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Hard-disk failures are one of the primary causes of data loss. Most disk failures are partial failures,

where only some sectors are unavailable due to a latent sector error or some blocks are silently corrupted.

This dissertation focuses on all aspects of such partial disk failures – theircharacteristics, their impacton

different systems, and techniques that can be usedtoleratethem.

We perform the first large-scale study of partial disk failures, involving 1.53 million disks. We find

that partial disk failures affect a large percentage of disks. We also find that (i) SATA drives have a higher

probability of developing partial disk failures and (ii) failures are not independent; failures within the same

disk have high spatial and temporal locality.

We examine the impact of partial disk failures on a variety ofsystems. We use model checking to

examine data protection in RAID systems, and find that most schemes do not protect against one or more

failures, leading to data loss. We applytype-aware fault injectionto examine the impact of partial disk

failures on the virtual-memory systems of Linux, FreeBSD, and Windows XP. We find that these systems

use simplistic or inconsistent failure-handling policies. We analyze the impact of corrupt on-disk pointers

on file systems NTFS and ext3. We find that these systems do not use fault-tolerance techniques effectively,

resulting in data loss.

We have built anN-version file systemto tolerate partial disk failures. This system stores data in N

different file systems, thereby eliminating the reliance ona single complex file system. Our system uses ex-

isting file systems, such as ext3 and JFS, thus avoiding the development costs of building different versions.

Our experiments show that an N-version file system significantly reduces the probability of data loss.

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau
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ABSTRACT

Hard-disk failures are one of the primary causes of data lossin both enterprise storage sys-

tems and personal computers. Most disk failures are partialfailures, where only some sectors are

unavailable due to a latent sector error or some blocks are silently corrupted. This dissertation

focuses on all aspects of such partial disk failures – theircharacteristics, their impacton different

systems, and techniques that can be usedtoleratethem.

We perform the first large-scale study of partial disk failures, involving 1.53 million disks in

more than 50,000 storage systems. We find that partial disk failures affect a large percentage of

disks (e.g., in the worst case, latent sector errors affect up to 20% of the disks in 2 years). We

also find that (i) inexpensive SATA drives have a higher probability of developing partial disk

failures, (ii) failures are not independent; failures within the same disk have high spatial and tem-

poral locality, and (iii) many failures are detected by background scans of disk blocks called “disk

scrubbing.”

We examine the impact of partial disk failures on a variety ofsystems. We use model checking

to examine data protection in RAID systems. We find that schemes in many RAID systems are

broken; they do not protect against one or more failures, leading to unrecoverable data loss or cor-

rupt data being returned to applications. We applytype-aware fault injectionto examine the impact

of partial disk failures on the virtual-memory systems of Linux, FreeBSD, and Windows XP. We

find that these systems use simplistic or inconsistent failure-handling policies, thus causing data

corruption and system-security violations. We analyze theimpact of corrupt on-disk pointers on

two file systems, NTFS and ext3. We find that these systems do not use available fault-tolerance

techniques effectively, resulting in data loss and non-mountable file systems. Overall, we find that

a single system cannot be depended upon to reliably store data.
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We have built anN-version file systemto tolerate partial disk failures. This system stores

and retrieves data fromN different file systems, thereby eliminating the need to relyon a single

complex file system. Our system uses existing file systems, such as ext3 and JFS, thus avoiding

the development costs of building different versions. We show using fault-injection experiments

that an N-version file system significantly reduces the probability of data loss.



1

Chapter 1

Introduction

Much of the value people place in computer systems stems fromthe value of the data stored

therein. Today, this emphasis on data is true not only for enterprise systems in corporate or gov-

ernment settings, but also for personal computers, which store valuable photos, home videos, and

important documents such as tax returns. By some estimates,about 5 exabytes of information

was produced in the world in just a single year (2002), and ninety-two percent of this new infor-

mation was stored on magnetic media, mostly on hard disk drives [87]. Thus, it is primarily the

information stored in our computer systems that makes them so valuable to us.

Given the rising importance of information, it is not surprising that data reliability and integrity

are considered vital to storage systems. Performance problems can be tuned, tools can be added

to cope with management issues, but data loss is seen as catastrophic. As Keetonet al.state, data

unavailability may cost a company “... more than $1 million/hour” and the price of data loss is

“even higher” [78].

Unfortunately, disk drives fail, and they fail more often than manufacturers expect them to [118].

Even in well-designed, high-end systems, disk-related errors are still one of the main causes of po-

tential trouble [84]. With the increasing amount of valuable information stored on hard disks, the

onus is now on file systems and storage systems to handle disk failures, thereby preserving data

over long periods of time.

For many years, file-system and storage-system designers have assumed that disks operate in a

“fail-stop” manner [116]; within this classic model, the disks either are working perfectly, or fail

absolutely and in an easily-detectable manner. The failuremodel presented by current disk drives,

however, is much more complex. For example, drives can exhibit latent sector errors[35, 77, 119],
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where a disk block or set of blocks are inaccessible. Worse, disk blocks sometimes becomesilently

corrupted[18, 54, 130, 131]. We refer to this complex set of failures aspartial disk failures.

Partial disk failures occur due to a variety of reasons; particles within disk drives could cause

scratches thereby rendering sectors unreadable [5, 119]; unacceptably high gaps between the disk

read/write head and the medium cause data to be written poorly [12]; firmware bugs could cause

corrupted data to be returned or cause writes to complete without actually writing data to the

magnetic medium [48, 54, 130, 131]; software bugs in file systems and device drivers could corrupt

data [34, 45, 133, 148, 150].

The goals of this dissertation are three-fold: first, to examine the magnitude of the threat that

partial disk failures pose and identify the characteristics of such failures; second, to evaluate the

impact of partial disk failures on current systems; third, to develop techniques for tolerating these

failures.

We address the goals of this dissertation as follows. First,we analyze the occurrence and char-

acteristics of two important classes of partial disk failures – latent sector errors and silent data

corruptions [12, 13]. Second, we examine the impact of thesepartial disk failures on various

storage-stack components – enterprise RAID systems [83], virtual-memory systems [11], and file

systems [14, 15]. Third, we develop an N-version file system,a solution for tolerating all par-

tial disk failures that affect file systems, including data corruption due to file-system bugs. The

following sections elaborate on each of these contributions of the dissertation.

1.1 Characteristics of Partial Disk Failures

Detailed knowledge of real-world failure characteristicsis essential for building systems that

can tolerate failures effectively and for examining whether existing systems meet fault-tolerance

goals. For example, Gray [51] used information about systemfailures in the field to garner the

insight that system administration was the primary cause offailures at that time. Such insight has

proven extremely valuable: it has spurred research effortsto (i) verify whether the observation

is true in other systems [91, 96], (ii) examine how resilientsystems are to human errors [79,
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143], and (iii) develop techniques to handle potential problems and failures introduced by operator

mistakes [27, 126].

The need for real-world data applies to partial disk failures as well. Unfortunately, there is

little field data available about partial disk failures. This situation persists despite the recent influx

of data on absolute disk failures [41, 102, 118]. Therefore,current techniques to handle partial

disk failures have to be built based on anecdotal information and back-of-the-envelope calcula-

tions [119].

In this dissertation, we present the first large-scale studies of partial disk failures. We focus on

two important types of partial disk failures: latent sectorerrors and silent data corruptions. These

two types of failures are important since both of them could lead to data loss.

To perform the study, we analyze data from more than 50,000 production and development

storage systems developed by NetAppTM and installed at many of their customer sites. The data

pertains to partial disk failures affecting the 1.53 million disks used by these storage systems.

Through our study, we answer several important questions about partial disk failures, including:

• What is the magnitude of this threat? What are the average andworst-case percentages of

disks affected by partial disk failures in given period of time?

• What factors impact the development of partial disk failures? For instance, do older disks

have a higher probability of being affected? The world is moving to larger capacity disk

drives; does this exacerbate the problem of partial disk failures?

• Are partial disk failures independent events? Some file systems use intra-disk redundancy

to overcome partial disk failures [20, 88]; should these systems be concerned about spatial

locality of partial disk failures?

• Are the partial disk failures in our study and other disk errors like not-ready-condition errors

independent occurrences?

• What techniques are useful for detecting partial disk failures? Is “disk scrubbing,” a periodic

scan of all disk blocks, useful for detecting partial disk failures?
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One important lesson we learn from the study is that partial disk failures affect a significant

percentage of disk drives; latent sector errors affect up to20% of the drives of one of the SATA

disk models in just 2 years. Such a high percentage implies a need for maintaining redundant in-

formation to protect against data loss. Single-disk systems should strive for intra-disk redundancy,

perhaps in the form of replicated file-system metadata [20, 88, 104], while RAID [101] systems

should consider protecting against double disk failures [3, 22, 35, 57, 59, 98].

1.2 Impact of Partial Disk Failures

Given that partial disk failures affect a large number of disks, it is important to understand how

the partial disk failures impact current systems. If existing systems handle partial disk failures in an

efficient manner, then there is no need for new techniques; ifthey are somewhat inefficient, such a

study would show us where the systems fall short and suggest improvements to the failure-handling

techniques used by the systems.

Many different types of systems use disk drives directly, including RAID systems, file systems,

virtual-memory systems, and database systems. In this dissertation, we examine the impact of

partial disk failures on three types of systems: RAID systems, virtual-memory systems, and file

systems.

We use model checking [73] to examine the design of data protection in RAID systems, and ex-

tend a fault-injection technique called type-aware fault injection [104] to examine virtual-memory

systems and file systems. We first outline our analysis of RAID, then briefly describe type-aware

fault injection, then discuss our analyses of virtual-memory systems and file systems.

1.2.1 RAID Systems

RAID (Redundant Array of Independent Disks) stores data on multiple disks in a redundant

fashion in order to survive the failure of one or more of the disks [101]. Since it was originally

proposed, it has been employed in nearly every enterprise storage system [43, 65, 68, 94].

