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1.0 System Overview and Background 

 

The inspiration behind the creation of the Tronsistor-32 was rooted in the retro gaming consoles of the                 

1980’s, most specifically the iconic Atari 2600. Our efforts were focused on developing a system               

capable of playing the 1982 video game Tron, as well as a few other nostalgic video games from that                   

same era. On a high level, the Tronsistor-32 includes a 32-bit architecture CPU operating on a custom                 

version of the MIPS32 ISA. The design is capable of displaying 8-bit video graphics at a 256x256 pixel                  

resolution, and uses a simple keyboard for a player’s control inputs. This design was primarily chosen                

to challenge our technical abilities as well as provide an enjoyable, interactive, and memorable product               

capable of playing some of the most famous games from the golden era of gaming. 

With regard to technical challenges, this design decision offered several opportunities to grow our              

hardware and software development skills. For starters, this design required us to build a system               

essentially from the ground up. Our decision to create our own ISA necessitated the development of a                 

specialized software framework on top of a fully custom hardware design. Furthermore, using a              

custom ISA required that we implement new testing techniques in order to debug and verify the                

correctness of our developed software. The entirety of our design relied solely on our ability to identify                 

and resolve issues throughout each stage of the design process, and this was aimed to emulate the                 

work and ambition needed while working in the professional computer engineering industry. 

This document includes an in depth discussion of the hardware and software architecture             

implementations of the Tronsistor-32. Section 2 and Section 3 of this document will discuss our               

hardware specifications, specifically the hardware macro/micro architecture design as well as the ISA             

used to develop our applications. Section 4 will review our software framework, which incorporates a               

discussion of how to develop and test programs that will eventually execute on the hardware. 
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2 System Architecture 

2.1 Top Level Hardware Diagram 
 

Figure 2.1 shows a top level view of the Tronsistor-32 hardware architecture. The main components of                

the design are the Central Processing Unit (CPU) and the Picture Processing Unit (PPU). The CPU                

interfaces with main memory, which contains a game’s instruction space as well as the heap/stack data                

that is regularly accessed during execution. The PPU interfaces with specialized memory needed for              

graphical output, such as a game’s foreground/background sprite image tables, as well as the certain               

color palettes needed by these images. 

 

Figure 2.1: Tronsistor-32 top level hardware design 
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2.2.0 Picture Processing Unit 

The Picture Processing Unit (PPU) uses sprite and background data to render the actual pixel data                

displayed on the screen. The PPU renders pixels line by line horizontally, which is synchronized with                

the timing of the VGA display logic. Each line is 256 pixels wide, with 256 lines, giving a display                   

resolution of 256x256. 

The purpose of having all rendering be just one line at a time is so that the PPU is able to output the                       

most relevant pixels at at that given time. This was a decision over the alternative of rendering frame                  

by frame, because of the format of a VGA signal. This also allows the PPU to not have to buffer an                     

entire frame’s worth of pixel data in a memory block, which would greatly reduce the available space                 

in an already constrained area. 

 

Figure 2.2.1: PPU Top Level 
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2.2.1 PPU Control Unit (PPUCTRL) 

The PPUCTRL is the control unit that coordinates all operations of the PPU. Its main operations include 

scanning through the OAM and loading the OAMB with sprites that will be visible on the current 

scanline and loading up the SCANGEN with this data from the OAMB. 

The steps the PPU takes each scanline are as follows: 

1. Clear the OAMB to 0xFF at each position. 

2. Check each sprite in the OAM, if it is within range, copy its data into the next available position 

in the OAMB. Stop checking if OAMB is full or all sprites in OAM have been checked. 

3. Wait for hsync 

4. Load each sprite from the OAMB into the SCANGEN. This requires fetching tile data from the 

sprite pattern table. 

5. Load the tile and attribute data for the first two background tiles in the current row into the 

SCANGEN. 

6. Enable the SCANGEN to start shifting out pixels. 

a. Each eight shifts, load the next background tile and attribute data into the SCANGEN. 

b. While the SCANGEN is shifting out the current line, step 1 can begin again in parallel. 



 

9 

 

Figure 2.2.2: PPU Control Unit 

 
 

2.2.2 Object Attribute Memory (OAM) 
The OAM stores information about sprites that are currently displayed on the screen. Externally, the 

OAM can be viewed as a byte-addressable memory with concurrent read and write access. Internally, 

the OAM actually contains two memory blocks of equal size. One primary OAM and secondary OAM. 

To allow for a program to control the sprites, the CPU is given direct access to the PPU’s primary OAM. 

The primary OAM that the CPU writes to is actually never directly accessed by the PPU other than one 

single occasion. Once a frame is complete, the entire contents of the primary OAM are copied into the 

secondary OAM over a single clock cycle. This way, there are no issues dealing with concurrent read 

and writes on the OAM causing sprite flickering. Therefore, if contents of the OAM change, it will not 

appear to have changed (when reading), until copy is held high for a clock cycle. 
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Figure 2.2.3: Object Attribute Memory 

The OAM can contain information about a maximum of 64 sprites. Each sprite takes four bytes of data. 

The ordering of the bytes for each sprite are as follows. 

Byte Name Description 

0 Y Position The Y position of the top-left corner of the sprite on the screen. If this byte is set to 
0xFF, the sprite is considered an empty entry. 

1 Tile Number The tile used for this sprite: an index into the sprite pattern table. 

2 Attributes Attributes about how this sprite is displayed. 
[1:0] The color palette used for this sprite. 
[5:2] Unused 
[6] Flip horizontal if 1 
[7] Flip vertical if 1 

3 X Position The X position of the top-left corner of the sprite on the screen. 

 

2.2.3 OAM Buffer (OAMB) 
 

The OAM Buffer (OAMB) is a sprite holding memory with a similar format to the OAM. It can only hold 

information about 8 sprites (32 bytes total) that will be rendered on the current scanline. The PPUCTRL 

module is responsible for controlling the memory loaded into this module by reading from the OAM 

and determining if each sprite is on the current scanline. If it is, the sprite’s 4 bytes are loaded into the 

OAMB at its next available position. The PPUCTRL is also responsible for clearing this module (setting 

each of its bytes to 0xFF) before it is loaded with the next scanline’s sprites. The OAMB is 
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byte-addressable for both reads and writes. Because this module can only contain 8 sprites, that is the 

limit of the number of sprites that can be displayed on a scanline. 

 

Figure 2.2.4: OAM Buffer 
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2.2.4 Scanline Generator (SCANGEN) 

The scanline generator is responsible for shifting out color indices that index into the color palettes for 

display on the screen. The SCANGEN is loaded with sprite data assembled by the PPUCTRL after 

scanning through the OAM and loading the OAMB. Both the OAMB and the SCANGEN are capable of 

holding 8 sprites. The scangen prioritizes non-transparent pixels from sprites at lower indices. If no 

sprite pixels are available, the background pixels are used with lowest priority. Each shift out is a pixel 

on the current scanline. 

