SPART

A Special Purpose Asynchronous Receiver/Transmitter

Introduction

In this miniproject you are to implement a Special Purpose Asynchronous
Receiver/Transmitter (SPART). The SPART can be integrated into the processor of your
final project to serve as the serial I/O interface between the processor and serial I/O
port on the lab workstations. Using the Hypertermial Accessory program, this will permit
you to input characters from the keyboard and to output characters to the screen on
the lab workstations.

The objectives of this miniproject are to:

« Familiarize you with design in the ECE 554 Virtex-5 Board environment

» Practice the use of an HDL in design

+ Generate a useful design for your final project

« Acquire an initial experience in efficiently and effectively performing a design as

a team

SPART Design

SPART Functional Description

This section specifies the subsystem to be designed. In order to classify the description,
some terminology is necessary. The term output or write are used when the processor is
sending information to the SPART. The term fransmit is used when the SPART is
transmitting data to the serial I/O port on the workstation. Conversely, the terms input or
read are used when the processor is retrieving information from the SPART. Finally, the
term receive is used when the SPART is receiving data from the serial I/O port on the
workstation.

IOADDR | SPART Register

00 Transmit Buffer (IOR/W = 0); Receive Buffer (IOR/W = 1)
01 Status Register (IOR/W = 1)

10 DB(Low) Division Buffer

11 DB (High) Division Buffer

Table 1: Address Mappings




CLK RESET

) iy

Processor SPART

— 3 [OICS
L | IORAW Io_

Senal 1O
-t RDA TxD | g Max
- TEHR RxD [l 1R -
i |0 ADDR[1:0] Fsréjrrﬂﬂ o
| DATABUS[T:0]

FPGA

Figure 1: SPART Environment

A top level diagram of the SPART and its environment is shown in Figure 1. The FPGA
interfaces with a chip on the board which generates appropriate voltage levels for the
RS232 interface. The TxD pin transmits serial data from the FPGA and RxD receives serial
data.

The SPART and Processor driver share many interconnections in order to control the
reception and tfransmission of data. On the left, the SPART interfaces to an 8-bit, 3-state
bidirectional bus, DATABUS[7:0]. This bus is used to fransfer data and control information
between the Processor and the SPART. In addition, there is a 2-bit address bus,
IOADDR[1:0] which is used to select the particular register that interacts with the
DATABUS during an I/O operation. The IOR/W signal determines the direction of data
transfer between the Processor and SPART. For a Read (IOR/W=1), data is transferred
from the SPART to the Processor and for a Write (IOR/W=0), data is transferred from the
processor to the SPART. IOCS and IOR/W are crucial signals in properly controlling the
three-state buffer on DATABUS within the SPART. Receive Data Available (RDA), is a
status signal which indicates that a byte of data has been received and is ready to be
read from the SPART to the Processor. When the read operation is performed, RDA is
reset. Transmit Buffer Ready (TBR) is a status signal which indicates that the transmit
buffer in the SPART is ready to accept a byte for fransmission. When a write operation is
performed and the SPART is not ready for more transmission data, TBR is reset. The SPART
is fully synchronous with the clock signal CLK; this implies that transfers between the
Processor and SPART can be conftrolled by applying IOCS, IOR/W, IOADDR, and
DATABUS (in the case of a write operation) for a single clock cycle and capturing the
transferred data on the next positive clock edge. The received data on RxD, however,



is asynchronous with respect to CLK. Also, the serial I/O port on the workstation which
receives the transmitted data from TxD has no access to CLK. This interface thus
constitutes the “A” for *Asynchronous” in SPART and requires an understanding of RS-
232 signal timing and (re)synchronization.

SPART Structure
A block diagram of the SPART is given in Figure 2. Each subsystem is briefly described in

this section.

- ,
BAUD Rate Generator
»
PRate Enables
CLK To All blocks except
RESET Bus Interface
——— 3 T0 Controls —fzre-
10CS I Transmit Control
—® To Controls
IOR/W
and Bus Interface Transmit Shift Reg
- RDA
<™ S | JxD
ransmit Buffer
IOADDRI1:0] > __RxD
DATABUSI[7:0] e — .
] Bus Interface e g  Receive Control
Receive Shift Req | gp—
Receive Buffer

Figure 2: SPART Block Diagram

Bus Interface

The Bus Interface contains the 3-state drives which attach the SPART to the DATABUS. In
addition, it contains the multiplexer which selects the Receive Buffer or the Status
Register. The Status Register consists of RDA and TBR in positions 0 and 1, respectively.
The Status Register is not actually a register, but just connections from RDA and TBR
which are stored at their respective sources. The remaining six bits connected to the
multiplexer for the Status Register are zeros. Note that RDA and TBR are provided both
as direct signals to the Processor and as part of the Status Register content accessible
by the Processor via the DATABUS. If interrupt-based I/O is used for the SPART, then the



direct signals can be used as inputs to the interrupt system. If program-based 1/O is
used, then the Status Register content (RDA, TBR) can be accessed by the
program using an I/O read operation on the Status Register to determine if an I/O
data operation is needed. In either case, RDA and TBR can be used as part of a
“handshake” between the processor and the SPART during I/O transactions.

In addition to the above datapath constructs, the Bus Interface also contains
combinational control logic for the above. In particular, it uses IOCS and IOR/W to
make sure that the 3-state drivers are never turned on in conflict with other drivers on
DATABUS.

Baud Rate Generator

The BAUD Rate Generator (BRG) produces an enabling signal or signals for
controlling the tfransmitter and the receiver. In traditional UART designs, transmitter
and receiver clocks, which typically are the same frequency, are used to perform
the necessary timing for conftrolling the BAUD rate of the tfransmitted serial
information and for conftrolling the sampling of received information. Since we have
no separate clock source, we cannot use this approach, but must instead depend
upon the BRG to produce enable signals for these purposes instead of separate
clocks. The reason for producing an enable signal instead of a clock is to avoid the
problem of having multiple clock domains. The enable signal is produced by a down
counter and decoder circuit to perform divisions of the frequency of CLK. Note that
in Verilog, an enable is not used as a clock, but as a condition for performing or not
performing actions:

always@ (posedge clk)
if (enable)

else

15 ’ 8 7 ‘ 0
DB(HIgh) icos Buffer DOW-OW) I

I Down Counter Load

I Decoder Zero Enable




Figure 3: Baud Rate Generator

The frequency of the occurrence of the most frequent enable, which has duration of

one CLK period, is typically 2" x baud rate, where n ranges from 2 to 4. We will assume
that 4 is used. In the design of the BRG, we have a special problem in that we will vary
the frequency of CLK driving the BRG. Thus, the BRG must be programmable to
maintain a fixed baud rate in the face of a changing clock frequency. Programming is
achieve by the processor loading two bytes, DB(High) and DB(Low) into the Divisor
Buffer in Fig. 3. This buffer drives the data inputs to the down counter as shown in Figure
3. The divisor is the nearest integer to (clock frequency/(2" x baud rate) — 1). When the
counter contains O, it is loaded with the divisor. So the count goes from the divisor to
zero at the CLK rate. If the decoder consists of a zero detect on the entire counter,
then an enable is produced for a single clock period at a rate of one every (CLK/divisor
+ 1) = CLK/(2" x baud rate) With the divisor ranging from 1 to 65,535, division by 2
through 65,536 can be accomplished. By using appropriate divisor and designing
appropriate decoder, pulses can be produced at 2" times the baud rate. If an
additional enable is required, for example, at the baud rate itself, it can be generated
by a 4-bit down counter with a zero decoder and with the (2" x baud rate) enable as
an input. The following example illustrates the Basic Baud Rate concept.

Example: Suppose that CLK has frequency 25 MHz and that the

desired enable frequency is (2" x baud rate) where n = 4 and the
baud rate is 9600 (bits/second). The divisor required is 25,000,000/(16
x 9,600) — 1 =161.76 which is rounded to 162. This becomes A2 in
hexadecimal. At count time 0, the counter will be loaded with 162
and will be decremented every 40 ns. The counter will be 0 at count
time 163, so the interval of time for the counter to be loaded and
count down is 163 x 40 ns = 6.52 us. Inverting, the frequency is
153,374.23 Hz. Dividing by 16, this corresponds to a baud rate of 9586
bits/second. Based on calculations, we have estimated that an error
of + or - 3 percent is tolerable, so this design is well within tolerance.

