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Abstract: It is critical that Electronic Design Automation algorithms explore the possibilities of 

using GPU computing for extensive time consuming applications. This paper focuses on 

implementing gate placement algorithms for obtaining optimal wire length using CUDA and 

comparing it with a CPU implementation. GPU is approximately 3900 times faster than CPU for 

a similar algorithm for larger benchmarks. Optimizing GPU implementation further by hiding 

memory access latency and using shared memory is approximately 6400 times faster than CPU. 

This paper lays a foundation for doing gate placement on GPU kernel, and provides a game 

changing paradigm in VLSI EDA. 

1. INTRODUCTION 

A modern Very-Large Scale Integration (VLSI) chip is extraordinarily complex with billions of 

transistors, millions of logic blocks, big blocks of memory, and routing to connect them all 

together. These chips must be designed by using abstraction and a sequence of electronic design 

automation (EDA) or computer aided design (CAD) tools to manage the design complexity. 

Each EDA tool takes an abstract description of the chip and refines it step-wise. Multiple EDA 

tools are used to achieve the final design as shown in Figure 1.1.  

 

 
Figure 1.1: VLSI design flow. 

 

One of the steps in VLSI design flow is placing gates on the layout (grid). Placing connected 

gates closer to each other results in shorter wires, thereby reducing total wire length. This, in 

turn, reduces delay and power consumption [1]. 
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Many of the problems that arise in EDA for VLSI, are NP-complete that require an exponentially 

expensive amount of time. The trends of EDA often require either heuristic solutions or 

partitioning into smaller tractable problems. Graphics Processing Units (GPUs) are being 

extensively used because of their high performance capabilities, especially in extensive time 

consuming, large data applications. Therefore, VLSI can greatly benefit from high parallelization 

of GPU computing [3]. This paper focusses on a case study of gate placement on GPU. 

2. PROBLEM FORMULATION 

Input: netlist (list of interconnected logic gates) and random gate placement on grid 

 

     

       
Figure 2.1: c17 benchmark. The figure on top is the visual representation of the netlist of c17. The figure 

on the bottom left is the text representation of the same netlist. The figure on the bottom right shows how 

these gates are actually routed together. Gate 10 is connected to gate 11 because they share common input 

3. Likewise, gate 10 is connected to gate 22 because the output of gate 10 feeds directly into gate 22. 

 

Constraints: non-overlapping gates and time limit 
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Goal/Output: location of each gate for near-minimum total wire length 

 

                       
Figure 2.2: Goal of gate placement. The figure on the left shows an initial random location of each gate. 

The figure on the right shows each gate at an optimal location after a few swappings. 

2. METHODS AND PROCEDURE 

 

 
Figure 3.1: A high level overview of each step in GPU gate placement. 

 

Benchmarks: ISCAS ’85 benchmark circuits are used as a basis for comparison 

Parser: takes the list of each gate and stores into a hash map of gate to netlist 

Hash map of gate to netlist: shows all netlists (every gate’s connected list of gates) 

Fisher-Yates Shuffle: linear runtime to shuffle the location of each gate 
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Initial Random Placement: initial starting point for CPU and each GPU kernel 

Memcpy: malloc every array, copy array data, and then copy the pointers  

Wire Length: used as a comparison measurement to determine which location is better 

Swapping: move gate from one location to another 

CPU: pick a gate, do sequential computation, and move gate to its optimal location 

GPU1: pick a gate, have each thread compute wire length at an available location, move gate to its 

optimal location 

GPU2: pick 2 non-connected gates, have each thread compute wire length at an available location for 

both gates, and move both gates to their optimal location 

GPU3: pick 2 non-connected gates, schedule more threads to compute wire length at an available location 

for each gate, and move both gates to their optimal location 

GPU4: repeat GPU3, but move the location of each gate into shared memory since each thread uses it to 

compute wire length 

 

Benchmarks: ISCAS ’85 benchmarks circuits are combinational circuits distributed at the 1985 

International Symposium on Circuits and Systems for comparing results in test generation. The 

ISCAS ’85 circuits have been widely used in the research community as a basis for comparison 

[4].  

