
SPART

A Special Purpose Asynchronous Receiver/Transmitter

Introduction

In this miniproject you are to implement a Special Purpose Asynchronous

Receiver/Transmitter (SPART). The SPART can be integrated into the processor of your

final project to serve as the serial I/O interface between the processor and serial I/O

port on the lab workstations. Using the Hypertermial Accessory program, this will permit

you to input characters from the keyboard and to output characters to the screen on

the lab workstations.

The objectives of this miniproject are to:

• Familiarize you with design in the ECE 554 Virtex-5 Board environment
• Practice the use of an HDL in design
• Generate a useful design for your final project
• Acquire an initial experience in efficiently and effectively performing a design as

a team

SPART Design

SPART Functional Description

This section specifies the subsystem to be designed. In order to classify the description,

some terminology is necessary. The term output or write are used when the processor is

sending information to the SPART. The term transmit is used when the SPART is

transmitting data to the serial I/O port on the workstation. Conversely, the terms input or

read are used when the processor is retrieving information from the SPART. Finally, the

term receive is used when the SPART is receiving data from the serial I/O port on the

workstation.

IOADDR SPART Register

00 Transmit Buffer (IOR/W = 0); Receive Buffer (IOR/W = 1)

01 Status Register (IOR/W = 1)

10 DB(Low) Division Buffer

11 DB(High) Division Buffer
Table 1: Address Mappings

1

Figure 1: SPART Environment

A top level diagram of the SPART and its environment is shown in Figure 1. The FPGA

interfaces with a chip on the board which generates appropriate voltage levels for the

RS232 interface. The TxD pin transmits serial data from the FPGA and RxD receives serial

data.

The SPART and Processor driver share many interconnections in order to control the

reception and transmission of data. On the left, the SPART interfaces to an 8-bit, 3-state

bidirectional bus, DATABUS[7:0]. This bus is used to transfer data and control information

between the Processor and the SPART. In addition, there is a 2-bit address bus,

IOADDR[1:0] which is used to select the particular register that interacts with the

DATABUS during an I/O operation. The IOR/W signal determines the direction of data

transfer between the Processor and SPART. For a Read (IOR/W=1), data is transferred

from the SPART to the Processor and for a Write (IOR/W=0), data is transferred from the

processor to the SPART. IOCS and IOR/W are crucial signals in properly controlling the

three-state buffer on DATABUS within the SPART. Receive Data Available (RDA), is a

status signal which indicates that a byte of data has been received and is ready to be

read from the SPART to the Processor. When the read operation is performed, RDA is

reset. Transmit Buffer Ready (TBR) is a status signal which indicates that the transmit

buffer in the SPART is ready to accept a byte for transmission. When a write operation is

performed and the SPART is not ready for more transmission data, TBR is reset. The SPART

is fully synchronous with the clock signal CLK; this implies that transfers between the

Processor and SPART can be controlled by applying IOCS, IOR/W, IOADDR, and

DATABUS (in the case of a write operation) for a single clock cycle and capturing the

transferred data on the next positive clock edge. The received data on RxD, however,

2

is asynchronous with respect to CLK. Also, the serial I/O port on the workstation which

receives the transmitted data from TxD has no access to CLK. This interface thus

constitutes the “A” for “Asynchronous” in SPART and requires an understanding of RS-

232 signal timing and (re)synchronization.

SPART Structure

A block diagram of the SPART is given in Figure 2. Each subsystem is briefly described in

this section.

Figure 2: SPART Block Diagram

Bus Interface
The Bus Interface contains the 3-state drives which attach the SPART to the DATABUS. In

addition, it contains the multiplexer which selects the Receive Buffer or the Status

Register. The Status Register consists of RDA and TBR in positions 0 and 1, respectively.

The Status Register is not actually a register, but just connections from RDA and TBR

which are stored at their respective sources. The remaining six bits connected to the

multiplexer for the Status Register are zeros. Note that RDA and TBR are provided both

as direct signals to the Processor and as part of the Status Register content accessible

by the Processor via the DATABUS. If interrupt-based I/O is used for the SPART, then the

3

direct signals can be used as inputs to the interrupt system. If program-based I/O is

used, then the Status Register content (RDA, TBR) can be accessed by the

program using an I/O read operation on the Status Register to determine if an I/O

data operation is needed. In either case, RDA and TBR can be used as part of a

“handshake” between the processor and the SPART during I/O transactions.

In addition to the above datapath constructs, the Bus Interface also contains

combinational control logic for the above. In particular, it uses IOCS and IOR/W to

make sure that the 3-state drivers are never turned on in conflict with other drivers on

DATABUS.