In your final project, to insure communication with the “console” (Hyperterminal)
immediately after a reset, a divisor should be loaded into the Divisor Buffer upon
processor reset. This divisor should be in dedicated locations in memory. The memory
should also contain a “boot program” that executes automatically on reset to load the
divisor in memory into the Divisor Buffer. The clock frequency has been set before the
reset is applied. Further, in order to provide means of setting a division before your
system can execute code, the reset should initialize the Divisor Buffer to the divisor
corresponding to a clock of 100 MHz and 92600 bits/second. You can modify this value
to something else if necessary for your design.



More Information

For information on the remaining parts of the SPART, please consult the reference and
the files in the folder Miscellaneous HDL Code for UART-Like Hardware in the FAQ folder
on the course Website. Note that this design does not need to contain many of the
features in these examples. For example, there is no synchronous operation as in the
8251A and there is no initialization except for Reset and the loading of the BAUD Rate
Generator. Further, there is no error checking, no parity bit and a fixed number of stop
bits.

Hardware Testbench

In order to test your SPART in the lab, you will need circuitry to mimic the behavior of the
Processor. We will refer to this as a hardware testbench. This hardware testbench should
be able to:

+ Demonstrate the ability to transmit and receive characters by, for example,
entering characters on a dumb terminal keyboard and echoing them back to
the dumb terminal display

+ Loading the Baud Rate Generator with an arbitrary value.

The testbench needs to provide four hardwired divisor values. The testbench must load
one of these values into the Divisor Buffer after reset has been applied and removed.
The value loaded will be determined by the values provided by two DIP switches that
are set before reset is applied.

DIP Setting Baud Rate
00 4800

01 9600

10 19200

11 38400

Hardware Harness

Due to the complexity of the XUP board and the possibility of causing damage by
improper design or pin assignment, you are required to use a harness that surrounds
your design. Later designs done by you will use your own pin assignments and
configurations, but for now a harness will be provided. There are 4 provided files for the
miniproject.

« Top_level.v - A the top level of the project which connects to external I/O pins as
well as instantiating the SPART and your “Processor”




« Top_level.ucf - the Universal Constraints File which specifies I/O pins and clocking
parameters

+ Spart.v = An empty module for you to create your spart within.

» Driver.v — An empty module for you to create your Processor driver within.

Implementation Information

When doing implementation, note that the family is Virtex-5 and the device
model is XC5VLX110T.

Lab Work

In lab you are to demonstrate the operation of your SPART as follows:

« Show that characters can be transferred between the dumb terminal and your
hardware testbench via the SPART.
+ By fransmitting at multiple baud rates

Report
Your report should consist of the following:

« Verilog code for your entire design with clear, useful commenting

* An accompanying narrative description of the function for the overall SPART and
each of the blocks including the testbench

+ Arecord of the experiment conducted including the characters transmitted for
a basic test

+ A discussion of problems encountered in the design and solutions employed.

Updated 9/1/2014



ECE 554 Miniproject 1
Design Document
Fall 2015

Kai Zhao

John Roy

Function of SPART

The SPART is divided into several modules that each perform specific parts of the
functionality of the device. These modules are the bus interface, the baud rate generator, the
transmit unit, and the receive unit.

The bus interface acts as the connection between the processor and the SPART. Its
external connections are the databus and the I/O address, ioaddr. The databus acts as a
bi-directional 8-bit bus between the processor and the SPART. It carries data that is sent and
received as well as baud rate information. The ioaddr line specifies which data will be sent and
where. It can specify that data through the databus is to be received, sent, used as the baud
rate, or used by the processor as a status register.

The baud rate generator gives enable signals to the transmit and receive control units. It
is loaded with a count-down corresponding to a baud rate specified by the processor (either
4800, 9600, 19200, or 38400) and then it counts down from that number on each clock cycle.
When the counter reaches zero, an enable signal is sent to the transmit or the receive control
unit to send or capture data in the serial line. The serial line operates at a frequency much
slower than the internal clock signal of the SPART, so each serial bit is sent at a specific
multiple of the internal clock frequency. Similarly, the line is sampled at a multiple of the internal
clock frequency specific to the baud rate.

The transmit control unit takes data from the bus interface and sends it down the serial
line. It shifts the data out to convert it from parallel to serial. The shifting happens the baud rate
generator gives an enable signal. This ensures that the data is sent out at the rate specified for
the serial line.

The receive control unit takes data from the serial port and shifts it into a register to send
to the bus interface. It only shifts data in when the baud rate generator sends an enable signal
when the divisor is counted down, so the unit only samples data once per cycle of the baud rate.

Together, these units send out some control signals to the processor to ensure proper
operation. The receive control unit sends a receive data available signal (rda) to ensure the
processor takes in data when it is full and available. The transmit control unit sends a transmit
buffer ready (tbr) signal to the processor so the processor won’t send data before the buffer is
sending out previous data. The processor also sends signals to the SPART including chip
selection, clock, reset, and read/write. All of these ensure proper functionality of the SPART.



Record of Experiments

Unit testing was used to ensure proper functionality of each module. For the bus
interface, the tests included writing to each baud rate generator register, reading the status
register, writing to the transmit controller, and reading from the receive controller. For the baud
rate generator, the tests included writing to each baud rate register, timing the enables after
each possible baud rate configuration, and ensuring that no enable signals were sent after chip
select became low. For the transmit unit, the tests included writing out a specific value to the
serial line and checking that it had the proper start and stop bits. For the receive unit, the tests
included receiving a specific value from the serial line with the proper start and stop bits and
ensuring that the received value was correct.

All of these tests included checks to ensure the values being passed were correct and
informational error messages were included to inform the user of the incorrect value being
passed.

Discussion of Problems

The main problem we had was figuring exactly what signals each finite state machine
should wait for and exactly when to change states. For example, when receiving, we were not
sure whether it is done when we receive all 10 bits (1 start bit, 8 bits of data, and 1 stop bit), or
whether it was done when we receive only 9 bits and 1 stop bit. We were also not sure what
signal we had to wait for before going back to IDLE state and being able to receive again.

One major problem we had was with the hardware and software issues. Xilinx did not
work on some computers, ModelSim did not work in some computer, and the internet browser
did not work on other computers, some Vertix 5 boards did not work, and some serial cables did
not work. Xilinx ISE software, which can be used for development and testing, had frequently
crashed or throw file not found errors. To work around this, we did most of our development and
testing in ModelSim.

Another problem we faced was with our finite state machines, especially in the hardware
testbench. Once we ensured that our state transitions were logically separate from our inputs
and outputs the device worked as intended.

A final problem we faced was with viewing internal signals in ModelSim. Internal signals
are essential to proper test-benching, and without them we were left with a black box to test. In
order to view internal signals, we figured out that we had to run the command “log -r /*” to put all
the signals, external and internal, in the objects window, then add them to the waveform from
there.



Verilog Code: top_level

1!

(V- T- =TS (. ST I ST K]

e U = S S
R I R O B S U & T S - ]

ig
19
20
21
22
23
24
25
26
WL
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
e
53
34
55
36
57
58
39
60
€l
62
63
64
65
€6
67
68
]

7

T1
72

‘timescale 1ns [/ 1ps
B ESLS ST TSP ELEEELTLI TSP LI EL L ELF LR LTS LS TR EELEELS LT P P IEf LS T
// Company: University of Wisconsin-Madison
// Engineer: Fai zhao, John Roy
L
// Create Date: 2015 Sept 15
// Design Name: Miniprojectl
// Module Name: top_level
// Project Name:

=

Target Devices: Vertix 5
Tool versions: ModelSim SE 10.3c; Xilinx 14.7

Description: top level for demonstration
Dependencies: spart, driver

Revision:

Revision 0.01 - File Created

Additional Comments:

ICCS = I/C chip select. Set to one to activate the SPART

IOR/Wbar — When 1, the reading from SPART to the PROCESSOR, when 0 reading from the PROCESSCOR to the SPART

RDA — Receive data available =»> data can be read by the processor from the SPART.
TBR — Transmit buffer ready => data can be sent from the processor to the SPART

ICADDR — I/0 address of register to read or write
DATABUS — Data to be sent or received

SPART is fully synchronous with the clock — all transfers occur on a positive clock edge.
The received data on RxD is asynchronous. The transmit wvia TxD is also asynchronous.