RAID is specifically targeted towards handling disk failures; therefore, one would expect a

thorough and verifiable failure-handling scheme. Althoughgetting an implementation to work
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correctly may be challenging (often involving hundreds of thousands of lines of code [146]),

one could feel confident that the design properly handles theexpected failures. Indeed, over the

years, analytical modeling has been used to evaluate the fault-tolerance capability of RAID sys-

tems [17, 39, 49, 76, 119] under the assumption that disk failures, whether absolute or partial, will

be detected by the RAID system. While such an assumption would hold true for absolute failure or

any partial failure that is reported by the disk drive (e.g., a latent sector error), it is not necessarily

true for silent data corruptions. Failures that cause silent data corruption considerably complicate

the construction of correctly-designed protection strategies.

A number of techniques have been developed and used in enterprise RAID systems to cope

with silent data corruption. For example, various forms of checksumming can be used to de-

tect corruption [18, 129]; combined with redundancy (e.g., mirrors or parity), checksumming en-

ables both the detection of and recovery from certain classes of corruptions. However, given the

broad range of techniques used (including sector checksums[18, 37, 65], block checksums [131],

parental checksums [130], write-verify operations [131],identity information [107, 131], and disk

scrubbing [37, 119, 130, 131], to list a few), exactly which techniques protect against which fail-

ures is sometimes unclear; worse, combining different approaches in a single system may lead to

unexpected gaps in data protection.

We propose an approach based on model checking [73] to analyze the design of protection

schemes in RAID systems. We develop and apply a simplemodel checkerto examine different

data protection schemes. We first implement a simple logicalversion of the protection scheme

under test; the model checker then applies different sequences of read, write, and partial-failure

events to exhaustively explore the state space of the system, either producing a chain of events

that lead to data loss or a “proof” that the scheme works as desired. We apply the model checker

on various real single-parity schemes used in enterprise systems and show that all of the schemes

could lead to data loss under a single silent data corruption; we find that many of these systems

suffer from a general problem that we callparity pollution, wherein corruption to a disk block on

a data disk can spread to the parity disk, thereby rendering the data unrecoverable. In addition

to analyzing existing schemes, we identify a protection scheme that can handle our entire set of
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partial disk failures; this scheme uses several techniquesincluding block checksums, both logical

and physical identity information, and version mirroring.

We also show how a system designer can combine real data of failure probability (from our

study of the characteristics of partial disk failures) withour model checker’s results for a given

scheme to arrive upon a final estimation of data-loss probability for that scheme. Doing so enables

one to compare different protection approaches and determine which is best given the current

environment.

1.2.2 Type-Aware Fault Injection

We developed type-aware fault injection in earlier work [104] to study the impact of certain

types of partial disk failures on commodity file systems. Ourapproach is to inject faults just

beneath the system under test and observe how the system responds. Many standard fault injec-

tors [26, 123] that take this approach fail disk blocks in atype-obliviousmanner; that is, a block is

failed regardless of how it is being used by the system. However, repeatedly injecting faults into

random blocks and waiting to uncover new aspects of the failure policy would be a laborious and

time-consuming process, likely yielding little insight.

The key idea that allows us to test a system in a relatively efficient and thorough manner is

type-aware fault injection, which builds on our previous work with “semantically-smart” disk sys-

tems [16, 125, 126, 127]. With type-aware fault injection, we fail blocks of a specific type (e.g., an

inode block in a file system or a user data page in a virtual-memory system). Type information is

crucial for reverse-engineering failure policy, allowingus to extract the different strategies that a

system applies for its different data structures. In addition, we believe that different code paths in

the system may not respond in the same manner even when the same type of disk block is failed.

Therefore, we also use a suite of fine-grained workloads to test failure behavior for each type of

disk block.

Previously, we have used type-aware fault injection to study how commodity file systems (ext3,

JFS, ReiserFS, and NTFS) respond to block read and write errors and completely-corrupt disk
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blocks [104]. The study found that file systems use illogically-inconsistent failure policies, and do

not detect partial disk failures in various scenarios.

In this dissertation, we extend type-aware fault injectionto work with virtual-memory systems

and study how they respond to block read and write errors and completely-corrupt disk blocks.

We also extend the technique to study the impact of specific corruptions to on-disk pointers of file

systems.

1.2.3 Virtual-Memory Systems

A virtual-memory system is an integral part of most operating systems, and like file systems,

is a significant user of disk storage. The virtual-memory system uses disk space to store memory

pages that are not expected to be of immediate use, thereby freeing-up physical memory for other

memory pages. When a page stored on disk is accessed again, itis brought back into physical

memory. Thus, the virtual-memory system is responsible forhandling disk errors that occur to

these memory pages.

Since the virtual-memory system is an integral element of the storage stack, it is important to

understand how a virtual-memory system responds to partialdisk failures. To do so, we apply type-

aware fault injection to study the virtual-memory systems of two operating systems, Linux 2.6.13

and FreeBSD 6.0, in detail. We also perform a preliminary study of the Windows XP virtual-

memory system.

From our experiments, we find that these virtual-memory systems are not well-equipped to deal

with partial disk failures. Like the file systems studied in prior work [104], the virtual-memory

systems use policies that are illogically-inconsistent (e.g., in FreeBSD, a read error for a user data

page may result in a error report in one case, while it resultsin kernel panic in another). In addition,

we find that the failure-handling routines in virtual-memory systems have bugs. In most cases, the

failure-handling policy is simplistic, and in some cases, even absent. This disregard for partial disk

failures leads to many problems, ranging from loss of physical memory abstraction, to further data

corruption, and even to system-security violations.



8

1.2.4 File Systems

A file system is a crucial component of the storage stack; mostapplications use file systems to

store data. In commodity systems, such as desktops and laptops, file systems are also tasked with

the responsibility of ensuring that data is stored reliably. While we have analyzed how file systems

respond to block read and write errors and completely-corrupt disk blocks in previous work [104],

here we develop a thorough understanding of how file systems respond to more nuanced forms

data corruption. In particular, we corrupt the on-disk pointers of file systems.

Although any block on disk may become corrupt, some corruptions are more damaging than

others. If a data block of a file is corrupt, then only the application that reads the file is impacted.

However, if a disk block belonging to file-system metadata iscorrupt, then the entire file system

can be affected; for example, a corrupt on-disk pointer incorrectly referring to data belonging to a

different data structure can cause that data to be overwritten and corrupted as well. Therefore, an

integral part of ensuring the long-term availability of data is ensuring the reliability and availability

of pointers, theaccess pathsto data.

File systems today use a variety of techniques to protect against corruption. ReiserFS, JFS and

Windows NTFS perform lightweight checks to detect corruption like type checking [104]; that is,

ensuring that the disk block being read contains the expected data type. In order to recover from

corruption, most systems rely on replicated data structures. For example, JFS and NTFS replicate

key data structures, giving them the potential to recover from corruption of these structures [20,

128].

We seek to evaluate how a set of corruption-handling techniques work in reality. To analyze the

file systems, we developtype-aware pointer corruption, an extension of type-aware fault injection.

Type-aware pointer corruption explores failure behavior by systematically changing the values of

only one disk pointer of each type in the file system and observing its behavior. Further, it corrupts

the pointers to refer to each type of data structure, insteadof to random disk blocks. The technique

is successful because different block types are used differently by the file system, thus causing the

blocks and the pointers that point to them to be protected differently.
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We apply type-aware pointer corruption on two widely-used file systems, Windows NTFS and

Linux ext3. We examine their use of type checking, sanity checking, and replication to deal with

corrupt pointers, and verify whether these techniques workwell in practice. The study of NTFS is

particularly interesting since it is a closed-source system for which little information is available

about exact failure policies.

We find that both file systems fail to recover from many pointercorruptions despite the avail-

ability of redundant information. This failure to recover is due to poor use of techniques like type

checking and replication.

1.3 Tolerating Partial Disk Failures with N-Version File Systems

This section describes our solution for tolerating partialdisk failures in personal computer

systems. This solution is influenced by the lessons learned from our study of partial disk failures

and our analysis of file systems:

• Partial disk failures do occur; they affect a significant percentage of disk drives. These

failures affect a higher percentage of inexpensive SATA disk drives that are used in our

desktops and laptops. In fact, latent sector errors affect up to 20% of the drives of one of the

SATA disk models in just 2 years.

• Commodity file systems (that use the SATA disk drives) are extremely poor at handling disk

failures; they use inconsistent policies and contain bugs in failure-handling code. As a result,

they fail to detect many instances of data corruption and do not leverage available replication

to recover from corruption.

In addition to these lessons, recent research has shown thatfile systems themselves contain

many bugs [148, 149, 150]. These bugs could potentially cause data loss or corruption. The bugs

and poor use of failure-handling techniques exist despite the file systems being widely-used and

potentially well-tested. Therefore, we believe that one cannot rely on a single file system to handle

all partial disk failures, including file-system bugs.
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Our solution to the problem of partial disk failures is anN-version file system. An N-version

file system is an instance of N-version software [6]. In an N-version file system, data is stored inN

differentfile systems. All file operations performed by the user are received by a simple software

layer that then performs the operation on all the file systemsand delivers the majority result to the

user. Thus, we eliminate the reliance on a single complex filesystem, and place it on a simpler

software layer. We design the N-version file system with simplicity as one of its important goals,

and from our experience in building it, we find that it can be kept simple.

One major issue in building an N-version-software system isthe high development costs asso-

ciated with formulating a common specification for the system, and creatingN different versions

of the system. In order to reduce these costs, we hypothesizethat for an N-version file system,

(i) we can use an existing specification, such as POSIX, as thecommon specification, and (ii) we

can use existing file systems, such as ext3, JFS, etc., as theN different file-system versions. In

building an N-version file system using an unmodified specification and existing file systems, we

verify these hypotheses.