 

Table 3.1: ISCAS’85 Benchmarks 

Circuit Name Circuit Function Number of Gates 

c17 small example 6 

c432 27-channel interrupt controller 160 

c499 32-bit SEC circuit 202 

c880 8-bit ALU 383 

c1355 32-bit SEC circuit 546 

c1908 16-bit SEC/DED circuit 880 

c2670 12-bit ALU and controller 1193 

c3540 8-bit ALU 1669 

c5315 9-bit ALU 2307 

c6288 16-bit Multiplier 2406 

c7552 32-bit adder/comparator 3512 
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Wire length: Wire length is used as a criteria to determine which location is better. The total wire 

length is the sum of the wire length of each net. Half perimeter wire length (HPWL) [1] is used 

to estimate the wire length of each net.   

 

 
Figure 3.2: Half Perimeter Wire Length (HPWL) 

Put smallest bounding box around all gates in the net.  

Find the location with minX, maxX, minY, and maxY.  

∆𝑋 = 𝑚𝑎𝑥𝑋 − 𝑚𝑖𝑛𝑋; ∆𝑌 = 𝑚𝑎𝑥𝑌 − 𝑚𝑖𝑛𝑌 

𝐻𝑃𝑊𝐿 =  ∆𝑋 + ∆𝑌 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑖𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =  ∑ 𝐻𝑃𝑊𝐿 

 

Swapping: Swapping moves a gate to a different location. The swap will be committed if the 

wire length is shorter, otherwise, the swap will be reverted. When computing wire length for 

swaps, only the half perimeter wire length of changed nets are computed. 

 

 
Figure 3.3: Swapping gates  

A part of an iteration for finding a better gate placement. Swapping gate 1 and 2 will result in a shorter 

wire length for net k (purple) at the cost of a higher wire length of net i (blue). The heuristic should 

keep this swap if the total wire length decreases. 
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3.1 CPU Implementation 
Select a gate, sequentially compute wire length for all available locations, and move gate to its 

optimal location. 

 

void doIterationOnCPU(gateToMove) { 

 locationWithMinWireLength = location(gateToMove); 

 minWireLength = getWireLength(); 

 for every availableLocation L { 

  move gateToMove to availableLocation 

  if (getWireLength() < minWireLength) { 

    minWireLength = getWireLength(); 

    locationWithMinWireLength = L; 

  } 

  move gateToMove back 

 } 

 swap(location(gateToMove), locationWithMinWireLength); 

} 

Figure 3.4: Pseudo code for an iteration on CPU. 

 

A: Location before iteration B: Compute wire length if 

gate is not moved 
C: Compute changed wire length 

if gate is moved to top middle 

D: Compute changed wire length 

if gate is moved middle right 

E: Compute changed wire length 

if gate is moved to bottom left 

F: Move gate to location with 

minimum wire length.  

Figure 3.5: A CPU iteration does sub-figures A to F sequentially. 

The gate to move is 10. 

 



9 
 

3.2 GPU1 Implementation 
Pick a gate, have each thread compute wire length at an available location, and move gate to its 

optimal location [2]. 

__device doIterationOnGPU1(gateToMove) { 

 if (threadId < numAvailableLocation) { 

  d_globalMemory[threadId] = getPartialWirelengthIfMoved(); 

 } 

 if (threadId == 0) { 

  locationWithMinWireLength = location(gateToMove); 

  minWireLength = d_globalMemory[0];  

  for every availableLocation L { 

   if (d_globalMemory[L] < minWireLength) { 

     minWireLength = d_globalMemory[L]; 

    locationWithMinWireLength = L; 

   } 

  } 

  swap(location(gateToMove), locationWithMinWireLength); 

 } 

} 
Figure 3.6: Pseudo code for an iteration on GPU1. 

 

A: Location before iteration B: Thread 0 computes wire 

length if gate is not moved 
C: Thread 1 computes changed wire 

length if gate is moved to top middle 

D: Thread 2 computes changed 

wire length if gate is moved 

middle right 

E: Thread 3 computes changed 

wire length if gate is moved to 

bottom left 

F: Thread 0 moves gate to 

location with minimum wire 

length 

Figure 3.7: A GPU1 iteration is similar to a CPU iteration, but does sub-figures B to E in parallel. 