SASSESPILLLL LSS TS LA LR LTSRS P LS LE LA LTSI R LS

Hmodule top_level( // inputs and outputs
input clk, // 100mhz clock
input rst, // Asynchronous reset, tied to dip switch 0
output txd, /{/ R8232 Transmit Data
input rxd, // RS232 Recieve Data

input [1:0] br_cfg // Baud Rate Configuration, Tied to dip switches 2 and 3

wire iocs; // wires the connect the spart to driver

wire iorw;
wire rda;
wire tbr;
ioaddr;
databus;

wire

——
=y
—

wire 0
// Instantiate your SPART here
spart spart0(

scklelkyt,

.rst(rst) .,

.locs (ioecs) ,

.iorw(iorw) ,

.rda(rda) ,

-tbr (tbr) ,

.ioaddr (icaddr) ,

.databus (databus) ,

-txd (txd) ,

Lrxd (rxd)

// Instantiate your driver here

driver driver0(
.clk(clk),
.rst(rst),
.br_cfg(br_cfg) .,
.locs (iocs) ,
.iorw(iorw) ,
.rda(rda) ,
-tbr(tbr),
.ioaddr (icaddr) ,
.databus (databus)



Spart

1 ‘timescale 1lns f 1lpa
2 BT ELAEL LT ELL BT E L L E LA EL A EL PP LE AP LI EL il iiiriiiss
3 /f Company: University of Wisconsin-Madison
4 // Engineer: Kai Zhao, John Roy
=) £
3 // Create Date: 2015 Sept 15
77 // Design Name: Miniprojectl
B // Module Name: spart
=l // Project Name:
10 // Target Devices: Vertix 5
Il // Tool versions: ModelSim SE 10.3c; Xilinx 14.7
12 // Description: spart for handling transmission to/from controller
i3 £
14 // Dependencies: bus_interface, baud rate_generator, transmit_unit, receive unit
i5 /o
16 // Revision:
257 // Revision 0.01 - File Created
18 // Bdditional Comments:
ig /o
20 SIS I RSP T LA TP L PSPPI i E T i e
21
22 [Hmodule spart( // inputs and outputs
23 input clk,
24 input rst,
o5 input ioecs,
26 input iorw,
27 output rda,
28 output tbr,
29 input [1:0] icaddr,
30 inout [7:0] databus,
31 output txd,
32 input rxd
33 9):
34
35 0] rate_tx data; // wires to connect submodules
36 wire [7:0] data_received;
38 bus_interface bus_interface0( // instantiate the DUT
29 .iocs(iocs) ,
40 .iosrw(iosIw),
41 .rda(rda),
42 «tbr (thr),
43 .ioaddr (icaddr) ,
E .databus (databus) ,
45 .rate tx data(rate tx data),
46 .data_received(data received)
37 s
s =) baud_rate_generator baud rate_generator0( // instantiate ti
50 1Tk {cik) .
51 .rst(rst), // confirm? not shown in diagram, but we th:
52 .iocs (ioes) .,
53 .ioaddr (iocaddr) ,
54 .rate_tx data(rate_tx_data),
55 .enable (enable)
56 = ¥
57
58 i transmit_unit transmit_unit0( // instantiate the DUT
T <eik [cIk);
60 .rst(rst),
61 .iocs (iocs) ,
62 .iorw(iorw) ,
63 -tbr (tbr) ,
64 .iloaddr (icaddr) ,
65 ~txd(txd),
I3 .rate tx data(rate tx data),
&7 .enable (enable)
S )i
65
70 =3 receive unit receive_unitO( // instantiate the DUT
71 .clk(clk) .,
1o .rst (rst),
73 .ioes (ioes),
T4 .lorw(iorw) ,
75 .rda (rda) ,
i .ioaddr (ioaddr) ,
77 .rxd(rxd) ,
T8 .data_received(data_received),
79 .enable (enable)
80 = ¥
81
82 endmodule



Bus Interface

al ‘timescale 1lns [/ lps
2 SRR e R AR i e e dari
3 // Company: University of Wisconsin-Madison
4 // Engineer: Fai Zhao, John Roy
5 Fi
& // Create Date: 2015 Sept 15
7 // De=ign Name: Miniprojectl
B // Module Name: bus_interface
] // Project Name:
10 // Target Devices: Vertixz 5
il // Tool versions: ModelSim SE 10.3c; Xilinx 14.7
12 // Description: bus interface to control which data to send and where to send it
13 /i
14 // Dependencies: none
1o i
1€ // Revision:
17 // Revision 0.01 — File Created
18 // Bdditional Comments:
15 7L
SO S S LSS EL L TR EA L r TR E AL AL BT PR R LA L E i ey
22 [module bus_intsrfacs (
23 input iocs,
24 input iosrw,
25 input rda,
26 input tbr,
27 input [1:0] ioaddr,
28 inout [7:0] databus,
29 output reg [7:0] rate tx data,
30 input [7:0] data_received
S )
32
33 E always @(*) begin
34 [ //if (ioaddr[1]) begin // if (ioaddr[1] == 1) // processor writing to baud rate generator
35 // rate tx data <= databus;
36 = //end
37 rate_tx_data <= databus;
38 = end
39
40 wirs [7:0] databus_out;
41 assign databus out = (ioaddr([C]) ? {&'b0CO , tbr, rda} : data_received; // processor reading/SPART writing
42 assign databus = (liosrw || ioaddr[1]) 2 3'hzz : databus out; // high impedence is required for processor writing/SPART reading
43
44 /finitial begin // pseudocode for the assign statement
45 // if (iosrw || icaddr[1]) begin
46 bl databus = 8'bzzzzzzzz;
47 // end else if (icaddr[0]) begin
48 17 databus = {6'b000000, tbr, rda};
49 // end else begin
50 o databus = data received;
a1 // end
52 /fend
53
54

55 endmodule




Bus Interface Test bench

‘timescale lns /
BELLILLLIL LTI TP EL L EEFLEEIIRLLLLL LI L T T ELTLEEIPL LTI LI I It Eiill )
// Company: University of Wisconsin-Madison
// Engineer: Kai Zhao, John Roy
// Create Date:
// Design Name:
// Module Name:

2015 Sept 15

Miniprojectl

bus_interface_tb

// Project Name:

Vertix 5

ModelSim SE 10.3c; Xilinx 14.7

test bench for testing bus interface

// Target Devices:
// Tool versions:
// Description:

i

// Dependencies:
1/

// Revision:

// Revision 0.01 - File created
// additional Comments:

bus_interface

/r test case l: test test processor writing to baud rate generator low");

/r test case 2: test processor writing a different value to baud rate generator high");
/r test case 3: test processor reading the status register demo");

ok test case 4: test processor writing a value to transmit controller");

SILIERTLLIRLILEEILIIIIILL IR L LEEILIIIILLFRLL LTI IIIIILLFRLI LI IIII LRI EE )

module bus_interface_tb();
reqg ioes; // signals that are connected to the DUT

reg iosrw;

reg rda;

reg thr;

reg [

wire [7

] ioaddr;
0] databus;
wire [7:0] rate_tx data;

reg [

] data_received;

reg [7:0] databus_reg; // register for handling inouts

assign databus = databus_req;
=] bus_interface DUT ( // instantiate the DUT
-iocs(iccs),
.iosrw(ioszw),
.rda(rda) ,
.tbr (tbr) ,
.ioaddr (ioaddr) ,
.databus (databus) ,
.rate_tx data(rate_tx_data),

.data_received(data_received)

=] initial begin
$display ("t

iocs = 1;

= interface");
josrw = 1

iocaddr = 2'k

#5
Sdisplay( to baud rate generator low");

icaddr = 2'kb

databus_reg

#5
if (rate_txz_data — databus_reg) begin

Sdisplay( passzed”) ;
end else begin

Sdisplay("\ttest failed, expected: rate_tx data == dat

E end

, rate_tx_data, databus_req) ;




68 L #s -

69 ! Sdisplay("test processor writing a different value to baud rate generator high");

70 icaddr = 2'bll;

i H databus_reg = ©'hbc;

7= o #s

7 if (rate_tx_data databus_reg) begin

74 $display("\ttest passed");

75 end else begin

76 Sdisplay("\ttest failed, expected: rate_tx_data =— databus_reg, rate_tx data = 8'h databus_reg = 8'h%h", rate_tx_data, databus_reg) ;

77 b .~ end

78 1

75 L85

80 $display("test processor reading the sta register demo”);

81 . databus_reg = 2'hzz;

82

83

84

85

86

a7 tbr, rda}) begin

88 i passed”) ;