A second issue in using an N-version file system is the high performance and disk-space over-

heads introduced by storing and retrieving data fromN file systems instead of one. Our solution

to this issue is to use a block-level single-instance store underneath the file systems. A block-

level single-instance store uses content hashing to identify disk blocks with the same content; it

then stores a single copy of these blocks on disk. In an N-version file system, user data stored in

the different file systems will have the same content and willtherefore be coalesced into a single

block, while file-system metadata of different file systems will have different contents and will

not be coalesced. Therefore, a single-instance store protects against partial disk failures that affect

metadata (thereby protecting the important access paths todata), but not against failures that affect

data blocks. A single-instance store is especially useful in cases where file-system bugs are the

main contributors to partial disk failures.

Our 3-version file system uses ext3, JFS, and ReiserFS aschild file systemsto store data. We

evaluate its reliability against that of the individual child file systems using fault injection, and find
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that the 3-version file system successfully recovers from almost all scenarios where a child file

system has incorrect contents or is affected by a partial disk failure.

1.4 Overview

The rest of this dissertation is organized as follows.

Background: Chapter 2 provides a background on the storage stack and diskdrives, disk

and storage-stack failures, a taxonomy of failure-handling techniques used within a single

disk, and the type-aware fault-injection technique we havedeveloped to analyze systems.

Characteristics: Chapter 3 presents our study of the characteristics of two important types

of partial disk failures, latent sector errors and silent data corruptions; we analyze the impact

of factors such as disk age, properties of errors such as spatial locality, and the efficacy of

different methods used to detect partial disk failures.

Impact: Chapters 4, 5, and 6 discuss our analyses of the impact of partial disk failures on

RAID systems, virtual-memory systems, and file systems; Chapter 4 presents our model-

checking-based analysis of the effectiveness of schemes used in enterprise RAID systems

to detect and recover from partial disk failures; Chapter 5 details our analysis of the failure

policies of virtual-memory systems using type-aware faultinjection; Chapter 6 discusses the

impact of corrupt on-disk pointers on file systems.

Tolerance: Chapter 7 presents our design and evaluation of N-version file systems, our

solution for tolerating all partial disk failures, including file-system bugs.

Related Work: Chapter 8 summarizes research efforts focusing on characterization of sys-

tem and storage failures, techniques used to analyze the failure behavior of systems, tech-

niques used to handle disk failures, and N-version programming.

Conclusions and Future Work: Chapter 9 concludes this dissertation, first summarizing

our work and highlighting the lessons learned, and then discussing various avenues for future

work that arise from our research.
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Chapter 2

Background

This chapter provides a background on various aspects integral to this dissertation. First, we

provide a brief overview of the storage stack in a computer system, focusing on the lowest com-

ponent of the stack, disk drives (Section 2.1). Second, we discuss failures that occur in the storage

stack and describe specific partial disk failures that are addressed in this dissertation (Section 2.2).

Third, we discuss RAID [101], a technique used in nearly every enterprise storage system to han-

dle disk failures (Section 2.3). This discussion serves as an overview; Chapter 4 is a more detailed

examination of enterprise RAID data protection. Fourth, wepresent the IRON taxonomy [104] of

failure-handling policies (Section 2.4). This discussionalso serves as an overview of the different

techniques that may be used within a single disk to handle partial disk failures. Last, we present a

fault-injection technique calledtype-aware fault injection[104]. We use the IRON taxonomy and

type-aware fault injection to analyze the failure behaviorof both file systems and virtual-memory

systems in later chapters.

2.1 Storage Stack

A storage stack is an integral part of most computer systems.The role of the storage stack is

to provide a means to store data. As in a communication protocol stack, the different layers of

the stack use the abstraction provided by the layer below to build the abstraction and services that

it provides to layers above. Figure 2.1 shows the storage stack in a typical computer system. It

consists of hardware, software, as well as firmware components.
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Figure 2.1 The storage stack.We present a schematic of the entire storage stack. At the topis the file
system; beneath are the many layers of the storage subsystem. Gray shading implies software or firmware,
whereas white (unshaded) is hardware.
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At the bottom of the storage stack is the disk drive. Connecting the drive to the host is the

transport. In low-end systems, the transport medium is often a bus (e.g., SCSI), whereas networks

are common in higher-end systems (e.g., Fibre-Channel). At the top of the stack is the host, in

which there is a hardware controller that communicates withthe device, and above it a software

device driver that controls the hardware. Block-level software forms the next layer, providing a

generic device interface and implementing various optimizations (e.g., request reordering). On top

of the generic block-I/O layer is the file system. This layer is often split into two pieces: a high-

level component common to all file systems, and a specific component that maps generic operations

onto the data structures of the particular file system. A standard interface (e.g., Vnode/VFS [82])

is positioned between the two.

2.1.1 Disk Drives

Hard disk drives serve as the primary storage medium both in enterprise environments and in

personal computers. As discussed above, they are at the lowest level of the storage stack.

Disk drives are complex entities; as shown in Figure 2.1, they contain media, mechanical,

electrical, memory, and firmware components. In a hard disk,data is recorded onplatterscoated

with a ferromagnetic material by magnetizing the material in a specific direction, and data is read

by detecting the direction in which the material is magnetized. Disks typically have multiple

platters, where each platter usually has two surfaces, eachaccessed by a dedicated read/write head.

A single surface is divided into tens of thousands of concentric circular tracks and each track is

subdivided intosectors, the smallest addressable unit of data access, usually 512 bytes in size.

Each sector is protected by error correcting codes (ECC). The number of sectors on each track

varies depending on whether the track is close to the center of the disk or farther away, with tracks

farther away containing more sectors.

Beyond the magnetic medium, there are mechanical (e.g., the motor and arm assembly) and

electrical components (e.g., buses) that read and write the data. A particularly important component

is firmware – the code embedded within the drive to control most of its higher-level functions,
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including caching, disk scheduling, and error handling. This firmware code is often substantial

and complex (e.g., a Seagate drive circa 2005 contains roughly 400,000 lines of code [38]).

Disks typically use one of two different interfaces to communicate with the host: SCSI [135]

or ATA [136]. SCSI and ATA disks are different in nearly everycomponent of the disk – me-

chanics, materials, electronics, and firmware [5]; SCSI disks are built towards achieving better

performance and reliability characteristics, and are therefore more expensive. While there is no

inherent interface-related requirement that SCSI disks and ATA disks be built differently, they are

built differently since they address different market segments. Over the years, SCSI disks have

typically been used in enterprise systems involving mission-critical or business-critical applica-

tions, while ATA disks have typically been used in personal computers. More recently, ATA disks

are being increasingly used in various enterprise systems as well (e.g., archival, or backup storage

systems) [12, 48]. In this dissertation, we also refer to ATAdisks asnearlinedisks and SCSI disks

asenterprisedisks. Note that while the logical interface (command set) is SCSI in an enterprise

disk, the physical interface (connector/transport) may bedifferent (e.g., Fibre-Channel).

The disk interface abstracts the disk as a linear array of equal sized blocks each identified by a

logical block number (LBN). Internally, the disk reserves asmall portion of sectors calledspares,

which are not initially mapped to a particular LBN. The disk firmware can map a spare sector to

the LBNs of failed sectors. Today’s disk drives allocate a few thousand spare sectors for such

re-mapping.

2.2 Disk Failures

This section provides a background on disk failures, with a focus on partial disk failures. We

first discuss the different sources of failures in the storage stack and then describe specific types of

partial disk failures. In reality, any element of the storage stack could cause a failure that appears

as a “disk failure.” We refer to such failures in other subsystem components as disk failures as

well; most systems today cannot distinguish between failures that occur at different levels of the

stack.
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2.2.1 Sources of Failures

This section presents different causes of partial failuresin the storage subsystem. Almost all

layers of the storage stack contribute to these partial failures.

Media: There are two primary problems that occur in the magnetic medium. First, the

medium may have imperfections. These imperfections could either cause the medium to

be poorly magnetized during writes, or could cause a “head crash”, where the drive head

contacts the surface momentarily. Second, a medium scratchcould occur when a particle

is trapped between the drive head and the media [119]. Such dangers are well-known to

drive manufacturers, and hence today’s disks park the drivehead when the drive is not in

use to reduce the number of head crashes; SCSI disks sometimes include filters to remove

particles [5]. Media errors most often lead to permanent failure of individual disk blocks.

Mechanical: “Wear and tear” eventually leads to failure of moving parts.A drive motor

can spin irregularly or fail completely. Erratic arm movements can cause head crashes and

media flaws. Inaccurate arm movement caused by rotational vibration can misposition the

drive head during writes, leaving blocks inaccessible or corrupted upon subsequent reads.

“High-fly” writes, in which the gap between the disk head and the medium is too high, could

cause data to be poorly written, thereby causing an ECC errorwhen the sector is eventually

read.

Electrical: A power spike or surge can damage in-drive circuits and hencelead to drive

failure [138]. Thus, electrical problems can lead to entiredisk failure.

Drive firmware: Interesting errors arise in the drive controller, which consists of many

thousands of lines of real-time, concurrent firmware. For example, disks have been known

to return correct data but circularly shifted by a byte [85] or have memory leaks that lead

to intermittent failures [138]. One of the disk drive modelsin our study of partial disk

failures [13] had a bug specific to flushing the disk’s write cache. Upon reception of a cache

flush command, the disk drive sometimes returned success without committing the data to
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the disk medium. If, for any reason, the disk was then power-cycled the data just written

was lost. This type of silent data corruption is called a “lost write” [131]. In summary, drive

firmware bugs often lead to sticky or transient block corruption.

Transport: The transport connecting the drive and host can also be problematic. For exam-

ple, a study of a large disk farm [137] reveals that most of thesystems tested had interconnect

problems, such as bus timeouts. Parity errors also occurredwith some frequency, either caus-

ing requests to succeed (slowly) or fail altogether. Thus, the transport often causes transient

errors for the entire drive.