The gate to move is 10. 
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3.3 GPU2 Implementation 
Pick 2 non-connected gates, have each thread compute wire length at an available location for 

both gates, and move both gates to their optimal location. 

 

__device doIterationOnGPU2(gateToMove, anotherGateToMove) { 

 if (threadId < numAvailableLocation) { 

  d_globalMemory[threadId] = getPartialWirelengthIfMoved(); 

  d_globalMemory[threadId + numAvailableLocation] = getPartialWirelengthIfMoved(); 

 } 

 if (threadId == 0) { 

  for both gateToMove G { 

   locationWithMinWireLength = location(G); 

   minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time 

   for every availableLocation L { 

    if (d_globalMemory[L] < minWireLength) { 

     minWireLength = d_globalMemory[L]; 

      locationWithMinWireLength = L; 

    } 

   } 

   swap(location(G), locationWithMinWireLength); 

  } 

 } 

} 

Figure 3.8: Pseudo code for an iteration on GPU2. 

 

 

 

 

 

 

 

A: Location before iteration B: Thread 0 computes wire 

length if first gate is not 

moved 

C: Thread 1 computes changed 

wire length if first gate is moved 

to top middle 
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D: Thread 2 computes changed 

wire length if first gate is moved 

middle right 

E: Thread 3 computes changed 

wire length if first gate is moved 

to bottom left 

 
F: Thread 0 computes wire 

length if second gate is not 

moved 

 

G: Thread 1 computes 

changed wire length if second 

gate is moved to top middle 

 
H: Thread 2 computes 

changed wire length if second 

gate is moved to middle right 

 I: Thread 3 computes changed 

wire length if second gate is 

moved to middle right 

J: Thread 0 moves first gate to 

location with minimum wire 

length 

K: Thread 0 moves second 

gate to location with minimum 

wire length 

 

Figure 3.9: A GPU2 iteration does sub-figures B to E in parallel, and then sub-figure F to I in parallel. 

The two non-connected gates are 10 and 19. 
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3.4 GPU3 Implementation 
Pick 2 non-connected gates, schedule twice the number of threads (compared to GPU2 

implementation) to compute wire length at an available location for each gate, and move both 

gates to their optimal location. 

 

__device doIterationOnGPU3(gateToMove, anotherGateToMove) { 

 if (threadId < 2 × numAvailableLocation) { 

  d_globalMemory[threadId] = getPartialWirelengthIfMoved(); 

 } 

 if (threadId == 0) { 

  for both gateToMove G { 

   locationWithMinWireLength = location(G); 

   minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time 

   for every availableLocation L { 

    if (d_globalMemory[L] < minWireLength) { 

     minWireLength = d_globalMemory[L]; 

      locationWithMinWireLength = L; 

    } 

   } 

   swap(location(G), locationWithMinWireLength); 

  } 

 } 

} 

Figure 3.10: Pseudo code for an iteration on GPU3. 

 

 

 

 

 

 

 

A: Location before iteration B: Thread 0 computes wire 

length if first gate is not 

moved 

C: Thread 1 computes changed 

wire length if first gate is moved 

to top middle 
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D: Thread 2 computes changed 

wire length if first gate is moved 

middle right 

E: Thread 3 computes changed 

wire length if first gate is moved 

to bottom left 

 
F: Thread 4 computes wire 

length if second gate is not 

moved 

 

G: Thread 5 computes 

changed wire length if second 

gate is moved to top middle 

 
H: Thread 6 computes 

changed wire length if second 

gate is moved to middle right 

 I: Thread 7 computes changed 

wire length if second gate is 

moved to middle right 

J: Thread 0 moves first gate to 

location with minimum wire 

length 

K: Thread 0 moves second 

gate to location with minimum 

wire length 

 

Figure 3.11: A GPU3 iteration does sub-figures B to I in parallel. 

The two non-connected gates are 10 and 19. 
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3.5 GPU4 Implementation 
Repeat GPU3, but move the location of each gate into shared memory since each thread uses it to 

compute wire length. 