89 H end else begin

50 © | $display("\ttest failed, expected: databus == {§'b000000, tbr, rda}, databus = B8'h%h, {6'b000000, tbr, rda} = databus, {
6 , tbr, rda});

51 | . end

52

53 #5

54 $display("test processor writing a walue to transmit controller");

55 . iesrw = 0;

96 H databus_reg

57 icaddr = 2't

98 H #5

99 . if (rate_tx data — databus_reg) begin

100 $display("\ttest passed");

101 end else begin

102 H H Sdisplay("\ttest failed, eupected: rate_ tx_data == databus_reg, rate_ rate_tx_data, databus_reg);

03 | . end -

105 o #s

106 i $display("test processor reading a value from receive controller™);

107 icaddr = 2'b

108 iosrw = 1;

109 data_received = 8'hfl;

110 databus_reg = 8'hzz;

111 #5

112 . if (databus = data_received) begin

113 © sdieplay("\tt passed”) ;

114 '\ end else begin

115 .| sdisplay("\ttest failed, expected: databus = data_received, rate_tx_data = 8'h%h, databus_reg = B'h%h", databus, data_received);

116 | .~ end

117

118 H Sstop;

B end

120

i21 endmodule g




Baud rate generator

O PO ST

H O wm -~ ;o

o

28
33
40
41
42
43
44
45
46
47
48
45
50
51
52
53
54
55
56
57
58
55
1)
61
62
63
64
65
133
67
6o

‘timescale 1ns / 1ps
B ELLTSESEL LS LS LTSS LS LTSS L LTSS SRS ST LSS SIS
// Company: University of Wisconsin-Madison
// Engineer: Kai Zhao, John Roy
£ 4
// Create Date: 2015 Sept 15
// Design Name: Miniprojectl
// Module Name: baud rate generator

// Project Name:
// Target Dewvices: Vertix 5

// Tool wversions: ModelSim SE 10.3c; Xilinx 14.7

// Description: baud rate generator to take baud rate input and control enable signal
¥

// Dependencies: none

i

// Revision:

// Rewision 0.01 - File Created

// Additional Comments:

// need to support baud rate 4800, 9600, 15200, 38400

L divsion for 4800 = 100000000/ (16%4800) - 1 = 1300
£ divsion for 9600 = 100000000/ (16*9600) - 1 = 650

£ divsion for 15200 = 100000000/ (16%19200) - 1 = 325
7 divsion for 38400 = 100000000/ (16*38400) - 1 = 162

AL AL LA L AL i

Elmodule baud rate_generator( // inputs and outputs
input clk,

input rst,

input iocs,

input [1:0] iocaddr,

input [7:0] rate tx data,

output reg enable

01 division buffer;

reg [1
"

reg [15:0] baud rate counter;

always @ (posedge clk) begin
if (iocs) begin

baud rate counter <= {rate tx data, division buffer[7

1} - 1;
&& division_buffer[7:0] !'= rate_tx_data) begin

end else if (iocaddr — 2 D
baud rate counter <= {division buffer[15:8], rate tx data} - 1;

end else if (baud rate counter — J) begin [f/f if 0, then reset
baud rate counter <= division buffer;

end else begin // normally decrement

baud_rate counter <= baud rate counter - 1;

- end

o end

always @(posedge clk) begin

if (iocs) begin // never enable if iocs i=s low

if (baud rate counter = () begin // enable when counter reaches 0

enable <= 1;
end else begin

enable <= 0;
end

end

endmodule

] if (rst) begin [/ if reset, then enable
division buffer <= 1
baud rate counter <= 1;
end if (icaddr — 2 && division_buffer[15:8] != rate_tx_data) begin
division buffer[15:8] <= rate tx data; // if high and high is not already set

division buffer[7:0] <= rate tx data; // 1f low and low is not already set



Baud rate generator test bench

“timescale 1

RILLLLIIILLLLIILL IS ILEE L LS LR RIS EI LI E S L L EE LI PP LA i i L iy

//
1/
1
L
1/
1/
1/
i/
1/
1/
1
A
1/
1/
1/
1/
1/
1/
1/
£
1/
fif
1/
L

Company: University of Wisconsin-Madison
Engineer: Rai zhao, John Roy

Create Date: 2015 Sept 15

Design Name: Miniprojectl

Module Name: baud_rate_generator_tb

Project Name:

Target Devices: Vertix 5

Tool versions: ModelSim SE 10.3c; Kilinx 14.7
Description: test bench for testing baud rate_generator
Dependencies: baud rate_generator

Revision:

Revision 0.01 - File Created

Additional Comments:

teat case 1: test first cycle of baud rate by setting only the low byte
teat case 2: test second cycle of baud rate by setting only the low byte
test case 3: test first cycle of baud rate by sstting only the high byte
test case 4: test second cycle of baud rate by setting only the high byte
test case 5: test first cycle of baud rate by setting baud rate = 16'ha531
test case 6: test second cycle of baud rate by setting baud rate = 16'haS531
test case 7: test baud rate still works after changing the address

test case B: test that enable is never high when iocs is low

SILLEEELLEELELLLR LIS ITE LS ELLLEL LI LT LR LS LS ETE LTI ISP I E LI LR LR L LA L LI PR i Il

module baud_rate_generator_tb() ;

=

clk; // signals that are connected to the DUT
rat;
iecs;
[
r

iocaddr;
] rate_tx data;

wire enable;

baud _rate_generator DUT ( // instantiate the DUT

.clk(clk),

.rst(rst),

.ices(ioes),

.ioaddr (ioaddr) ,

.rate_tx data(rate_tx data),
.enable (enable)

initial begin // initialize all variables

Sdisplay ("
clk =

rat =

ting baud rate_generator") ;

iocecs =

iocaddr =

@ (posedge clk);
rst = 0;
@ (posedge clk) ;

£r test case 1l: test first cycle of baud rate by setting only the low byte
$display ("t
icaddr = 2'b

eycle of processor only writing to baud rate generator low");

rate_tx_data
@ (posedge <lk) ;

icaddr = 2'b

rate_tx data
@ (posedge clk) ; // wait 1 cycle for baud rate to load
repeat (2) begin // wait 3 cycles since 3 is loaded

@ (posedge clk) ;

if (enable) begin

$display("\ttest failed, enable should have been

low for 3 cycles™);
end
end
@ (posedge <lk) ; // wait another for baud rate generator to react to baud rate counter reaching 0
if (enable) begin
$display ("\ttest passed");
end else begin

$display("\ttest failed, enable should have I h cycle
end
£ test case 2: test second cycle of baud rate by setting only the low byte
$display("test second cycle of processor only writing to baud rate generator low'");

repeat (2) begin
@ (posedge clk) ;
if (enable) begin
$display("\ttest failed, enable should have been kept low for 3 cycles
end

end

@ (posedge clk) ;

if (enable) begin
Sdisplay("\ttest passed");

end else begin

$display("\ttest failed, enable should have

cycle") ;
end




£f test case 3: test first cycle of baud rate by setting only the high byte

56

57 @ (posedge clk) ;

EE $display("test first cycle of processor only writing to baud rate generator high");
39 icaddr = 2'b11

100 rate tx data = ©

101 @ (posedge clk)

102 icaddr = 2'b1

103 rate_tx_data

104 @ (posedge clk) ;

105 repeat (5192) begin // equivalent to 16'h2000

106 & (posedge clk) ;

107 if (enable) begin

108 Sdisplay("\ttest failed, enable should have been kept low for 8192 cycles");
109 end

110 end

111 @ (posedge clk) ;

112 if (enable) begin

113 $display("\ttest passed”);

114 end else begin

115 $display("\ttest failed, enable should have been pulsed high on the 8193rd cycle");
116 end

117

118

119 i test case 4: test second cycle of baud rate by setting only the high byte
120 $display("test second cycle of processor only writing to baud rate generator high
121 repeat (3192) begin

122 & (posedge clk) ;

123 if (enable) begin

124 $display("\ttest failed, enable should have been kept low for 8132 cycles
125 end

126 end

127 @(posedge clk) ;

128 if (enable) begin

129 : $display("\ttest passed");

130 end else begin

131 $display("\ttest failed, enable should have been pulsed high");

132 ond

i35 rr test case 5: test first cycle of baud rate by setting baud rate = 16'ha531
136 @ (posedge clk) ;

