
ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

ECE366 Lab1,2,3: 8-bit Processor Design

In this course you will design a specialized processor. This processor should be optimized for two given

programs, Square (P1) and Widest (P2) (see following for details). You should assume:

• The processor is a single-cycle machine, so realize that there is a limit to what can be done in one cycle.

• The processor features fixed-length instructions of 8 bits wide. In other words, the instruction memory

is byte addressable and its data bus is 8-bit wide.

• Data memory is byte also addressable, and loads and stores can read and write exactly 8 bits.

• Data memory is a single-ported memory (a maximum of one read or one write per cycle, not both).

• Processor can write only one register per cycle. The only exception to this rule is that you may have a

single 1-bit condition register (e.g., carry out, or shift out, sign result, etc) that can be written at the

same time as an 8-bit register. Of course, you can read more than one register per cycle.

• All registers should also be 8-bit wide.

• Your optimization goals are:

o Minimize dynamic instruction count (i.e., the number of cycles executed during the running of a

program).

o Simplify your processor hardware design.

You are welcome to also optimize for other things (e.g., cycle time, ease of pipelining), but if you

do so, we will expect you to discuss that optimization intelligently, and these two goals should still

take highest priority. You will be rewarded, in particular, for doing a good job with the first goal.

Above description is valid for the first three labs. So keep in mind to review these limitations frequently and

revise your design accordingly, if one is violated.

Programs:

Square: Write a program that calculates the square of an unsigned number. The 8-bit input is found in data

memory location 0, and the 16-bit answer is to be written in locations 1 (high byte) and 2 (low byte). You are

NOT allowed to have a square or multiply instruction in your ISA.

Widest: Write a program to find the “widest” integer in an array of 32 integers. Note that there may be more

than one widest number (of equal width), and in this case, find the first widest one in the array. The array begins

at data memory location 32. The width of an integer is defined to be the distance between the least significant

and the most significant “1” in the binary representation. For example, the width of 00110100 is four, the width

of 10000000 is one, the width of 00000000 is zero, and the width of 11010001 is eight. Write the widest width

in memory location 3, the number itself in location 4, and the address where you found the number in location 5.

For example, if the four values above were the inputs, you would write 8 (the width) in location 3, 11010001

(the number) in location 4, and 35 (the address of the number) in location 5.

ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

Lab 3: Single cycle CPU

In this assignment, you will finally design a single-cycle implementation of a processor to execute your 8-

bit ISA. Your design will have a program counter (PC) controller, an instruction memory, a register file, an

ALU, a data memory, and a lot of “glue logic”. The ALU and register file should not be significantly different

from the last lab. Your machine code will be stored in the instruction memory. Use a PROM to create this

memory. You can use a dedicated PROM memory for each program (machine code), both starting at address

zero of their dedicated memory. Or, you may like to put both codes in one single PROM and run both programs

from the same code. For data memory you will use a RAM. The input data for both programs are found in data

memory and the results of the programs are stored in data memory, as well. Three sample input-data files were

posted on Piazza previously. You need also to design a circuitry for:

1- an Init signal that initializes PC to the beginning of each program (e.g. zero).

2- Dynamic Instruction Counter: This block should count the number of cycles required for each code to

be executed. Init signal will set the counter to zero. Halt instruction stops the counter from counting up.

Again we will use LogicWorks5 to implement our CPU. You will have two weeks to complete this lab. You

will demo your work every Tuesday. In demos, you will load your schematic in the LogicWorks5, modify the

contents of the data memory (input data) and run the simulator. The result should be presented both in timing

diagrams and data memory. You will have an exam based on your ISA design and implementation on the third

week of this lab. You need to be able to describe why each block is designed in the way they are.

Lab3A: Control Design
For this part, you will design the control block of your CPU in LogicWorks. It should consist of the following

parts:

1- Instruction memory: You will use a PROM for instruction memory.

2- Program Counter (PC) register: this register holds the address of the machine code that is now being

executed.

3- Init signal: this signal sets PC to the address of the beginning of the code.

4- PC-update: provides the address of the next instruction to be executed.

5- Dynamic instruction counter: counts number of required cycles to perform a task (P1 or P2). Note that

Init signal should reset the counter (set to zero).

Note that in PC-update you are implementing your branch instructions. If the instruction is not a branch, it

simply adds +1 to PC. On the other hand, when the instruction is a branch, then if the branch is taken, PC should

be updated by the new value. Otherwise, again PC is updated by PC + 1. Whether the branch is taken or not will

be determined by ALU. For now use a binary switch to control the branch.

Also, note that if the destination address of the branch instruction in your ISA is not part of your instruction and

is needed to be access from register file or memory, PC-update block should support another input port for that.

In that case, use two hex keyboards to feed the value to the port for now.