 
__device doIterationOnGPU4(gateToMove, anotherGateToMove) { 

 sharedMemory[] = locations[]; 

 if (threadId < 2 × numAvailableLocation) { 
  d_globalMemory[threadId] = getPartialWirelengthIfMovedWithSharedMemory(); 

 } 

 if (threadId == 0) { 

  for both gateToMove G { 

   locationWithMinWireLength = location(G); 

   minWireLength = d_globalMemory[0]; // numAvailableLocation 2nd time 

   for every availableLocation L { 

    if (d_globalMemory[L] < minWireLength) { 

     minWireLength = d_globalMemory[L]; 

      locationWithMinWireLength = L; 

    } 

   } 

   swap(location(G), locationWithMinWireLength); 

  } 

 } 

} 

Figure 3.12: Pseudo code for an iteration on GPU4. 
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4. SIMULATION RESULTS 

As explained in the previous sections, one gate is moved to its optimal location in one iteration in 

CPU and GPU1 implementation. Therefore, comparing CPU time against GPU1 inclusive time is 

fair, and is shown in figure 4.1 for different benchmarks (1024 iterations).  

 
Figure 4.1: Comparison of CPU time and GPU1 inclusive time. 

 

As seen in figure 4.1, GPU1 implementation is faster than CPU implementation because 

computing the wire length for every available location is done in parallel. Depending on the size 

of the benchmark, GPU1 achieves speedup between 12x – 3,900x compared to CPU. 

 

For CPU and GPU1 implementation, the time required for one iteration is the time required to 

find an optimal location for one gate, which should be approximately same for each iteration. In 

the case of GPU2, GPU3, and GPU4, each iteration finds an optimal location for two gates. 

Figure 4.2 analyzes the effect of runtime against the number of iterations for c432 benchmark. 

 
Figure 4.2: Number of Iterations vs Time for c432 Benchmark 
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As expected and seen in figure 4.2, the number of iterations increase linearly with runtime for all 

implementations. The change in the number of iterations for CPU is not noticeable because each 

CPU iteration takes much longer than a GPU iteration. GPU1 does more iterations than GPU2 in 

the same amount of time because each thread in GPU2 does more work than GPU1. GPU3 and 

GPU4 do more iterations than GPU2 by hiding memory access latency and using shared 

memory, respectively.  

 

The GPU1 moves one gate whereas GPU2/3/4 moves two gates to their optimal location in one 

iteration. As a result, GPU2/3/4 is expected to achieve reduced wire length compared to GPU1. 

Figure 4.3 shows comparison of wire length against the number of iterations for GPU1 (moving 

1 gate) and GPU2/3/4 (moving 2 gates) for different benchmarks. 

 
Figure 4.3: Comparison of wire length vs number of iterations for GPU1 and GPU2/3/4. 
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Figure 4.4 shows comparison of wire length obtained from CPU and all different GPU 

implementations with respect to the runtime for c1355 and c1908 benchmarks. CPU is very slow 

compared to all GPU implementations, and therefore, wire length barely reduces.  

  
Figure 4.4: Comparison of wire length vs runtime for different implementations 

  

As expected and seen in figure 4.4, performance improves with every GPU optimization from 

hiding memory latency to using shared memory. However, there is a slight deviation from this 

behavior where GPU1 gives better wire length at 512 ms in c1908; probably because GPU1 does 

more iterations and moved more crucial gates. 

 

 

 

5. CONCLUSION 

Gate placement determines the wire length, which in turn, determines the power consumption 

and delay. This paper proposes four GPU kernels in a case study of gate placement for VLSI 

EDA: 1) each thread computes wire length for 1 gate, 2) increase parallelization by having each 

thread compute wire length for 2 gates, 3) hide memory access latency by scheduling twice the 

number of threads to compute wire length for 2 gates, and 4) reduce memory latency with shared 

memory. The four GPU kernels respectively perform up to 3900x, 5000x, 6000x, and 6400x 

faster than CPU. This paper lays a foundation for doing gate placement on GPU kernel, and 

provides a game changing paradigm in VLSI EDA. 
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