137 $display("test fizst cycle of processor writing 8'ha531 to baud rate genezator”);
138 icaddr = 2'b11;

139 rate_tx_data = 8'ha5;

140 @ (posedge clk) ;

141 icaddr = 2'b

142 rate_tx_data = ©

143 @(posedge <lk) ;

144 repeat (42289) begin // equivalent to 16'ha53l

145 . B(pesedge clk);

146 if (enable) begin

147 $display("\ttest failed, enable should have been kept low for 42289 cycles”
148 end

149 end

150 @ (posedge clk) ;

151 if (enable) begin

152 H Sdisplay("\ttest passed");

153 end else begin

154 ! Sdisplay("\ttest failed, enable should have been pulsed high");

155 end

156

157

158 i test case 6: test second cycle of baud rate by setting baud rate = 16'ha531
159 $display("test second cycle of processor writing 8'ha531 to baud rate generator™);
160 repeat (£220%) begin

161 @ (posedge clk) ;

162 if (enable) begin

163 Sdisplay("\ttest failed, enable should have been kept low for 42285 cycles
164 end

165 end

166 @ (posedge clk) ;

167 if (enable) begin

168 H $display ("\ttest passed");

169 end else begin

170 { Sdisplay("\ttest failed, enable should have been pulsed high");

5L

end




174 rr test case 7: test baud rate still works after changing the address

175 . $display baud rate generator still workes even after changing address");

176 icaddr =

177 . rate_tx data =

178 H © repeat (22222) begin

179 @ (posedge clk) ;

180 H © if (enable) begin

181 : Sdisplay( iled, enable should have been kept low for 42289 cycle
182 | . end

183 H end

184 @ (posedge clk);

185 . if (enable) begin

186 . sdisplay(” passed”) ;

187 .~ end else begin

188 i sdisplay("\tt failed, enable should have been pulsed ;
183 end

190

191

ELo rr test case 8: test that enable is never high when iocs is low
193 . Sdisplay("test that enable is never high when iocs is low");

194 iocs = 0;

195 o . repeat (5553¢) begin // equivalent to 16'hffff + 1

196 © | e(posedge clk);

137 H if (enable) begin

198 [ Sdisplay("\ttest failed, enable should should not go high if iocs is low");
199 H Sstop;

200 | . end

ZOEE | H end

202 $display("\ttest passed

203

204 $stop;

205 L end

206

207 always

208 © #2 clk = telk;

209

210 endmodule



Transmit unit

1 ‘timescale 1ns / 1ps
2 LSS EIL TSI LE LS IL R LTS E L E LTS E LS IEES IR LI S
3 // Ceompany: University of Wisconsin-Madison
B // Engineer: Eai zhao, John Roy
5 £
g // Create Date: 2015 Sept 15
o // Design Name: Miniprojectl
8 // Module Name: transmit_unit
9 // Project Name:
10 // Target Devices: YVertix 5
i1 // Tool wversions: ModelSim SE 10.3¢c; Xilinx 14.7
12 // Description: transmit_unit teo transmit data from SPART to RS232
i £
14 // Dependencies: none
15 44
i6 // Revision:
17 // Revision 0.01 - File Created
i8 // Additional Comments:
15 /
RO S EELSLENTESL AL EE LTSS LE LS RS LA AP LL P LEL SR LA LEfEERS
21!
22 [module transmit_unit( // inputs and ocutputs
23 input clk,
24 input rst,
25 input ices,
26 input iorw,
27 output reg tbxr,
23 input [1:0] ioaddr,
25 output txd,
30 input [7:0] rate_tx_data,
31 input enable
220 ) ;
34 reg [5:0] shift reg;
reg [3:0] bit_cnt;
reg load, shift, set thr;
37 localparam numberCfBitsPerPacket = /f 1 start bit, 1 stop bit, and 8 bits of
34 1 shift_reg;
35 1 bit ent;
36 reg load, shift, set_tbr;
37 localparam numberOfBitsPerPacket = 5; // 1 start bit, 1 stop bit, and 8 bits of data, -1 because checked after shifting
38
35 // send 1 bit of txd at a time
40 assign txd = shift reg[0];
41
42 // handle tx buffer, shift reg, and bit cnt based on the FSM cutput
43 T // If data is ready to tx, send 1 low start bit, then 8 data bits, then 1 high stop bit.
34 // otherwise, hold the output high
45 always @ (posedge clk) begin
46 E if (load) begin
47 // start at 1, because this takes a clock cycle as well
48 shift_reg <= {1'bl, rate tx_data, 1'b0};
45 bit_cnt <= numberOfBitsPerPacket;
50 end else if (set_tbr) begin
51 // set tx data ocut[0] to not start the receiver
52 shift_reg[0] <= 1'b1;
53 end else if (shift) begin
54 bit_cnt <= bit_cnt - 1;
55 shift_reg <= {shift_reg[0], shift_reg[®
56 i end
57 = end




100
101
102
103
104
105
106
107
108

leecalparam IDLE = 1'k0, TBANS = 1'bl;

req state, nxt_ state;

// handle start transitions of the FSM
always @ (posedge clk) begin

if(rst) begin
state <= IDLE;
tbr <= 0;
end else begin
state <= nxt state;
tbr <= set_tbr;
end

always @ (*) begin

// set defaults
nxt_ state = IDLE;
load = 0;
shift = 0;
set thr = 0;

case (state)
IDLE: begin
// if begin, then wait for trmt signal

if (iocaddr =— 2'b00 && !'iorw) begin // if write signal,

load = 1

nxt_ state = TRANS;
end else begin

gat thr =1;

end
end
TRENS: begin

// wait for baud count to increase until it i1s time to

nxt_state = TRRNS;
// 1f enable, then shift
if (enakle) begin

shift = 1;
// if bit cnt == 0, then done and return to IDLE
if (bit_ecnt = 0) begin
nxt_ state = IDLE;
end
end

end

default: begin
// default state for safety
// return to IDLE

end

endcase

endmodule

then load wvariables

shift



Transmit unit test bench

1 ‘timescale 1lns / 1ps
SRS ESSLTS TSI ETSE S EL LA ES LSS LTS LTSI LIS ELT AR ES
3 // Company: University of Wisconsin-Madison
4 // Engineer: Kai Zhao, John Roy
5 I
6 // Create Date: 2015 sept 15
7 // Design Name: Miniprojectl
8 // Module Name: transmit_unit_tb
9 // Project Name:
10 // Target Devices: Vertix 5
i1 // Tool versions: ModelSim SE 10.3c; Xilinx 14.7
12 // Description: test bench for testing transmit_unit
i3 £
14 // Dependencies: transmit_unit
i5 i
16 // Revision:
17 // Revision 0.01 - File Created
18 // Bdditional Comments:
i3 # 4 test case 1: test transmitting 8'haa
20 i test case 2: test transmitting 8'b0011 1001
A S SALSTSSLLELSELLTELES TS LTES ST ESLTSES LSS TS LSS LSS LSS LSS LSS
23
23 module transmit unit_tb();
24
25 reg clk; f/ signals that are connected to the DUT
26 reg rst;
b reg iocs;
28 reg iorw;
25 wire tbr;
30 reg [1:0] ioaddr;
31 wire txd;
32 reg [7:0] rate_tx data;
33 reg enable;
35 transmit_unit DUT ( // instantiate the DUT
36 .elk(elk),
37 -.rat (rst),
38 .iocs(iocs) ,
38 .iorw(iorw) ,
40 .tbr(tbr) ,
41 .ioaddr (icaddr) ,
42 _txd(txd) ,
43 .rate_tx_data(rate_tx data),
44 .enable (enable)
45 - )i
46
47 H initial begin // initialize all wvariables
48 $display("testing transmit_unit") ;
49 clk = 0;
50 rst = 1;
s iocs = 1;
52 iorw = 1;
53 iocaddr = 0;
54 rate_tx_data = @ // 8'b1010_1010 = 10'b11_0101_0100 = 10'h354
55 enable = 0;
56 @ (posedge clk);
57 rat = 0;
58 icaddr =
58
&0 $display("testing transmitting first data byte of oscillating Os and 1ls
61 iorw = 0;
62 @ (posedge clk) ;
63 iorw = 1;
64 [ while (tbr != 1) begin // wait until done
&5 pulse_enable() ;
66 F end




68
69
70
i
72
T3
T4
75
Té
T
i
75
80
a1
82
83
84
85
86
87
88
88
S0
91
92
93
94

S$display("testing transmi

rate tx data =

iorw = 0;
@ (posedge clk) ;
iorw = 1;