 
Figure 2.2.5: Scanline Generator 

 

The SCANGEN is split up into two shifting components. One for sprites and one for backgrounds. 
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Figure 2.2.6: SCANGEN Internals 

 

2.2.5 Priority Sprite Line Generator (PSLG) 

The PSLG is loaded with sprite data (maximum of eight sprites) and shifts out pixels corresponding to 

the sprites. Sprites with lower indices are given priority over other sprites. 
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Figure 2.2.7: Priority Sprite Line Generator 

2.2.6  Sprite Line Generator (SLG) 

Each SLG contains a sprite’s x position, its color palette, and loaded tile data. The x position is loaded 

into a down counter. Each cycle, this down counter is decremented. Once it reaches zero, the sprite’s 

tile data will start shifting out pixels.  

 
Figure 2.2.8: Sprite Line Generator 
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2.2.7 Background Line Generator (BGLG) 

The BGLG shifts out pixels for background tiles. The BGLG contains tile data for the current background 

tile and the next background tile. Every 8 shifts, the next tile’s data is loaded into the high byte of the 

shift registers. Also, at this time, the attribute bytes from the background attribute table are loaded 

into the buffer. These contain the color palette used for the background tile. 

 

 

Figure 2.2.9: Background Line Generator 
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2.2.8 Pattern Tables 

Within the PPU, two pattern tables exist. One for sprites and one for backgrounds. Each pattern table 

stores the actual bitmap data that makes up a sprite tile or background tile. These pattern tables are 

ROMs set by the game data. The format of these tables is described in the software section. 

 

Figure 2.2.10: Pattern Table 

The figure below gives an example of how a tile is stored in the Pattern Table and how its format                    

corresponds to colors. 

 

Figure 2.2.11: Pattern Table Tile Example 
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2.2.9  Background Tile Table 

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels, 

the background is made up of a 32x32 array of tiles. The background tile table holds information on 

which tile is used for each piece of the background. The table is RAM that is initialized by game data 

but is writable by the CPU. This module supports concurrent PPU reads and CPU writes. 

 

Figure 2.2.12: Background Tile Table 
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2.2.10  Background Attribute Table 

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,                 

the background is made up of a 32x32 array of tiles. The background attribute table holds information                 

on which color palette is used for each tile that makes up the background. The table is RAM that is                    

initialized by game data but is writable by the CPU. This module supports concurrent reads and writes                 

(Reads by the PPU and writes by the CPU). 

 

Figure 2.2.13: Background Attribute Table 
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2.2.11 Color Palettes 

There are two ROMs that define the colors used for sprites and backgrounds. There is also a single                  

system palette that cannot be changed. 

2.2.12 Sprite and Background Color Palettes 

There are a total of 8 color palettes defined by the game data. Four for sprites and four for                   

backgrounds. It is important to note that for each of the sprite palettes, color 0 is irrelevant because                  

the internals always interpret sprite colors of 0 as transparent. Furthermore, the backgrounds color              

palettes also have special handling for color 0. Regardless of the color palette used, color 0 will be                  

always be read as color 0 of the 0th background color palette. This is referred to as the universal                   

background color. Each color returned by any of the color palettes is actually an address of the color                  

stored in the system color palette. 

 

Figure 2.2.14: Color Palette 
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2.2.13 System Color Palette 

The system color palette is universal regardless of the game and cannot be changed. The system color 

palette contains the 64 possible colors that can be used by graphics in the system. 

 

 
These are all of the 64 colors available to graphics in the system. 

Figure 2.2.15: System Color Palette 
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2.3 Special Purpose Asynchronous Receive/Transmit (SPART) 

 

The SPART is a unit that receives gameplay input data serially from a computer keyboard via an RS232                  

cable and transmits this data to the CPU for processing. Essentially, it is divided into three submodules,                 

those being a driver, baud rate generator (BRG), and transceiver. Although transmitting received data              

back out the RS232 cable was not necessary for our design, we kept these transmit capabilities and                 

sent all received input back to the serial terminal. This transmission module allowed us to verify that                 

our system was receiving the correct input on any given transaction. 

The driver is responsible for coordinating the receival and transmission of data from the input               

keyboard to the CPU. A tri-state bus interface is the connection between this driver and the SPART core                  

(BRG/transceiver). This interface is responsible for sending data into the core for transmission or baud               

rate controlling, as well as receiving data from the core corresponding to the character byte pressed by                 

the user on the connected keyboard. 

The BRG controls enable signals to the transceiver’s control units. It loads a counter with a 16-bit                 

countdown value sent from the driver that corresponds to a supported baud rate (either 4800, 9600,                

19200, or 38400). When the counter reaches zero, an enable signal is sent to the transceiver to                 

transmit or capture data on the serial line. The serial line operates at a frequency much slower than                  

the internal clock signal of the SPART, so each serial bit is sent at a specific multiple of the internal                    

clock frequency. Similarly, the line is sampled at a multiple of the internal clock frequency specific to                 

the baud rate. 

The transceiver’s transmit control unit takes data from the bus interface and sends it out the RS232                 

serial line. In order to accomplish this, it must convert data from parallel to serial by shifting bits of the                    

parallel data out the RS232 at a specified rate. Likewise, the transceiver’s receive control unit takes                

data from the serial port and shifts it into a register, thus converting serial data to parallel. This shifting                   

corresponds to the frequency of the baud rate generator’s enable signals, which ensures that the data                

is transferred at the rate specified for the serial line. 

Figure 2.3(a) shows the SPART environment of receiving serial I/O from RS232 to the processor. Figure                

2.3(b) shows the SPART diagram of transmitting and receiving data and passing it to/from the               

processor via the databus.  
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Figure 2.3(a): SPART Environment 

 

 

Figure 2.3(b): SPART Block Diagram 
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2.4 Central Processing Unit 

 

At the heart of the Tronsistor-32 is a 32-bit RISC architecture, 5-stage pipelined processor including 32                

special and general purpose registers as well as data forwarding and interrupt capabilities. We will               

discuss these aspects in more depth in the following sections. Our CPU recognizes 30 valid instructions,                

some of which (11 in total) have been developed specifically for our system and the rest have been                  

migrated from the MIPS32 ISA. For reference, the blue lines in the image below are control signals. 

 

 

Figure 2.4.0: Relative Top Level Layout of Tronsistor-32 CPU 
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2.4.1 Registers 

Register 
Number 

Software 
Alias Functional Description 

0 $zero 

Zero: This register is hardwired to supply the constant value of 
0x00000000. This register is unwriteable, and is often used as the 
destination of an arithmetic instruction for setting branch conditions 
without overwriting another register value. 

1 $at Assembler Temporary: General purpose register. 

2-3 $v0-$v1 

Function Results: The results of function calls may be placed into these 
registers which circumvents the need to return them via the stack. 
However, they may be considered general purpose registers. 

4-7 $a0-$a3 

Arguments: Function parameters may be placed into these registers to 
avoid passing these values via the stack. However, they may be 
considered general purpose registers. 

8-15 $t0-$t7 Temporaries: General purpose registers. 

16-23 $s0-$s7 Saved Temporaries: General purpose registers. 

24-26 $t8-$t10 Temporaries: General purpose registers. 

27 $au 

Audio: This register is reserved to hold the starting location of an 
audio file’s data. 