Bus controller: The main bus controller can also be buggy. For example, the EIDE con-

troller on a particular series of motherboards incorrectlyindicates completion of a disk re-

quest before the data has reached the main memory of the host,leading to silent data corrup-

tion [145]. A similar problem causes some other controllersto return status bits as data if the

floppy drive is in use at the same time as the hard drive [54]. Others have also observed IDE

protocol version problems that yield corrupt data [48]. In summary, controller problems can

lead to transient block failure and silent data corruption.

Low-level drivers: Recent research has shown that device driver code is more likely to

contain bugs than the rest of the operating system [34, 45, 133]. While some of these bugs

will likely crash the operating system, others can issue disk requests with bad parameters,

data, or both, resulting in silent data corruption.

File system: Finally, at the very top of the storage stack, the file system itself may contain

bugs that lead to silent data corruption. Recent research has identified various bugs various

file system components including the journaling infrastructure, file-system mount code, and

in failure-handling code [104, 148, 149, 150].



18

2.2.2 Types of Partial Disk Failures

We now describe specific types of partial disk failures related to this dissertation. Many of the

problems described in the previous subsection result in oneor more of the following partial disk

failures.

Latent sector error: This error occurs when the disk drive cannot read or write a particular disk

sector or when the disk encounters an uncorrectable ECC error. Any data previously stored

in the sector is usually lost. Causes of latent sector errorsinclude: (a) medium imperfec-

tions, (b) loose particles causing medium scratches, (c) “high-fly” writes leading to incorrect

bit patterns on the medium, (d) rotational vibration, (e) read/write head hitting a bump or

medium, and (f) off-track reads or writes. Latent sector errors are detected and reported by

the disk drive. They are called latent because this detection and report occurs only when the

sector is accessed by the system and the error is hidden untilsuch time.

Before reporting latent sector errors, disks typically perform error correction with multiple

retries of a given operation. Additionally, after a (configurable) number of unsuccessful

retries, disk drives can automaticallyre-map failed writes to spare sectors. Sparing and

re-mapping can only occur on detected write errors; read errors require higher-level mecha-

nisms such as RAID reconstruction to obtain the lost data.

Not-ready-condition error: These errors are reported by the disk drive when the drive is not

ready to handle a command from the host. This error could alsoindicate that the disk itself

is not accessible. These errors are often resolved by systems by waiting and retrying the disk

operation. These errors do not lead to permanent data loss unless the disk has experienced a

complete failure.

Recovered error: These “errors” are warnings issued by the disk drive. They occur in scenarios

very similar to that of latent sector errors. The only (but crucial) difference is that in this

case, disk-level retries and error correction successfully recover data from a sector (although

the operation failed the first time it was tried).
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Silent data corruption: This partial disk failure is a situation where the data in a disk block is

incorrect. The corruption could be caused by any element of the storage stack. The causes

are typically bugs in either software or firmware components. The main issue with silent

data corruption is that it is not reported by the disk drive orany other hardware component.

Various forms of silent data corruption could occur. The remaining partial disk failures

below are different forms of silent data corruption.

Bit corruption: These corruptions are scenarios in which the bits stored in adisk block get cor-

rupted, or the bits are modified by some element of the storagestack during a write operation.

Torn write: These corruptions are scenarios in which the disk drive endsup writing only a portion

of the original disk request. Often, this occurs when the drive is power-cycled in the middle

of processing the write request. Therefore, future reads return some sectors with the new

data and some with the old data.

Lost write: These corruptions occur when buggy firmware components return a success code to

indicate completion of a write, but do not perform the write to the disk medium in reality.

Misdirected write: These corruptions occur when buggy firmware writes the data in a write re-

quest to the wrong disk or the wrong location within a disk. The effect of this error is

two-fold: the original disk location does not receive the write it is supposed to receive (lost

write), while the data in a different location is overwritten (with effects similar to bit corrup-

tion, torn write, or lost write depending on how the disk block is used).

2.3 RAID

RAID stands for “Redundant Array of Independent Disks”. It is the general name for tech-

niques that store data on multiple disks in order to survive the failure of one or more of the

disks [101]. Since it was originally proposed, it has been employed in nearly every enterprise

storage system. RAID has also been implemented using both hardware and software; various off-

the-shelf hardware RAID cards [1] and software implementations [47] are available; even in the
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case of enterprise systems, some have adopted a hardware-based approach [37], while some use a

software-based approach [94]. In the storage stack (Figure2.1), the RAID layer can be inserted

just below the generic block I/O layer if it is implemented insoftware or as the device controller

itself if it is implemented in hardware.

Many differentlevelsof RAID have been proposed [101]; the levels differ in the kind of re-

dundant data that is stored, and hence in the number of disk failures that can be tolerated, the extra

space used, and the performance overheads. One popular RAIDlevel is RAID-1 or “mirroring,”

wherein each data block is stored on two different disk drives, so that the failure of one of the disks

does not lead to any data loss. Other popular RAID levels include RAID-4 and RAID-5, wherein

parity information is calculated for corresponding blockson a set of disks and is stored on another

disk; in the case of RAID-4, the parity block is always storedon a separate parity disk, while in

RAID-5, each disk performs the role of the parity disk for a portion of the disk blocks. The set of

corresponding blocks for which parity is calculated is referred to as astripe.

Over the years, various kinds of enhancements have been developed for RAID. One example is

the AutoRAID system [146], where different data blocks in the storage system are automatically

stored at different RAID levels, depending on their usage. Also, while the original RAID levels (up

to 5) guaranteed protection against a single disk failure, numerous schemes have been developed

to tolerate double disk failures [3, 22, 35, 57, 59, 98]

The primary role of RAID is to tolerate complete disk failures, while also offering protection

against errors such as latent sector errors that are reported by the disk drive. More recent RAID

systems also offer varying degrees of protection against data corruption [24, 37, 65, 131]. In

some of these cases, extra protection is possible due to the close interaction of the file system

and RAID layers [24, 130, 131]. We identify some implications of partial disk failures for RAID-

system design in discussing the characteristics of failures in Chapter 3 and then perform a detailed

examination of the exact data protection offered by variousRAID systems in Chapter 4.
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Level Technique Comment

DZero No detection Assumes disk works

DErrorCode Check return codes from lower levelsAssumes lower level can detect errors

DSanity Check data structures for consistency May require extra space per block

DRedundancy Redundancy over one or more blocksDetects corruption in end-to-end way

Table 2.1 IRON detection taxonomy.The table describes the different levels of detection in theIRON
taxonomy.

2.4 IRON Taxonomy

We now describe an extended version of the IRON taxonomy of failure-handling strategies

that we developed in previous work [104]. IRON stands for “Internal RObustNess”; it focuses on

failure-handling strategies to be used, notacrossdisks as is common in RAID systems, butwithin

a single disk.

To cope with partial disk failures, storage-stack components may include machinery todetect

(LevelD) these failures,react(LevelR) to them, and alsopreventthem (LevelP ). Tables 2.1, 2.2,

and 2.3 present our IRON detection, reaction, and prevention taxonomies, respectively. We have

found from experience that this taxonomy can be used to sufficiently describe the failure-handling

strategies of various file systems and virtual-memory systems. However, the taxonomy is by no

means complete. Many other techniques are likely to exist, just as many different RAID variations

have been proposed over the years [4, 146]; indeed, we have extended the taxonomy to include a

prevention axis since it was originally proposed.

2.4.1 Detection Levels

LevelD techniques are used by systems to detect that a problem has occurred (i.e., that a block

cannot currently be accessed or has been corrupted).
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Level Technique Comment

RZero No recovery Assumes disk works

RReport Report error Informs user

RRecord Record that operation did not succeed Stops/pauses dependent actions

RStop Stop activity (crash, prevent writes) Limit amount of damage

RGuess Return “guess” at block contents Could be wrong; failure hidden

RRetry Retry read or write Handles failures that are transient

RRepair Repair data structs Could lose data

RRemap Remaps block or file to different localeAssumes disk informs system of failure

RRedundancy Block replication or other forms Enables recovery from loss/corruption

Table 2.2 IRON reaction taxonomy. The table describes the different levels of reaction in the IRON
taxonomy.

Level Technique Comment

PZero No prevention Assumes disk works

PRemember Remembers disk errors Prevents usage of blocks with errors

PReboot Periodically re-initializes the system Tries to avoid bugs due to excess state

PLoadBalance Balances the read/write load on blocksAttempts to reduce “wear” on blocks

PScan Performs read/write checks Detects possibly “sticky” block errors

Table 2.3 IRON prevention taxonomy. The table describes the different levels of prevention in the
IRON taxonomy.
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Zero: The simplest detection strategy is none at all; the file system assumes the disk works and

does not check return codes. As we will see in the analysis of various systems, this approach

is surprisingly common (although often it is applied unintentionally).

ErrorCode: A more pragmatic detection strategy that a system can implement is to check return

codes provided by the lower levels of the storage system.

Sanity: The system can verify that the data structures stored on diskare consistent. This check

can be performed either within a single block or across blocks. Two kinds of checks that can

be performed are type checks and sanity checks. Type checking verifies that a disk block

contains a specific type of data structure (such as an inode).Typically, type information for

a disk block is encoded in the form of a “magic” number and stored in the disk block. Sanity

checking verifies that certain values in data structures follow constraints. For example, a

pointer value in the data structure can be compared with well-known values, such as locations

of metadata structures like the boot sector or the size of thedisk partition, to ensure that the

pointer is not corrupt.