Finally, note that a Halt instruction will have two roles:

1- Tells the PC-update to apply PC = PC + 0

2- Stops the dynamic instruction counter.

Your high-level schematic will look like the following image:

ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

An Example High-level schematic:

Lab3A demo

You will demo the controller in the first week. Load your machine code in PROM, initialize the PC with

beginning address of your code and show how the codes are fetched according to the program flow. Also be

prepared for the following questions:

a) Which instructions in your ISA affect the program flow (e.g. Halt, Branch, …)?

b) What will be your dynamic instruction count if everything goes well?

c) What will happen if BranchConrol signal goes high during a non-branch instruction?

d) Will your code work if started from an address different than zero?

Lab3A Extra Credit:

You will earn extra credit for submitting your progress report. This report follows the same format as the 5
th
 part

of Lab3-final-report (see below for details).

Lab3B: Single Cycle CPU
In this lab assignment, you will design your single-cycle CPU. You will connect the control block to the ALU

and register file from the previous lab and also the memories. The high-level conceptual schematic of your final

design should look like the following image. Note that, your schematic will contain much more details than the

one shown here. For instance:

1- There is an input signal for “PC Control” block, called Init signal. It comes from a binary switch and

sets the initial value of PC register, see Lab 3A.

2- There is another input signal for “PC Control” block, called “Branch Control” signal. It is generated by

ALU or maybe is a function of some flags coming from ALU.

3- Dynamic Instruction Counter should have an input for Init signal, see Lab 3A.

4- Your ALU has several output flags (like Carry).

ECE366 Fall 2013

5- If your ISA supports immediate values in the instructions, you may need to bring it to the ALU ports. So

you will need a MUX to select between the immediate value or (let’s say) register B as the second input

of ALU. Also, you need a control signal for this MUX t

6- If the ALU in your ISA works directly with memory,

comes from register file or form data memory. The control for this MUX should also be considered.

An Example

Lab3B demo

You will demo your single cycle CPU running

memory and the input values in data memory. When you run the simulator, the clock runs. You will control the

execution by Init signal. When Halt instruction is executed, the dynamic instruction count wil

Then you will show us the contents of the data memory, which should contain Square or Width. We will test

your design by changing values in data memory and observing the results.

questions:

a) Does your dynamic instruction count depend on input values

b) How did you manage writing back to registers?

c) Describe your data path.

d) Is it a register-register architecture, a register

Lab3B Extra Credit:

You will receive extra credit for evaluating your hardware complexity

1- How many gates did you used in your CPU

2- What is the longest instruction and how much delay it requires?

3- How you can improve the delay? What about hardware cost?

Computer Organization II University of Illinois at Chicago

ISA supports immediate values in the instructions, you may need to bring it to the ALU ports. So

you will need a MUX to select between the immediate value or (let’s say) register B as the second input

of ALU. Also, you need a control signal for this MUX to be generated by Instruction Decoder.

If the ALU in your ISA works directly with memory, you need another MUX to select whether the data

comes from register file or form data memory. The control for this MUX should also be considered.

An Example Conceptual High-level Schematic:

single cycle CPU running P1 and P2. You need to load your machine codes in instruction

memory and the input values in data memory. When you run the simulator, the clock runs. You will control the

execution by Init signal. When Halt instruction is executed, the dynamic instruction count wil

Then you will show us the contents of the data memory, which should contain Square or Width. We will test

changing values in data memory and observing the results. Also be prepared for the following

ynamic instruction count depend on input values? Why or why not?

did you manage writing back to registers?

register architecture, a register-memory architecture or another type?

evaluating your hardware complexity. For example:

ow many gates did you used in your CPU (hardware cost)?

What is the longest instruction and how much delay it requires?

How you can improve the delay? What about hardware cost?

University of Illinois at Chicago

ISA supports immediate values in the instructions, you may need to bring it to the ALU ports. So

you will need a MUX to select between the immediate value or (let’s say) register B as the second input

o be generated by Instruction Decoder.

you need another MUX to select whether the data

comes from register file or form data memory. The control for this MUX should also be considered.

. You need to load your machine codes in instruction

memory and the input values in data memory. When you run the simulator, the clock runs. You will control the

execution by Init signal. When Halt instruction is executed, the dynamic instruction count will stop counting up.

Then you will show us the contents of the data memory, which should contain Square or Width. We will test

Also be prepared for the following

Why or why not?

memory architecture or another type?

ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

Lab3C: Exam
In the third week of this lab, you will demo your single cycle CPU again. But this time, you will assume that

you are in an interview for a job at Intel. You should do your best to sell your design and show us that you

comprehend the material. You need to start from the tasks (P1 and P2), explain your design steps, justify your

ISA design and present your implementation in LogicWorks. You only have 15 minutes to represent yourself

and you are competing with other groups. Your presentation may include the following parts:

• Your algorithms for P1 and P2 in the form of a flowchart or pseudo-code

• The assembly code for P1 and P2 and a list of all instructions that are used by those programs.