@ (posedge clk) ;

while (tbr '= 1) begin
pulse_enable() ;

end

$stop;

end

task pulse enable;
begin
: repeat (50)
@ (posedge clk) ;
enable = 1;
@ (posedge clk) ;
enable = 0;
end
endtask

always
#2 eclk = lclk;
endmodule

£l

f/r
£
£

i
£
£

ing second data byte of 8'b0011_1001");

_1001; // 10_0111 0010 = 272

walt until done

task to pulse enable
=0 that receiver and transmitter can continue

wait some time

set enable high
for 1 clock cyele

then reset enable




Receive unit

1 ‘timescale 1 1ps
B L SLLLEELLSES LTRSS PSSP EE LA E LRSS L TR T L PP L EL AL EEA LB ELES
3 // Company: University of Wisconsin-Madison
4 // Engineer: Fai Zhao, John Roy
5] 7S
] // Create Date: 2015 Sept 15
¥ // Design Name: Miniprojectl
8 // Module Name: receive_unit
S // Project Name:
10 // Target Devices: Vertix 5
il // Tool wersions: ModelSim SE 10.3c; Xilinx 14.7
12 // Description: receive_unit to receive data from RS232 into SPART
i3 i
14 // Dependencies: none
5] 1/
ie // Revision:
i7 // Revision 0.01 - File Created
18 // Bdditional Comments:
25 1/
RO S LA ES LS ES P A P TEE L E LRSS L P TP P L P AL EEE LR AL LS
21
22 [Hmodule receive_ unit( // inputs and outputs
23 input clk,
24 input rst,
25 input iocs,
26 input iorw,
27 output reg rda,
28 input [1:0] iocaddr,
29 input rxd,
30 cutput reg [7:0] data_received,
31 input enable
32 )
24 reg [ 1 shift reg; // used to hold data
35 rag [3:0] bit cnt; // used to count number of bits to determine whether it is finished
36 reg load, shift, set_rda; // FS8M signals
37 localparam numberCfBitsPerPacket = &; // 1 start bit, 1 stop bit, and B bits of data, -1 because checked after shifting

always @ (posedge clk) begin

if (load) begin // if load, then set the number of bits
41 bit_cnt <= numberofBitsPerPacket;
42 end else if (shift) begin // if shift, then rotate shift register and decrement bit counter
bit ent <= bit cnt - 1;
44 shift reg <= {rxd, shift reg[5:1]1};
end else if (set_rda) begin // if done, then move byte to output

46 data_received <= shift regl[® =
47 end
48 end
49
50 localparam IDLE = = 2'b01, DONE = ; // states
53 reg [1:0] state, nxt state;
52
23 // handle start transitions of the FSM
54 always @ (posedge clk) begin // always go to next state and set rda <= set_rda
55 if (rst) begin
56 state <= IDLE;
57 rda €= 0;
58 end else begin
a5 state <= nxt state;
60 rda <= set_rda;
6l end
62 end




65
66
67
68
63
70
yit
T2
73
74
72
76
77
78
79
80
81
82
83
84
85
86
a7
88
85
S0
51
92
93
94
55
56
57
98
99

always @ (*)

begin

// set defaults

nxt_ state = IDLE;
load = O;
shift = 0;
set_rda = 0;
case (state)
IDLE: begin // initial IDLE state, go to RECV receiving and if saw a start bit
: if (iocaddr = 2'b00 && lorw && !rxd) begin
load = 1;
nxt state = RECV;
end
end
RECV: begin // BECV state to receive data, shift everytime a bit comes in

end

nxt_state = RECV;
// i1f enable, then shift
if (enable) begin

shift = 1;
// if bit_cnt == 0, then done, hold data until it is read
if (bit_cnt == 0) begin
| nxt_state — DONE;
end
end

default: begin // same as DONE state to hold data

endcase

end

endmodule

// wait for transmit signal to be able to receive next byte of data
nxt state = DONE;

set_rda =

if (iocaddr = 2'bl0 && liorw) begin
nxt_ state = IDLE;

end




Receive unit test bench

3l “timescale / 1ps

2 BT P T T R PP T PP L LT T L PP LRI A T i I i i ririiiirriite
3 // Company: University of Wisconsin-Madison

4 // Engineer: Kai zhao, John Roy

5 2

3 // Create Date: 2015 Sept 15

7 // Design Name: Miniprojectl

8 | // Module Name: receive_unit_tb

5 // Project Name:

10 // Target Devices: Vertix 5

sl // Tool versions: ModelSim SE 10.3c; Xilinx 14.7

12 // Description: test bench for testing receive unit

i3 775

14 // Dependencies: receive_unit

15 2

16 // Revision:

17 // Revision 0.01 - File Created

18 // Additional Comments:

13 S test case 1: test receiving first data byte of oscillating Os and 1s
20 1/ test cass 2: test receiving second data byte of B8'b0011_1001

21 SIS LT EL RS E LR TEL L L LS E LR E ISR E AL L

23  module receive unit_tb();

24

25 reg clk; // signals that are connected to the DUT
26 reg rst;

27 reg iocs;

28 reg iorw;

23 wire rda;

30 reg [1:0] ioaddr;

31 reg rxd;

32 wire [7:0] data_receieved;

33 reg enable;

5 receive unit DUT( // instantiate the DUT

36 ; .clk(clk),

37 .rst(rst),

38 .ioces(ioccs),

39 .iorw(iorw),

40 .rda(rda) ,

41 .iocaddr(iocaddr) ,

42 .rxd(rxd) ,

43 .data_receieved(data_receieved),

44 .enable (enable)

o - )i

46

= 7 initial begin // initialize all wvariables

48 Sdisplay("testing receive_unit");

49 clk = 0;

50 rst

51 iocs

52 iorw

53 iocaddr = 0;

54 rxd = 0;

55

56

57

58

60 Sdisplay (" ing receiving first data byte of oscillating Os and 1s");
61 iorw = 0; // set iorw = 0 to make receiver avialable to receive
62 @ (posedge clk) ;

63 iorw = 1; // set iorw = 0 to receive

64 H while(rda '= 1) begin // oscillate RX to see 01010101 in cmd
65 set_data(l);

(1 set_data(0);

67 - end

66 H if (data_receieved — 3'h55) begin // check if equals 8'h55 since i sent it oscillating 0s and 1st
3] Sdisplay("test passed");

70 end else begin

71 $display("test failed, expected data_receieved = B'h55, actual data receieved =
iz end

73

74 $display("testing receiving second data byte of 8'b0011_1001");
5 rrd = // need to send 1 for 1 clock cycle for stop bit
76 iorw = 0; // make receiver avialable again

T, @ (posedge clk) ;

8 iorw = 1

79 set_data(0) ; // 1st bit, need to be 0 to start

80 set_data(l); // 2nd bit (least significant data bit)

a1 set_data(0); // 3rd bit

82 set_data(0) ; // 4th bit

83 set_data(l) ; // 5th bit

24 set_data(l); // 6th bit

85 set_data(l); // Tth bit

86 set_data(0) ; // Bth bit

87 set_data(0) ; // 9th bit

g8 set_data(l); // 10th bit, need to be 1 to stop




89
20
g1
92
g3
94
85
96
g7
98
95
100

102
103
104
105
106
107
108
108
110
111
112
113
114
115
116
117

while(rda
#2;
end

if (data receieved =
Sdisplay ("t
end else begin

1= 1) begin // wait until done

S$display("test failed, expected data_receieved = 8'l

end

$stop;

task set_data

i

input data;

begin

rxd = data;

// task for sending data

#20
@ (posedge clk);
enable = 1;
@ (posedge clk);
enable = 0;
end
endtask
always // clock
#2 clk = lclk;
endmodule

) begin // check if it makes the data i sent

0011_1001, actual data_receieved = 8'b

data_receieved) ;



Transmit receive unit test bench

o T =

PR R e
=S ;W WO W m oo

(il
o |

20
21
22
23
24
25
26
27
28
29
30
31
32

L o 0 Y Y ™ - Y-S - Y S /U R 5
Nk WM HE O WD ;U W N E D WD S

oo
W m -]

i
)