Baud Rate Generator
The BAUD Rate Generator (BRG) produces an enabling signal or signals for

controlling the transmitter and the receiver. In traditional UART designs, transmitter

and receiver clocks, which typically are the same frequency, are used to perform

the necessary timing for controlling the BAUD rate of the transmitted serial

information and for controlling the sampling of received information. Since we have

no separate clock source, we cannot use this approach, but must instead depend

upon the BRG to produce enable signals for these purposes instead of separate

clocks. The reason for producing an enable signal instead of a clock is to avoid the

problem of having multiple clock domains. The enable signal is produced by a down

counter and decoder circuit to perform divisions of the frequency of CLK. Note that

in Verilog, an enable is not used as a clock, but as a condition for performing or not

performing actions:

always@(posedge clk)

if (enable)
...

else
...

4

Figure 3: Baud Rate Generator

The frequency of the occurrence of the most frequent enable, which has duration of

one CLK period, is typically 2n × baud rate, where n ranges from 2 to 4. We will assume

that 4 is used. In the design of the BRG, we have a special problem in that we will vary

the frequency of CLK driving the BRG. Thus, the BRG must be programmable to

maintain a fixed baud rate in the face of a changing clock frequency. Programming is

achieve by the processor loading two bytes, DB(High) and DB(Low) into the Divisor

Buffer in Fig. 3. This buffer drives the data inputs to the down counter as shown in Figure

3. The divisor is the nearest integer to (clock frequency/(2n × baud rate) − 1). When the

counter contains 0, it is loaded with the divisor. So the count goes from the divisor to

zero at the CLK rate. If the decoder consists of a zero detect on the entire counter,

then an enable is produced for a single clock period at a rate of one every (CLK/divisor

+ 1) = CLK/(2n × baud rate) With the divisor ranging from 1 to 65,535, division by 2

through 65,536 can be accomplished. By using appropriate divisor and designing

appropriate decoder, pulses can be produced at 2n times the baud rate. If an

additional enable is required, for example, at the baud rate itself, it can be generated

by a 4-bit down counter with a zero decoder and with the (2n × baud rate) enable as

an input. The following example illustrates the Basic Baud Rate concept.

Example: Suppose that CLK has frequency 25 MHz and that the

desired enable frequency is (2n × baud rate) where n = 4 and the

baud rate is 9600 (bits/second). The divisor required is 25,000,000/(16

× 9,600) − 1 = 161.76 which is rounded to 162. This becomes A2 in

hexadecimal. At count time 0, the counter will be loaded with 162

and will be decremented every 40 ns. The counter will be 0 at count

time 163, so the interval of time for the counter to be loaded and

count down is 163 × 40 ns = 6.52 μs. Inverting, the frequency is

153,374.23 Hz. Dividing by 16, this corresponds to a baud rate of 9586

bits/second. Based on calculations, we have estimated that an error

of + or - 3 percent is tolerable, so this design is well within tolerance.

In your final project, to insure communication with the “console” (Hyperterminal)

immediately after a reset, a divisor should be loaded into the Divisor Buffer upon

processor reset. This divisor should be in dedicated locations in memory. The memory

should also contain a “boot program” that executes automatically on reset to load the

divisor in memory into the Divisor Buffer. The clock frequency has been set before the

reset is applied. Further, in order to provide means of setting a division before your

system can execute code, the reset should initialize the Divisor Buffer to the divisor

corresponding to a clock of 100 MHz and 9600 bits/second. You can modify this value

to something else if necessary for your design.

5

More Information

For information on the remaining parts of the SPART, please consult the reference and

the files in the folder Miscellaneous HDL Code for UART-Like Hardware in the FAQ folder

on the course Website. Note that this design does not need to contain many of the

features in these examples. For example, there is no synchronous operation as in the

8251A and there is no initialization except for Reset and the loading of the BAUD Rate

Generator. Further, there is no error checking, no parity bit and a fixed number of stop

bits.

Hardware Testbench

In order to test your SPART in the lab, you will need circuitry to mimic the behavior of the

Processor. We will refer to this as a hardware testbench. This hardware testbench should

be able to:

• Demonstrate the ability to transmit and receive characters by, for example,

entering characters on a dumb terminal keyboard and echoing them back to

the dumb terminal display
• Loading the Baud Rate Generator with an arbitrary value.

The testbench needs to provide four hardwired divisor values. The testbench must load

one of these values into the Divisor Buffer after reset has been applied and removed.

The value loaded will be determined by the values provided by two DIP switches that

are set before reset is applied.

DIP Setting Baud Rate

00 4800

01 9600

10 19200

11 38400

Hardware Harness

Due to the complexity of the XUP board and the possibility of causing damage by

improper design or pin assignment, you are required to use a harness that surrounds

your design. Later designs done by you will use your own pin assignments and

configurations, but for now a harness will be provided. There are 4 provided files for the

miniproject.

• Top_level.v - A the top level of the project which connects to external I/O pins as

well as instantiating the SPART and your “Processor”

6

• Top_level.ucf – the Universal Constraints File which specifies I/O pins and clocking

parameters

• Spart.v – An empty module for you to create your spart within.
• Driver.v – An empty module for you to create your Processor driver within.

Implementation Information

When doing implementation, note that the family is Virtex-5 and the device

model is XC5VLX110T.