• Your 8-bit ISA description, including name, syntax, operation, encoding, tables and etc.

• Description of your Register File design

• Description of your ALU design

• Description of your Memory Access design

• Description of your PC-Controller design

• Description of your Instruction Decoder design and all control signals

• Demo the Final CPU working on input data

• Self-evaluation on your design and suggestions for its improvement

All of the students should be in the lab, for the whole lab time (not only your timeslot). While presenting your

work, see your classmates as your employers’ interview committee. Everyone evaluates the presented work and

gives his opinion on the interviewee. We will forward you the results and comments of interview.

Lab3 submission:

As the final report, you will submit a zip file containing two files:

• Your report in the following format.

• Source files of your CPU schematic design (cct and clf files).

Final Report:
Your final report should include every detail of your work. It should be such detailed that any other student in

your class can design your processor by follow your report. It should follow the format described below:

1) ISA overview:

a) Introduction. The name of the architecture, overall philosophy, specific goals strived for.

b) Instruction description. Which instructions are supported, the format of encoding for each, and an

example with machine code. Use well-organized table(s) to present your instruction design. The

description should be detailed enough that someone could write an assembler (a program that creates

machine code from assembly code) for it.

c) Register design. How many registers are supported? Are they general-purpose or specialized? Is there

anything special about your registers?

d) Memory and addressing modes. How large is your data memory? How many bits are needed for

memory addresses? How are memory addresses constructed / calculated in your instructions (for

load/store)? Give examples.

e) Control flow (branches). What types of branches are supported? How are the target addresses

ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

calculated? What is the maximum branch distance supported in your ISA? Give examples.

f) P1 and P2 programs (assembly language); well commented. State any assumptions you make. You

cannot assume anything about the values in registers or data memory, other than those specifically

given, when the program starts. This means, for example, that if you need zeroes in registers or memory,

you need to put them there.

2) ALU design:

a) ALU operations: the list of all ALU operations, accompanied by the instructions they are relevant to.

Describe your ALUop table and encoding details/challenges.

b) Schematics: hierarchically organized schematics of all components in your ALU.

3) Register File design:

a) Registers types: a description of how many registers of which types.

b) Schematics: hierarchically organized schematics of all components in register file and its high level

integration with ALU.

4) Instruction Decoder design:

a) Instruction Decoder description: including a description for each control signal and the associated

truth table. Describe how you reduce number of gates required in your design.

b) Schematics: hierarchically organized schematics of all components in your instruction decoder and its

high level integration with ALU and register file (different MUXs that you used …).

5) PC Control design:

a) PC Control description: including a description on how you have implemented each branch

instruction and what are the requirements (e.g. lookup tables) for that.

b) Schematics: hierarchically organized schematics of all components in your PC control and Dynamic

Instruction Counter. Also, include schematics for integration with Instruction Memory.

6) CPU wrap up:

a) Glue Logic description: including a description for every logic that you used to connect the basic

components together and their functionality/truth table.

b) Schematics: hierarchically organized schematics of all glue logic components in your CPU. Also,

present your highest level of schematics here.

c) Timing diagrams with clear annotations. It should demonstrate correct operation of CPU on the input

set as well as other important data. Once again, the timing diagrams should be annotated heavily. The

inputs for data memory were posted on Piazza.

i) It should at a minimum show execution of the program through at least the first few iterations of

each loop structure that you have, the cycle counter, the PC. It need not show the whole execution

of the program (particularly if it takes over 100 cycles or so! – again, cut out some of the loop

iterations. It, once again, should be heavily annotated so we can figure out what is going on.

ii) You MUST point out any particular instructions or overall execution that is not functioning. Give

ECE366 Fall 2013 Computer Organization II University of Illinois at Chicago

your explanation of what you think is going wrong.

7) Other details that you need to note.

8) Answers to the Questions

In these questions we are not looking for you to convince us that your design is wonderful, but rather looking at

how effectively you critique your own design.

a) Have you made any changes to your ISA from lab 1? What were they? Why did you make them? (we

hope you didn’t, but if you did, this is the place).

b) What are your dynamic instruction counts for program 1? program 2? Use the hardware cycle counter

on the given input.

c) What could have been done differently to better optimize for dynamic instruction count? Give

examples.

d) How successful were you at optimizing for ease of design and what was particularly difficult to design?