28 $idr 

Interrupt Data Register: This register saves the data retrieved from a 
keyboard interrupt for game player input verification. 

29 $sp 

Stack Pointer: This register always points to the top of the stack’s 
address space, which is fully descending. The system automatically 
updates the contents of this register while executing any instructions 
that access the stack’s data. 

30 $epc 

Exception Program Counter: This register holds the program counter of          
the instruction that was interrupted while within the Instruction Fetch          
stage of the pipeline. This is to ensure that the program is able to              
return to its normal execution after an interrupt has occurred. 

31 $ra 

Return Address: This register holds the return address placed on top of            
the stack by a function call. 
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2.4.2 Addressing Modes 

Our ISA supports four addressing modes: immediate, register, label, and label with immediate offset.              

Immediate addressing requires an immediate value. Register addressing uses values inside of registers.             

Label addressing uses the program counter data at a particular label.  

 

2.4.2.1 Immediate 

The immediate addressing mode passes the immediate value as part of the instruction. This immediate               

value will be used as a direct input into the ALU for arithmetic. Immediate addressing mode is signified                  

by a numeric value. The default immediate values are in base 10, leaving it up to the assembler to                   

convert this number into binary machine code. 

Syntax: [numeric] 

Example:  li $t0, 48 # load 48, ASCII value of ‘0’, into register $t0 

Encoding: 

opcode [31:26] rd 
[25:21] 

rs [20:16] immediate [20:0] 

 

2.4.2.2 Register 

For the register addressing mode, the numeric register (0 - 31) is passed in as part of the instruction.                   

This target register is then passed to the register file, which then outputs the contents of the specified                  

register. Register addressing mode is signified by the $ symbols.  

Syntax: $[numeric] 

Example:  add $s0, $s1, $s2 # add $s1 and $s2, and store the results in $s0 

Encoding: 

opcode 
[31:26] 

rs [25:21] rt [20:16] rd [15:11] shamt 
[10:6] 

funct 
[0:5] 
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2.4.2.3 Label (with Immediate Offset) 

 

With label plus offset, the assembler will map the label to an immediate value, which gets passed in as                   

part of the instruction. Then, the assembler adds the two immediate values together. Label addressing               

modes are signified by labels. Offsets are signified by appending a comma after the label. 

Syntax 1: [label] # label addressing only 

Syntax 2: [label], [numeric] # label plus immediate offset addressing 

Example 1: lb $t0, foreground # load value that is labeled as foreground in memory 

Example 2: sw $t1, score, 4 # store value of $t1 in 4 words after the label score 

Encoding: 

opcode [31:26] rs [25:21] immediate [20:0] 

 

2.4.3 Instruction Formats 

 

Our ISA supports five instruction formats: register, immediate, jump, sprite, and sprite_remove.            

Register format is for instructions that uses registers such as add or subtract (sub). Immediate format is                 

for instruction that uses immediates such as add immediate (addi). Jump format is used for branching                

instructions such as branch less than (blt). Sprite format is used for almost all sprite instructions to                 

update visual data, such as set foreground tile (sft). Lastly, sprite_remove format is only used for the                 

sprite remove (srm) instruction because that instruction takes only 1 register to index into the OAM. 
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2.4.4 TronMIPStor ISA 

 

Below is a table containing the 30 instructions supported by the Tronsistor-32 with specified              

instructions formats, software mnemonics, and functional descriptions. 

 

 

 

 

 

 



 

28 

Additional Notes: 
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3 System Microarchitecture 

3.1 Central Processing Unit (CPU) 

Figure 3.1 contains a diagram of the Tronsistor-32 pipelined CPU’s microarchitecture. The CPU’s             

Instruction Fetch module fetches all instructions contained within a program via a main             

memory interface. However, the remaining CPU pipeline sections are only responsible for            

executing all non-sprite instructions (R-type, I-type, J-type). Sprite instructions (S_REMV, and           

S-type) are passed out of the IFID pipeline register to the Picture Processing Unit (Section 3.2)                

for further execution. The following subsections (Section 3.1.1 - 3.1.6) will discuss the internal              

microarchitecture design of the five main pipeline stages shown in below. 

Note: The signals contained within each pipeline section used for data-forwarding have been             

omitted due to their complexity. There are two multiplexers located on the output of the               

Instruction Decode’s inputs ALU_input_1 and ALU_input_2, the Instruction Execute’s inputs          

ALU_in1 and ALU_in2, and the Instruction Execute’s outputs EX_out and MemWrite_data.           

There is one multiplexer per signal, and the select signals are set within the DataForward               

module. 

 

Figure 3.1: Tronsistor-32 pipelined CPU 
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3.1.1 Instruction Fetch 
Figure 3.1.1 contains a detailed view within the Instruction Fetch section of the CPU pipeline. This                

section of the pipe is responsible for handling updates to the program counter as well as retrieving                 

instructions from memory to pass into the Instruction Decode pipeline stage.  

Note: The instruction memory is not actually contained within this section of the pipe. The memory                

unit is shown as a representation of how this pipeline section will interface with the specified section                 

of main memory. Also, it is important to note that during an interrupt this stage of the pipeline will                   

issue a ‘load immediate’ instruction that will save the interrupted program counter to the EPC register.                

After an interrupt has been handled, the trap handler notifies this stage to issue a ‘jump register’                 

instruction to load the program counter from the EPC register to proceed with execution. The               

components within this stage of the pipeline responsible for this activity have been omitted due to                

their complicated design. 

 

Figure 3.1.1: Instruction Fetch CPU pipeline section 
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3.1.2 Instruction Decode 

Figure 3.1.2 contains a detailed view within the Instruction Decode section of the CPU pipeline. This                

section of the pipeline is responsible for accessing and modifying the contents within the 32 general                

and special purpose registers within the Tronsistor-32 (all contained within the register file). Also, this               

pipeline stage is responsible for separating out each data field from the various instruction types,               

which is crucial for preparing all relevant data for manipulation within the Instruction Execute stage of                

the pipe. 

 

 

Figure 3.1.2: Instruction Decode CPU pipeline section 
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3.1.3 Instruction Execute 

Figure 3.1.3 contains a detailed view within the Instruction Execute section of the CPU pipeline. This                

section of the pipeline is responsible for computing the result of all arithmetic and logic instructions                

(ADD, ADDI, SUB, AND, ANDI, NAND, OR, XOR, SLL, SRL) via the Arithmetic Logic Unit (ALU). The ALU                  

computes the output of the aforementioned instructions and sets the flags that are used to verify                

branch conditions. This section is also responsible for selecting the proper data for accessing memory               

in the Memory Interface section of the pipeline. 

 

Figure 3.1.3: Instruction Execute CPU pipeline section 
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3.1.4 Memory Interface 

Figure 3.1.4 contains a detailed view within the Memory Interface section of the CPU pipeline. This 

section of the pipeline is responsible for accomplishing the data memory accesses required by various 

instructions (SW, PUSH, LW, POP, CALL, RET).  

Note: The data memory is not actually contained within this section of the pipe. The memory unit 

shown below is a representation of how this pipeline section will interface with the specified section of 

main memory. 