Redundancy: The final level of the detection taxonomy is redundancy. Manyforms of redun-

dancy can be used to detect block corruption. For example, asdiscussed in the previous sub-

section,checksumminghas been used in reliable systems for years to detect corruption [18]

and has recently been applied to improve security as well [99, 129]. Checksums are par-

ticularly well-suited for detecting corruption due to firmware components (e.g., a buggy

controller that misdirects a disk write to the wrong location or does not write a given block

to disk at all). However, checksums must be carefully implemented to detect these prob-

lems [18, 130]; specifically, a checksum that is stored alongwith the data it checksums

will not detect such misdirected or lost writes. We discuss such issues in greater detail in

analyzing the protection offered by enterprise RAID systems (Chapter 4).
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2.4.2 Reaction Levels

LevelR of the IRON taxonomy describes techniques used in reacting to block failure within a

single disk drive. These techniques handle both latent sector errors and block corruptions.

Zero: Again, the simplest approach is to implement no strategy at all, not even notifying clients

that a failure has occurred.

Report: A straightforward reaction strategy is to report errors up through the system; for example,

the file system informs the application that an error occurred and assumes the client program

or user will respond appropriately to the problem.

Record: At this level, the system records that the I/O operation did not succeed. This level pre-

vents the system from performing any action that assumes successful completion of the I/O

operation. For example, when a write error is detected and the system records the error, it

does not free the “dirty” memory page assuming that it has been successfully written out to

disk, thus avoiding data loss.

Stop: One way to react to a disk failure is to stop current system activity. This action can be

taken at many different levels of granularity. At the coarsest level, one can crash the entire

machine. One positive feature is that this mechanism turns all detecteddisk failures into fail-

stop failures and likely preserves the integrity of on-diskdata structures. However, crashing

assumes the problem is transient; if the faulty block contains repeatedly-accessed data (e.g.,

a script run during initialization), the system may repeatedly reboot, attempt to access the

unavailable data, and crash again. In the case of a file system, one can choose a less drastic

approach and mount the file system in a read-only mode. This approach is advantageous in

that it does not take down the entire system and thus allows unrelated processes to continue.

Guess: As recently suggested by Rinardet al. [110], another possible reaction to a failed block

read would be to manufacture a response, perhaps allowing the system to keep running in

spite of a failure. The negative is that an artificial response may be less desirable than failing.
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Retry: A simple response to failure is to retry the failed operation. Retry can appropriately handle

transient errors, but wastes time retrying if the failure isindeed permanent.

Repair: If a system can detect an inconsistency in its internal data structures, it can likely repair

them. For example, in a file system, a block that is not pointedto, but is marked as allocated

in a bitmap, could be freed.

Remap: Similar to sector remapping performed by disk drives, systems can perform block remap-

ping. This technique can be used to fix errors that occur when writing a block, but cannot

recover from failed reads. Specifically, when a write to a given block fails, the system could

choose to simply write the block to another location. More sophisticated strategies could

remap an entire “semantic unit” at a time (e.g., a user file), thus preserving logical contigu-

ity.

Redundancy: Finally, redundancy (in its many forms) can be used to recover from block loss. The

simplest form isreplication, in which a given block has two (or more) copies in different

locations within a disk. Another redundancy approach employs parity to facilitate error

correction. Similar to RAID 4/5 [101], by adding a parity block per block group, a system

can tolerate the unavailability or corruption of one block in each such group.

2.4.3 Prevention Levels

LevelP techniques can be used to reduce the probability of occurrence of partial disk failures

or of encountering them. This prevention axis is a new addition to the IRON taxonomy; it was not

a part of the taxonomy when it was originally proposed [104].

Zero: In the simplest case, the system does not use any special prevention techniques; the system

assumes either that the disk works or that errors can be dealtwith when they occur.

Remember: A basic prevention strategy that can be used is to remember that a specific block is

“bad” once the system has had at least one bad experience in using the block. This strategy

could prevent future data loss.
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Reboot: A phenomenon that has been observed for a long time is that systems are either less likely

to fail or faults are cured if the systems are rebooted or reinitialized [28] (since the systems

can be rid of effects of transient bugs accumulated over time). This fact can be used as

a failure prevention strategy by periodically rebooting subsystems [69]. For example, the

rebooting strategy for a file system could range from unmounting and re-mounting the file

system periodically to even re-initializing the drivers and disk controllers.

LoadBalance: This prevention technique attempts to reduce the wear on disk blocks by balancing

the load on them. An example of this technique is the use of wear-leveling in file systems

for flash drives (like JFFS2 [106, 147]).

Scan: The final prevention technique is scanning the disk for bad blocks by performing accesses,

perhaps with bogus data. This technique is used in RAID systems to weed out potential

bad blocks – the process is called “disk scrubbing” [77, 119]. Systems can scan the disk

periodically during disk idle time or by using freeblock scheduling [86] and avoid using disk

blocks found to be “bad” in the scan.

2.5 Analysis of Failure Behavior

In this section, we first describe a fault-injection technique that we developed in previous

work [104] to uncover the disk-failure-handling policy of systems, and then present an overview

of the results we obtained when we applied our technique on commodity file systems.

2.5.1 Type-Aware Fault Injection

The primary objective of our fault-injection technique is to determine which IRON detection

and reaction techniques each system uses and the assumptions each makes about how the under-

lying storage system can fail. By comparing the failure policies across systems, we can learn not

only which systems are the most robust to partial disk failures, but also suggest improvements for

each. We have used this methodology in studying the behaviorof both virtual-memory systems
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(Chapter 5) and file systems ([104] and Chapter 6). This section provides a brief outline of the

methodology; details specific to each study are described inthe corresponding chapters.

Our approach is to inject faults just beneath the system under test and observe how the system

responds. If the fault policy is entirely consistent withina system, this could be done quite simply;

we could run any workload, fail one of the blocks that is accessed, and conclude that the response

to this block failure fully demonstrates the failure policyof the system. However, systems are in

practice more complex: they employ different techniques depending upon the operation performed

and the type of the faulty block.

Therefore, to extract the failure policy of a system, we musttrigger all interesting cases. Our

challenge is to coerce the system down its different code paths to observe how each path handles

failure. This requires that we run workloads exercising allrelevant code paths in combination with

induced faults on all data structures.

Type Awareness:Many standard fault injectors [26, 123] fail disk blocks in atype oblivious

manner; that is, a block is failed regardless of how it is being used by the system. However,

repeatedly injecting faults into random blocks and waitingto uncover new aspects of the failure

policy would be a laborious and time-consuming process, likely yielding little insight. The key

idea that allows us to test a system in a relatively efficient and thorough manner istype-aware fault

injection, which builds on our previous work with “semantically-smart” disk systems [16, 125, 126,

127]. With type-aware fault injection, we fail blocks of a specific type (e.g., an inode block in a

file system or a user data page in a virtual-memory system). Type information is crucial in reverse-

engineering failure policy, allowing us to discern the different strategies that a system applies for

its different data structures. The disadvantage of our type-aware approach is that the fault injector

must be tailored to each system. However, we believe that thebenefits of type-awareness clearly

outweigh these complexities.

Context Awareness: Our goal in fault injection is to exercise the system as thoroughly as

possible, following as many internal code paths as possible. We believe that different code paths

using the same data structures may not respond to failure in aconsistent manner. Therefore, we

use a suite of workloads that stress the system in different ways. These workloads are fine-grained;
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each workload performs a very specific action, often corresponding to a single system call (e.g.,

open of a file). Each system under test also introduces special cases that must be stressed. For

example, in the case of the ext3 file system, the inode uses an imbalanced tree with indirect,

doubly-indirect, and triply-indirect pointers, to support large files; hence, our workloads ensure

that sufficiently large files are created to access these structures.

Our mechanism for injecting faults is to use a software layerdirectly beneath the system (e.g.,

a pseudo-device driver in Linux). This layer injects both block read and write errors, and can also

corrupt contents of disk blocks. By injecting failures justbelow the system, we emulate faults that

could be caused by any of the layers in the storage subsystem.Therefore, unlike approaches that

emulate faulty disks using additional hardware [26], we canimitate faults introduced by buggy

device drivers and controllers. A drawback of our approach is that it does not discern how lower

layers handle disk faults; for example, some SCSI drivers retry commands after a failure [109].

However, given that we are characterizing how a specific system responds to partial disk failures,

we believe this is the correct layer for fault injection.

After running a workload and injecting a fault, the final stepis to determine how the system

behaved. To determine how a partial disk failure affected the system, we compare the results of

running with and without the failure. We perform this comparison across all observable outputs

from the system: any error codes and data returned by the system API, the contents of the system

log, and the low-level I/O traces recorded by the fault-injection layer. This is the most human-

intensive part of the process, as it requires manual inspection of the visible outputs.

2.5.2 Analysis of File Systems

We have performed a failure-policy analysis for four commodity file systems: ext3 [141], Reis-

erFS (version 3) [108], and IBM’s JFS [20] on Linux and NTFS [128] on Windows XP; we have

analyzed the impact of read errors, write errors, and corruption of entire disk blocks in these file

systems. In this subsection, we first present the results we found for JFS, then summarize the

findings of the entire study [104].
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Figures 2.2 and 2.3 present the detection and reaction techniques used by JFS to handle read,

write, and corruption failures. Each row in the set of figurescorresponds to a data structure. Each

column corresponds to a specific workload. The symbols in each cell corresponds to how JFS

responds when the data structure for that row fails when accessed as a result of the workload for

that column. Note that symbols corresponding to different policies may be superimposed. Table 2.4

summarizes our observations from the experiments.

We now summarize the observed response to partial disk failures for all of the file systems in

the study.

Ext3: Overall simplicity. Ext3 implements a simple and mostly reliable failure policy,

matching the design philosophy found in the ext family of filesystems. It checks error

codes, uses a modest level of sanity checking, and reacts by reporting errors and aborting

operations. The main problem with ext3 is its failure handling for write errors, which are

ignored and cause serious problems including possible file-system corruption.

