Tronsistor-32: Final Report

<2015-12-22>, version 1.0

University of Wisconsin-Madison

ECE 554 - Fall 2015

Team: Tronsistors Team Leader: Graham Nygard

Matt Kelliher, Max Eggers, Graham Nygard, Jake Truelove, Kai Zhao, John Roy

Source code: https://github.com/meggers/ece554project

https://github.com/meggers/ece554project

Table of Contents

Tronsistor-32: Final Report

|!\"
~

System Overview and Background

System Architecture

Top Level Hardware Diagram

2.2.1 PPU Memory

2.2.2 Color Palettes

2.2.3 Pattern Table (THE FIGURE BELOW IS OUTDATED)
2.2.4 Background Tile Table

2.2.5 Background Attribute Table

2.2.6 Obiject Attribute Memory (OAM)

2.2.7 Scanline Generator

2.2.8 Priority Sprite Scanline Generator

2.29 Sprite Line Generator (SLG)

2.2.10 Background Line Generator

Special Purpose Asynchronous Receive/Transmit (SPART)

Central Processing Unit

ND
~
=

Registers

N
~
N

Addressing Modes

N
~
)
=

Immediate

g
>
N
N}

Register

N
R
)
[68)

Label (with Immediate Offset)

2.4.3 Instruction Formats

24.4

TronMIPStor ISA

System Microarchitecture

Central Processing Unit (CPU)

3.1.1 Instruction Fetch

3.1.2 Instruction Decode

3.1.3 Instruction Execute

3.14 Memory Interface

3.1.5 Result Writeback

3.1.6 Handling Asynchronous Input for Interrupts
3.1.6.2 Interrupts and Exceptions in CPU

3.1.7 Sample CPU Simulation Waveforms
Picture Processing Unit (PPU)

98]
N
=

w
N
N

(o8}
N
w

W
N
IS8

w
N
(92}

(o8}
N
[e)}

[08)
N
~

(o8}
N
[0e]

(o8}
No
o}

98]
N
[EN
o

[°8)
N
[N
[EEY

98]
N
=
N

PPU Control Unit (PPUCTRL)

Object Attribute Memory (OAM)

OAM Buffer (OAMB)

Background Tile Table

Background Attribute Table

Scanline Generator (SCANGEN)

Priority Sprite Line Generator (PSLG)

Sprite Line Generator (SLG)

Background Line Generator (BGLG)

Color Palettes

Sprite and Background Color Palettes

System Color Palette

N

100

&>

(]

(o)

3.2.13 Pattern Tables

Tronsistor-32 Software Architecture and Framework

4.1 Memory Layout

4.2 Assembler

4.3 Sprite Generator

4.4 Tronsistor-32 Framework Core Functions

TronsMIPStor-32 Assembler and Runtime Simulator (TARS)

5.1 TARS Assembler

5.2 TARS Simulator

5.3 TARS User Interface

Games

6.1 Etch a Sketch

6.2 Tron
6.3 Pong

6.4 Dance Dance Revolution (DDR)

6.5 Maze Navigator (beginning of Pacman)

Team Contributions

Challenges Faced and Lessons Learned

1.0 System Overview and Background

The inspiration behind the creation of the Tronsistor-32 was rooted in the retro gaming consoles of the
1980’s, most specifically the iconic Atari 2600. Our efforts were focused on developing a system
capable of playing the 1982 video game Tron, as well as a few other nostalgic video games from that
same era. On a high level, the Tronsistor-32 includes a 32-bit architecture CPU operating on a custom
version of the MIPS32 ISA. The design is capable of displaying 8-bit video graphics at a 256x256 pixel
resolution, and uses a simple keyboard for a player’s control inputs. This design was primarily chosen
to challenge our technical abilities as well as provide an enjoyable, interactive, and memorable product
capable of playing some of the most famous games from the golden era of gaming.

With regard to technical challenges, this design decision offered several opportunities to grow our
hardware and software development skills. For starters, this design required us to build a system
essentially from the ground up. Our decision to create our own ISA necessitated the development of a
specialized software framework on top of a fully custom hardware design. Furthermore, using a
custom ISA required that we implement new testing techniques in order to debug and verify the
correctness of our developed software. The entirety of our design relied solely on our ability to identify
and resolve issues throughout each stage of the design process, and this was aimed to emulate the
work and ambition needed while working in the professional computer engineering industry.

This document includes an in depth discussion of the hardware and software architecture
implementations of the Tronsistor-32. Section 2 and Section 3 of this document will discuss our
hardware specifications, specifically the hardware macro/micro architecture design as well as the ISA
used to develop our applications. Section 4 will review our software framework, which incorporates a
discussion of how to develop and test programs that will eventually execute on the hardware.

2 System Architecture

2.1 Top Level Hardware Diagram

Figure 2.1 shows a top level view of the Tronsistor-32 hardware architecture. The main components of
the design are the Central Processing Unit (CPU) and the Picture Processing Unit (PPU). The CPU
interfaces with main memory, which contains a game’s instruction space as well as the heap/stack data
that is regularly accessed during execution. The PPU interfaces with specialized memory needed for
graphical output, such as a game’s foreground/background sprite image tables, as well as the certain
color palettes needed by these images.

Main Memory

l—p ToDAC...

| SPART

L

Figure 2.1: Tronsistor-32 top level hardware design

2.2.0 Picture Processing Unit

The Picture Processing Unit (PPU) uses sprite and background data to render the actual pixel data
displayed on the screen. The PPU renders pixels line by line horizontally, which is synchronized with
the timing of the VGA display logic. Each line is 256 pixels wide, with 256 lines, giving a display
resolution of 256x256.

The purpose of having all rendering be just one line at a time is so that the PPU is able to output the
most relevant pixels at at that given time. This was a decision over the alternative of rendering frame
by frame, because of the format of a VGA signal. This also allows the PPU to not have to buffer an
entire frame’s worth of pixel data in a memory block, which would greatly reduce the available space
in an already constrained area.

WVGA DISPLAY
, it 415\'5TEI‘_FA'_ETI‘E |~='—' |

PPUCTRL PTTYTYT T] st
it 1 ran —_—.| I:_:,.. p—
- SCANGEN
EQ_ATIR_TAELE |
FROM CPU BOTIE TASLE [0 TN o ey TamLs o
Q
& B B w
PR
L i
— OAM L., OAMB e L 1
> — —_——
[] oam e
D Tables
] scaniine Generator
|:| Display

l:l Color Palettes

Figure 2.2.1: PPU Top Level

2.2.1 PPU Control Unit (PPUCTRL)

The PPUCTRL is the control unit that coordinates all operations of the PPU. Its main operations include
scanning through the OAM and loading the OAMB with sprites that will be visible on the current
scanline and loading up the SCANGEN with this data from the OAMB.

The steps the PPU takes each scanline are as follows:
1. Clear the OAMB to OxFF at each position.

2. Check each sprite in the OAM, if it is within range, copy its data into the next available position
in the OAMB. Stop checking if OAMB is full or all sprites in OAM have been checked.

3. Wait for hsync

4. Load each sprite from the OAMB into the SCANGEN. This requires fetching tile data from the
sprite pattern table.

5. Load the tile and attribute data for the first two background tiles in the current row into the
SCANGEN.

6. Enable the SCANGEN to start shifting out pixels.
a. Each eight shifts, load the next background tile and attribute data into the SCANGEN.

b. While the SCANGEN is shifting out the current line, step 1 can begin again in parallel.

PPU Control Unit (PPUCTRL)

oam_re / oamb_we
l—— oamb_addrj4:0]

oamb_clear

PPUCTRL

oamb_data_ouf7:0]

scangen_losd_sprita

scangen_shift_enable

bg_next_rowcol[@:0]

bg_next_yoffseff2:0]

Figure 2.2.2: PPU Control Unit

2.2.2 Object Attribute Memory (0AM)

The OAM stores information about sprites that are currently displayed on the screen. Externally, the
OAM can be viewed as a byte-addressable memory with concurrent read and write access. Internally,
the OAM actually contains two memory blocks of equal size. One primary OAM and secondary OAM.
To allow for a program to control the sprites, the CPU is given direct access to the PPU’s primary OAM.
The primary OAM that the CPU writes to is actually never directly accessed by the PPU other than one
single occasion. Once a frame is complete, the entire contents of the primary OAM are copied into the
secondary OAM over a single clock cycle. This way, there are no issues dealing with concurrent read
and writes on the OAM causing sprite flickering. Therefore, if contents of the OAM change, it will not
appear to have changed (when reading), until copy is held high for a clock cycle.

10

Object Attribute Memory (OAM)

opy

A

——w_addr[7:0]
We
VL h 4
S Primary
—data_in[7:0]
OAM

——Clk——————————>
— 5t

All 256 bytes copied when
'copy' is high for 1 clock cycle

r_addr[7:0}——
h 4 VL *
Seconday IR
ata_out[7:
OAM

Both primary and secondary OAM reset to OxFF at each byte

Figure 2.2.3: Object Attribute Memory

The OAM can contain information about a maximum of 64 sprites. Each sprite takes four bytes of data.
The ordering of the bytes for each sprite are as follows.

Byte Name Description
0 Y Position The Y position of the top-left corner of the sprite on the screen. If this byte is set to
OxFF, the sprite is considered an empty entry.
1 Tile Number The tile used for this sprite: an index into the sprite pattern table.
2 Attributes Attributes about how this sprite is displayed.
[1:0] The color palette used for this sprite.
[5:2] Unused
[6] Flip horizontal if 1
[7] Flip vertical if 1
3 X Position The X position of the top-left corner of the sprite on the screen.
2.2.3 OAM Buffer (OAMB)

The OAM Buffer (OAMB) is a sprite holding memory with a similar format to the OAM. It can only hold
information about 8 sprites (32 bytes total) that will be rendered on the current scanline. The PPUCTRL
module is responsible for controlling the memory loaded into this module by reading from the OAM
and determining if each sprite is on the current scanline. If it is, the sprite’s 4 bytes are loaded into the
OAMB at its next available position. The PPUCTRL is also responsible for clearing this module (setting
each of its bytes to OxFF) before it is loaded with the next scanline’s sprites. The OAMB is

11

byte-addressable for both reads and writes. Because this module can only contain 8 sprites, that is the
limit of the number of sprites that can be displayed on a scanline.

Object Attribute Memory Buffer (OAMB)

addr{4:0}————»

saa_in7o— OAMB

Clk:
rst

data_out[7 O}—»

Y Y

Figure 2.2.4: OAM Buffer

12

2.2.4 Scanline Generator (SCANGEN)

The scanline generator is responsible for shifting out color indices that index into the color palettes for
display on the screen. The SCANGEN is loaded with sprite data assembled by the PPUCTRL after
scanning through the OAM and loading the OAMB. Both the OAMB and the SCANGEN are capable of
holding 8 sprites. The scangen prioritizes non-transparent pixels from sprites at lower indices. If no
sprite pixels are available, the background pixels are used with lowest priority. Each shift out is a pixel
on the current scanline.