 

 

Figure 3.1.4: Memory Interface CPU pipeline section 
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3.1.5 Result Writeback 

Figure 3.1.5 contains a detailed view within the Result Writeback section of the CPU pipeline. This 

section of the pipeline simply returns the results of each instruction to an appropriate destination. 

 

 

Figure 3.1.5: Result Writeback CPU pipeline section 
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3.1.6 Handling Asynchronous Input for Interrupts  

 

3.1.6.1 Trap Handler 

The Trap Handler is a module that resides outside the CPU and accepts several inputs from the 

vga_logic and the SPART. The Trap Handler gives two interrupt signals to the CPU, these interrupts are 

keyboard, and game tick interrupt. These interrupts are described in the following section. The Trap 

Handlers main responsibility is to take in signals from the SPART and vga_logic that identify an 

interrupt, and schedule the interrupt signals to be asserted only after all previous hazards have been 

handled within the CPU. Once interrupts can be handled within the CPU, the Trap Handler uses an FSM 

to schedule various control signals at appropriate times. 

The SPART takes in data serially from the keyboard, and sends an interrupt signal to the CPU after a full 

byte has been received along with the byte of data that has been received. Vga_logic sends the Vsync 

signal to the trap handler as the game tick interrupt. This is done so that every time the screen 

refreshes the CPU can account for one “game tick”. 

 

3.1.6.2 Interrupts and Exceptions in CPU 

There are three interrupts/exceptions handled by the CPU to progress or halt the game state.  

Interrupts: Priority: 

Keyboard interrupt 2 

GameTick Interrupt 1 

Exceptions: 

StackOverflow exception 3 

 

When an exception or interrupt is triggered, the PC must be loaded with an address in instruction 

memory, the software will have two instructions to branch to another address location where ISR is 

located. 
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Address space of interrupts/exceptions: 

GameTick interrupt - 0x3FD 

Keyboard Interrupt - 0x3FE 

StackOverflow exception - 0x3FF 

These locations should hold an instruction that unconditionally branches to the memory location of 

that particular interrupt/exception Interrupt Service Routine (ISR). When an interrupt or exception is 

triggered, the trap handler is responsible for coordinating what needs to happen to handle the 

interrupt: 

GameTick Interrupt: 

1) Flop interrupt signal and wait for all hazards to clear 

2) Set hazard 

3) Save interrupted PC + 1 to EPC 

4) Set PC to address 0x3FD 

 

Keyboard Interrupt: 

1) Flop interrupt signal and wait for all hazards to clear 

2) Set hazard 

3) Save keyboard data to IDR 

4) Save PC + 1 to EPC 

5) Set PC to address 0x3FE  

 

Overflow Interrupt (unimplemented): 

1) Flush current instruction in EX, ID, and IF stages 

2) Set Overflow hazard 

3) Save PC of instruction that caused overflow to EPC 

4) Set PC to address 0x3FF 
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3.1.7 Sample CPU Simulation Waveforms 

Figure 3.1.7(a): Sprite Instruction Writing the Background Border of TRON 

- Figure 3.1.7(a) displays a snippet from a simulation of the game TRON. The main module 

seen in this figure is the CPU/PPU interface, which is responsible for loading the PPU’s 

foreground and background sprite tables with data. The highlighted signal in the figure 

is the “Background Tile Table Write Enable”, which is set high when writing data to the 

background tile table. Upon closer inspection, you can see that the BGWrite_data signal 

is identical for each enabled write. However, the BGWrite_addr is being steadily 

incremented upon each enabled write, which signifies that the background location 

being written to is steadily moving across the screen as the border extends from right to 

left. 
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Figure 3.1.7(b): Game Tick Interrupt Jumping to Interrupt ISR 

- Figure 3.1.7(b) displays a snippet from a simulation of the game TRON during a game 

tick interrupt pulse. The pulse shown in the lower left corner of the image shows the 

game tick interrupt entering the CPU, and the highlighted signal ‘PC_in’ can be seen 

jumping to 0x000003FE at the left dashed cursor line, which is actually the address of 

the Keyboard interrupt. Once here, the ISR is called, which immediately returns because 

there has been no user input since the last refresh of the game state. Finally, ‘PC_in’ 

jumps back to the interrupted program counter at the completion of the ISR, which can 

be seen at the right bold cursor line. This occasional mishandling of the interrupt 

service routines was discovered at the end of our system’s design process. Interrupts 

are crucial for correct execution of the games, and correcting this error would have 

undoubtedly added a great deal to our system’s functionality. 
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Figure 3.1.7(c): Register initialization upon Reset 

- Figure 3.1.7(c) displays the contents of the 32-bit register file upon reset of the system. 

When the system is reset, all data contained within the register file is reset to the value 

of 0x00000000, except for the stack pointer register which is initialized to the top of the 

stack at 0x00000FFF. This ensures that all data held within the register file from previous 

executions is flushed, which sets up a new, clean game state. 
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3.2 Picture Processing Unit (PPU)  

The PPU is the module responsible for generating the graphics of the system. It interfaces directly with 

the CPU and outputs to the VGA display. The rendering of both backgrounds and sprites is done 

completely synchronous with the VGA display. This means that the rendering takes place scanline by 

scanline. The display size supported is 256x256 pixels at a framerate of 60Hz. 
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3.2.1 PPU Control Unit (PPUCTRL) 

The PPUCTRL is the control unit that coordinates all operations of the PPU. Its main operations include 

scanning through the OAM and loading the OAMB with sprites that will be visible on the current 

scanline and loading up the SCANGEN with this data from the OAMB. 

The steps the PPU takes each scanline are as follows: 

1. Clear the OAMB to 0xFF at each position. 

2. Check each sprite in the OAM, if it is within range, copy its data into the next available position 

in the OAMB. Stop checking if OAMB is full or all sprites in OAM have been checked. 

3. Wait for hsync 

4. Load each sprite from the OAMB into the SCANGEN. This requires fetching tile data from the 

sprite pattern table. 

5. Load the tile and attribute data for the first two background tiles in the current row into the 

SCANGEN. 

6. Enable the SCANGEN to start shifting out pixels. 

a. Each eight shifts, load the next background tile and attribute data into the SCANGEN. 

b. While the SCANGEN is shifting out the current line, step 1 can begin again in parallel. 
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3.2.2 Object Attribute Memory (OAM) 

 

The OAM stores information about sprites that are currently displayed on the screen. Externally, the 

OAM can be viewed as a byte-addressable memory with concurrent read and write access. Internally, 

the OAM actually contains two memory blocks of equal size. One primary OAM and secondary OAM. 

To allow for a program to control the sprites, the CPU is given direct access to the PPU’s primary OAM. 

The primary OAM that the CPU writes to is actually never directly accessed by the PPU other than one 

single occasion. Once a frame is complete, the entire contents of the primary OAM are copied into the 

secondary OAM over a single clock cycle. This way, there are no issues dealing with concurrent read 

and writes on the OAM causing sprite flickering. Therefore, if contents of the OAM change, it will not 

appear to have changed (when reading), until copy is held high for a clock cycle. 
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The OAM can contain information about a maximum of 64 sprites. Each sprite takes four bytes of data. 

The ordering of the bytes for each sprite are as follows. 