ReiserFS: First, do no harm. ReiserFS is the most concerned about disk failure. This

concern is particularly evident upon write failures, whichoften induce apanic; ReiserFS

takes this action to ensure that the file system is not corrupted. ReiserFS also uses a great

deal of sanity and type checking. These behaviors combine toform a Hippocratic failure

policy: first, do no harm.

JFS: The kitchen sink. JFS is the least consistent and most diverse in its failure detection

and reaction techniques. For detection, JFS sometimes usessanity, sometimes checks error

codes, and sometimes does nothing at all. For reaction, JFS sometimes uses available redun-

dancy, sometimes crashes the system, and sometimes retriesoperations, depending on the

block type that fails, the error detection and the API that was called.

NTFS: Persistence is a virtue. Compared to the Linux file systems, NTFS is the most

persistent, retrying failed requests many times before giving up. It also seems to report

errors to the user quite reliably. We draw more detailed conclusions about NTFS behavior in

analyzing its response to corrupt pointers in Chapter 6.
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Figure 2.2JFS detection policies.The tables indicate the detection policies of JFS for read, write, and
corruption faults injected for each block type across a range of workloads. Each row corresponds to a block
type and each column corresponds to a file operation. The symbols are[©] for DZero, [−] for DErrorCode,
and [|] for DSanity. A gray box indicates that the workload is not applicable forthe block type. If multiple
policies are observed, the symbols are superimposed.
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Figure 2.3 JFS reaction policies.The tables indicate the reaction policies of JFS for read, write, and
corruption faults injected for each block type across a range of workloads. Each row corresponds to a block
type and each column corresponds to a file operation. The symbols are[©] for RZero, [/] for RRetry , [−]
for RReport, [\] for RRedundancy, and[|] for RStop. A gray box indicates that the workload is not applicable
for the block type. If multiple policies are observed, the symbols are superimposed.
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Detection

Error codes (DErrorCode) are used to detect read failures, while most write errors are ig-
nored (DZero), with the exception of journal superblock writes. JFS employs only minimal
type checking; the superblock and journal superblock have magic and version numbers that
are checked. Other sanity checks (DSanity) are used for different block types. For exam-
ple, internal tree blocks, directory blocks, and inode blocks contain the number of entries
(pointers) in the block; JFS checks to make sure this number is less than the maximum pos-
sible for each block type. As another example, an equality check on a field is performed
for BMAP to verify that the block is not corrupted.

Reaction

The reaction strategies of JFS vary dramatically dependingon the block type. For example,
when an error occurs during a journal superblock write, JFS crashes the system (RStop);
however, other write errors are ignored entirely (RZero). On a block read failure to the
primary superblock, JFS accesses the alternate copy (RRedundancy) to complete the mount
operation; however, a corrupt primary results in a mount failure (RStop). Explicit crashes
(RStop) are used when aBMAP or IMAP read fails. Error codes for all metadata reads are
handled by generic file-system code called by JFS; this generic code attempts to recover
from read errors by retrying the read a single time (RRetry). Finally, the reaction for a
failed sanity check is to report the error (RReport) and remount the file system as read-only
(RStop); during journal replay, a sanity-check failure causes thereplay to abort (RStop).

Bugs and Inconsistencies

We found various problems with the JFS failure policy. First, while JFS has some built-
in redundancy, it does not always use it as one would expect; for example, JFS does not
use its secondary copies of aggregate inode tables (specialinodes used to describe the
file system) when an error code is returned for an aggregate inode read. Second, a blank
page is sometimes returned to the user (RGuess), although we believe this is not by design
(i.e., it is a bug); for example, this occurs when a read to an internal tree block does not
pass its sanity check. Third, some bugs limit the utility of JFS reaction mechanisms. For
example, although generic file-system code detects read errors and retries, a bug in the JFS
implementation leads to ignoring the error; in most of thesecases JFS subsequently detects
a problem through sanity checks and reports an error (the figure shows only theDErrorCode

andRRetry since the rest of the response occurred due to a bug); in some cases, the bug
leads to JFS corrupting the file system.

Table 2.4 JFS behavior details.This table describes the various detection and reaction policies used
by JFS and also points out inconsistencies and bugs in the JFSfailure handling.
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Overall, we find that different file systems use different sets of policies to detect and react to

partial disk failures. For example, JFS was only Linux file system that used some redundancy to

recover (in the case of the superblock). Even in using the same policies, the degree to which a

policy is used changes from one file system to another. For example, while all file systems employ

retries to some extent, NTFS retries a failed operation manymore times than the other file systems.

We now present a broad analysis of the techniques applied by all of the file systems to detect

and react to partial disk failures. We concentrate upon techniques that are underused, overused, or

used in an inappropriate manner.

Detection and Reaction: Illogical inconsistency is common. We found a high degree of

illogical inconsistencyin failure policy across all file systems. For example, ReiserFS per-

forms a great deal of sanity checking; however, in one important case, it does not (journal

replay), and the result is that a single corrupted block in the file-system journal can corrupt

the entire file system. JFS is the most illogically inconsistent, employing different tech-

niques in scenarios that are quite similar. We note that inconsistency in and of itself is not

problematic [44]; for example, it would belogically inconsistent (and a good idea, perhaps)

for a file system to provide a higher level of redundancy to data structures it deems more

important, such as the root directory [126]. What we are criticizing are inconsistencies that

are undesirable (and likely unintentional); for example, JFS will attempt to read the alter-

nate superblock if a read failure occurs when reading the primary superblock, but it does not

attempt to read the alternate if it deems the primary corrupted.

Detection and Reaction: Bugs are common.We also found numerous bugs across the file

systems we tested, some of which are serious, and many of which are not found by other

sophisticated techniques [150]. We believe this is generally indicative of the difficulty of

implementing a correct failure policy; it certainly hints that more effort needs to be put into

testing and debugging of such code. One suggestion in the literature that could be helpful

would be to periodically inject faults in normal operation as part of a “fire drill” [100]. Our

method reveals that testing needs to be broad and cover as many code paths as possible;
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for example, only by testing the indirect-block handling ofReiserFS did we observe certain

classes of fault mishandling.

Reaction: Stop should not be overused.One downside to halting file-system activity in

reaction to failure is the inconvenience it causes: file-system recovery takes time and often

requires administrative involvement to fix. However, all ofthe file systems used some form

of RStop when something as innocuous as a read failure occurred; instead of simply returning

an error to the requesting process, the entire system stops.Such draconian reactions to

possibly temporary failures should be avoided.

Detection and Reaction: Redundancy is not used.While virtually all file systems include

some machinery to detect disk failures, none of them applyredundancyto enable recovery

from such failures. The lone exception is the minimal amountof superblock redundancy

found in JFS; even this redundancy is used inconsistently. Also, JFS places the copies in

close proximity, making them vulnerable to spatially-local errors.

These observations can help improve failure handling in specific file systems, and can also

influence the development of other techniques to tolerate partial disk failures. Indeed, these obser-

vations influence the fault-tolerance solution we have developed (Chapter 7). Specifically, since we

find that (i) no single file system is capable of handling partial disk failures, (ii) file systems also

contain bugs, and (iii) different file systems handle partial disk failures differently, our solution

uses multiple different file systems to store data reliably.
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Chapter 3

Characteristics of Partial Disk Failures

Detailed knowledge of real-world failure characteristicsis essential for building systems that

can tolerate failures effectively and for examining whether existing systems meet fault-tolerance

goals. To date, there has been little field data available about partial disk failures, other than from

small-scale studies [53]. This situation persists despitethe recent influx of data on absolute disk

failures [41, 102, 118, 121, 122]. Therefore, current techniques to handle partial disk failures have

to be built based on anecdotal information and back-of-the-envelope calculations [119].

In this chapter, we present the first large-scale study of partial disk failures. We focus on two

important types of partial disk failures:latent sector errorsandsilent data corruptions. These two

types of failures are important since both of them could leadto data loss.

We analyze data from more than 50,000 production and development storage systems devel-

oped by NetAppTM and installed at many of their customer sites (e.g., different FAS series and

NearStore systems [95]). The data pertains to partial disk failures affecting the 1.53 million disks

used by these storage systems. This set of disks is diverse; they were sourced from multiple ven-

dors; there are both nearline (SATA) and enterprise (Fibre-Channel) disks; within each of the two

classes, there are different disk families; within each family, there are different capacities. This

diversity helps make the results of our study more generallyapplicable.

Our study is possible because NetAppTM storage systems use various techniques to detect and

recover from various partial disk failures. The partial disk failures thus detected are reported to

a central repository called theNetApp Autosupport Database. This repository also stores details

about each disk drive and storage system. We analyze the failures reported to this repository,



36

starting from January 2004 for a period of 32 months for the study of latent sector errors, and for

a period of 41 months for the study of silent data corruptions.

Through our study, we answer several important questions about partial disk failures, including:

• What is the magnitude of this threat? What are the average andworst-case percentages of

disks affected by partial disk failures in given period of time?

• What factors impact the development of partial disk failures? For instance, do older disks

have a higher probability of being affected?

• Are partial disk failures independent events? Some file systems use intra-disk redundancy

to overcome partial disk failures [20, 88]; should these systems be concerned about spatial

locality of partial disk failures?

• What techniques are useful for detecting partial disk failures? Is “disk scrubbing,” a periodic

scan of all disk blocks, useful for detecting partial disk failures?

The rest of the chapter is organized as follows. Section 3.1 describes the overall architecture of

the storage systems from which the data was collected. Section 3.2 describes our data collection

and analysis methodology and also outlines some limitations of the study. Section 3.3 presents

the analysis of latent sector errors. Section 3.4 presents the analysis of silent data corruptions.

Section 3.5 discusses lessons that we learn from the data forbuilding systems that can tolerate

partial disk failures. Section 3.6 concludes the chapter.