Scanline Generator (SCANGEN)

—shift_enable—————|

—sprite_load—
—sprite_num[2:0]— >
—sprite_xpos[7 0>
—sprite_ a7 0
—sprite_line0[7 07—
—sprite_line1 70—

SCANGEN —eioutso—>

—hg_lined[FOo—————>|
—hg_linel[fO——»|
—bg_attr[1:0———>

—clk

IS

Yy Y

Figure 2.2.5: Scanline Generator

The SCANGEN is split up into two shifting components. One for sprites and one for backgrounds.

13

Scanline Generator (SCANGEN)

Renders a horizontal line of pixels serially for display on the screen

—sprite_load———————>
—sprite_num[2:0]——»
—spn.te_xpos v :0]_)Prioritypg!p;ﬁi3te Line
—sprite_atr7 07— Generator
—sprite_line0[f 0]—>

—sprite_line1 [7:-0——»

v

pixel out[4:07>

—bg_lined[f 0> BGLG
—bg_line1[7:0—*| Background Line
—bg_atir[1.0f———— Generator

XN ALIHOIEd 13XId

¥

\

Non-transparent sprite pixels
—smrt_erv,jme4 have priority over background pixels

*
ﬁ

clk:

rst

Figure 2.2.6: SCANGEN Internals

2.2.5 Priority Sprite Line Generator (PSLG)

The PSLG is loaded with sprite data (maximum of eight sprites) and shifts out pixels corresponding to
the sprites. Sprites with lower indices are given priority over other sprites.

14

Priority Sprite Line Generator Renders a horizontal line of sprite pixels serially

Sprite Line Generators 5 e
0: Highest priority

—sprite_load > 7: Lowest priority
—sprite_num[2:0]—» SLGO pix0[3:.0—>
—sprite_xpos[f0F—»
—sprite_atrf 0———» SLG1 piX1[3:0—>
—sprite_line0F 0———»
—sprite_line1[f 0] —> SLG2 > %
m
SLG3 > 3
;OU pixel_out[3:0]—>
_ o SLG4 > 3
When sprite_load is high, = Passes through the pixel the
AII data is loaded " SLG5 » C highest-priority,)
into the SLG specified x non-transparent pixel
by sprite_num
SLG6 >
SLG7 pix7[3 0]—»/
——shift_enable
clk oy
A

1
TSt

Figure 2.2.7: Priority Sprite Line Generator
2.2.6 Sprite Line Generator (SLG)

Each SLG contains a sprite’s x position, its color palette, and loaded tile data. The x position is loaded
into a down counter. Each cycle, this down counter is decremented. Once it reaches zero, the sprite’s
tile data will start shifting out pixels.

Sprite Line Generator (SLG)

attr[1:0] pixel_out[3:2]——

’ X_POS |
Xposz0} 8-bit down counter ZEQOl

LINE_HIGH y
line1[7:0] »| 8-bit shift register pixel_out[1j——>
LINE_LOW g
lineo[7:0] »| 8-bit shif register pixel_out0}——>>
—Ioadg _
: A Once counter reaches zero, shift
= S f‘ registers start shifting out pixel data

clk

"
TSt

Figure 2.2.8: Sprite Line Generator

15

2.2.7 Background Line Generator (BGLG)

The BGLG shifts out pixels for background tiles. The BGLG contains tile data for the current background
tile and the next background tile. Every 8 shifts, the next tile’s data is loaded into the high byte of the
shift registers. Also, at this time, the attribute bytes from the background attribute table are loaded
into the buffer. These contain the color palette used for the background tile.

Background Line Generator (BGLG)
8-bit down counter _ZERO_—|
LOAD
o PAL_HIGH .
attr[1:0] i 8-bit shit register | PXel_outi3|—>
i PAL_LOW
8-bit shift register pixel_out2]
line1[7:0 » LNEHGH | »
o LOAD HIGH—————>»| 16-bit shiftregister pixel_out[1]
line0[7:0 > LINE_LOW
701 LOAD HIGH———>| 16-bitshiftregister pixel out[0]
Palette Shift Registers ne: SHEREgRS
Each cydle, the respective bit Each 8 cycles, the high 8 bits of
in the buffer is shifted in and a bit the line shift registers are loaded
is shifted out with the tile data.
hift_enable Every 8 cycles, the buffer is loaded The line shift registers shift out the
aik 4 with the palette bits of the next tile low bit each cycle.
rst *
The 8-bit down counter resets after a cycle at zero and repeats counting.
Figure 2.2.9: Background Line Generator

16

2.2.8 Pattern Tables

Within the PPU, two pattern tables exist. One for sprites and one for backgrounds. Each pattern table
stores the actual bitmap data that makes up a sprite tile or background tile. These pattern tables are
ROMs set by the game data. The format of these tables is described in the software section.

Pattern Table

—tile_addr[7 0}—»
row[2:0}———» ——line_low_out[7:0—»
line_high_out[7:0—»

PATTERN_TABLE

2048

—Clf—p

N
W

2 bytes

Figure 2.2.10: Pattern Table

The figure below gives an example of how a tile is stored in the Pattern Table and how its format
corresponds to colors.

| Applied palette index

0000000000000000 00000000+00000000 00000000 00000Q00 from OAM
000000004+00000011 00000011 000000
Q0000000+00001111 00001111 0000

0O 00000000+00011111 00011111 000

0001100000100111 000220004+00100111 00122111 00

0011110000000011 - 00222200+000000 11‘ 002222 11-00

0011110000110011 00222200+00110011 00332211 00

ODllllO%DlllDOll 00222200+01110011 01332211 Om

HT has weight 2 after including after each wvalue
LO has weight 1 weight combining rep 1ts
every a si
single tile in line in color o
pattern parallel color Once applied to a
palette color palette, you

can get a portion of
a sprite.

Figure 2.2.11: Pattern Table Tile Example

2.2.9 Background Tile Table

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,
the background is made up of a 32x32 array of tiles. The background tile table holds information on

which tile is used for each piece of the background. The table is RAM that is initialized by game data
but is writable by the CPU. This module supports concurrent PPU reads and CPU writes.

Background Tile Table

—r_rowcol [9:0}——m
—w_rowcol[90j— ——tile_addr[7:.0—»
—re » s
et BG_TILE_TABLE S
— k|
= 1 byte >

Figure 2.2.12: Background Tile Table

18

2.2.10 Background Attribute Table

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,
the background is made up of a 32x32 array of tiles. The background attribute table holds information
on which color palette is used for each tile that makes up the background. The table is RAM that is
initialized by game data but is writable by the CPU. This module supports concurrent reads and writes
(Reads by the PPU and writes by the CPU).

Background Attribute Table

—r_rowcol [9 0}——»
—w_rowcol[9-0]—— ——atr[1 (p———»
—re > ~
i BG_ATTR_TABLE %
— i k—————
== 2 bits >

Figure 2.2.13: Background Attribute Table

19

2.2.11 Color Palettes

There are two ROMs that define the colors used for sprites and backgrounds. There is also a single
system palette that cannot be changed.

2.2.12 Sprite and Background Color Palettes

There are a total of 8 color palettes defined by the game data. Four for sprites and four for
backgrounds. It is important to note that for each of the sprite palettes, color O is irrelevant because
the internals always interpret sprite colors of 0 as transparent. Furthermore, the backgrounds color
palettes also have special handling for color 0. Regardless of the color palette used, color 0 will be
always be read as color 0 of the Oth background color palette. This is referred to as the universal
background color. Each color returned by any of the color palettes is actually an address of the color
stored in the system color palette.

Color Palette

0: transparent
1: color 1

2ma2 COLOR_PALETTEO

3 colar 3

—palefte_num[1 0
—color_index[1:0]>

system_colofg:0——»

COLOR_PALETTE 1

—LClk———————
COLOR_PALETTE 2

COLOR_PALETTE 3

Each palette has technically 4 indices for colors, however color zero in any paletie is always considered
transparent which will be automatically assigned the universal background color.

Figure 2.2.14: Color Palette

2.2.13 System Color Palette

20

The system color palette is universal regardless of the game and cannot be changed. The system color

palette contains the 64 possible colors that can be used by graphics in the system.

System Color Palette

—colof5:0—»

—Cf—

SYSTEM_PALETTE

64 colors

3 bytes

——rgb[23.0——»

2xBe 2x1e
2xal Bx1l
@xa2 ex12
axa3 ax13
axe4 2xl4
axas ax15s
Bx86 2xle
axa7 ex17
2x8s8 ax18
axe9 2x19
BxeA 2x1A
2x88 2x1B
BxaC ex1C
2xab ex1D
@x8E BuBOFFAA Bx1E
exeF Bx@BFFFF ax1F

ax2e
a2l
ax22
ex23
2x24
ax25
26
27
an2e
ax29
Bx2A
ex2b

@x55FFae x2C
@x55FF55 2wzl
@x55FFAA 8x2E
@x55FFFF @ux2F

BxALAAFF
BxAAFFE0
BXAAFFSS5
BXAAFFAA
BXAAFFFF

These are all of the 64 colors available to graphics in the system.

ax3e
ax3l
ax32
ax33
@34
ax35
ax36
w37
8x38 BxFFALER
8x39 BxFFAASS
@x3A @xFFAAAA
ex36 @xFFAAFF
ex3C exFFFFea
ex3D @xFFFF55
ex3E @xFFFFAA
ex3F @xFFFFFF

Figure 2.2.15: System Color Palette

21

2.3 Special Purpose Asynchronous Receive/Transmit (SPART)

The SPART is a unit that receives gameplay input data serially from a computer keyboard via an RS232
cable and transmits this data to the CPU for processing. Essentially, it is divided into three submodules,
those being a driver, baud rate generator (BRG), and transceiver. Although transmitting received data
back out the RS232 cable was not necessary for our design, we kept these transmit capabilities and
sent all received input back to the serial terminal. This transmission module allowed us to verify that
our system was receiving the correct input on any given transaction.

The driver is responsible for coordinating the receival and transmission of data from the input
keyboard to the CPU. A tri-state bus interface is the connection between this driver and the SPART core
(BRG/transceiver). This interface is responsible for sending data into the core for transmission or baud
rate controlling, as well as receiving data from the core corresponding to the character byte pressed by
the user on the connected keyboard.

The BRG controls enable signals to the transceiver’s control units. It loads a counter with a 16-bit
countdown value sent from the driver that corresponds to a supported baud rate (either 4800, 9600,
19200, or 38400). When the counter reaches zero, an enable signal is sent to the transceiver to
transmit or capture data on the serial line. The serial line operates at a frequency much slower than
the internal clock signal of the SPART, so each serial bit is sent at a specific multiple of the internal
clock frequency. Similarly, the line is sampled at a multiple of the internal clock frequency specific to
the baud rate.

The transceiver’s transmit control unit takes data from the bus interface and sends it out the RS232
serial line. In order to accomplish this, it must convert data from parallel to serial by shifting bits of the
parallel data out the RS232 at a specified rate. Likewise, the transceiver’s receive control unit takes
data from the serial port and shifts it into a register, thus converting serial data to parallel. This shifting
corresponds to the frequency of the baud rate generator’s enable signals, which ensures that the data
is transferred at the rate specified for the serial line.