 

 

Byte Name Description 

0 Y Position The Y position of the top-left corner of the sprite on the screen. If this byte is set to 0xFF, 
the sprite is considered an empty entry. 

1 Tile Number The tile used for this sprite: an index into the sprite pattern table. 

2 Attributes Attributes about how this sprite is displayed. 

[1:0] The color palette used for this sprite. 

[5:2] Unused 

[6] Flip horizontal if 1 

[7] Flip vertical if 1 

3 X Position The X position of the top-left corner of the sprite on the screen. 
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3.2.3 OAM Buffer (OAMB) 

The OAM Buffer (OAMB) is a sprite holding memory with a similar format to the OAM. It can only hold                    

information about 8 sprites (32 bytes total) that will be rendered on the current scanline. The PPUCTRL                 

module is responsible for controlling the memory loaded into this module by reading from the OAM                

and determining if each sprite is on the current scanline. If it is, the sprite’s 4 bytes are loaded into the                     

OAMB at its next available position. The PPUCTRL is also responsible for clearing this module (setting                

each of its bytes to 0xFF) before it is loaded with the next scanline’s sprites. The OAMB is                  

byte-addressable for both reads and writes. Because this module can only contain 8 sprites, that is the                 

limit of the number of sprites that can be displayed on a scanline. 
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3.2.4 Background Tile Table 

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,                 

the background is made up of a 32x32 array of tiles. The background tile table holds information on                  

which tile is used for each piece of the background. The table is RAM that is initialized by game data                    

but is writable by the CPU. This module supports concurrent PPU reads and CPU writes. 

 

 

 

 

 

  



 

46 

3.2.5 Background Attribute Table 

Backgrounds are made up of tiles from the background pattern table. Because each tile is 8x8 pixels,                 

the background is made up of a 32x32 array of tiles. The background attribute table holds information                 

on which color palette is used for each tile that makes up the background. The table is RAM that is                    

initialized by game data but is writable by the CPU. This module supports concurrent reads and writes                 

(Reads by the PPU and writes by the CPU). 
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3.2.6 Scanline Generator (SCANGEN) 

The scanline generator is responsible for shifting out color indices that index into the color palettes for                 

display on the screen. The SCANGEN is loaded with sprite data assembled by the PPUCTRL after                

scanning through the OAM and loading the OAMB. Both the OAMB and the SCANGEN are capable of                 

holding 8 sprites. The scangen prioritizes non-transparent pixels from sprites at lower indices. If no               

sprite pixels are available, the background pixels are used with lowest priority. Each shift out is a pixel                  

on the current scanline. 
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The SCANGEN can be split up into two shifting components. One for sprites and one for backgrounds. 
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3.2.7 Priority Sprite Line Generator (PSLG) 

The PSLG is loaded with sprite data (maximum of eight sprites) and shifts out pixels corresponding to 

the sprites. Sprites with lower indices are given priority over other sprites. 
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3.2.8 Sprite Line Generator (SLG) 

Each SLG contains a sprite’s x position, its color palette, and loaded tile data. The x position is loaded                   

into a down counter. Each cycle, this down counter is decremented. Once it reaches zero, the sprite’s                 

tile data will start shifting out pixels.  
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3.2.9 Background Line Generator (BGLG) 

The BGLG shifts out pixels for background tiles. The BGLG contains tile data for the current background                 

tile and the next background tile. Every 8 shifts, the next tile’s data is loaded into the high byte of the                     

shift registers. Also, at this time, the attribute bytes from the background attribute table are loaded                

into the buffer. These contain the color palette used for the background tile. 

 

 

 

 

 

  



 

52 

3.2.10 Color Palettes 

There are two ROMs that define the colors used for sprites and backgrounds. There is also a single                  

system palette that cannot be changed. 

3.2.11  Sprite and Background Color Palettes 

There are a total of 8 color palettes defined by the game data. Four for sprites and four for                   

backgrounds. It is important to note that for each of the sprite palettes, color 0 is irrelevant because                  

the internals always interpret sprite colors of 0 as transparent. Furthermore, the backgrounds color              

palettes also have special handling for color 0. Regardless of the color palette used, color 0 will be                  

always be read as color 0 of the 0th background color palette. This is referred to as the universal                   

background color. Each color returned by any of the color palettes is actually an address of the color                  

stored in the system color palette. 
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3.2.12 System Color Palette 

The system color palette is universal regardless of the game and cannot be changed. The system color 

palette contains the 64 possible colors that can be used by graphics in the system. 

 

 

These are all of the 64 colors available to graphics in the system. 
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3.2.13 Pattern Tables 

Within the PPU, two pattern tables exist. One for sprites and one for backgrounds. Each pattern table                 

stores the actual bitmap data that makes up a sprite tile or background tile. These pattern tables are                  

ROMs set by the game data. The format of these tables is described in the software section. 
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4  Software Architecture and Framework 

4.1 Memory Layout 

The Tronsistor-32 architecture specifies four (4) block RAM memory segments that must be initialized              

with Core Generator files. These are: 

1. Main Memory. This includes 1021 words of instructions, 3 words for trap handler translations,              

2048 words for the heap, and 1024 words for the stack, for a total of 4096 32-bit words. In                   

retrospect, we should have allocated more words to instructions and fewer words to both the               

heap and the stack. This allocation is shown graphically below: 
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2. Foreground Sprite Pattern Table. This contains 256 sets of 8 16-bit entries. Each 16-bit entry               

represents the indexes into a color palette for 1 line of a 8x8 sprite. Thus, 8 lines represents an                   

entire sprite of indexes, and the entire pattern table represents 256 sprites. This is illustrated               

below: 

 

 

3. Background Sprite Pattern Table. This is the same as the Foreground Sprite Pattern Table              

outlined above. 

 

4. Foreground & Background Color Palettes. This is simply eight sets (four foreground, four             

background) each containing four indexes into the system color palette. Each index into the              

system color palette is 8 bits, giving this a total bit size of 8*8*4. 
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4.2 Assembler 

 

Figure 4.2: Assembler Layout. 

 

We have implement a custom python assembler for the Tronsistor-32 ISA. It is implemented by making                

two passes at the assembly code: 

1. First Pass - Parses assembly line by line, taking special action when an empty line, start of                 

instructions directive, or data directive is encountered. If a label is encountered it is added to a                 

lookup table preseeded with register test-to-binary translations. Comments are stripped, and           

the instruction and arguments are decoded. If an instruction is invalid for any reason the               

program will stop. There are a few special cases while parsing a line, described as follows: 

a. Empty line - skip line and move on, do not increment PC 

b. Data directive - allocate space in heap as necessary to contain data, increment PC by               

corresponding number of words in the allocated space 

c. Start of Instructions - Change PC to Memory Mapped start of instructions location 

2. Second Pass - Goes through parsed assembly line by line, translating instruction to machine              

code. Any argument fields that are not immediates are decoded using the lookup table              

generated from the previous pass. Any immediate fields are translated to 2s complement             

binary integers from either hex or decimal formats. If any arguments are not found in the                
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lookup table or not a hexadecimal or decimal immediate, the program throws an error and               

exits. 