Give examples.

e) What could you have done differently to better optimize for ease of design?

f) How easy/difficult would it be to extend your design to a multi-cycle implementation? a pipe-lined

implementation? Give examples.

g) What might you have done differently if the priority was ease of assembly programming? Give

examples.

h) What instruction takes the longest on your machine? This instruction would determine the cycle time of

the processor. Use rough estimates. (e.g. assume each device introduces a constant delay).

i) What might you have done differently if the priority was short cycle time? Give examples.

j) State any known problems/bugs with the design in executing the programs. This will facilitate grading if

we know problems ahead of time, and can allow you to receive more partial credit if something isn't

working.

k) Reflect on this lab(1-3) experience.

• What did you learn from this project?

• What was the best thing about it?

• What was the worst thing about it?

• What advice would you give to someone taking this lab next semester?

• What would you do as the professor / TA to make this lab a better experience?

• How would you describe (in 3 sentences) the value of this lab experience in a job interview?

ECE 366 Lab 1-3 Final Report
CPU Design
2013 Fall
Kaushal Patel 679868139
Kai Zhao 670720413
Due Date: 2013 Nov 10
Lab Section: T8
TA: Shafagh Kamkar

1. ISA Overview
a) Introduction. The name of the architecture, overall philosophy, specific goals strived for.

The architecture name is “SW-8” (Square Width, 8-bit). This architecture is designed specifically
for finding the square of a number and for finding the largest width of an array of numbers in
the minimum number of instruction counts. This architecture strives to saves instruction counts
by avoiding unnecessary reads, writes, comparisons, increments, branches, and intermediate
steps.

b) Instruction description. Which instructions are supported, the format of encoding for each,
and an example with machine code. Use well-organized table(s) to present your instruction
design. The description should be detailed enough that someone could write an assembler (a
program that creates machine code from assembly code) for it.

Machine
Code

Instruction Syntax Operation Explanation

000xxxxx Load0 Load0 Rx Rx = Mem(0) Loads register x with data from
Mem(0)

001xxxxx Load32 Load32 Rx Rx =
Mem(x+32)

Loads register x with data in
Mem(x+32)

010xxxxx InitR1 InitR1 Rx = 0 Initialize R1 to 0
01100001 AndAddShiftR1 AndAddShiftR1 R1 =

shift((rightmo
st bit of R2
AND R0) + R1)

The rightmost bit of R2 will be
ANDed with R0, the product will be
added to R1, the sum will be shifted
to update the flag, and the shifted
result will be stored to R1.

10000010 SLR2 SLR2 R2 = flag*2^7
+ R2 / 2

Shift logic right of R2 and use carry
flag as the leftmost bit of R2

10100001 StoreR1Mem1 StoreR1Mem1 Mem(1) = R1 Stores R1 to Mem(1)
10100010 SLR2StoreMem2 SLR2StoreMem2 Mem(2) =

flag*2^7 + R2
/ 2

Use the carry flag as the right most
bit of a shift logic right of R2, and
store to Mem(2)

10100011 WidestWidth WidestWidth Mem(3) =
Widest(R0,
R1, R2, R3, ...,
R31)

Writes the widest width of all
registers to Mem(3)

10100100 WidestNumber WidestNumber Mem(4) =
Num(Widest(
R0, R1, R2, R3,
..., R31))

Writes the number of the widest
width of all registers to Mem(4)

10100101 WidestAddress WidestAddress Mem(5) =
registerAddre
ss(Widest(R0,
R1, R2, R3, ...,
R31)) + 32

Writes the register number of the
widest width + 32 of all registers to
Mem(5). +32 because there is an
offset of 32 between memory and
the registers

11111111 Halt Halt Halt

c) Register design: How many registers are supported? Are they general-purpose or specialized?
Is there anything special about your registers?
32 registers are supported. They are all general-purpose registers. The registers data is a one to
one mapping memory data with an offset. Therefore, it will be able to detect the location of the
widest based on which register the widest was in.

d) Memory and addressing modes: How large is your data memory? How many bits are needed

for memory addresses? How are memory addresses constructed / calculated in your
instructions (for load/store)? Give examples.
The data memory is 64 bytes (0 through 63). 6 bits are needed for the memory address since its
0 to 63 bytes long. Memory addresses are not constructed because it is handled by the ISA. An
adder will deal with the register offset in program widest. For example, knowing the offset of
32, if the program found the widest in register 5, then it know that Mem(5+32) contains the
widest, so 37 will be written into Mem(5) for program 2.

e) Control flow (branches): What types of branches are supported? How are the target addresses
calculated? What is the maximum branch distance supported in your ISA? Give examples.
No branching was supported. The target address is not applicable. The maximum distance
supported in the ISA is 0. The ISA supports no examples of branching.

f) P1 and P2 programs (assembly language); well commented. State any assumptions you make.
You cannot assume anything about the values in registers or data memory, other than those
specifically given, when the program starts. This means, for example, that if you need zeroes
in registers or memory, you need to put them there.
P1: Square