Figure 2.3(a) shows the SPART environment of receiving serial I/O from RS232 to the processor. Figure
2.3(b) shows the SPART diagram of transmitting and receiving data and passing it to/from the
processor via the databus.

CLK RESET

|
Y

é

R

Processor SPART
—— |OCS
L | IORW T
Serial IO
f—— RDA TxD 3 Max
[%——TER RxD |—— 232A -
. From
- DATABUS[7:0]
FPGA
Figure 2.3(a): SPART Environment
—
BAUD Rate Generator
— o

CLK
>—>

RESET

S e

I0CS

To All blocks except
Bus Interface

To Controls

—— To Controls

IORfW

——® and Bus Interface

RDA

;—, Rate Enables
-~

<TBR

-
IOADDR[1:0]

vy

DATABUSI7:0]
Bus Interface

l’, Transmit Control
Transmit Shift Reg
TxD :
P Transmit Buffer ' RxD
g L Receive Control
h
Receive Shit Reg g

Receive Buffer

Figure 2.3(b): SPART Block Diagram

22

23

24 Central Processing Unit

At the heart of the Tronsistor-32 is a 32-bit RISC architecture, 5-stage pipelined processor including 32
special and general purpose registers as well as data forwarding and interrupt capabilities. We will
discuss these aspects in more depth in the following sections. Our CPU recognizes 30 valid instructions,
some of which (11 in total) have been developed specifically for our system and the rest have been
migrated from the MIPS32 ISA. For reference, the blue lines in the image below are control signals.

IF.Flush

/" Hazard
detection |
\ unit J

, M

/
| |
i{Control

‘ [e y EXMEM
1 { 4 —
\ I

IFiD N, EX M

LB —
4 —] Shift
left 2,
M
u
| x
L Registers
Instruction } ALU Data |
a ﬁ memory || memory M
- + u
M x
u T‘>
x |..

m |
Sign-

e 2)j—
[$1a
>

v

[R}

|——
| unit |

]
B _ \j = Fo«-wamsng'“"-.——l _1

Figure 2.4.0: Relative Top Level Layout of Tronsistor-32 CPU

24

241 Registers
Register | Software
Number Alias Functional Description
Zero: This register is hardwired to supply the constant value of
0x00000000. This register is unwriteable, and is often used as the
destination of an arithmetic instruction for setting branch conditions
0 Szero without overwriting another register value.
1 Sat Assembler Temporary: General purpose register.
Function Results: The results of function calls may be placed into these
registers which circumvents the need to return them via the stack.
2-3 Sv0-$v1l |However, they may be considered general purpose registers.
Arguments: Function parameters may be placed into these registers to
avoid passing these values via the stack. However, they may be
4-7 $a0-$a3 |considered general purpose registers.
8-15 $t0-$t7 |Temporaries: General purpose registers.
16-23 $s0-$s7 |Saved Temporaries: General purpose registers.
24-26 $t8-$tl1l0 |Temporaries: General purpose registers.
Audio: This register is reserved to hold the starting location of an
27 Sau audio file’s data.
Interrupt Data Register: This register saves the data retrieved from a
28 Sidr keyboard interrupt for game player input verification.
Stack Pointer: This register always points to the top of the stack’s
address space, which is fully descending. The system automatically
updates the contents of this register while executing any instructions
29 Ssp that access the stack’s data.
Exception Program Counter: This register holds the program counter of
the instruction that was interrupted while within the Instruction Fetch
stage of the pipeline. This is to ensure that the program is able to
30 Sepc return to its normal execution after an interrupt has occurred.
Return Address: This register holds the return address placed on top of
31 Sra the stack by a function call.

25

2.4.2 Addressing Modes

Our ISA supports four addressing modes: immediate, register, label, and label with immediate offset.
Immediate addressing requires an immediate value. Register addressing uses values inside of registers.
Label addressing uses the program counter data at a particular label.

2.4.2.1 Immediate

The immediate addressing mode passes the immediate value as part of the instruction. This immediate
value will be used as a direct input into the ALU for arithmetic. Immediate addressing mode is signified
by a numeric value. The default immediate values are in base 10, leaving it up to the assembler to
convert this number into binary machine code.

Syntax: [numeric]
Example: li StO, 48 # load 48, ASCII value of ‘0’, into register St0
Encoding:
opcode [31:26] rd rs [20:16] immediate [20:0]
[25:21]
2.4.2.2 Register

For the register addressing mode, the numeric register (0 - 31) is passed in as part of the instruction.
This target register is then passed to the register file, which then outputs the contents of the specified
register. Register addressing mode is signified by the S symbols.

Syntax: S[nhumeric]

Example: add $s0, Ss1, $s2 # add Ss1 and Ss2, and store the results in $sO

Encoding:
opcode rs [25:21] |rt [20:16] | rd [15:11] shamt funct
[31:26] [10:6] [0:5]

26

2.4.2.3 Label (with Immediate Offset)

With label plus offset, the assembler will map the label to an immediate value, which gets passed in as
part of the instruction. Then, the assembler adds the two immediate values together. Label addressing
modes are signified by labels. Offsets are signified by appending a comma after the label.

Syntax 1: [label] # label addressing only
Syntax 2: [label], [numeric] # label plus immediate offset addressing
Example 1: Ib $t0, foreground # load value that is labeled as foreground in memory
Example 2: sw St1, score, 4 # store value of St in 4 words after the label score
Encoding:

opcode [31:26] rs [25:21] immediate [20:0]
2.4.3 Instruction Formats

Our ISA supports five instruction formats: register, immediate, jump, sprite, and sprite_remove.
Register format is for instructions that uses registers such as add or subtract (sub). Immediate format is
for instruction that uses immediates such as add immediate (addi). Jump format is used for branching
instructions such as branch less than (blt). Sprite format is used for almost all sprite instructions to
update visual data, such as set foreground tile (sft). Lastly, sprite_remove format is only used for the
sprite remove (srm) instruction because that instruction takes only 1 register to index into the OAM.

Instruction Formats

opcode [31:26] rd [25:21] rs [20:18] rt [315:119 | zhamt [10:6] | funct [5:0]
opcode [31:26] rd [25:21] rs [20:1s8] immediate [15:0]
J opcode [31:26] immediate [25:0]

5_REMV opcode [31:26] rd [25:21] (CAM index) not used [20:0]

5 opcode [31:26] rd [25:21] (C&M index) rs [20:186] (L3Bs) not used [15:0]

2.4.4

TronMIPStor ISA

27

Below is a table containing the 30 instructions supported by the Tronsistor-32 with specified

instructions formats, software mnemonics, and functional descriptions.

| Ccategory T Name | Mnemonic Format Operation
1
| Add add R 5d = $s5 + St
| ¢ X & ;
| Arithmetic |Add Imm. addi I $5d = $s + (sign ext)Imm
| Subtract sub R $d = s - S5t
| And and R $d = $s & St
|
1 And Tmm. andi I 5d $s & (sign ext) Imm
|
| Logical Nand nand R 5d = $s ~& 5t
: Xor XOr R 5d = §s ™ 5t
| Or or R 5d = $s | $t
| Shift Left Logical s11 R $5d = $s << shamt
| Shift -
| Shift Right Logical srl R sd $s >> shamt
: Branch (unconditional) b J PC=PC+1+BranchAddr
| Branch On Equal beqg J Zz =1, 1+BranchAddr
| Branch
1 Branch On Not Equal bne J if 2 = 0, PC=PC+l+Branc
|
| Branch Le Than blt J if N =1 and V = 0, PC=PC+l+BranchAddr
: Jump Jump Register jr I Jump Register
| “all call J PC = {PC[31..26], Imm}; M[SP] PC+1l; SP = SP-1
| call/Ret
I Return ret J SP = SP+1; PC = M[SP]
[
I Load Word 1w I $d = M[rs + (sign ext)Imm]
\ Load
| Load Immediate 1i T $d = (sign ext) Imm
| Pop pop 1 SP = SP+1; rd = M[SP];
! Pop/Push
| Push push I M[SP] = $d; SP = SP-1
| Store Store Word sw I Mlrs + (sign ext)Imm] = rd
Sprite Load sld S OAM[rd[5:0]] = rs
Sprite Remove srm S_REMV OBM [rd[5:0]] = OxXFFFFFFFF
Sprite Set Location ssl 3 OAM [rd[5:0]] {rs[15:8], 16'hFFFF, rs[7:0]}
PPU Set Foreground Tile Number |sft 3 OAM[rd[5:0]] = rs[7:0]
Set Background Tile Number |sbt 3 BGTT[rd] = rs[7:0]
Set Foreground Attributes sfa S OBM[rd[5:0]]1[15:8] =
Set Background Attributes sba 5 BGAT[rd([9:0]] = rs[1:0]
Audio Begin ab R
Audio Audio End ae R
Audio Load al R
MISC Null Operation nop R null

Additional Notes:

28

Category H Mnemonic | Notes Flag Notes
add Add the contents of $s with $r, store in 3d sets V, N, and 2
Arithmetic addi Add the conter of $s th (sign ext)Imm, store in §d sets V, N, and Z
sub Sub the contents of $s with $r, ore in 3d sets V, N, and Z
Bit-Wise AND §s with $r, store in $d V = 0, sets N and Z
Bit-Wise AND $s with (sign ext)Imm, store in $d YV =0, sets N and Z
Logical Bit-Wise NAND Ss with $r store in 3d V =0, sets N and 2
xXor Bit-Wise XOR %= with $r store in $d V = 0, sets N and Z
or Bit-wise OR S5s wi $t store in 54 WV = 0, sets N and Z
s11 S5hift bits of $d to the left, feed 0 into LSB Doesn't change flags
shift
Shift bits of $d ght, feed 0 into MSB Doesn't change flags
b Branch to PC+1+Brar unconditi ly Checks flags, doesn't set
beq Branch to when (Z2 = 1) Checks flags, doesn't set
Branch N —
bne Branch - when C flags, decesn't set
blt Branch t when (N =1, V = 0) Checks flags, doesn't set
Jump FE Jump unconditionally to the address held in the source regis N/RA
call Update PC to the call ta t, push return address to stack, update SP N/A
Call/Ret -
ret Update SP, update PC to return address popped from stack N/R
1w Load data from memory address in $r to $s N/R
Load - —
1i Load data from immediate field to 3= N/R
pop Pop the contents at the top the stack to 3= SPp N/A
Pop/Push
push 15h to the top of the stack and update SP N/A
Store sw Store data from to address in $s N/A
Load Sprite from memory specified by Spr start offset by (Spr num << 2) N/A
Srm Remove sprite (set X posi to FF, set Y position to FF) N/A
ssl Set sprite location ({(absclute X position and Y _position) N/A
PPU sft sprite tile (visual data) to index rs[7:0] of pattern table N/R
sbt background tile ata) to index rs([7:0] of tile table N/A
sfa and color palette} to rs[7:0] N/R
sba ackground attributes (color palette) to index rs[1:0] of BG attr table N/R
ab pre >ing the signal spec ed by register $au N/A
Audio ae top producing the signal cified by registerx N/A
al Load the address of sound data inte register %au N/R
MIsc nop Do nething N/A

o)i e —
- KEYBC‘ARD-\L,!_l [insTRUCTION

3 System Microarchitecture
3.1 Central Processing Unit (CPU)

Figure 3.1 contains a diagram of the Tronsistor-32 pipelined CPU’s microarchitecture. The CPU’s
Instruction Fetch module fetches all instructions contained within a program via a main
memory interface. However, the remaining CPU pipeline sections are only responsible for
executing all non-sprite instructions (R-type, I-type, J-type). Sprite instructions (S_REMV, and
S-type) are passed out of the IFID pipeline register to the Picture Processing Unit (Section 3.2)
for further execution. The following subsections (Section 3.1.1 - 3.1.6) will discuss the internal
microarchitecture design of the five main pipeline stages shown in below.