3.1 Storage-System Architecture

In this section, we describe the overall architecture of thestorage systems used in the study,

focusing on failure-handling mechanisms, and error-logging infrastructure.

3.1.1 Storage Stack

Physically, the storage system is composed of a storage controller that contains the CPU, mem-

ory, network interfaces, and storage adapters. The storagecontroller is connected to a set of disk
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shelves via two independent Fibre-Channel loops. The disk shelves house individual disk drives.

A system consists of at least 14 disks and can have as many as several hundred disks. These disks

may either be enterprise (Fibre-Channel) disk drives or nearline (SATA) disks. Nearline drives use

hardware adapters to convert the SATA interface to the Fibre-Channel protocol. Thus, the storage

controller views all drives as being Fibre-Channel (however, for the purposes of the study, we can

still identify whether a drive is nearline or enterprise using its model type). Such an architecture

aids in using the same software stack for different hardwarecomponents.

The software stack of the storage system is called Data ONTAPTM [94]. Its back-end is primar-

ily composed of three layers: the WAFLTM file system [67], the RAID layer, and the storage layer.

The file-system layer processes client requests by issuing read and write operations to the RAID

layer. The RAID layer transforms file-system requests into logical-block requests and issues them

to the storage layer. The RAID layer also generates parity for writes and reconstructs data after

failures. The storage layer includes a set of customized device drivers. This layer communicates

with physical disks using the SCSI command set [135].

3.1.2 Failure-Handling Mechanisms

The system, like other commercial storage systems, is designed to handle a wide range of

disk-related failures including latent sector errors, recovered errors, not-ready-condition errors,

transport problems, and various forms of silent data corruption. This failure-handling helps avoid

potential data loss or data unavailability due to these failures. This subsection describes the han-

dling of latent sector errors and silent data corruptions, the proactive detection of these failures,

and disk replacement decisions.

3.1.2.1 Latent Sector Errors

Latent sector errors are detected by the storage layer when the disk drive returns aCheck

conditionwith the sense code set toMedium error. As the name suggests, a latent sector error is

reported at the granularity of a single disk sector (512 or 520 bytes, depending whether the disk is

nearline- or enterprise-class). Error handling for latentsector errors depends on the type of disk
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request and the type of disk. For enterprise disks, the storage layer re-maps the bad sector to a

spare sector. If the request is a write, the storage layer re-issues the write to the re-mapped sector.

If the request is a verify or a read, the RAID layer reconstructs the sector from the other disk drives

and passes it to the storage layer for rewrite. For nearline disks, sector re-mapping on failed writes

is automatically performed by the disk and not reported to the storage layer. The system handles

read and verify errors in the same fashion for both nearline and enterprise drives.

3.1.2.2 Data Corruption

The system uses various data-integrity checks to detect corruption. The system writes a 64-byte

data-integrity segmentalong with each disk block. Figure 3.1 shows two techniques for storing this

extra information, and also describes its structure. For enterprise disks, the system uses 520-byte

sectors. Thus, a 4-KB file-system block is stored along with 64 bytes of data-integrity segment in

eight 520-byte sectors. For nearline disks, the system usesthe default 512-byte sectors and stores

the data-integrity segment for each set of eight sectors in the following sector. Any corruption that

is detected is therefore at the granularity of a file-system block (i.e., 4 KB).

One component of the data-integrity segment is a checksum ofthe entire 4-KB file-system

block. The checksum is validated by the RAID layer whenever the data is read. Once a corruption

has been detected, the original block can usually be restored through RAID reconstruction. We

refer to corruptions detected by RAID-level checksum validation aschecksum mismatches. A

checksum mismatch could result from the following silent data corruptions: (i) bit corruption, (ii)

a torn write, or (iii) a misdirected write.

A second component of the data-integrity segment is block-identity information. In this case,

the fact that the file system is part of the storage system is utilized. The identity is the disk block’s

identity within the file system (e.g., this block belongs to inode 5 at offset 100). This identity

is cross-checked at file-read time to ensure that the block being read belongs to the file being

accessed. If, on file read, the identity does not match, the data is reconstructed from parity. We

refer to corruptions that are not detected by checksums, butdetected through file-system identity



39

(a) Format for enterprise disks
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64−byte Data
Integrity Segment

(b) Format for nearline disks
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4 KB File system data block

512 512 512 512 512 512 512 512 512448 bytes unused

64−byte Data
Integrity Segment + 

(c) Structure of the data-integrity segment (DIS)

.

Checksum of data block

Identity of data block

........
Checksum of DIS

Figure 3.1 Data-Integrity Segment. The figure shows the different on-disk formats used to store the
data-integrity segment of a disk block on (a) enterprise drives with 520-byte sectors, and on (b) nearline
drives with 512-byte sectors. The figure also shows (c) the structure of the data-integrity segment. In
particular, in addition to the checksum and identity information, this structure also contains a checksum of
itself.
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validation asidentity discrepancies. An identity discrepancy could result from a lost write, or a

misdirected write. Note that identity discrepancies can bedetected only during file-system reads.

3.1.2.3 Proactive Failure Detection

The storage system periodicallyscrubsall disks as a proactive measure to detect latent sector

errors and corruption. Two types of scrubs are performed – media scrubs and data scrubs.

Media scrubs use a SCSI VERIFY command to validate a disk sector’s integrity. This command

performs an ECC check of the sector’s content from within thedisk without transferring data to

the storage layer. On failure, the command returns a latent sector error. The storage layer performs

media scrubs continuously in the background, with the rate of scrub adjusted so as not to impact

foreground performance. In most cases, media scrubs complete within two weeks.

Data scrubs are primarily used to detect data corruption. This scrub issues read operations

for each disk block, computes a checksum over its data, compares the checksum to the checksum

located in the data-integrity segment, and reconstructs the disk block from other disk blocks in

the RAID stripe if the checksum comparison fails. If no reconstruction is necessary, the parity of

the data blocks in the RAID stripe is generated and compared with the parity stored in the parity

block. In a RAID system with single parity, if the parity doesnot match the verified data, the scrub

process fixes the parity by regenerating it from the data blocks. In a system protected by double

parity [35], it is possible to tell which of the parity or datablock is corrupt, thus initiating recon-

struction for the corrupt one. We refer to all of these cases of mismatch between data and parity as

parity inconsistencies. A parity inconsistency could result from a lost write, a misdirected write, a

processor miscalculation, or a software bug. Note that datascrubs are unable to validate file sys-

tem identity information stored in the data-integrity segment since, by its nature, this information

only has meaning to the file system and not the RAID-level scrub. Depending on system load,

data scrubs are initiated on Sunday evenings. From our data,we find that an entire RAID group is

data-scrubbed approximately once every two weeks on an average. However, we cannot ascertain

from the data that every disk in the study has been scrubbed.
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3.1.2.4 Disk Replacement

The storage system uses proprietary heuristics for determining when to replace a disk drive.

These heuristics are threshold-based and take into accountthe time between partial failures, as

well as the total number of failures encountered. Other systems use similar heuristics to predict

further disk failures based on observed failures; for example, Linux systems often use SMART [2].

Our study enables the tuning of thresholds used to predict disk failures.

3.1.3 Data Collection

The storage system has a built-in, low-overhead mechanism calledAutosupportto log impor-

tant system events back to a central repository called theNetApp Autosupport Database. These

messages can be enabled for a variety of system events including partial disk failures. These logs

allow customized support based on observed events. For example, it enables proactive actions such

as replacement of a disk based on the number of latent sector errors that have been observed during

a time window. Not all NetApp customers enable logging, although a large percentage do. Those

that do, sometimes do so only after some period of initial use. The NetApp Autosupport Database

has been used for other disk failure studies as well [70, 122].

Disks undergo rigorous testing both at NetApp and by the diskvendor before they are shipped.

The partial disk failures detected in in-house testing are not reported to the database and thus not

reflected in our study. Sectors with errors are automatically re-mapped during this testing process.

Note that this testing may even eliminate disks that would have otherwise shown up in our data as

highly error-prone.

We study disk-failure data reported to the NetApp Autosupport Database, starting from January

2004 for a period of 32 months for the study of latent sector errors, and for a period of 41 months

for the study of silent data corruptions.
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3.2 Methodology

We first describe some terminology and our analysis methodology. Then, we outline some

limitations of the study. Next, we motivate why we perform the set of analyses that we do. Finally,

we present notation used to discuss our results.

3.2.1 Terminology

We use the following terms in the remaining sections.

Disk class: Enterprise or nearline disk drives with respectively Fibre-Channel and ATA interfaces.

Disk family: A particular disk drive product. The same product (and hencea disk family) may be

offered in different capacities (sizes). Typically, disksin the same family only differ in the

number of platters and/or read/write heads [121].

Disk model: The combination of a disk family and a particular disk size.

Disk age: The amount of time a disk has been in the field since its ship date, rather than the

manufacture date. In practice these these two values are typically within a month of each

other.

Error disk: A disk drive that has at least one latent sector error.

Corrupt block: A 4-KB file-system block with a checksum mismatch.

Corrupt disk: A disk drive that has at least one corrupt block.

3.2.2 Analysis Methodology

Our analysis of partial disk failures is based on a sample of 1.53 million disk drives of 2 dif-

ferent disk classes (nearline and enterprise), 14 different disk families and 31 distinct disk models

across these families. In our analyses, we typically separate out the results by the disk model; as

we shall see later, the disk model may impact the developmentof partial failures.

We now describe various constraints that we use in our analysis:
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• We constrain the data by the age of the disk drives; that is, wetypically look at the failures

that occur in the firstN months of use of the disk drive. This constraint is used to eliminate

the impact of variations due to disk age; many of the drives inthe study were shipped on

different dates and have been in the field for different amounts of time. N is typically 18

months for analyses involving latent sector errors and 17 months for corruptions.