00000000 Load0 R00 # Loads the value to be squared into R0 (X)
01000001 InitR1 # Sets R1 (Z_H) to zeros
00000010 Load0 R02 # Loads the value to be squared into R2 (Z_L)

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10000010 SLR2 # Use the flag to shift the bits of R2

01100001 AndAddShiftR1
AND the right most bit of R2 with R0, then add with r1, then
shift, update flag, and finally store to R1

10100001 StoreR1Mem1 # Stores R1 to Mem(1)

10100010 SLR2StoreMem2
Use the carry flag as the right most bit of a shift logic right of
R2, and store to Mem(2)

P2: Widest

00100000 Load32 R00 # Loads R00 with data from Mem(00+32)
00100001 Load32 R01 # Loads R01 with data from Mem(01+32)
00100010 Load32 R02 # Loads R02 with data from Mem(02+32)
00100011 Load32 R03 # Loads R03 with data from Mem(03+32)
00100100 Load32 R04 # Loads R04 with data from Mem(04+32)
00100101 Load32 R05 # Loads R05 with data from Mem(05+32)
00100110 Load32 R06 # Loads R06 with data from Mem(06+32)
00100111 Load32 R07 # Loads R07 with data from Mem(07+32)
00101000 Load32 R08 # Loads R08 with data from Mem(08+32)
00101001 Load32 R09 # Loads R09 with data from Mem(09+32)
00101010 Load32 R10 # Loads R10 with data from Mem(10+32)
00101011 Load32 R11 # Loads R11 with data from Mem(11+32)
00101100 Load32 R12 # Loads R12 with data from Mem(12+32)
00101101 Load32 R13 # Loads R13 with data from Mem(13+32)
00101110 Load32 R14 # Loads R14 with data from Mem(14+32)
00101111 Load32 R15 # Loads R15 with data from Mem(15+32)
00110000 Load32 R16 # Loads R16 with data from Mem(16+32)
00110001 Load32 R17 # Loads R17 with data from Mem(17+32)
00110010 Load32 R18 # Loads R18 with data from Mem(18+32)
00110011 Load32 R19 # Loads R19 with data from Mem(19+32)
00110100 Load32 R20 # Loads R20 with data from Mem(20+32)
00110101 Load32 R21 # Loads R21 with data from Mem(21+32)
00110110 Load32 R22 # Loads R22 with data from Mem(22+32)
00110111 Load32 R23 # Loads R23 with data from Mem(23+32)
00111000 Load32 R24 # Loads R24 with data from Mem(24+32)
00111001 Load32 R25 # Loads R25 with data from Mem(25+32)
00111010 Load32 R26 # Loads R26 with data from Mem(26+32)
00111011 Load32 R27 # Loads R27 with data from Mem(27+32)
00111100 Load32 R28 # Loads R28 with data from Mem(28+32)
00111101 Load32 R29 # Loads R29 with data from Mem(29+32)
00111110 Load32 R30 # Loads R30 with data from Mem(30+32)
00111111 Load32 R31 # Loads R31 with data from Mem(31+32)

10100011 WidestWidth # Writes the widest width of all registers in memory location 3

10100100 WidestNumber
Writes the number of the widest width of all registers in
memory location 4

10100101 WidestAddress
Writes the register number of the widest width + 32 of all
registers in memory location 5

2. ALU Design
a) ALU operations: the list of all ALU operations, accompanied by the instructions they are

relevant to. Describe your ALUop table and encoding details/challenges.

ALU operations
1. Find Leftmost: compute location of leftmost bit given 1 8-bit input

Relevant to: finding width (ALU #5)
Details: This uses the if-else-if structure. If the leftmost bit is 1, then return 0. Else if the

left most bit is 0 and the 2nd from leftmost bit is 1, then return 2. Else if the left most bit is 0 and
the 2nd from leftmost bit is 0 and the 3rd from leftmost bit is 1, then return 3. … If all bits are 0,
then return 0.
 Challenges: The orientation of this ALU was originally wrong. Instead of finding the
leftmost bit from the left, it originally found the leftmost bit from the right. This challenge was
fixed by having it consistently wrong and rewiring the inputs of Width (ALU #5), which uses Find
Leftmost (ALU #1).
2. Find Rightmost: compute location of rightmost bit given 1 8-bit input
 Relevant to: finding width (ALU #5)
3. Subtractor: subtracts 1 8-bit input from another
 Relevant to: comparator (ALU #4) by subtracting and checking if all bits are 0 and width
(ALU #5) by subtracting leftmost and rightmost from 10
 Details: 2 4-bit subtractors were combined sequentially to make this 8-bit subtractor
4. Comparator: checks if 2 8-bit inputs are equal