Note: The signals contained within each pipeline section used for data-forwarding have been
omitted due to their complexity. There are two multiplexers located on the output of the
Instruction Decode’s inputs ALU_input_1 and ALU_input_2, the Instruction Execute’s inputs
ALU_inl1 and ALU_in2, and the Instruction Execute’s outputs EX_out and MemWrite_data.
There is one multiplexer per signal, and the select signals are set within the DataForward
module.

29

CPU

| FETCH

il

L
| | | Register Fie
|
|
| |
|
|
— 1

_____ [“execure | [wemory | | waite sack |
[DECODE | ”~ e o

Figure 3.1: Tronsistor-32 pipelined CPU

30

3.1.1 Instruction Fetch

Figure 3.1.1 contains a detailed view within the Instruction Fetch section of the CPU pipeline. This
section of the pipe is responsible for handling updates to the program counter as well as retrieving
instructions from memory to pass into the Instruction Decode pipeline stage.

Note: The instruction memory is not actually contained within this section of the pipe. The memory
unit is shown as a representation of how this pipeline section will interface with the specified section
of main memory. Also, it is important to note that during an interrupt this stage of the pipeline will
issue a ‘load immediate’ instruction that will save the interrupted program counter to the EPC register.
After an interrupt has been handled, the trap handler notifies this stage to issue a ‘jump register’
instruction to load the program counter from the EPC register to proceed with execution. The
components within this stage of the pipeline responsible for this activity have been omitted due to
their complicated design.

PC_src

% 32 PC_control
PC_update 32 !

IFID
»|
. d 37 PC_plus_1 &
0x0001 ——|

00U d Woid

Instruction
> |32 | o] addr Memory instr | 232 instruction
PAorlE 0X000 - OX3FF
| enable

data_hazard

hazard i‘i
< o

PC_hazard

PIEZEH WOI4

Figure 3.1.1: Instruction Fetch CPU pipeline section

31

3.1.2 Instruction Decode

Figure 3.1.2 contains a detailed view within the Instruction Decode section of the CPU pipeline. This
section of the pipeline is responsible for accessing and modifying the contents within the 32 general
and special purpose registers within the Tronsistor-32 (all contained within the register file). Also, this
pipeline stage is responsible for separating out each data field from the various instruction types,
which is crucial for preparing all relevant data for manipulation within the Instruction Execute stage of
the pipe.

— call

| IDEX
e) ret SP_update
] \
= push_pop
g
€ alu_src 2
S :
£ sign_ext_sel
2
reg 2 sel branch
t d
R_I_A type_r 5, |
PC_in 32 | W
R_I_type_rs 5 4 | ~
| . - put_1
» Read_Reg_1 P! . '
0x1B ———» \
Read_Bus_1)
o v
R_type_rt /5| !
» Read Reg 2 Read_Bus_2 . ‘
J_type_imm_in | N
» Write_Reg
e mm » Write Bus
i put_2
» RegWrite
RegFile_32bit
[2
32
|26 e —— v ‘
‘Sign Extend ~32
16 | .
0x0001 ‘ ‘
0x0000 32
B — -
.g
- R = 2 Ses
: b £ 2

Figure 3.1.2: Instruction Decode CPU pipeline section

32

3.1.3 Instruction Execute

Figure 3.1.3 contains a detailed view within the Instruction Execute section of the CPU pipeline. This
section of the pipeline is responsible for computing the result of all arithmetic and logic instructions
(ADD, ADDI, SUB, AND, ANDI, NAND, OR, XOR, SLL, SRL) via the Arithmetic Logic Unit (ALU). The ALU
computes the output of the aforementioned instructions and sets the flags that are used to verify
branch conditions. This section is also responsible for selecting the proper data for accessing memory
in the Memory Interface section of the pipeline.

. To Flag_reg

JOEX RegWrite_in - LD RegWrite_out L EXMEM
MemWrite_in MemWrite_out
MemRead_in MemRead_out
memitoiregiin mem_to_reg_out

>

dest_reg_in g

dest_reg_out
0x1B

opcode

ALU_in1
% -
(%] E
ALU_in2
ALU_out
’I 32 EX_out o
A
= > 32 | MemWrite_datab
pPC 32 &
A
load_imm
mem_src_in mem_src_out

Figure 3.1.3: Instruction Execute CPU pipeline section

33

3.1.4 Memory Interface

Figure 3.1.4 contains a detailed view within the Memory Interface section of the CPU pipeline. This
section of the pipeline is responsible for accomplishing the data memory accesses required by various
instructions (SW, PUSH, LW, POP, CALL, RET).

Note: The data memory is not actually contained within this section of the pipe. The memory unit
shown below is a representation of how this pipeline section will interface with the specified section of
main memory.

RegWrite_in RegWrite_out
mem_to_reg_in mem_to_reg_out 3
dest_reg_in dest_reg_out 2
MemWrite
ddr 32

32 mem_read_data
rite_data 32
MemWrite I
MemSrc

alu_result_out

| 4

Figure 3.1.4: Memory Interface CPU pipeline section

3.1.5 Result Writeback

Figure 3.1.5 contains a detailed view within the Result Writeback section of the CPU pipeline. This
section of the pipeline simply returns the results of each instruction to an appropriate destination.

mem_to_reg

I_read_data -
32
result_out 32
— *
z
=
ki
dest_reg 5 E:

RegWrite

Figure 3.1.5: Result Writeback CPU pipeline section

34

35

3.1.6 Handling Asynchronous Input for Interrupts

3.1.6.1 Trap Handler

The Trap Handler is a module that resides outside the CPU and accepts several inputs from the
vga_logic and the SPART. The Trap Handler gives two interrupt signals to the CPU, these interrupts are
keyboard, and game tick interrupt. These interrupts are described in the following section. The Trap
Handlers main responsibility is to take in signals from the SPART and vga_logic that identify an
interrupt, and schedule the interrupt signals to be asserted only after all previous hazards have been
handled within the CPU. Once interrupts can be handled within the CPU, the Trap Handler uses an FSM
to schedule various control signals at appropriate times.

The SPART takes in data serially from the keyboard, and sends an interrupt signal to the CPU after a full
byte has been received along with the byte of data that has been received. Vga_logic sends the Vsync
signal to the trap handler as the game tick interrupt. This is done so that every time the screen
refreshes the CPU can account for one “game tick”.

3.1.6.2 Interrupts and Exceptions in CPU

There are three interrupts/exceptions handled by the CPU to progress or halt the game state.

Interrupts: Priority:
Keyboard interrupt 2
GameTick Interrupt 1

Exceptions:

StackOverflow exception 3

When an exception or interrupt is triggered, the PC must be loaded with an address in instruction
memory, the software will have two instructions to branch to another address location where ISR is
located.

Address space of interrupts/exceptions:

GameTick interrupt - 0x3FD
Keyboard Interrupt - Ox3FE
StackOverflow exception - Ox3FF

These locations should hold an instruction that unconditionally branches to the memory location of
that particular interrupt/exception Interrupt Service Routine (ISR). When an interrupt or exception is
triggered, the trap handler is responsible for coordinating what needs to happen to handle the

interrupt:

GameTick Interrupt:

1) Flop interrupt signal and wait for all hazards to clear
2) Set hazard

3) Save interrupted PC + 1 to EPC

4) Set PC to address Ox3FD

Keyboard Interrupt:

1) Flop interrupt signal and wait for all hazards to clear
2) Set hazard

3) Save keyboard data to IDR

4) Save PC+1to EPC

5) Set PC to address Ox3FE

Overflow Interrupt (unimplemented):

1) Flush current instruction in EX, ID, and IF stages

2) Set Overflow hazard

3) Save PC of instruction that caused overflow to EPC
4) Set PC to address Ox3FF

36

Sample CPU Simulation Waveforms

[3 ‘ Decode
> ‘ Execute
» ‘ Mem_Interface
»> ‘ Forward
¥ Wy Interface
g dk
-‘E rst
-";] enable

996,350 ns EE[E 996,450 ns 99, 500 ns

Flgure 3.1.7(a): Sprite Instruction Writing the Background Border of TRON

Figure 3.1.7(a) displays a snippet from a simulation of the game TRON. The main module

seen in this figure is the CPU/PPU interface, which is responsible for loading the PPU’s

foreground and background sprite tables with data. The highlighted signal in the figure

is the “Background Tile Table Write Enable”, which is set high when writing data to the

background tile table. Upon closer inspection, you can see that the BGWrite_data signal

is identical for each enabled write. However, the BGWrite_addr is being steadily

incremented upon each enabled write, which signifies that the background location

being written to is steadily moving across the screen as the border extends from right to

left.

37

38

» WU

b W RecFile

» B R1type_rsi0]
» B Rtype 0]
b B Destreglt0]
» B4 OPCODE

p M COE Opcode

[3 ‘ Decode
| 3 W Execute
[3 ‘ Mem_Interface
[3 W Forward
[3 ‘ Interface

1§ ak

1E| rst

]_E st ff

1§ keyboard_intr
-|E| game_tick_intr

1E| stack_overflow_intr

4,990,500 ns 4,990,550 ns

00000008]

Figure 3.1.7(b): Game Tick Interrupt]umping to lnterrupt ISR

Figure 3.1.7(b) displays a snippet from a simulation of the game TRON during a game
tick interrupt pulse. The pulse shown in the lower left corner of the image shows the
game tick interrupt entering the CPU, and the highlighted signal ‘PC_in’ can be seen
jumping to 0xO00003FE at the left dashed cursor line, which is actually the address of
the Keyboard interrupt. Once here, the ISR is called, which immediately returns because
there has been no user input since the last refresh of the game state. Finally, ‘PC_in’
jumps back to the interrupted program counter at the completion of the ISR, which can
be seen at the right bold cursor line. This occasional mishandling of the interrupt
service routines was discovered at the end of our system’s design process. Interrupts
are crucial for correct execution of the games, and correcting this error would have
undoubtedly added a great deal to our system’s functionality.

39

[
00000400

R
E WDHDD‘:
) L) | —
I

I N 2 S R
I

Figure 3.1.7(c): Register initialization upon Reset

- Figure 3.1.7(c) displays the contents of the 32-bit register file upon reset of the system.
When the system is reset, all data contained within the register file is reset to the value
of 0x00000000, except for the stack pointer register which is initialized to the top of the
stack at OxOOO0O0FFF. This ensures that all data held within the register file from previous
executions is flushed, which sets up a new, clean game state.