Lab Work

In lab you are to demonstrate the operation of your SPART as follows:

• Show that characters can be transferred between the dumb terminal and your

hardware testbench via the SPART.

• By transmitting at multiple baud rates

Report

Your report should consist of the following:

• Verilog code for your entire design with clear, useful commenting
• An accompanying narrative description of the function for the overall SPART and

each of the blocks including the testbench

• A record of the experiment conducted including the characters transmitted for

a basic test

• A discussion of problems encountered in the design and solutions employed.

Updated 9/1/2014

7

ECE 554 Miniproject 1
Design Document

Fall 2015
Kai Zhao
John Roy

Function of SPART

The SPART is divided into several modules that each perform specific parts of the
functionality of the device. These modules are the bus interface, the baud rate generator, the
transmit unit, and the receive unit.

The bus interface acts as the connection between the processor and the SPART. Its
external connections are the databus and the I/O address, ioaddr. The databus acts as a
bidirectional 8bit bus between the processor and the SPART. It carries data that is sent and
received as well as baud rate information. The ioaddr line specifies which data will be sent and
where. It can specify that data through the databus is to be received, sent, used as the baud
rate, or used by the processor as a status register.

The baud rate generator gives enable signals to the transmit and receive control units. It
is loaded with a countdown corresponding to a baud rate specified by the processor (either
4800, 9600, 19200, or 38400) and then it counts down from that number on each clock cycle.
When the counter reaches zero, an enable signal is sent to the transmit or the receive control
unit to send or capture data in the serial line. The serial line operates at a frequency much
slower than the internal clock signal of the SPART, so each serial bit is sent at a specific
multiple of the internal clock frequency. Similarly, the line is sampled at a multiple of the internal
clock frequency specific to the baud rate.

The transmit control unit takes data from the bus interface and sends it down the serial
line. It shifts the data out to convert it from parallel to serial. The shifting happens the baud rate
generator gives an enable signal. This ensures that the data is sent out at the rate specified for
the serial line.

The receive control unit takes data from the serial port and shifts it into a register to send
to the bus interface. It only shifts data in when the baud rate generator sends an enable signal
when the divisor is counted down, so the unit only samples data once per cycle of the baud rate.

Together, these units send out some control signals to the processor to ensure proper
operation. The receive control unit sends a receive data available signal (rda) to ensure the
processor takes in data when it is full and available. The transmit control unit sends a transmit
buffer ready (tbr) signal to the processor so the processor won’t send data before the buffer is
sending out previous data. The processor also sends signals to the SPART including chip
selection, clock, reset, and read/write. All of these ensure proper functionality of the SPART.

Record of Experiments

Unit testing was used to ensure proper functionality of each module. For the bus
interface, the tests included writing to each baud rate generator register, reading the status
register, writing to the transmit controller, and reading from the receive controller. For the baud
rate generator, the tests included writing to each baud rate register, timing the enables after
each possible baud rate configuration, and ensuring that no enable signals were sent after chip
select became low. For the transmit unit, the tests included writing out a specific value to the
serial line and checking that it had the proper start and stop bits. For the receive unit, the tests
included receiving a specific value from the serial line with the proper start and stop bits and
ensuring that the received value was correct.

All of these tests included checks to ensure the values being passed were correct and
informational error messages were included to inform the user of the incorrect value being
passed.

Discussion of Problems

The main problem we had was figuring exactly what signals each finite state machine
should wait for and exactly when to change states. For example, when receiving, we were not
sure whether it is done when we receive all 10 bits (1 start bit, 8 bits of data, and 1 stop bit), or
whether it was done when we receive only 9 bits and 1 stop bit. We were also not sure what
signal we had to wait for before going back to IDLE state and being able to receive again.

One major problem we had was with the hardware and software issues. Xilinx did not
work on some computers, ModelSim did not work in some computer, and the internet browser
did not work on other computers, some Vertix 5 boards did not work, and some serial cables did
not work. Xilinx ISE software, which can be used for development and testing, had frequently
crashed or throw file not found errors. To work around this, we did most of our development and
testing in ModelSim.

Another problem we faced was with our finite state machines, especially in the hardware
testbench. Once we ensured that our state transitions were logically separate from our inputs
and outputs the device worked as intended.

A final problem we faced was with viewing internal signals in ModelSim. Internal signals
are essential to proper testbenching, and without them we were left with a black box to test. In
order to view internal signals, we figured out that we had to run the command “log r /*” to put all
the signals, external and internal, in the objects window, then add them to the waveform from
there.

Verilog Code: top_level

Spart

Bus Interface

Bus Interface Test bench

Baud rate generator

Baud rate generator test bench

Transmit unit

Transmit unit test bench

Receive unit

Receive unit test bench

Transmit receive unit test bench

Driver

Driver test bench

Baud Rate Generator Testbench

Bus Interface Testbench

Transmit Unit Testbench

Receive Unit Testbench

Driver Testbench

	miniproject1
	ECE554Miniproject1Report