‘timescale 1lns f 1lps

BTN TP ET L LS PP AT TP PP II LA E T ieiiirirss

12
1/
12
1/
i
i
4
//
i
14
5
f
i

Company: University of Wisconsin-Madison
Engineer: Fai Zhao, John Roy

Create Date: 2015 SBept 13

Design Name: Miniprojectl

Module Name: transmit_receive_unit_tb
Project MName:

Target Devices: Vertix 5

Tool wversions: ModelSim SE 10.3c; Xilinx 14.7

Description: test bench for testing transmit unit and receive unit
Dependencies: transmit unit, receive unit

Revision:

Revision 0.01 - File Created

Zdditional Comments:
test case 1l: test transmitting and receiving oscillating 0Os and 1s (8'haa)

test case 2: test transmitting and receiving 8'b0011_1001

AT E AT L T LT T LTS F T AL

module transmit receive unit_tb () ;

=

reg clk; // signals that are connected to the DUT
reg rst;

reg locs;

reg lorw;

wire tbr;

wire rda;

reg [1:0] ioaddr;

wire trxd;

0] rate_tx data;

7:0] data receieved;
req enable;

transmit_unit tDUT( // instantiate the first DUT
sclkEctk],
.rst (rst),
.iocs (iocs),
.ilorw(ioxw),
.tbr (tbr) ,
.ioaddr (icaddr) ,
Jtxd (trxd) ,
.rate_tx data(rate_tx_data),
.enable (enable)

)i

receive_unit rDUT ( // instantiate the second DUT
Jclkifetk).,
trak frst]) ;
.iocs (iocs),
.lorw(iorw) ,
.rda (xrda) ,
.ioaddr (icaddr) ,
-rxd (Erxd) ,
.data_receieved(data_receieved),
.enable (enable)



GO ] initial begin // initialize all variables

62 S$display("testing transmit unit and receive unit");
63

64

65

(13

67

68 = 8'haa; // B8'b1010 1010 = 10'bl1l 0101 0100 = 10'h354
65

70 @ (posedge clk) ;

71 a

72 b00;

T3

74 $display("testing transmitting first data byte of oscillating 0s and 1s (8'haa)”™);
75 iorw = 0O;

TG @ (posedge clk) ;

7T iorw = 1;

pEii il while (tbr != 1) begin [/ wait until done

TS pulse enable() ;

BO i end

B[] if (data receieved = 8'hzz) begin

82 $display("\ttest d

83 end else begin

g4 Sdisplay("\tt failed, expected data receieved = B8'haa, actual data receieved = 8'h%h", data_ receieved);
85 - end

87 $display("testing transmitting second data byte of 8'b0011 1001");
EE rate tx data = 8'b0 // 10_0111_0010 = 272

B9 iorw = 0;

a0 @ (posedge <lk) ;

51 iorw = 1;

92 @ (posedge <lk) ;

S [] while (tbr != 1) begin // wait until done

54 H pulse enable() ;

95 r end

56 [H if (data receieved =— 8'b

97 Sdisplay("

S8 end else begin

g9 $display("\ttest failed _ 1001, actual data_receieved = B'b%b", data receieved);
100 - end

101 $stop;

102 = end

103

104

103 task pulse enable; // task to pulse enable signal
106 g begin

107 repeat (50) // wait multiple cyecl cycles
108 : @ (posedge clk);

109 enable = 1; // set enable high

110 @ (posedge clk) ; {f for 1 clock cycle

11l enable = 0; // reset enable

112 k- end

113 = endtask

114

115

116 always

117 #2 elk = lelk;

iis endmodule



Driver

R S

Howoadenw

34
35
36
3
38
39
40
41
42
L
44
45
46
47
48
45

51
52
53
o
55
56
57
58
59
60
61
62
63
64
65
(13
67
&8

T0
71
F2
T3
T4
75
T6
77
T8
79
=10}
81

23
g4
g5
g6

“timescale

B PLLLEELI LI EELT TSI LEL TP LI TR IR LL AP P T

//
//
/7
/7

Company :

Engineer:

Create Date:

Design Name:

University of Wisconsin-Madison

Kai Zhao, John Roy

2015 sept 15

Miniprojectl

Module Name: driver

Project Name:

Target Devices: Vertix 5

Tool wversions: ModelSim SE 10.3c; Xilinx 14.7
Description: driver for sending data to SEART
Dependencies: none

Revision:

Revision 0.01 - File Created

Additional Comments:

Fmodule driver(

input clk,

input rst,

input [1

01

ocutput iocs,

cutput iorw,

input rda,

input thr,

output reg [
inout [7

assign iocs = 1

o1

SLPELLLLLIELL I RELTELI AL LEL LT E AL PELL LI LI LI LRI EI TP i e i

// inputs and outputs

br cfg,

1 icaddr,
databus

reg iorw reg;

// can't stop, won't stop

assign iorw = iorw reg; // set to reg so that it can be set and keep its prototype
reg [7:0] inout_data;
reg [ held data;

reg update baud, start_sending baud hi, start_sending baud lo, start_receiving, start transmitting, receiving,

reg [2:0] old br_cfg;

localparam

localparam

localparam

localparam

reg

2

1

localparam

BAUD_4800 // divsion for 4800 = 100000000/ (16+4800) — 1 = d1300 = h0514
BAUD_ 5600 // divsion for 9600 = 100000000/(16*9600) - 1 = d650 = h028a
BAUD_15200 // diwvsion for 19200 = 100000000/ (16%19200) - 1 d325 h0145
BAUD_38400 = // divsion for 38400 = 100000000/ (16*38400) - 1 = dl62 = h00a2

new_baud;

IDLE = 3'

0, BAUDHI = 3}

reg [2:0] state, nxt_state;

// handle start transitions of the FSM
always @ (posedge clk) begin

if (rst) begin

state <= IDLE;

end

old br_cfg <=

else begin

i

end

(update_baud) begin
old br_cfg <= {l't
new_baud <=

, br_cfg};

br_cfg — 0 ? BAUD_4800 :
br_cfg = 2 2 BAUD 19200 :
br_cfg — 3 ? BAUD_38400 :
BAUD_3600;

else if (start_sending_baud _hi) begin
inout_data <= new baud[15:
icaddr <= 2 ;

else if (start_sending baud lo) begin

inout_data
ioaddr <= 2

clse if (start_receiving) begin

new_baud[7:

inout_data <= databus;

else if (start_transmitting) begin

/1

/1

/1
i/

14

I

’/

load baud into new_baud register

case statement to load bad rate

based on br_cfg

default case
load baud rate high

load baud rate low

load available data

put available data back on inout bus

transmitting;

// do nothing, since walue is already loaded in inout data, which is pushed by databus if in receive state

inout_data <= held_data;
else if (receiving) begin
iocaddr <= 2

iorw reg <= 1;
else if (transmitting) begin
icaddr <= 2

iorw reg <=

else begin
ioaddr <= 2°

stats <= nxt_stats;

£

/o

/o

set it to receive

set it to transmite

set to be able to read rda and tbr



H o w m

oW omom

H o w o

assign databus = (state = IDLE || state = RECV) ? 8'bz=z

always @ (*) begin
// set defaults
nxt state = IDLE;
update baud = 0;

start_sending baud hi =

start_sending baud lo
start_receiving = 0;
receiving = 0;
start_transmitting = 0;
transmitting = 0;

case (=tate)

inout_data;

IDLE: begin // send baud rate if unitialized
if (old br_cfgl[2] || br_cfg != old br cfg[l:0]) begin
update baud = 1;

nxt state = BAUDHI;

end else if (rda) begin // receive data if data is ready to be received

start receiving = 1;
nxt state = RECV;

end

end

BAUDHI: begin // send baud rate high
start_sending baud hi = 1;

nxt_state = BAUDLOC;

end
BAUDLO: begin // send baud rate low
start_sending baud lo = 1;
nxt_state = IDLE;
end
RECV: begin // stay until you can transmit the data back
nxt_state = RECV;
receiving = 1;
if (tbr) begin
held date = databus;
start transmitting = 1;
nxt_state = TRANS;
end
end
TRANS: begin // stay until done transmitting
nxt state = TRANS;
transmitting = 1;
if (tbr) begin
nxt_state = IDLE;
end
end

default: begin
/f nothing, so return to IDLE
end
endcase

end

endmodule



Driver test bench

1 *timescale 1ns [/ 1ps

SO LSS LSS ELAS LSS LA EEAL LS LR LI,
= // Company: University of Wisconsin-Madison
4 // Engineer: Kai Zhao, John Roy