3.2

Picture Processing Unit (PPU)

40

The PPU is the module responsible for generating the graphics of the system. It interfaces directly with
the CPU and outputs to the VGA display. The rendering of both backgrounds and sprites is done
completely synchronous with the VGA display. This means that the rendering takes place scanline by
scanline. The display size supported is 256x256 pixels at a framerate of 60Hz.

PPUCTRL

COLOR_PALETTER [Fwydan w

s W 3T STEM_PALETTE |bEol

WEA DISPLAY

IPRITE_PATTERN_TAELE

SCANGEN

Y e

5 bg e 1>

A e

BO_ATIR_TABLE

7 By e el R i

FROM CPU

EQ_TILE_TAELE

—
EQ_PATTERH_TAEBLE

[] oam
E[Tables

[] scaniine Generator

D Display

D Color Palettes

5 saan] 710 b

OAM |.. .

OAMB

YPO 3 _DECDDER

|

41

3.2.1 PPU Control Unit (PPUCTRL)

The PPUCTRL is the control unit that coordinates all operations of the PPU. Its main operations include
scanning through the OAM and loading the OAMB with sprites that will be visible on the current
scanline and loading up the SCANGEN with this data from the OAMB.

The steps the PPU takes each scanline are as follows:

1. Clear the OAMB to OxFF at each position.
Check each sprite in the OAM, if it is within range, copy its data into the next available position
in the OAMB. Stop checking if OAMB is full or all sprites in OAM have been checked.
3. Wait for hsync
4. Load each sprite from the OAMB into the SCANGEN. This requires fetching tile data from the
sprite pattern table.
5. Load the tile and attribute data for the first two background tiles in the current row into the
SCANGEN.
6. Enable the SCANGEN to start shifting out pixels.
a. Each eight shifts, load the next background tile and attribute data into the SCANGEN.
b. While the SCANGEN is shifting out the current line, step 1 can begin again in parallel.

PPU Control Unit (PPUCTRL)

PPUCTRL

oamb_data_ouf{7:0]

scangen_losd_sprite

scangen_shift_enable

bg_next_rowcol[8:0]

bg_next_yoffsef2:0]

42

3.2.2 Object Attribute Memory (0OAM)

The OAM stores information about sprites that are currently displayed on the screen. Externally, the
OAM can be viewed as a byte-addressable memory with concurrent read and write access. Internally,
the OAM actually contains two memory blocks of equal size. One primary OAM and secondary OAM.
To allow for a program to control the sprites, the CPU is given direct access to the PPU’s primary OAM.
The primary OAM that the CPU writes to is actually never directly accessed by the PPU other than one
single occasion. Once a frame is complete, the entire contents of the primary OAM are copied into the
secondary OAM over a single clock cycle. This way, there are no issues dealing with concurrent read
and writes on the OAM causing sprite flickering. Therefore, if contents of the OAM change, it will not
appear to have changed (when reading), until copy is held high for a clock cycle.

Object Attribute Memory (OAM)

cop

——w_addr[7:0] r_addr[7:0]

we 'L hire

v

Primary All 256 bytes copied when Seconday

> OAM ‘copy'is high for 1 clock cycle OAM

——data_in[7:0}

dafa_outf 0}—>»

——Clk—————————>
—rs——————————¥

Both primary and secondary OAM reset to OxFF at each byte

43

The OAM can contain information about a maximum of 64 sprites. Each sprite takes four bytes of data.

The ordering of the bytes for each sprite are as follows.

Byte Name Description
0 Y Position The Y position of the top-left corner of the sprite on the screen. If this byte is set to OxFF,
the sprite is considered an empty entry.
1 Tile Number The tile used for this sprite: an index into the sprite pattern table.
2 Attributes Attributes about how this sprite is displayed.
[1:0] The color palette used for this sprite.
[5:2] Unused
[6] Flip horizontal if 1
[7] Flip vertical if 1
3 X Position The X position of the top-left corner of the sprite on the screen.

44

3.2.3 OAM Buffer (OAMB)

The OAM Buffer (OAMB) is a sprite holding memory with a similar format to the OAM. It can only hold
information about 8 sprites (32 bytes total) that will be rendered on the current scanline. The PPUCTRL
module is responsible for controlling the memory loaded into this module by reading from the OAM
and determining if each sprite is on the current scanline. If it is, the sprite’s 4 bytes are loaded into the
OAMB at its next available position. The PPUCTRL is also responsible for clearing this module (setting
each of its bytes to OxFF) before it is loaded with the next scanline’s sprites. The OAMB is
byte-addressable for both reads and writes. Because this module can only contain 8 sprites, that is the
limit of the number of sprites that can be displayed on a scanline.

Object Attribute Memory Buffer (OAMB)

we—>
\—Do—re—}

addr{4:0}———»

data_in[7:0——» OAM B

Clk >
rsk >

data_out[7 O}—>

45

3.2.4 Background Tile Table

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,
the background is made up of a 32x32 array of tiles. The background tile table holds information on
which tile is used for each piece of the background. The table is RAM that is initialized by game data
but is writable by the CPU. This module supports concurrent PPU reads and CPU writes.

Background Tile Table

—r_rowcol[9 0}——
—w_rowcol[9:0f— ——tile_addr[7-0—»

—_—e :

— W

1024

BG_TILE_TABLE

—Clk—————»

W

1 byte

M

46

3.2.5 Background Attribute Table

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,
the background is made up of a 32x32 array of tiles. The background attribute table holds information
on which color palette is used for each tile that makes up the background. The table is RAM that is
initialized by game data but is writable by the CPU. This module supports concurrent reads and writes
(Reads by the PPU and writes by the CPU).

Background Attribute Table

—r_rowcol[9:0}—»
—w_rowcol[9:0]— attr[|- Op———»

—_— "-_

— W

1024

BG_ATTR_TABLE

—

2 bits

A
W

3.2.6 Scanline Generator (SCANGEN)

The scanline generator is responsible for shifting out color indices that index into the color palettes for
display on the screen. The SCANGEN is loaded with sprite data assembled by the PPUCTRL after
scanning through the OAM and loading the OAMB. Both the OAMB and the SCANGEN are capable of
holding 8 sprites. The scangen prioritizes non-transparent pixels from sprites at lower indices. If no
sprite pixels are available, the background pixels are used with lowest priority. Each shift out is a pixel

on the current scanline.

Scanline Generator (SCANGEN)

—shift_enable————|

—sprite_load——————*
—sprite_num[2:0—*
—sprite_xpos[f 0™
—sprite_attr[7 07—
—sprite_lined[7:0T—™
—sprite_line1[7 07—

—bg_line0F 0™
—bg_linetf O™
—bg_aftri o™

Y

—clk

Y

—rst

SCANGEN

—pix_oui[4:.0}—»

48

The SCANGEN can be split up into two shifting components. One for sprites and one for backgrounds.

Scanline Generator (SCANGEN)

Renders a horizontal line of pixels serially for display on the screen

—sprite_load——————>
—sprite_num[2:0]——™|
; : PSLG

—sprit PF—® e

Spn_ e_xpos7 Priority Sprite Line
—sprite_affr[7 0> Generator
—sprite_line0[7 0——
—sprite_line1[7 0>
—bg_lined[F 0 ———> BGLG
—bg_line1[7:0 > Background Line
—bg_attrfi 0F—————>] Generator

v

—pixel_out[4:0]®

XOW ALI-HO™d 13XId

—shift_enable#

*

clk

*

TSt

v

\

MNon-transparent sprite pixels
have priority over background pixels

49

3.2.7 Priority Sprite Line Generator (PSLG)

The PSLG is loaded with sprite data (maximum of eight sprites) and shifts out pixels corresponding to
the sprites. Sprites with lower indices are given priority over other sprites.

Priority Sprite Line Generator Renders a horizontal line of sprite pixels serially

Sprite Line Generators i .
0: Highest priority

—sprite_load——————>

When sprite_load is high,
All data is loaded

into the SLG specified SLG>
by sprite_num

Passes through the pixel the
highest-priority,
non-transparent pixel

A4

7: Lowest priority
—sprite_num[2:0]——» SLGO pix0[3:0]——>
—sprite_xpos[f 0F——>
—sprite_atr[7 0]——>» SLG1 pix1[3:0]——>
—sprite_line07 0——>
—sprite_line1[7 0———>» SLG2 > %
Al
SLG3 » 3
% pixel_out[3:0]—>
SLG4 > 4
-
=
C
=

SLG6

A4

SLGT7

pix7[3:0]—>

N\

shift_enable +

clk:

¥l
TSt

3.2.8 Sprite Line Generator (SLG)

50

Each SLG contains a sprite’s x position, its color palette, and loaded tile data. The x position is loaded

into a down counter. Each cycle, this down counter is decremented. Once it reaches zero, the sprite’s

tile data will start shifting out pixels.

Sprite Line Generator (SLG)

—attr[1:0]

_ X_POS L
Ll DL 8-bit down counter ZERC’]

pixel out[3:2]—»

ISt

LINE_HIGH ,
line1[7:0] »| B-Dit shift register pixel_out1j——»
LINE_LOW ,
line0[7-0] »| 8-bit shift register pixel_out[0—»
load ’T‘ _
Once counter reaches zero, shift
s A registers start shifting out pixel data
clk

51

3.2.9 Background Line Generator (BGLG)

The BGLG shifts out pixels for background tiles. The BGLG contains tile data for the current background
tile and the next background tile. Every 8 shifts, the next tile’s data is loaded into the high byte of the
shift registers. Also, at this time, the attribute bytes from the background attribute table are loaded
into the buffer. These contain the color palette used for the background tile.

Background Line Generator (BGLG)
8-bit down counter *ZER07—|
LOAD
! PAL_HIGH :
attr(1:0] i 8-bit shitt register | PXel_outi3|—>
RETES PAL_LOW
8-bit shift register pixel_out2]
line1[7:0 > LINE_HIGH [>
701 LOAD HIGH————»{ 16-bitshittregister pixel_out[1]
line0[7-0 > LINE_LOW |
[r:01 LOAD HIGH———> 16-bitshiftregister pixel_out[0]
Palette Shift Registers Hine S Regiaters
Each cycle, the respective bit Each 8 cycles, the high 8 bits of
in the buffer is shifted in and a bit the line shift registers are loaded
is shifted out. with the tile data.
shifi_enable A Every 8 cycles, the buffer is loaded The Ii_ne shift registers shift out the
dik 2 with the palette bits of the next tile low bit each cycle.
TSt *
The 8-bit down counter resets after a cycle at zero and repeats counting.

52

3.2.10 Color Palettes

There are two ROMs that define the colors used for sprites and backgrounds. There is also a single
system palette that cannot be changed.