Relevant to: comparator (ALU #4) by subtracting and checking if all bits are 0 and width
(ALU #5) by subtracting leftmost and rightmost from 10
 Details: this was originally built with 8 xnor gates. However, to help reduce the number
of gates, this was revised to use the subtractor instead.
5. Width: takes 1 8-bit input and return the width

Relevant to: widest program, need to find the width of elements of an array to compare
 Details: this ALU is 0x0a minus leftmost minus rightmost. The comparator is then used
to check if the difference is equal to 0x0a, and if so, then the width is set to 0.
6. Max: takes 2 8-bit inputs and return the larger
 Relevant to: widest program, need to find widest (max) width
 Details: this uses the subtractor and checks the sign of the difference
7. Sum: takes 2 8-bit inputs and return the sum
 Relevant to: And Add Shift (ALU #11)
 Details: used the built-in 8-bit adder found in the libraries
8. Shift Logic Right: takes 1 8-bit input and return every bit shifted to the right
 Relevant to: And Add Shift (ALU #11) and square program (to shift logic right of Z_L)
 Details: no gates were used. This just directly connected 1 pin to another

9. And: takes 2 8-bit inputs and return an 8-bit output of element-by-element AND operation
 Relevant to: And Add Shift (ALU #11)

Details: 8 and gates were used
10. Init: takes no input and return an output of 0, used for initializing the registers
 Relevant to: square program, initialize Z_H to 0 because we cannot assume that the
registers are initialized to 0

Details: all of the outputs were tied to ground
11. And Add Shift: takes 3 inputs, ANDs the 1st input with the lowest bit of 2nd input, then adds

to the 3rd input, and finally shifts right
Relevant to: square program, , ANDs the lowest bit of Z_L with X, then adds to the Z_H,

and finally shifts right to find the new Z_H
 Details: uses and (ALU #9), add (ALU #7), and shift (ALU #8)

Instruction ALUop
Load0 xxx
Load32 xxx
InitR1 001
AndAddShiftR1 010
SLR2 011
StoreR1Mem1 xxx
SLR2StoreMem2 100
WidestWidth 101
WidestNumber 110
WidestAddress 111
Halt xxx
The ALUops that are xxx are don’t cares because those instructions does not go through the
ALU.

b) Schematics: hierarchically organized schematics of all components in your ALU.
ALU High Level Schematic

1. Find Leftmost

2. Find Rightmost

3. Subtractor

4. Comparator

5. Width

6. Max

7. Sum

8. Shift Logic Right

9. And

10. Init

11. And Add Shift

3. Register File Design
a) Registers types: a description of how many registers of which types.

32 general purpose registers
b) Schematics: hierarchically organized schematics of all components in register file and its high

level integration with ALU.

(Shown Below) High level schematic zoomed out with integration with Decoder and ALU

(Shown Below) Same image as above, but zoomed in

(Shown Below) Register File zoomed out to show all 32 registers

(Shown Below) Flag In and Flag Out

(Shown Below) Register File zoomed in to show input data, decoder, and flag control

(Shown Below) Low level schematic of each register

4. Instruction Decoder Design
a) Instruction Decoder description: including a description for each control signal and the

associated truth table. Describe how you reduce number of gates required in your design.

Instruction Machine
Code

ALU
op

Halt Mem
Add32

Reg
Write

MemRead Mem
Write

Mem
ToReg

Reg
Address

Load0 000xxxxx xxx 0 0 1 1 0 1 xxxxx
Load32 001xxxxx xxx 0 1 1 1 0 1 xxxxx
InitR1 010xxxxx 001 0 x 1 0 0 0 xxxxx
AndAddShiftR1 01100001 010 0 x 1 0 0 0 00001
SLR2 10000010 011 0 x 1 0 0 0 00010
StoreR1Mem1 10100001 xxx 0 x 0 0 1 0 Don’t Care
SLR2StoreMem2 10100010 100 0 x 0 0 1 0 Don’t Care
WidestWidth 10100011 101 0 x 0 0 1 0 Don’t Care
WidestNumber 10100100 110 0 x 0 0 1 0 Don’t Care
WidestAddress 10100101 111 0 x 0 0 1 0 Don’t Care
Halt 11111111 xxx 1 x 0 0 0 0 Don’t Care

b) Schematics: hierarchically organized schematics of all components in your instruction decoder

and its high level integration with ALU and register file (different MUXs that you used …).
(Shown Below) High level schematic zoomed out with integration with Decoder and ALU

(Shown Below) Same image as above, but zoomed in

(Shown Below) Low level schematic of the decoder

5. PC Control Design
a) PC Control description: including a description on how you have implemented each branch

instruction and what are the requirements (e.g. lookup tables) for that.
There was no branching instruction. The PC control just needs a comparator and a mux to
determine whether to increment based on whether the instructor was halt.