Lastly, the assembler formats the list of machine-code instructions into the ‘.coe’ file layout and dumps                

to the specified output file. The implementation of the Tronsister-32 assembler is open source and can                

be found at the link below. 

https://github.com/meggers/tronsister32-framework/tree/master/assembler 

4.3 Sprite Generator 

 

The Tronsister-32 software framework provides a utility to generate chomp addressable ‘.coe’ seed             

files given a list of sprite image files. The generator utility expects the dimensions of each image file to                   

be divisible by 8 pixels, the size of a single sprite. If the image height or width is a multiple of 8, the                       

image will be broken into several 8x8 pixel chunks and parsed serially from left-to-right and               

top-to-bottom. 

 

Each sprite image must be composed of only four (4) rgba colors, specifically red (255, 0, 0, 255), green                   

(0, 255, 0, 255), blue (0, 0, 255, 255) and black (0, 0, 0, 255). Black will be treated as “transparent.” If                      

the sprite generator encounters any other color during sprite generation, it will throw an error and                

exit. 

 

Lastly, the sprite generator spits out a mapping of each sprite chunk to its sprite index in CSV format to                    

be used by the assembler in seeding the heap. This allows the game developer the freedom of not                  

having to generate references to each sprite by hand in the data section of his or her game logic.                   

https://github.com/meggers/tronsister32-framework/tree/master/assembler
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Instead they can use an agreed upon format of sprite_file_name-chunk# as a reference to each sprite                

chunk. 

 

The implementation of the Tronsister-32 Sprite Generator can be found at the following link. 

 

https://github.com/meggers/tronsister32-framework/tree/master/sprites 

 

4.4 Tronsistor-32 Framework Core Functions 

This section lays out the method headers and descriptions for the functionality provided in the 

Tronsister-32 framework. These functions can be leveraged by programmers in order to create games 

involving multiple complicated sprites quickly and efficiently. In addition to these functions, the 

Tronsistor-32 framework also outlines various heap fields common to any game development, the 

most notable of which is 64 words that serves as a copy of the oam in heap memory. This can be used 

to keep track of the state of the oam, because the oam cannot be read. These fields are outlined in 

their entirety here: 

 

x_mask:             .word 0xFF000000 
sprite_index_mask:  .word 0x0000FF00 
vertical_flip_mask: .word 0x00800000 
horiz_flip_mask:    .word 0x00400000 
color_palette_mask: .word 0x00030000 
y_mask:             .word 0x000000FF 
clear_sprite:       .word 0xFFFFFFFF 
 
TRUE:               .word 0xFFFFFFFF 
FALSE:              .word 0x00000000 
 
oam_copy: .space 64 

 

The aforementioned functions are outlined below: 

 

This function, given a binary number 0-9 and a background tile location will set the 
background tile corresponding to that number at that location. 

https://github.com/meggers/tronsister32-framework/tree/master/sprites
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# Function: draw_number             # 
#                                   # 
# Arguments: draw_number            # 
#   $a0: number to draw             # 
#   $a1: background position        # 
#                                   # 
# Return:                           # 
#   N/A                             # 

This function, given a binary number ranged 0-99 and a background tile location will              
draw that number at that location. 

# Function: display_2digit_decimal  # 
#                                   # 
# Arguments:                        # 
#   $a0: number to display          # 
#   $a1: bg position to display at  # 
#                                   # 
# Return:                           # 
#   N/A                             # 

This function checks if a sprite represented by a rectangular boundary exceeds the             
game screen, returning an error code representing what boundaries were exceeded. 

# Function: check_oob               # 
#                                   # 
# Arguments:                        # 
#   0(sf): left sprite x pos        # 
#   1(sf): top sprite y pos         # 
#   2(sf): sprite width             # 
#   3(sf): sprite height            # 
#                                   # 
# Return:                           # 
#   $v0: 0000 if not oob            # 
#        0001 if top                # 
#        0010 if right              # 
#        0100 if bottom             # 
#        1000 if left               # 
#        0011 if top right          # 
#        1001 if top left           # 
#        0110 if bottom right       # 
#        1100 if bottom left        # 
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This function negates a two’s complement number. 

# Function: negate                  # 
# Arguments:                        # 
#   $a0: number to negate           # 
# Return:                           # 
#   $v0: negates number             # 

This function checks for a collision between two sprites represented as rectangular            
boundaries. 

# Function: check_collision         # 
#                                   # 
# Arguments:                        # 
#   0(sf): sprite a start oam data  # 
#   1(sf): sprite b start oam data  # 
#   2(sf): height a                 # 
#   3(sf): height b                 # 
#   4(sf): width a                  # 
#   5(sf): width b                  # 
#                                   # 
# Return:                           # 
#   $v0: TRUE if collision          # 
#        FALSE if no collision      # 

This function moves all sprites associated with a single sprite image by the given              
offset. 

# Function: move_sprite_img         # 
#                                   # 
# Defn: move sprite by specified    # 
#   number of pixels.               # 
#                                   # 
# Arguments:                        # 
#   0(sf): starting oam slot        # 
#   1(sf): sprite_size              # 
#   2(sf): x delta                  # 
#   3(sf): y delta                  # 
#                                   # 
# Returns:                          # 
#   0(sf) - top                     # 
#   1(sf) - bottom                  # 
#   2(sf) - left                    # 
#   3(sf) - right                   # 

This function loads all the sprites associated with an image starting at the given oam               
position and the given x and y coordinates. 
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# Function: load_sprite_img         # 
#                                   # 
# Defn: load sprite into oam        # 
#                                   # 
# Arguments:                        # 
#   0(sf): sprite index             # 
#   1(sf): sprite height            # 
#   2(sf): sprite width             # 
#   3(sf): left x (8 lsb)           # 
#   4(sf): top y (8 lsb)            # 
#   5(sf): starting oam slot        # 
#                                   # 
# Returns:                          # 
#   $v0 - next free oam slot        # 

# get_x: Gets X value from sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - x value 

# set_x: Sets x value in sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - x data to set (lsb 8 bits) 
# 
# Returns: 
#   $v0 - SRL data with new x 

# get_y: Gets Y value from sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - y value 

# set_x: Sets y value in sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - y data to set (lsb 8 bits) 
# 
# Returns: 
#   $v0 - SRL data with new y 
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# get_tile_no: Gets tile number from sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - tile number 

# set_tile_no: Sets tile number in sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - Tile number to set (lsb 8 bits) 
# 
# Returns: 
#   $v0 - S.R.L. data with new tile number 

# get_v_flip: Gets vertical flip from s.r.l.d. 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - vertical flip 

# set_v_flip: Sets vertical flip in sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - Vertical flip bit to set (lsb 1 bit) 
# 
# Returns: 
#   $v0 - S.R.L. data with vertical flip 

# get_h_flip: Gets horizontal flip from s.r.l.d. 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - horizontal flip 

# set_h_flip: Sets horizontal flip in sprite register layout data 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - Horizontal flip bit to set (lsb 1 bit) 
# 
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# Returns: 
#   $v0 - S.R.L. data with horizontal flip 

# get_color_palette: Gets color palette from s.r.l.d. 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
# 
# Returns: 
#   $v0 - color palette 