3.2.11 Sprite and Background Color Palettes

There are a total of 8 color palettes defined by the game data. Four for sprites and four for
backgrounds. It is important to note that for each of the sprite palettes, color O is irrelevant because
the internals always interpret sprite colors of 0 as transparent. Furthermore, the backgrounds color
palettes also have special handling for color 0. Regardless of the color palette used, color 0 will be
always be read as color 0 of the Oth background color palette. This is referred to as the universal
background color. Each color returned by any of the color palettes is actually an address of the color
stored in the system color palette.

Color Palette

0: transparent
1: oolar 1

>uma2 GOLOR PALETTE O

3:colar 3

—palefte_num[1:0—*
—color_index[1:0]>

system_colos:0]—»

COLOR_PALETTE1

—Clk——————
COLOR_PALETTE 2

COLOR_PALETTE 3

Each palette has technically 4 indices for colors, however color zero in any palette is always considered
transparent which will be automatically assigned the universal background color.

3.2.12 System Color Palette

53

The system color palette is universal regardless of the game and cannot be changed. The system color

palette contains the 64 possible colors that can be used by graphics in the system.

System Color Palette

—colof5:0—»

These are all of the 64 colors available to graphics in the system.

g rgh[23:0——»
S
SYSTEM PALETTE 2
=t
w
——(Clf—
3 bytes

BxBe axla 2x2a Bx38
2xal 2xl11 2x21 ax31
axa2 exl12 ex22 Bx32
2x83 ex13 Bx23 Bx33
exB4 exl4d 2x24 Bx34
2x@5 ex15 2x25 Bx35
Bxe6 2xle %26 Bx36
exa7 ax17 27 8x37
axas ex18 ex28 8x38 ExFFAABE
exas 2x19 2x29 ex39 BxFFAASS
BxBA Bx1A Br2A Bx34 @xFFAALA
axes ax1B @x28 @xAARAFF 8x38 exFFAAFF
awac ex1C @xS5FFed ex2C BxAAFFB8 ex3C exFFFFea
exeD ex1D EKESFESS 2x2D BexAAFFS5 @x3D BxFFFF55
exaE ‘e 2x1E Bx55FFAA 2x2E BxAAFFAA Bx3E @xFFFFAA
exeF BxB8FFFF @x1F Bx5S5FFFF 2x2F @xAAFFFF @x3F @xFFFFFF

54

3.2.13 Pattern Tables

Within the PPU, two pattern tables exist. One for sprites and one for backgrounds. Each pattern table
stores the actual bitmap data that makes up a sprite tile or background tile. These pattern tables are
ROMs set by the game data. The format of these tables is described in the software section.

Pattern Table

—tile_addr[7 -0}—»
—rOW[2: 00—

line_low_out[7:0—»
line_high_out{7-0—»

2048

PATTERN_TABLE

—ilf—

W

M

2 bytes

4 Software Architecture and Framework

4.1 Memory Layout

The Tronsistor-32 architecture specifies four (4) block RAM memory segments that must be initialized

with Core Generator files. These are:

1. Main Memory. This includes 1021 words of instructions, 3 words for trap handler translations,
2048 words for the heap, and 1024 words for the stack, for a total of 4096 32-bit words. In
retrospect, we should have allocated more words to instructions and fewer words to both the

heap and the stack. This allocation is shown graphically below:

Main Memory Layout

Start End
Instructions 0000 Ox3FC
Game Tick Interrupt 03FD 0x3FD
Keyboard Intemupt x3FE 3FE
Stack Owverflow Interrupt | 03FF 0=3FF
Heap (=400 =C00
Stack OO0 xFFF

Motes

1. Stack is full-ascending

2. Memary is word addressable

56

2. Foreground Sprite Pattern Table. This contains 256 sets of 8 16-bit entries. Each 16-bit entry
represents the indexes into a color palette for 1 line of a 8x8 sprite. Thus, 8 lines represents an
entire sprite of indexes, and the entire pattern table represents 256 sprites. This is illustrated
below:

Sprite Pattern Table

Row Plane 1 (MSEB) | Plane 0 (LSE)
Ox000

Ox001

O0x002

0x003

0x004

0x005

0x006

Ox007

Sprite 1

=l |A|E|W|MR =D

OxEF8
OxEF9
OxEFA
OxEFBE
OxEFC
OxEFD
OxEFE
OxEFF

Sprite 256

b I = N I S O e O)

3. Background Sprite Pattern Table. This is the same as the Foreground Sprite Pattern Table
outlined above.

4. Foreground & Background Color Palettes. This is simply eight sets (four foreground, four
background) each containing four indexes into the system color palette. Each index into the
system color palette is 8 bits, giving this a total bit size of 8*8*4.

57

4.2 Assembler

ISA Game Game
Defns. Framewark Code

Assembler

Main
Memory

Figure 4.2: Assembler Layout.

We have implement a custom python assembler for the Tronsistor-32 ISA. It is implemented by making
two passes at the assembly code:

1. First Pass - Parses assembly line by line, taking special action when an empty line, start of
instructions directive, or data directive is encountered. If a label is encountered it is added to a
lookup table preseeded with register test-to-binary translations. Comments are stripped, and
the instruction and arguments are decoded. If an instruction is invalid for any reason the
program will stop. There are a few special cases while parsing a line, described as follows:

a. Empty line - skip line and move on, do not increment PC

b. Data directive - allocate space in heap as necessary to contain data, increment PC by
corresponding number of words in the allocated space

c. Start of Instructions - Change PC to Memory Mapped start of instructions location

2. Second Pass - Goes through parsed assembly line by line, translating instruction to machine
code. Any argument fields that are not immediates are decoded using the lookup table
generated from the previous pass. Any immediate fields are translated to 2s complement
binary integers from either hex or decimal formats. If any arguments are not found in the

58

lookup table or not a hexadecimal or decimal immediate, the program throws an error and
exits.

Lastly, the assembler formats the list of machine-code instructions into the ‘.coe’ file layout and dumps
to the specified output file. The implementation of the Tronsister-32 assembler is open source and can
be found at the link below.

https://github.com/meggers/tronsister32-framework/tree/master/assembler

4.2 Sprite Generator

Sprite Pattern Table $
Row Plane 1 (MSE) | Plane 0 (LSB) -- _.:.r ;__EF PE-- :.‘
o|oxa00 e iE e 40 Al
1|0x001 -JEEF"J"‘\-] H' .y ". "_"n
o e AT a6 T 82 a3
Aot 4[ox004 TRt g I e diR R T
5|0x005 =y = FREO "y “e
§ miooe i e e R e
£\ o0 il TN o @ A MR L ..'[. ;W
& | l—. aman @ SAF l-:'__ ol 0¥ 2
o|oxers I_Il “r.r I-.I"I'I 'I?-I..l‘h.l }!!ET‘.!
1[oxeFe i &5 ﬁﬂﬁﬁi s T
L WV ol 010, GRS Nn
sl AW e i AN 3 0 A
e A Sa (€N E A A28
s|osere = M P T TR R
7|oxerF O F o S 10208050800 1UP -

The Tronsister-32 software framework provides a utility to generate chomp addressable ‘.coe’ seed
files given a list of sprite image files. The generator utility expects the dimensions of each image file to
be divisible by 8 pixels, the size of a single sprite. If the image height or width is a multiple of 8, the
image will be broken into several 8x8 pixel chunks and parsed serially from left-to-right and
top-to-bottom.

Each sprite image must be composed of only four (4) rgba colors, specifically red (255, 0, 0, 255), green
(0, 255, 0, 255), blue (0, 0, 255, 255) and black (0, 0, 0, 255). Black will be treated as “transparent.” If
the sprite generator encounters any other color during sprite generation, it will throw an error and
exit.

Lastly, the sprite generator spits out a mapping of each sprite chunk to its sprite index in CSV format to
be used by the assembler in seeding the heap. This allows the game developer the freedom of not
having to generate references to each sprite by hand in the data section of his or her game logic.

https://github.com/meggers/tronsister32-framework/tree/master/assembler

59

Instead they can use an agreed upon format of sprite_file_name-chunk# as a reference to each sprite
chunk.

The implementation of the Tronsister-32 Sprite Generator can be found at the following link.

https://github.com/meggers/tronsister32-framework/tree/master/sprites

4.4 Tronsistor-32 Framework Core Functions

This section lays out the method headers and descriptions for the functionality provided in the
Tronsister-32 framework. These functions can be leveraged by programmers in order to create games
involving multiple complicated sprites quickly and efficiently. In addition to these functions, the
Tronsistor-32 framework also outlines various heap fields common to any game development, the
most notable of which is 64 words that serves as a copy of the oam in heap memory. This can be used
to keep track of the state of the oam, because the oam cannot be read. These fields are outlined in
their entirety here:

X mask: .word OxFF000000
sprite index mask: .word 0x0000FF00
vertical flip mask: .word 0x00800000

horiz flip mask: .word 0x00400000
color palette mask: .word 0x00030000
y mask: .word 0x000000FF
clear sprite: .word OXFFFFFFFF
TRUE: .word OxFFFFFFFF
FALSE: .word 0x00000000

ocam_copy: .space 64

The aforementioned functions are outlined below:

This function, given a binary number 0-9 and a background tile location will set the
background tile corresponding to that number at that location.

https://github.com/meggers/tronsister32-framework/tree/master/sprites

Function: draw number

#

Arguments: draw number

Return:

#
#
#
#
N/A

This function,
draw that number at that location.

Function: display 2digit decimal

#

Arguments:

Return:

#
#
#
#
N/A

$a0: number to draw
$al: background position

H H H H H H H

60

given a binary number ranged 0-99 and a background tile location will

$a0: number to display
$al: bg position to display at

#
#
#
#
#
#
#
#

This function checks if a sprite represented by a rectangular boundary exceeds the

game screen,

Function: check oob

Arguments:

0(sf): left sprite x pos

0001
0010
0100
1000
0011
1001
0110

#
#
#
#
#
#
#
#
#
$v0: 0000
#
#
#
#
#
#
#
1100

if
if
if
if
if
if
if
if
if

) : top sprite y pos
f): sprite width
f): sprite height

not oob

top

right
bottom

left

top right
top left
bottom right
bottom left

returning an error code representing what boundaries were exceeded.

H= S S Sk SR S S = H H FE Sk R e S 3 S 3

61

This function negates a two’s complement number.

Function: negate

Arguments:

$al0: number to negate
Return:

H= o 4

$v0: negates number

This function checks for a collision between two sprites represented as rectangular

boundaries.

Function: check collision
#
Arguments:
O0(sf): sprite a start oam data
1(sf): sprite b start oam data
2(sf): height a
3(sf): height b
4 (sf): width a
5(sf): width b 4
#
Return
Sv0: TRUE if collision
FALSE if no collision

This function moves all sprites associated with a single sprite image by the given
offset.

Function: move sprite img
#
Defn: move sprite by specified
number of pixels.
#
Arguments:
0(sf): starting oam slot
1(sf): sprite size
2(sf): x delta
3(sf): y delta
#
Returns
0(sf) - top
1(sf) - bottom
2(sf) - left
3(sf) - right

This function loads all the sprites associated with an image starting at the given oam
position and the given x and y coordinates.