5 /f

6 // Create Date: 2015 Sept 15

T // Design Name: Miniprojectl

B // Module Name: driver tb

9 // Project Name:

10 // Target Devices: Vertix 5

11 // Tool versions: ModelSim SE 10.3c; Xilinx 14.7
12 // Description: test bench for testing driver
i3 1/

14 // Dependencies: driver

15 i

i€ // Revision:

17 // Revision 0.01 - File Created

ig // Additional Comments:

19 £ test case 1: test baud rate 4800

20 £f test case 2: test baud rate 9600

Z1 i test case 3: test baud rate 15200

22 £ test case 4: test baud rate 38400

23 LSIIIIFHSITEI TSI REEE T L PE ISP LT P FEL P T LR L F LT EL P E TP TP EL P IS TE P PP i
24

25 module driver tb();

26

27 reg clk; // signals that are connected to the DUT
28 req rst;

29 reg [1:0] br_cfg;

30 wire iocecs;

31 wire iorw;

32 reg rda;

3 reg tbr;

34 wire [ ] iocaddr;

35 wire [7:0] databus;

36

37 reg[7:0] databus reg; // register for handling inouts
38 assign databus = databus_reg;

38

40 H driver DUT( // instantiate the DUT

41 .elk(elk),

42 .rst(rst),

43 .br cfg(bx cfqg),

44 .ioes (ioccs) ,

45 .iorw(ioxrw) ,

45 .rda(rda),

47 .tbr (tbr),

48 .ioaddr (icaddr) ,

45 .databus (databus)

S0 )i

oL

] initial begin // initialize variables
53 $display("testing driver");

54 clk = 0;

o st =1

56 br cfg = 2'b01;

57 @ (posedge clk) ;

58 rst = 0;

a5 rda = 0;

60 tbhr = 0;

61 databus reg = 8'hzz;

62 @ (posedge clk) ;

63

[ $display("Testing baud rate 4800");

65 br _cfg = 2'b00;

66 repeat (5) // wait for baud rate to load
&7 @ (posedge clk);

68 H if (DUT.new baud = DUT.BAUD 4800) begin
69 Sdisplay("\ttest passed");

70 end else begin

71 Sdisplay("\ttest failed, DUT.new baud = 16'h%h, DUT.BZUD 4800 = 16'h%h", DUT.new baud, DUT.BARUD 4800);
72 i end

73

74 Sdisplay("Testing baud rate



732
T6
TT
T8
73
B0
B1
B2
83
B4
85
86
87
B8
89
S0
51
92
93
94
35
96
g7
o8
99
100
101
102
103
104
105
106
107
108
105
110
bl

end

br cfg= 2

repeat (5)
@ (posedge clk);

if (DUT.new_baud == DUT.BAUD_ 9&600) begin
Sdisplay("\ttest passed");

end else begin
Sdisplay("\tt

end

Sdisplay("Testing baud rate

br.ctg'= &

repeat (3)
@ (posedge clk);

if (DUT.new baud = DUT.BAUD_ 15200) begin
Sdisplay("‘\ttest pass=d");

end else begin

$display("\ttest failed, DUT.new baud =

end

Sdisplay("T
br cfg = 2

ing baud rate 38400

repeat ()
@ (posedge clk);

if (DUT.new baud = DUT.BAUD 38400) begin
Sdisplay("\ttest passed”);

end else begin

Sdisplay("\ttest failed, DUT.new_baud =

end

#1

i

S$stop;

always

#2 clk = clk;

endmodule

failed, DUT.new baud =

DUT.new baud,

DUT.BAUD_4800 = 16'h%h", DUT.new_baud,

DUT .BAUD_ 4800 , DUT.new baud,

DUT.BAUD 5600) ;

DUT.BAUD_19200) ;

DUT.BAUD_38400) ;



Baud Rate Generator Testbench

= e g f TLld R | [ ]

T Zh3 [ Zh2
I8has I8'h31

Baud rate is being set

to 16'nA531 (42289)

65600000 ps 656 $0000 ps 65620000 ps
£5603383 pe
] I I I I I I I [
—

Enable is set to high
after 16'hAS531 cycles

i ST FHHERE R e R
0000 ps 234779000 ps 234780000 ps-
234770000 ps




# teat

test

teat

teat

teat

test

teat

test

T T T TR TR Ty

1

W5IM 5= run -all
# teating baud rate generator

firat cycle of processor only writing to baud rate generator low
teat passed

second cycle of processor only writing to baud rate generator low
test passed

firat cycle of procesasor only writing to baud rate generator high
test passed

gecond cycle of procegaor only writing to baud rate generator high
test passed

firat cycle of processor writing 8'ha531 to baud rate generator
test passed

second cycle of processor writing #'ha531 to baud rate generator
test passed

baud rate generator 3till workes even after changing address
teat passed

that enable is never high when ioca ias low
test passed

*% Note: $stop : I:/0school/eces54/miniprojectl/baud rate_generator_tb.v (188
Time: 835238 ns Iteration: 1 Instance: /baud rate_ generator_ tb
Break in Module baud rate generator th at I:/0achool/ece554/miniprojectl/baud rate generator th.v line 188

Bus Interface Testbench



(Zho Zh2 Zh3 Zh1 Zho
1 8'haa ghbc 8'h02 8'hde ghfl
{8'haa hbc gho2 g'hde ghf1
[8h55 ghfi
8'haa hbc 8'hde
Write to baud rate Read a value from RX
I Read the status controller
generator low register
Write to baud rate Write a value to TX
generator high controller
L O L L L L L L L L L
= 5000 ps 10000 ps 15000 ps 20000 ps 25000 ps 30000 ps 35000 ps 40000 ps 45000 ps 5000 ps




V5IM 13> run -all
testing bus interface
test processor writing to baud rate generator low
test passed
test processocr wWriting a different value to baud rate generator high
test passed
test processcr reading the status register demo
teat pasaed
test proce3sscr Writing a value to tranamit controller
teat pa3sed
test processcr reading a value from receive controller
test passed
** Hote: $atop : I:/0achool/ecedid/miniprojectl/bus interface th.w(l1l4)
Time: 50 ms Iteration: 0 Instance: /bus_interface tb
Break in Module bus_interface th at I:/0achool/fece554/miniprojectl/bus interface tbh.v line 114

T T T T T =T A=



Transmit Unit Testbench

YS5IM 2> run -all

# testing tranamitting first data byte of ocscillating 03 and 13 (&'haa)

# teating transmitting second data byte of &8'b0011_ 1001

# ** Note: L3top : I:/0achool/ecedbd/miniprojectl/tranamit unit th.w(74)
# Time: 2258 n=s Iteration: 1 Inatance: /transmit unit tb

# Break at I:/0Oschocl/ece554/miniprojectl/transmit unit th.v line 74




[
=
| I | | [ |
{8hs5! J8h3a
I I | i | | i ] i ]
Sending 8'h39 over
Sending 8'h35 over the the TX line
TX line
1000000 ps 2000000 ps 3000000 ps 4000000 ps




Receive Unit Testbench

ModelSim= run -all
testing receiving firsat data byte of oscillating 0Os and 1s
test passed
testing receiving second data byte of &'b0011 1001
test passed
** Note: Satop : I:/03chool/ecelS4/miniprojectl/receive_unit th.wv(94)
Time: 4504 ns Iteration: 0 Instance: /receive unit tb
Break in Module receive _unit tbh at I:/0Oschool/eceS5d/miniprojectl/receive_unit th.v line 94

e cHe cHe e e s S




|
|
| | ] | | | | f | | | |
{8h55 8h35
] ] | | ] i ] | | ] | | ] | i ] ] | | ] i
Receiving 8'h55 over Receiving 8'h39 over
the RX line the RX line
T T R B I P e S e e R T R T T e R A e IS e T TR R e T
1000000 ps 2000000 ps 3000000 ps 4000000 ps 5000000 ps




Driver Testbench
V5IM 17> run -all
Testing baud rate 4200
test passed
Teating baud rate 9600
teat pasgsed
Testing baud rate 1%200
teat passed
Teating baud rate 38400
teat pasaed
*% Note: $3top : I:/08chool/ece554/miniprojectl/driver tbh.w({l08)
Time: 186 na Iteration: 0 Inatance: /fdriver tb
Break im Module driver_tb at I:/0achool/ecebS4/miniprojectl/driver_tbh.wv line 108

S e o che s chs e o o o o



	miniproject1
	ECE554Miniproject1Report