b) Schematics: hierarchically organized schematics of all components in your PC control and
Dynamic Instruction Counter. Also, include schematics for integration with Instruction
Memory.
(Shown below) High level schematic of the PC control and Dynamic Instruction Counter

(Shown below) Low level schematic of the PC control

(Shown below) Low level schematic of the Dynamic Instruction Counter

6. CPU wrap up:
a) Glue Logic description: including a description for every logic that you used to connect the

basic components together and their functionality/truth table.
Clock Inverter – Inverts the clock so that the register file will update at the falling edge of the
clock to avoid any issues.
MemWrite – Inverts the WriteEnable input to the data memory due to the WriteEnable being
activated when the input is low.
WriteMemDataMux – Decides what value will be sent into the data input port of the data
memory

Inst2 Inst1 Inst0 Output
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

So, if the 3 LSBs of the instruction are 001, then the register 1 value will be sent to the data
memory or the ALU output will be sent to the memory.

b) Schematics: hierarchically organized schematics of all glue logic components in your CPU. Also,
present your highest level of schematics here.
Clock Inverter

MemWrite

WriteMemDataMux

c) Timing diagrams with clear annotations. It should demonstrate correct operation of CPU on

the input set as well as other important data. Once again, the timing diagrams should be
annotated heavily. The inputs for data memory were posted on Piazza.
Square Program
Clock 1

Clock 2

Clock 3

Clock 4

Clock 5

Widest Program

Clock 1

Clock 2

Clock 3

Clock 34

Clock 35

Clock 36

7. Other details that you need to note.
Our CPU seems to work.

Our CPU, which was optimized for dynamic instruction count and not hardware, will tend to
operate slower than other group’s CPU. We did not bother to optimize for hardware at all
because it was not a priority and copying and pasting hardware in LogicWorks5 is simple.
However, if we did have to optimize for hardware, then we will add another instruction to find
the register address of the widest width. Then do the rest of the computation from that register
as opposed to computing the width again for all 3 solutions in program 2.

In other words,

10100011 WidestWidth WidestWidth Mem(3) =
Widest(R0, R1,
R2, R3, ...,
R31)

Writes the widest width of all
registers to Mem(3)

10100100 WidestNumber WidestNumber Mem(4) =
Num(Widest(R
0, R1, R2, R3,
..., R31))

Writes the number of the widest
width of all registers to Mem(4)

10100101 WidestAddress WidestAddress Mem(5) =
registerAddre
ss(Widest(R0,
R1, R2, R3, ...,
R31)) + 32

Writes the register number of the
widest width + 32 of all registers to
Mem(5). +32 because there is an
offset of 32 between memory and
the registers

will be changed to

10100000 WidestRegister WidestRegister R32 =
registerAddre
ss(Widest(R0,
R1, R2, R3, ...,
R31))

Writes the register number of the
widest width into R32

10100011 WidestWidth WidestWidth Mem(3) =
Width(R(R32))

Writes the width register that R32
points to in Mem(3)

10100100 WidestNumber WidestNumber Mem(4) =
R(R32)

Writes the number register that
R32 points to in Mem(4)

10100101 WidestAddress WidestAddress Mem(5) =
R32+32

Writes R32 + 32 to Mem(5). +32
converts from register address to
memory address

.

Our software and hardware design grows linearly with the array size and data word size. If
another word is added in the array, then our design will require just another register. If the
word length is increased by 1, then the leftmost and rightmost device will just have to check
another bit. The other designs such as “waterfall” will require a higher complexity to
accommodate for another bit and PROM will require double the memory.

8. Answers to Questions
a) Have you made any changes to your ISA from lab 1? What were they? Why did you make

them? (we hope you didn’t, but if you did, this is the place).
Yes, but only minor changes. The 3 bit op-codes were rearranged between the instructions to
make the ISA look cleaner. The last 3 bits of the instructions that stores the results to memory
were changed so that those 3 bits can feed directly to the memory address.

b) What are your dynamic instruction counts for program 1? program 2? Use the hardware cycle
counter on the given input.
The dynamic instruction counter for program 1 is 21 (3 to initialize, 15 for 7.5 cycles of
AndAddShift, 2 to store the results to memory, and 1 to halt).
The dynamic instruction counter for program 2 is 36 (32 to load from memory to register, 3 to
store the results to memory, and 1 to halt).

c) What could have been done differently to better optimize for dynamic instruction count? Give
examples .
Doing more multiplication cycles per an instruction could possibly optimize for dynamic
instruction count. For example, AndAddShift could be changed to AndAddShiftAndAddShift to
reduce the number of multiplication cycles required by half.