S S e 4k S S 3 = #= HE S 4= S 36

S % 4 S 3 I S S 4 4 S 3 % 3 S Sk e 3 I o

S e e S 3 W =

Function: load sprite img #
#
Defn: load sprite into oam #
#
Arguments: #
0(sf): sprite index #
1(sf): sprite height #
2 (sf): sprite width #
3(sf): left x (8 1lsb) #
4(sf): top y (8 1lsb) #
5(sf): starting oam slot #
#
Returns: #
$v0 - next free oam slot #
get x: Gets X value from sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
Returns:
$v0 - x value
set x: Sets x value in sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
$al - x data to set (lsb 8 bits)
Returns:
Sv0 - SRL data with new x
get y: Gets Y value from sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
Returns:
$v0 - y value
set x: Sets y value in sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
$al - y data to set (lsb 8 bits)
Returns:
Sv0 - SRL data with new y

62

S 4 4 S 3 o S S 4 4 S 3 % 3 S Sk e 3 I o 4= H S Sk 4 3 S HE 4 S I W

T

get tile no: Gets tile number from sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
Returns:
Sv0 - tile number
set tile no: Sets tile number in sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
Sal - Tile number to set (lsb 8 bits)
Returns:
$v0 - S.R.L. data with new tile number
get v flip: Gets vertical flip from s.r.l.d.
Arguments:
$a0 - Sprite Register Layout formatted data
Returns:
Sv0 - vertical flip
set v _flip: Sets vertical flip in sprite register layout data
Arguments:
$a0 - Sprite Register Layout formatted data
$al - Vertical flip bit to set (lsb 1 bit)
Returns:
Sv0 - S.R.L. data with vertical flip
get h flip: Gets horizontal flip from s.r.l.d.
Arguments:
$a0 - Sprite Register Layout formatted data
Returns:
$v0 - horizontal flip

set h flip: Sets horizontal flip in sprite register layout data

Arguments:
$a0 - Sprite Register Layout formatted data
$al - Horizontal flip bit to set (lsb 1 bit)

63

Returns:

$v0 - S.R.L. data with horizontal flip

get color palette: Gets color palette from s.r.l.d.
#

Arguments:

$a0 - Sprite Register Layout formatted data

#

Returns:

Sv0 - color palette

set color palette: Sets color palette to s.r.l.d.
Arguments:
$a0 - Sprite Register Layout formatted data

Sal - Color Palette bits

Returns:

S S 4 4 S 3 % 3

Sv0 - S.R.L. data with new color palette
The implementation of these functions can be found at the following link:

https://github.com/meggers/tronsister32-framework/blob/master/tronsister32 framework.asm

5 Assembler and Runtime Simulator (TARS)

64

Aszzembler

Sunulator

TronMIPStor-32 Azzembler ___--'*""'

and Runtune Simulator
(TARS) ——

(Graphical) User Interface

TronsMIPStor-32

Figure 5.0: Overview TARS implementation, which includes an assembler, simulator, and (graphical)
user interface for our TronsMIPStor-32 ISA.

https://github.com/meggers/tronsister32-framework/blob/master/tronsister32_framework.asm

65

The high level implementation of TARS is shown in figure 5.0. TARS is heavily modified from MARS
(MIPS Assembler and Runtime Simulator). As the name suggests, TARS is an assembler and runtime
simulator for our TronsMIPStor-32 ISA. TARS is written in Java, which is portable to any machine
capable of running a Java virtual machine. TARS is an alternative to the Tronsistor-32 framework used
to test many software components, such as the COE format generator.

5.1 TARS Assembler

Tokenizer

Agzembler ——— = Directives —b-

/ S}flllb()l Table

Simulator
TronMIPStor-32 Aszembler ,——-—"""
and Runtine Sunulator

(TARS) I

(Graphical) User Interface

TronsMIPStor-32

Figure 5.1.1: TARS assembler implementation, which includes an tokenizer to parse assembly
language, directives to initialize data, and symbol table for branches and memory references.

The assembler converts assembly language to machine code. The assembler directives (data, text,
word, ASCIl, and space) are used to initialize data memory. All branches and jumps to labels are

replaced with the relative line number. Any references sprites are replace with the index into the sprite
pattern table.

Similar to the assembler in the Tronsistor-32 framework, the TARS assembler also does two passes
through the assembly source code. The first pass of the assembler verifies syntax, generates symbol
table, and initializes data segment. The second pass of the assembler translates assembly language to
machine code.

66

Source Basic Code
15z nop nop 0xfc000000
162 b main b 0x00000076 0x0c000076
19: nop nop 0x£c000000
2Rz 1i #t4, 0 1i £12,0x00000000 0x25800000
212 addi %33, %33, 0 addi 519,519,0x00000000 0x86730000
22: blt resetAndReturnFromDisplayScore blt 0x0000006E 0x0800006E
23: add #t3, %0, £33 add £11,&50,519 0x81609800
25: nop nop 0x£cO00000
26: addi $t3, st3, -10 addi $11,%11,0xfffEff£ff6 0x856bLff6
27: blt doneDiwvide blt 0x00000002 0x08000002
28: addi st4, st4, 1 addi $£12,%12,0x00000001 0x858c0001
29z b startDivide b 0xfffffffb 0x0Ef£££1D|
31: nop nop 0x£c000000

Figure 5.1.2: TARS assembler example. The left column is the source code. The middle column is the
basic instruction after the first pass. The right column is the machine code.

5.2

TARS Simulator

Aszembler

TronMIPStor-32 Assembler | _— ")

and Euntime Simulator
(TARS))

Swing Worler

Break Point

Simulator

{Graphical) User Interface

TronsMIP Stor-32

» Back Stepper

PPU Simulator

Interrupt Service Handler

e
"z

Figure 5.2.1: TARS simulator implementation, which includes a swing worker for parallelization,
break point and back stepper for debugging, PPU simulator for visual, and interrupt service handler
to simulate game tick and key presses.

67

The TARS simulator uses swing workers for high thread-level parallelization of TARS to increase
performance. The breakpoints, single stepper, and back stepper works together for debugging a
particular section of assembly code. Stepping through the code works for PPU instructions as well for
the programming to test different visual data, color palettes, or flips on the screen. The interrupt
service handler handles game tick and key press interrupts. A game tick interrupt occurs every 4096
cycles. A key listener triggers the key press interrupt when the user presses a key in the PPU screen.
Both interrupts are handled right before simulating an instruction by checking the interrupt flags. Like
hardware, upon an interrupt, the simulator will store the current PC and the status register and jump
to the interrupt handler. The interrupt handler is finished upon executing jump to the address stored in
the exception program counter register (“jr Sepc”), in which case, the status register will be restored.
Also like hardware, an interrupt cannot occur inside of another interrupt.

file Edit Run Settings Tools Help

— ‘ : Choice of running continuously, single
- P = ; - o [a
= BRI EEF IR AR REE -
step, back step, pause, stop, or reset
Edit | Execute | 3 Registers | CDproc1 Coproc 0]
5
[Z7%ext segment | : : : : : i : i =) i
o =""Can view CPU register,
7 Source Basic Code soneg
| & | a b| | |ty to Set brea prIntS blt 0x00000003 0x08000003|~ |f| “|sv0 OAM memor or
o addi $21,%21,0x0000... | 0x86b50001] vl \/,
Highlights current instruction, last modified oot eis,cis,onties.Jommirserr) | o
b OXfffffesa oxofeesesal | Status reglster
T | v m— —
: memory, and last modified register o e20. 219, beausgonns | oxassasaos] || P
O - - ezttt Crre 0 B TRITTTOORG,
v andl sss $aa 0x0000FF00 andi $21,$16,0x0000... | 0x96b0££00] T g aoho
szl £a6, §s5, & # get x location |ax1 $22,¢21,0x00000008 | 0x9ad50200) 2 10 0x000000p0
O addi $36, $s6, -1 # subtract 1 to simlate moving left laddi £22,$22,0xEE%. .. | Ou86A6ELLE] o3 1 0x000000p0
=l I 1i ss5, 256 |11 s21,0x00000100 0x26a00100 3 12 0x000000)4
L nennonntfaliae. anh_taf taS cak & Find indaw fram einhr loxin €22 ¢21 ¢22 nugadsnannl ™ cs 13 0x000000p0
e |7> 5(_6 1@ g,mnn[m'& 0!
™) pata Segment]:: i s s e Hi 15| 0x0000030
£30 16 0x0
Address Value (+0) Value (+4) Value (+8) Value (+¢) Value (+10) Value (+14) Value (+18) Value (+1¢) £31 17| 0x000000F1
ap (153344483841 0x80060010 Oxbdf6fbd0 Oxbdféfbdo) O0xbdféefbd0 080000010 dbfd (bdr 0]~ £32 18 0x000000F1)
0x81861810 0xfdfefbi0| 0xfdf6fbf0 0x£d801bf0 0xfdbfdbf0| 0xfda05bf0 0x00204000 0xfda05bLo| £33 19| 0x000004p7
{1] 0xfd801b£0| 0: 0 1] 0x80060010| 0 0 0x8c000310 ‘sﬂ‘ 20 0OxXBc00i
Oxedbfdb70)| Oxedbfdb70| 0x81861810 OxbEfLeffdo 0x00000400| 0x80000010 OxfELELE£0) 0x00000000 $35 zi
L
0x00000000 0x00000000| 0x00000000 0x00000000 0x00000000| 0x00000000 0x00000000 0x00000000 557 23| 0x00000001
0x00000000 0x00000000] 0 0| 0x00000000 0x00000000, 0x00000000, st8 24 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000| 0x00000000 0x00000000 0x00000000 A7) 25 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 st10 26 0x00000006
0x00000000) 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0%00000000) 0x00000000 au 27 0200000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 side 28| 0x0
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 r= 23 0x00000ZEE
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 e 30 0x0000002¢
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 ey 21 0x00000000
0x00000000) 0x00000000| 0x00000000 . 3 i % e || ifpe 0x00000124,
owooooonoe] __exaooooonn_ownooonosl Choice of viewing in decimal, hex, or ASCII = fu 500000006
& 1o 000000000
€ I ™S ‘ 0x00000000 (text) | v [= Values [ASCI

Figure 5.2.2: TARS simulator example. The top middle gives user the choice of continuous run, single
step, back step, pause, stop, or reset. The top right gives the user of view contents of the register
file, OAM memory, or the status register. The left gives the breakpoint option at every line. The
middle highlights the current instruction, last modified memory, and last modified register. The
bottom gives the option to view in decimal, hexadecimal, or ASCII.

5.3 TARS User Interface
‘Text Editor |
Asszembler
/ Simulator
TronMIPStor-32 Assembler | — 7]
and Runfime Simulator /"
(Graphical) User Interface View Hardware Data

TronsMIPStor-32 \

View Format [

Figure 5.3.1: TARS user interface implementation, which includes a text editor to write assembly

code, hardware viewer to view registers and memory for debugging, and format viewer for decimal,
hexadecimal, and ASCII for debugging.

The TARS graphical user interface is written using the Swing Java, which includes a text editor and
ability to view hardware data in multiple formats. The text editor has autocomplete, tooltip text for
every instruction, and syntax coloring/highlighting for programmers to write their games. When

simulating, the programmer can view and modify data in hardware in decimal, hex, or ASCII format for
debugging.