# set_color_palette: Sets color palette to s.r.l.d. 
# 
# Arguments: 
#   $a0 - Sprite Register Layout formatted data 
#   $a1 - Color Palette bits 
# 
# Returns: 
#   $v0 - S.R.L. data with new color palette 

The implementation of these functions can be found at the following link: 

https://github.com/meggers/tronsister32-framework/blob/master/tronsister32_framework.asm 

5 Assembler and Runtime Simulator (TARS) 

 

Figure 5.0: Overview TARS implementation, which includes an assembler, simulator, and (graphical) 
user interface for our TronsMIPStor-32 ISA. 

https://github.com/meggers/tronsister32-framework/blob/master/tronsister32_framework.asm


 

65 

 

The high level implementation of TARS is shown in figure 5.0. TARS is heavily modified from MARS                 

(MIPS Assembler and Runtime Simulator). As the name suggests, TARS is an assembler and runtime               

simulator for our TronsMIPStor-32 ISA. TARS is written in Java, which is portable to any machine                

capable of running a Java virtual machine. TARS is an alternative to the Tronsistor-32 framework used                

to test many software components, such as the COE format generator. 

5.1  TARS Assembler 

 

Figure 5.1.1: TARS assembler implementation, which includes an tokenizer to parse assembly 
language, directives to initialize data, and symbol table for branches and memory references.  

The assembler converts assembly language to machine code. The assembler directives (data, text,             

word, ASCII, and space) are used to initialize data memory. All branches and jumps to labels are                 

replaced with the relative line number. Any references sprites are replace with the index into the sprite                 

pattern table.  

Similar to the assembler in the Tronsistor-32 framework, the TARS assembler also does two passes               

through the assembly source code. The first pass of the assembler verifies syntax, generates symbol               

table, and initializes data segment. The second pass of the assembler translates assembly language to               

machine code. 
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Figure 5.1.2: TARS assembler example. The left column is the source code. The middle column is the 
basic instruction after the first pass. The right column is the machine code. 

 

 

 

 

5.2 TARS Simulator 

 

Figure 5.2.1: TARS simulator implementation, which includes a swing worker for parallelization, 
break point and back stepper for debugging, PPU simulator for visual, and interrupt service handler 
to simulate game tick and key presses.  
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The TARS simulator uses swing workers for high thread-level parallelization of TARS to increase 

performance. The breakpoints, single stepper, and back stepper works together for debugging a 

particular section of assembly code. Stepping through the code works for PPU instructions as well for 

the programming to test different visual data, color palettes, or flips on the screen. The interrupt 

service handler handles game tick and key press interrupts. A game tick interrupt occurs every 4096 

cycles. A key listener triggers the key press interrupt when the user presses a key in the PPU screen. 

Both interrupts are handled right before simulating an instruction by checking the interrupt flags. Like 

hardware, upon an interrupt, the simulator will store the current PC and the status register and jump 

to the interrupt handler. The interrupt handler is finished upon executing jump to the address stored in 

the exception program counter register (“jr $epc”), in which case, the status register will be restored. 

Also like hardware, an interrupt cannot occur inside of another interrupt.  

 

Figure 5.2.2: TARS simulator example. The top middle gives user the choice of continuous run, single 
step, back step, pause, stop, or reset. The top right gives the user of view contents of the register 
file, OAM memory, or the status register. The left gives the breakpoint option at every line. The 
middle highlights the current instruction, last modified memory, and last modified register. The 
bottom gives the option to view in decimal, hexadecimal, or ASCII.  
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5.3 TARS User Interface 

 

Figure 5.3.1: TARS user interface implementation, which includes a text editor to write assembly 
code, hardware viewer to view registers and memory for debugging, and format viewer for decimal, 
hexadecimal, and ASCII for debugging. 

 

The TARS graphical user interface is written using the Swing Java, which includes a text editor and                 

ability to view hardware data in multiple formats. The text editor has autocomplete, tooltip text for                

every instruction, and syntax coloring/highlighting for programmers to write their games. When            

simulating, the programmer can view and modify data in hardware in decimal, hex, or ASCII format for                 

debugging.  
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Figure 5.3.2: TARS user interface example. This screen shows syntax coloring (assembler directives in 
pick, comments in green, instructions in blue, registers in red, and immediates in black) and tooltip 
help text for the current instruction that the user is typing. 

 

 

 

 

 



 

70 

5.4  TARS TronsMIPStor-32 ISA 

 

Figure 5.4: TronsMIPStor-32 ISA implementation in TARS, which includes hardware to manage data, 
instructions to manipulate data, and COE dump for Xilinx and FPGA. 

 

TARS was heavily modify from MARS to change the core ISA from MIPS to TronsMIPStor-32.  

In hardware: Coproessor1 was repurposed as the OAM while coprocessor0 was repurposed as the              

status register and interrupt handler. The register names and initial values were updated to match               

TronsMIPStor-32. The memory file was modified from byte-addressable to word addressable. The            

carry/negative/zero flag was added as a status register.  

In instructions: Processor was updated to support arithmetic, logical, branch, and memory instructions,             

and remove pseudo instructions. Coprocessor1 was updated to handle and simulate PPU foreground             

and background tile and attribute instructions. 

In COE Dump: The COE format was added to dump instruction and memory data, foreground data,                

background data, and color palette data. 
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6 Games 

The main purpose of the TronsMIPStor-32 ISA is to develop retro games. Therefore, multiple games are                

developed to demonstrate that our ISA and architecture is capable of supporting many retro games. 

6.1  Etch a Sketch 

Etch a sketch is a demo program used to debug hardware. There is 1 sprite that the user controls,                   

which leaves behind a trail of background tiles.  

6.2 Tron 

Tron is a computer video game where users controls the direction of a sprite that continuously moves                 

and leaves a wall/trail behind. The objective of the game is to cut-off/trap the opponent so that they                  

would crash. Last player to not crash wins the round.  

6.3 Pong 

Pong is one of the earliest arcade video games. It simulates a tennis game with a ball and paddles in                    

simple two-dimensional graphics. Each player on either side controls their paddle to move up and               

down to hit the bouncing ball to their opponent’s side. The opponent scores a point if the player                  

misses with the paddle. Spins and velocity are supported in Pong in TronsMIPStor-32. 

Video of Pong gameplay (without user input) can be found at the following link: 

https://www.youtube.com/watch?v=oM4yzaYnHYI 

Implementation of the Pong game can be found at the following link: 

https://github.com/meggers/tronsister32-pong 

 

 

 

 

https://github.com/meggers/tronsister32-pong
https://www.youtube.com/watch?v=oM4yzaYnHYI
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6.4 Dance Dance Revolution (DDR) 

DDR is a game where the player matches the steps/keys that scrolls on screen. Pressing the                

corresponding key at the correct time interval (above the blue line) will result in a point. Otherwise,                 

the player will lose a point. A random number generator is supported by XORing the score, an internal                  

counter, and the current letter.  

 

Figure 6.4: Screenshot of DDR in the PPU simulator. 

