU4 Implementation
Repeat GPU3, but move the location of each gate into shared memory since each thread uses it to

compute wire length.

__device doIterationOnGPU4(gateToMove, anotherGateToMove) {

 sharedMemory[] = locations[];

 if (threadId < 2 × numAvailableLocation) {
 d_globalMemory[threadId] = getPartialWirelengthIfMovedWithSharedMemory();

 }

 if (threadId == 0) {

 for both gateToMove G {

 locationWithMinWireLength = location(G);

 minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time

 for every availableLocation L {

 if (d_globalMemory[L] < minWireLength) {

 minWireLength = d_globalMemory[L];

 locationWithMinWireLength = L;

 }

 }

 swap(location(G), locationWithMinWireLength);

 }

 }

}

Figure 3.12: Pseudo code for an iteration on GPU4.

15

4. SIMULATION RESULTS

As explained in the previous sections, one gate is moved to its optimal location in one iteration in

CPU and GPU1 implementation. Therefore, comparing CPU time against GPU1 inclusive time is

fair, and is shown in figure 4.1 for different benchmarks (1024 iterations).

Figure 4.1: Comparison of CPU time and GPU1 inclusive time.

As seen in figure 4.1, GPU1 implementation is faster than CPU implementation because

computing the wire length for every available location is done in parallel. Depending on the size

of the benchmark, GPU1 achieves speedup between 12x – 3,900x compared to CPU.

For CPU and GPU1 implementation, the time required for one iteration is the time required to

find an optimal location for one gate, which should be approximately same for each iteration. In

the case of GPU2, GPU3, and GPU4, each iteration finds an optimal location for two gates.

Figure 4.2 analyzes the effect of runtime against the number of iterations for c432 benchmark.

Figure 4.2: Number of Iterations vs Time for c432 Benchmark

0.12 40.76 43.71

144.77 133.02

499.21

0.01 0.05 0.1 0.05 0.07 0.13
0

100

200

300

400

500

c17 c432 c499 c880 c1355 c1908

Ti
m

e
 (

se
co

n
d

s)

Benchmark

Comparison of CPU time and GPU1 inclusive time

CPU time GPU1 Inclusive time

0

200000

400000

600000

800000

1000000

0 10 20 30 40 50 60

N
u

m
b

er
 o

f
It

er
at

io
n

s

Runtime (s)

Number of Iterations vs Time for c432 Benchmark

cpu gpu1 gpu2 gpu3 gpu4

16

As expected and seen in figure 4.2, the number of iterations increase linearly with runtime for all

implementations. The change in the number of iterations for CPU is not noticeable because each

CPU iteration takes much longer than a GPU iteration. GPU1 does more iterations than GPU2 in

the same amount of time because each thread in GPU2 does more work than GPU1. GPU3 and

GPU4 do more iterations than GPU2 by hiding memory access latency and using shared

memory, respectively.

The GPU1 moves one gate whereas GPU2/3/4 moves two gates to their optimal location in one

iteration. As a result, GPU2/3/4 is expected to achieve reduced wire length compared to GPU1.

Figure 4.3 shows comparison of wire length against the number of iterations for GPU1 (moving

1 gate) and GPU2/3/4 (moving 2 gates) for different benchmarks.

Figure 4.3: Comparison of wire length vs number of iterations for GPU1 and GPU2/3/4.

0

50000

100000

150000

200000

250000

300000

350000

1

7
0

9

1
4

1
7

2
1

2
5

2
8

3
3

3
5

4
1

4
2

4
9

4
9

5
7

5
6

6
5

6
3

7
3

7
0

8
1

7
7

8
9

8
4

9
7

9
2

0
5

To
ta

l W
ir

e
Le

n
gt

h

Number of Iterations

Wire Length vs Number of Iterations

1 gate

2 gates

c7552

c6288

c3540

c2670

c1355

c432

17

Figure 4.4 shows comparison of wire length obtained from CPU and all different GPU

implementations with respect to the runtime for c1355 and c1908 benchmarks. CPU is very slow

compared to all GPU implementations, and therefore, wire length barely reduces.

Figure 4.4: Comparison of wire length vs runtime for different implementations

As expected and seen in figure 4.4, performance improves with every GPU optimization from

hiding memory latency to using shared memory. However, there is a slight deviation from this

behavior where GPU1 gives better wire length at 512 ms in c1908; probably because GPU1 does

more iterations and moved more crucial gates.

5. CONCLUSION

Gate placement determines the wire length, which in turn, determines the power consumption

and delay. This paper proposes four GPU kernels in a case study of gate placement for VLSI

EDA: 1) each thread computes wire length for 1 gate, 2) increase parallelization by having each

thread compute wire length for 2 gates, 3) hide memory access latency by scheduling twice the

number of threads to compute wire length for 2 gates, and 4) reduce memory latency with shared

memory. The four GPU kernels respectively perform up to 3900x, 5000x, 6000x, and 6400x

faster than CPU. This paper lays a foundation for doing gate placement on GPU kernel, and

provides a game changing paradigm in VLSI EDA.

18

6. REFERENCES

[1] R. Rutenbar, "ASIC Placement," https://spark-public.s3.amazonaws.com/vlsicad/lecture_slides/9-

vlsicad-placer.pdf, University of Illinois, 2013.

[2] A. Al-Kawam, H. Harmanani, "A Parallel GPU Implementation of the TimberWolf Placement

Algorithm," In Information Technology - New Generations (ITNG), 2015 12th International

Conference on, vol., no., pages 792-795, 13-15 April 2015.

[3] G. Flach, M. Johann, R. Hentschke, and R. Reis, "Cell placement on graphics processing units," In

SBCCI ’07: Proc. Annual Conference on Integrated Circuits and Systems Design, pages 87–92, 2007.

[4] M. Hansen, H. Yalcin, J. Hayes, “ISCAS High-Level Models,”

http://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html, University of Michigan, 1999.

https://spark-public.s3.amazonaws.com/vlsicad/lecture_slides/9-vlsicad-placer.pdf
https://spark-public.s3.amazonaws.com/vlsicad/lecture_slides/9-vlsicad-placer.pdf
https://spark-public.s3.amazonaws.com/vlsicad/lecture_slides/9-vlsicad-placer.pdf
http://web.eecs.umich.edu/~jhayes/iscas.restore/benchmark.html