69

=7 da 3 T b & e
= 15 1SALLIOWLNRCErrupcs

48 1i 587, 0

47 1i §t0, wall

43 lw 5tl, §t0, O

439 1i €5, 32

50 1i ste, O

51 1i =83, 3

2 startloadingBackgroundEntire:
53 nop

54 1i €2, 32

55 startloadingBackgroundl ine:
o6 nop

57 addi $t2, $t2, 0

58 beq finishedloadingThizsline
59 addi $t2, sti, -1

a0 andi §t3, §tl, 1

a1 grl %tl, 5tl, 1

2 addi $t3, 5t3, O

83 beqg loadClear

64 #loadWall:

&85 li 5td, backgroundllll index
a6 I loadWalldrClear

&7 logdClear:

68 nop

69 li 5td, background0000_index
70 loadWallOrClear:

71 nop

T2 add §t7, §tI, §tE

73 sht §t7, §t4d

T4 sha §t7, §s83

75 b startlog sbt 5t0, $t1 Set Background Tile : Set Background tile register $t0[9:0] to $t1[7:0]
TA

Figure 5.3.2: TARS user interface example. This screen shows syntax coloring (assembler directives in
pick, comments in green, instructions in blue, registers in red, and immediates in black) and tooltip
help text for the current instruction that the user is typing.

70

5.4 TARS TronsMIPStor-32 ISA

Branch
Assembler

Memory
TronMIPStor-32 Assembler

and Runtime Simulator

(TARS)
\-‘ (Graphical) User Interface

Logical
TronsMIPStor-32 Instructions

Foreground (Sprites)

i

Arithmetic

Tile (Visual Data)

Background ‘.-—\rhﬂ_mre:: (Color Paleftes and Flips)

COE Dump

Figure 5.4: TronsMIPStor-32 ISA implementation in TARS, which includes hardware to manage data,
instructions to manipulate data, and COE dump for Xilinx and FPGA.

TARS was heavily modify from MARS to change the core ISA from MIPS to TronsMIPStor-32.

In hardware: Coproessorl was repurposed as the OAM while coprocessorO was repurposed as the
status register and interrupt handler. The register names and initial values were updated to match
TronsMIPStor-32. The memory file was modified from byte-addressable to word addressable. The
carry/negative/zero flag was added as a status register.

In instructions: Processor was updated to support arithmetic, logical, branch, and memory instructions,
and remove pseudo instructions. Coprocessorl was updated to handle and simulate PPU foreground
and background tile and attribute instructions.

In COE Dump: The COE format was added to dump instruction and memory data, foreground data,
background data, and color palette data.

71

6 Games

The main purpose of the TronsMIPStor-32 ISA is to develop retro games. Therefore, multiple games are
developed to demonstrate that our ISA and architecture is capable of supporting many retro games.

6.1 Etch a Sketch

Etch a sketch is a demo program used to debug hardware. There is 1 sprite that the user controls,
which leaves behind a trail of background tiles.

6.2 Tron

Tron is a computer video game where users controls the direction of a sprite that continuously moves
and leaves a wall/trail behind. The objective of the game is to cut-off/trap the opponent so that they
would crash. Last player to not crash wins the round.

6.3 Pong

Pong is one of the earliest arcade video games. It simulates a tennis game with a ball and paddles in
simple two-dimensional graphics. Each player on either side controls their paddle to move up and
down to hit the bouncing ball to their opponent’s side. The opponent scores a point if the player
misses with the paddle. Spins and velocity are supported in Pong in TronsMIPStor-32.

Video of Pong gameplay (without user input) can be found at the following link:

https://www.youtube.com/watch?v=o0M4yzaYnHY1

Implementation of the Pong game can be found at the following link:

https://github.com/meggers/tronsister32-pong

https://github.com/meggers/tronsister32-pong
https://www.youtube.com/watch?v=oM4yzaYnHYI

72

6.4 Dance Dance Revolution (DDR)

DDR is a game where the player matches the steps/keys that scrolls on screen. Pressing the
corresponding key at the correct time interval (above the blue line) will result in a point. Otherwise,
the player will lose a point. A random number generator is supported by XORing the score, an internal
counter, and the current letter.

SCL ol
b | L I
Figure 6.4: Screenshot of DDR in the PPU simulator.
6.5 Maze Navigator (beginning of Pacman)

Pacman in a game where the player controls Pac-Man through a maze to eat pac-dots. Maze navigator
is just the beginning of Pacman, where the user can navigate around a maze. Collision detection is
supported, so the player will navigate through the maze faster if he/she doesn’t crash.

Figure 6.5: Screenshot of maze navigator in the PPU simulator.

73

7 Team Contributions

7.1 Hardware Team
7.1.1 Graham Nygard: Signed: GRAHAM NYGARD Date: 12/22/2015

Acting team leader throughout the semester. Contributed heavily to designing and maintaining the
Tronsister-32 ISA. Designed and implemented the core pipeline stages of the Central Processing Unit
(CPU), and connected them all at the CPU top level. Performed the initial testing of the CPU and
integrated changes made by Jake Truelove to the overall design throughout its development. Verified
that the CPU was functionally correct and synthesizable after each architecture update, and made
changes where necessary. Initiated integration of the final top level design and made considerable
contributions to debugging the system.

Verilog Modules: Instruction Fetch, Instruction Decode, Instruction Execute, Memory Unit, Writeback
Unit, all pipeline registers, CPU Control, PC Control, Hazard Detect, CPU/PPU Interface, 32-bit Register
File.

7.1.2 Jake Truelove: Signed: JAKE TRUELOVE Date: 12/22/2015

Contributed heavily to designing and maintaining the Tronsister-32 ISA. Made the initial memory
interface of the CPU that served as the connection between the pipeline and the main memory.
Updated the CPU with data-forwarding and interrupt capabilities, which necessitated changes
throughout many stages of the pipeline. Verified the functional correctness of the design after each
addition to the CPU before submitting these changes to Graham Nygard. Aided in debugging the
system.

Verilog Modules: Memory Interface, Data Forwarder, Trap Handler, ALU (made appropriate changes to
other modules affected by data-forwarding and interrupt handling).

7.1.3 Matt Kelliher: Signed: MATTHEW KELLIHER Date: 12/22/2015

Contributed heavily to designing and maintaining the Tronsister-32 ISA. Designed and implemented the
Picture Processing Unit (PPU) and integrated this module with each of the memory units used for the
graphical renderings in each of our programs. Verified that sprite layouts were being displayed

74

appropriately on a screen with proper orientation, layering, scaling, etc. Made considerable
contributions to integrating the final top level design and debugging the system.

Verilog Modules: PPU Control, Object Attribute Memory, Foreground Pattern Table, Background
Pattern Table, Background Attribute Table, Color Palette.

7.2 Software Team
7.2.1 Max Eggers: Signed: MAXWELL HENRY RHODES EGGERS Date: 12/22/2015
Contributed heavily to designing and maintaining the Tronsister-32 ISA.
Wrote the Tronsistor-32 framework
Assembles from TronMIPStor-32 assembly to machine code
Generates COE files
Main Memory
FG/BG Sprite Palettes
Wrote many functions to ease assembly game programming
Load and display sprites
Move sprites
Check collision
Displaying text using background tiles
Drew and generated sprite visual data
ASCII characters and pong/tron foreground sprites

Wrote Pong

7.2.2 KaiZhao: Signed: KAl ZHAO Date: 12/22/2015
Contributed heavily to designing and maintaining the Tronsister-32 ISA.

Maintained TARS CPU simulator

Wrote and maintained TARS PPU simulator

Wrote TARS interrupt handler simulator

Wrote TARS assembler for sprite instructions

Wrote TARS COE generator

Wrote Tron logic in MIPS to determine the set of instructions our ISA needs
Wrote Tron in a high level programming language

Wrote DDR

Wrote a maze navigator (the beginning of Pacman)

John Roy: Signed: JOHN ROY Date: 12/22/2015

Contributed heavily to designing and maintaining the Tronsister-32 ISA.
Modified MARS to TARS
Added TronsMIPStor-32 CPU instructions
Removed MIPS (pseudo) instructions
Wrote etch a sketch
Wrote Tron logic in TronsMIPStor-32 ISA

Wrote Tron graphics

75

76

8 Challenges Faced and Lessons Learned

Integrating the main modules of the design, the Picture Processing Unit and the Central Processing
Unit, was arguably the greatest challenge that our group faced this semester. Each module appeared
to function correctly as a standalone entity throughout the design process, but the integration of these
two units revealed a considerable amount of bugs within the design that had not been foreseen while
the modules were separated. For example, the CPU developers had not considered the need for
data-forwarding of sprite instruction data. This necessity was revealed after we had integrated the two
designs and realized that each of the sprite instructions was feeding garbage data to the PPU, because
the desired data had not yet been written back into the register file.

Although it was beyond our control, our inability to reliably instantiate new IP cores throughout the
design process posed a considerable challenge throughout the semester. Each time the instantiation
process would fail, it would take roughly 20-30 minutes to complete the process through trial and error
on other machines throughout the lab.

Another notable challenge was that there were intrinsic differences in behavior between our
synthesized hardware and our custom MARS simulator, which was used to verify the functional
correctness of our assembly programs. Because each program was initially tested and debugged using
the simulator, assumptions that the simulator made about the underlying hardware sometimes caused
issues for the programs as they ran on the actual FPGA. For example, one difference that was noticed
late in development was that the simulator began each program by defaulting all of the register
contents to 0x00000000 (aside from the Stack Pointer, initialized to OxO0000FFF). However, the actual
hardware was implemented assuming that a program must first initialize a register before its contents
can be reliably known and used. Thus, if a program were to use an uninitialized register during its
execution, the behaviors of the simulator and the hardware would diverge. The simulator’s program
would function normally, but the hardware’s program would would often fall into an unrecoverable
state (Program Counter out of bounds, heap data accesses inadvertently access instruction space,
inconsistent state of the flags registers used for branch condition verification, etc.). We strived to
resolve these issues immediately as they were discovered, but the complexity of the CPU’s design
often made it difficult to pinpoint the source of any inconsistencies between the simulator and
hardware.

77

Our custom ISA had to be simple because it needs to be implemented in hardware. Therefore, it is
worth noting that writing fully functional games in an assembly language using a custom ISA is
incredibly time consuming and requires an acute attention to detail. To put this into perspective,
consider some of the following statistics gathered from a few of our completed games. Excluding
comments and metadata (data used to assemble the game code), the game ‘TRON’ had roughly 1000
lines of CPU instructions. Likewise, the game ‘PONG’ had around 800 lines of instructions, and a game
as simple as ‘Etch a Sketch’ had nearly 100 lines of pure assembly instructions.

A lessons learned is that our PPU graphics instructions should be memory mapped as opposed to
writing to a separate OAM memory file. Doing so will make it easier to debug as we can initialize the
background tiles with assembler directives as opposed to using many lines of assembly code to do so.
Using memory mapped OAM would have also decrease the hardware overhead.