 

6.5 Maze Navigator (beginning of Pacman) 

Pacman in a game where the player controls Pac-Man through a maze to eat pac-dots. Maze navigator                 

is just the beginning of Pacman, where the user can navigate around a maze. Collision detection is                 

supported, so the player will navigate through the maze faster if he/she doesn’t crash. 

 

Figure 6.5: Screenshot of maze navigator in the PPU simulator. 
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7 Team Contributions 
 

7.1 Hardware Team 

7.1.1 Graham Nygard: Signed: GRAHAM NYGARD Date: 12/22/2015 

Acting team leader throughout the semester. Contributed heavily to designing and maintaining the             

Tronsister-32 ISA. Designed and implemented the core pipeline stages of the Central Processing Unit              

(CPU), and connected them all at the CPU top level. Performed the initial testing of the CPU and                  

integrated changes made by Jake Truelove to the overall design throughout its development. Verified              

that the CPU was functionally correct and synthesizable after each architecture update, and made              

changes where necessary. Initiated integration of the final top level design and made considerable              

contributions to debugging the system.  

Verilog Modules: Instruction Fetch, Instruction Decode, Instruction Execute, Memory Unit, Writeback 

Unit, all pipeline registers, CPU Control, PC Control, Hazard Detect, CPU/PPU Interface, 32-bit Register 

File. 

 

7.1.2 Jake Truelove: Signed: JAKE TRUELOVE Date: 12/22/2015 

Contributed heavily to designing and maintaining the Tronsister-32 ISA. Made the initial memory             

interface of the CPU that served as the connection between the pipeline and the main memory.                

Updated the CPU with data-forwarding and interrupt capabilities, which necessitated changes           

throughout many stages of the pipeline. Verified the functional correctness of the design after each               

addition to the CPU before submitting these changes to Graham Nygard. Aided in debugging the               

system. 

Verilog Modules: Memory Interface, Data Forwarder, Trap Handler, ALU (made appropriate changes to 

other modules affected by data-forwarding and interrupt handling). 

 

7.1.3 Matt Kelliher: Signed: MATTHEW KELLIHER Date: 12/22/2015 

Contributed heavily to designing and maintaining the Tronsister-32 ISA. Designed and implemented the             

Picture Processing Unit (PPU) and integrated this module with each of the memory units used for the                 

graphical renderings in each of our programs. Verified that sprite layouts were being displayed              
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appropriately on a screen with proper orientation, layering, scaling, etc. Made considerable            

contributions to integrating the final top level design and debugging the system. 

Verilog Modules: PPU Control, Object Attribute Memory, Foreground Pattern Table, Background 

Pattern Table, Background Attribute Table, Color Palette. 

 

7.2 Software Team 

7.2.1 Max Eggers: Signed: MAXWELL HENRY RHODES EGGERS Date: 12/22/2015 

Contributed heavily to designing and maintaining the Tronsister-32 ISA.  

Wrote the Tronsistor-32 framework 

Assembles from TronMIPStor-32 assembly to machine code 

Generates COE files 

Main Memory 

FG/BG Sprite Palettes 

Wrote many functions to ease assembly game programming 

Load and display sprites 

Move sprites 

Check collision 

Displaying text using background tiles 

Drew and generated sprite visual data 

ASCII characters and pong/tron foreground sprites 

Wrote Pong 

 

7.2.2 Kai Zhao: Signed: KAI ZHAO Date: 12/22/2015 

Contributed heavily to designing and maintaining the Tronsister-32 ISA.  

Maintained TARS CPU simulator 
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Wrote and maintained TARS PPU simulator 

Wrote TARS interrupt handler simulator 

Wrote TARS assembler for sprite instructions 

Wrote TARS COE generator 

Wrote Tron logic in MIPS to determine the set of instructions our ISA needs 

Wrote Tron in a high level programming language 

Wrote DDR 

Wrote a maze navigator (the beginning of Pacman) 

 

 

7.2.3 John Roy: Signed: JOHN ROY Date: 12/22/2015 

Contributed heavily to designing and maintaining the Tronsister-32 ISA.  

Modified MARS to TARS 

Added TronsMIPStor-32 CPU instructions 

Removed MIPS (pseudo) instructions 

Wrote etch a sketch 

Wrote Tron logic in TronsMIPStor-32 ISA 

Wrote Tron graphics 
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8 Challenges Faced and Lessons Learned 
 

Integrating the main modules of the design, the Picture Processing Unit and the Central Processing 

Unit, was arguably the greatest challenge that our group faced this semester. Each module appeared 

to function correctly as a standalone entity throughout the design process, but the integration of these 

two units revealed a considerable amount of bugs within the design that had not been foreseen while 

the modules were separated. For example, the CPU developers had not considered the need for 

data-forwarding of sprite instruction data. This necessity was revealed after we had integrated the two 

designs and realized that each of the sprite instructions was feeding garbage data to the PPU, because 

the desired data had not yet been written back into the register file. 

 

Although it was beyond our control, our inability to reliably instantiate new IP cores throughout the 

design process posed a considerable challenge throughout the semester. Each time the instantiation 

process would fail, it would take roughly 20-30 minutes to complete the process through trial and error 

on other machines throughout the lab. 

 

Another notable challenge was that there were intrinsic differences in behavior between our 

synthesized hardware and our custom MARS simulator, which was used to verify the functional 

correctness of our assembly programs. Because each program was initially tested and debugged using 

the simulator, assumptions that the simulator made about the underlying hardware sometimes caused 

issues for the programs as they ran on the actual FPGA. For example, one difference that was noticed 

late in development was that the simulator began each program by defaulting all of the register 

contents to 0x00000000 (aside from the Stack Pointer, initialized to 0x00000FFF). However, the actual 

hardware was implemented assuming that a program must first initialize a register before its contents 

can be reliably known and used. Thus, if a program were to use an uninitialized register during its 

execution, the behaviors of the simulator and the hardware would diverge. The simulator’s program 

would function normally, but the hardware’s program would would often fall into an unrecoverable 

state (Program Counter out of bounds, heap data accesses inadvertently access instruction space, 

inconsistent state of the flags registers used for branch condition verification, etc.). We strived to 

resolve these issues immediately as they were discovered, but the complexity of the CPU’s design 

often made it difficult to pinpoint the source of any inconsistencies between the simulator and 

hardware. 
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Our custom ISA had to be simple because it needs to be implemented in hardware. Therefore, it is 

worth noting that writing fully functional games in an assembly language using a custom ISA is 

incredibly time consuming and requires an acute attention to detail. To put this into perspective, 

consider some of the following statistics gathered from a few of our completed games. Excluding 

comments and metadata (data used to assemble the game code), the game ‘TRON’ had roughly 1000 

lines of CPU instructions. Likewise, the game ‘PONG’ had around 800 lines of instructions, and a game 

as simple as ‘Etch a Sketch’ had nearly 100 lines of pure assembly instructions. 

 

A lessons learned is that our PPU graphics instructions should be memory mapped as opposed to 

writing to a separate OAM memory file. Doing so will make it easier to debug as we can initialize the 

background tiles with assembler directives as opposed to using many lines of assembly code to do so. 

Using memory mapped OAM would have also decrease the hardware overhead. 

 