d) How successful were you at optimizing for ease of design and what was particularly difficult to
design? Give examples.
We were somewhat successful in optimizing for ease of design. For example, finding the
rightmost bit uses the same device as finding the leftmost bit with the inputs reversed.
Furthermore, finding the largest width (in the 3 instructions that computes and stores the
solution in program 2) is just simply copying and pasting in the ALU. The 32 registers were
particularly tedious to design because they each require a different wire names.

e) What could you have done differently to better optimize for ease of design?
We could have used 4 registers along with some looping in the ISA to make the Register file
design easier, but it will make the PC counter design more difficult. After viewing presentations
from other groups, using PROM to store the width of each value will make designing the ALU
easier by avoiding devices used to find the leftmost, find the rightmost, and find the width.

f) How easy/difficult would it be to extend your design to a multi-cycle implementation? a pipe-
lined implementation? Give examples.
Extending the design to a multi-cycle implementation will require breaking the ALU into multiple
steps including 1) find the width of each register, 2) finding the largest width, 3) finding the
register with the largest width, 4) extracting data from the register with the largest width.
However, the multi-cycle implementation will require more hardware and registers to store the
intermediate results.
Extending the design to a pipelined implementation will require the ALU to wait until data is
finished writing to all registers. However, a pipelined implementation is ineffective because the
ALU has the longest delay.

g) What might you have done differently if the priority was ease of assembly programming? Give
examples.

Depending on the programmer’s experience loops in the program will make the assembly
programming easier by avoiding having to copy and paste the algorithm for each program.
Therefore, a register will be added to point to the address to load from memory to register. This
register will allow users to load data from memory to the corresponding register, and then
increment the point. This register will make writing the assembly code easier because the user
will not have to type the register address manually.

h) What instruction takes the longest on your machine? This instruction would determine the
cycle time of the processor. Use rough estimates. (e.g. assume each device introduces a
constant delay).
The longest instruction is widest address because it has to 1) find and compare the width of all
registers to find the widest one, 2) check the widest width against every register until the width
matches, 3) extra the corresponding address from the register.
 Instruction fetch: 3n s
 Instruction decoder: 3n s
 Register read: 6n s
 ALU:
 Find widest width:
 Find width of each register: 15n s
 Compare each width: 10n s
 Find register with widest width: 20n s
 Get the address of the register with widest width: 3n s
 Get the widest width address from the ALU: 2n s
 Add 32: 1 n s
 Data memory write: 2n s
 Total delay required: 65n s

i) What might you have done differently if the priority was short cycle time? Give examples.
Comparing all 32 registers requires a tournament format of at least 5 rounds. Comparing 2
registers at a time will only require 1 round. Therefore, if the priority was a shorter cycle time,
then program 2 will loop through the data, compare the width of current widest and the next
data in the loop, and extract data (width, number, and address) individually. Meanwhile,
program 1 will split AndAddShift to And, Add, and Shift.

j) State any known problems/bugs with the design in executing the programs. This will facilitate
grading if we know problems ahead of time, and can allow you to receive more partial credit if
something isn't working.
There are no known problems with the design or with executing the programs.

k) Reflect on this lab(1-3) experience.
What did you learn from this project? Lab 1-3 taught us how to design the hardware and
software so that combining the two will be simple.
What was the best thing about it?
The best thing was having no jumping/branching lab 3 and, which made the simulator, PC
updater, and control signals very easy to design and implement.
What was the worst thing about it?

The worst thing was the register file and ALU in lab 2, which required supporting 32 registers
and naming each data line individually within the ALU.
What advice would you give to someone taking this lab next semester?
Advice we can give to someone taking this lab is to plan ahead all the steps that are needed to
implement something, because changes are more difficult to implement the farther you get into
the project and files will be out of sync. Also, try to balance the burden between hardware and
software, so that both can be done without too many difficulties.
What would you do as the professor / TA to make this lab a better experience?
We would not have done much different. Professor Noohi demonstrated how to use Logic
Works and demonstrated how to build the register file, which is exactly what we had trouble
with. Importing the data into memory could have been clarified a bit better in class, only
because there was a discussion on Piazza about it. TA Shafagh clarified several of the
components that were expected in the CPU so we knew what we had to do to finish building the
processor.
How would you describe (in 3 sentences) the value of this lab experience in a job interview?
Creating a good design is great, but the good designs always leads to a lot of difficulties. The
best learning experience comes from encountering those difficulties, looking into them, and
implementing a fix or an alternative design. This lab taught us how to combine software and
hardware, essential for understanding computer organization and computer architecture.

	Lab_3 Assignment
	Lab1-3 Final Report
	1. ISA Overview
	2. ALU Design
	3. Register File Design
	4. Instruction Decoder Design
	5. PC Control Design
	6. CPU wrap up:
	7. Other details that you need to note.
	8. Answers to Questions