• We analyze only those disk models of which there are at leastD disks in the field for the

time period of a given analysis. This constraint is used since disk failures may be rare events

and one needs to have a sufficient number of disk drives to arrive at conclusions with a

reasonable degree of confidence.D is 1000 for the various analyses of both latent sector

errors and corruptions.

• We analyze only those disk models of which there are at leastE error disks (or corrupt disks)

for the time period of a given analysis. This constraint is used for the same reason as the

previous one. It is applied only in those cases where the properties of error disks are being

analyzed (e.g., the number of partial failures that an error disk develops). E is 50 for latent

sector errors and 15 for corruptions.

• We analyze only those disk models for which there are total ofat leastF failures for the time

period of an analysis. This constraint is only applied in those cases where the properties of

the failures are being analyzed (e.g., the fraction of failures detected by different types of

disk requests).F is 1000 for latent sector errors and 500 for corruptions.

We use the specific numbers in the constraints above with a view to achieving a balance be-

tween obtaining as reliable statistics as we can for each disk model and including as many disk

models in each analysis as possible.

While we usually present data for individual disk models, wesometimes also report averages

(mean values) for nearline disks and enterprise disks. Since the sample size for different disk

models in each disk class varies considerably, we weigh the average by the sample size of each

disk model in the respective class.
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3.2.3 Limitations

The study has a few limitations that mostly stem from the datacollection process.

First, for a variety of reasons, disks may be removed from thesystem. Our study includes those

disks up to the point of their removal from the system. Therefore, we may not observe errors from

otherwise error prone disks after some period of time.

Second, nearline disks automatically perform sector reassignment for latent sector errors during

write operations; see Section 3.1.2.1. Thus, latent sectorerrors encountered during writes for this

class of disks are not propagated beyond the disk and nearline error rates do not reflect these write

errors.

Third, since the logging infrastructure has been built withcustomized support as the primary

purpose, the data can be used to answer most but not all questions that are interesting for a study

such as ours. For example, while we can identify the exact disk when an error is detected during a

scrub, we cannot verify that every disk in the study has been scrubbed periodically in the absence

of errors. This limits our ability to precisely identify theextent to which scrubbing is useful.

3.2.4 Motivation

In this subsection, we preview and motivate the various analyses we perform using our data:

Factors: We examine how different factors affect the development of partial disk failures.

First, we explore the impact of disk class. This analysis is important because it identifies

systems that are likely to be affected. For example, if nearline disks were affected more,

then personal computers that mostly use such disks would have to include mechanisms to

deal with partial disk failures. Second, we explore how the age of the disk drive affects the

development of partial disk failures. This analysis is useful for checking if techniques that

handle partial disk failures need to be adapt as disks age. Third, we analyze whether disk

capacity is a factor by comparing different disk models of the same disk family. The world is

moving towards bigger capacity disks and we should analyze whether that trend decreases or

increases the probability of encountering partial disk failures. Last, we perform a preliminary



45

examination of the impact of workload on corruptions. The goal of this analysis is to check

whether we need to manage the workload on disks so that they are more reliable.

Failures per error disk: This analysis measures exactly how many latent sector errors or

checksum mismatches occur in a disk that has at least one latent sector error or checksum

mismatch respectively. One goal of this analysis is to checkwhether disks need to be re-

placed when the first partial disk failure is detected or whether we could continue using the

disk as long as we can recover the data in the few disk blocks that were lost. Another goal

is to check whether partial disk failures are independent; any dependence between failures

affects data reliability (and for that reason, it is essential for analytical models of RAID reli-

ability [17, 39, 76, 119]); in addition, it may influence techniques that can be used to handle

partial disk failures.

Address space locality:This analysis measures how close partial disk failures on the same

disk are in the logical disk-address space. The spatial locality of errors is often considered

in the design of various existing file systems. For example, the original Fast File System

(FFS) creates redundant spatially-distributed copies of the superblock, to protect against the

loss of a disk head or multiple media errors on the same track or cylinder [88]. Our study

of file-system robustness [104] found that JFS stores superblock copies close to each other

in the logical address space, possibly exposing it to loss ofboth copies. Likewise, ReiserFS

places its log across a contiguous set of logical blocks [108]. Multiple latent sector errors in

the log area may render the file system unusable.

Today, disk drives use a block-based interface (e.g., SCSI or ATA) that obfuscates physical

block locations through complicated mapping schemes [115]. This limits file systems to

use logical block locality unless more detailed information can be derived [103]. Since file

system designers often make assumptions about spatial locality at the logical block level, we

explore whether partial disk failures exhibit spatial locality at the logical level, referred to as

address space locality.
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Temporal locality: Another interesting characteristic of latent sector errors is their temporal

behavior. Temporal locality is a study of how “bursty” latent sector errors are. This analysis

is useful for setting various time-based thresholds used todetermine when a disk should be

replaced. In addition, it may influence policies on whether more active disk scrubbing should

be performed when the first partial failure is detected.

Correlations: We also examine whether different types of partial disk failures correlate.

This information is useful for predicting future failures and also for indicating whether dif-

ferent partial disk failures may have common causes.

Detection: Finally, we study the manner in which partial disk failures are detected by the

system. Ideally, a storage system would proactively detecterrors (e.g., through periodic

scrubbing) before a user-initiated request. Sector errorsdetected early can be recovered

from RAID-style data reconstruction and re-mapped to a new sector. Proactive detection of

partial disk failures reduces the likelihood of “double-failures” in a RAID system [17].

3.2.5 Notation

We denote each disk drive model as〈family-size〉. For anonymization purposes,family is a

single letter representing the disk family andsizeis a single number representing the disk’s par-

ticular capacity. Although capacities are anonymized, relative sizes within a family are ordered

by the number representing the capacity. For example, n-2 islarger than n-1, and n-3 is larger

than both n-1 and n-2. The anonymized capacities do not allowcomparisons across disk families.

Disk families fromA to E (upper case letters) are nearline disk families, while families from f to o

(lower case letters) are enterprise disk families. Lines ongraphs labeledNL andESrepresent the

weighted average for nearline and enterprise disk models respectively.

We present data as the fraction of disks in a particular sample that developx partial failures.

We use the probability notationP (Xt ≥ x) to denote the fraction of disks developing at leastx

errors withint months since the disk’s first use in the field. We useE(Xt) to refer to the mean

number of errors developed withint months since first use.
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3.3 Latent Sector Errors

This section presents the results of our analysis of latent sector errors. First, we present sum-

mary statistics on latent sector errors collected over 32 months from disk drives in the field. Second,

we analyze the impact of various factors that affect the occurrence of latent sector errors, including

disk class, disk model, disk age, and disk size. Third, we study various properties of latent sector

errors, including the numbers of errors that occur in an error disk, the spatial locality of errors,

and the temporal behavior of errors. Fourth, we discuss correlations between latent sector errors

and other disk errors such as recovered errors, and not-ready-condition errors. Finally, we examine

the distribution of detection of latent sector errors across the different types of disk requests: read,

write, and verify.

3.3.1 Summary Statistics

In our entire sample of 1.53 million, we find 53,820 (3.45%) disks developed one or more

latent sector errors. For error disks (disks with at least one error), the median number of errors per

disk is three. However, the mode is one error (30% of the errordisks). Only 0.2% of error disks

had more than 1000 errors per disk. Ignoring these “outlier”disks, the mean number of errors per

error disk is 19.7.

Observation 3.1 Enterprise disks are less likely to develop latent sector errors than nearline disks.

Overall, we find that nearline disks and enterprise disks exhibit different behavior with respect to

latent sector errors; about 8.5% of all nearline disks are affected by latent sector errors while only

1.9% of all enterprise disks are affected. Therefore, most of our subsequent analyses break down

results by disk class.

Looking at disks of the same age, we find that 3.15% of nearlinedisks and 1.46% of enterprise

disks develop at least one latent sector error within twelvemonths of their ship date. This sample

includes 200,408 nearline disks (56% of all nearline disks in our study) across 6 disk models and

715,033 enterprise disks (61% of all enterprise disks in ourstudy) across 23 disk models. Using
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our notation, these numbers can be represented asP (X12 ≥ 1). We present more detail about error

rates as a function of time in Sections 3.3.2.1 and 3.3.3.3.

3.3.2 Factors

We now explore the impact of various factors on latent sectorerrors: the disk class (nearline

versus enterprise), the disk model, the age of the disk drive, and its size.

3.3.2.1 Disk Class, Model, and Age

We study how the age of the disk drives affects (a) the fraction of disks that develop latent

sector errors, and (b) the fraction of sectors that develop errors (ASERs).

Figure 3.2 presents the fraction of disks that develop theirfirst latent sector error within a

specific age. As described earlier, we include only disk models with at least 1000 units in the

field for the entire 24-month period of this study. Using our notation, we can express the graph as

P (Xt ≥ 1) where,t={6, 12, 18, 24} months. The same sample of disks is used for all time periods.

The sample includes 68,380 nearline disks across three diskmodels and 264,939 enterprise disks

across ten disk models.

As observed in the previous subsection (Observation 3.1), we see that nearline disks are more

likely to develop latent sector errors. For example, almost20% of E-2 disks experience latent

sector errors within 24 months of their shipping. On the other hand, only 4% of k-3 disks, the

enterprise disk model with the highest error rate, experience latent sector errors in the same time

period.

Observation 3.2 The fraction of disks with latent sector errors varies significantly across manu-

facturers and disk models.

We see from Figure 3.2 that the fraction of disks with errors at the end of 24 months could vary

from 5% to 20% for nearline disks. Enterprise disks also exhibit a significant variation.

Observation 3.3 Over 24 months, the fraction of nearline disks developing latent sector errors

grows far more rapidly than the fraction of enterprise diskswith errors.
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In the case of enterprise disks, we observe that the fractionof disks that have latent sector errors

increases almost linearly with time. Thus, the fraction of enterprise disks that develop a latent

sector error in a given six month window is nearly the same within the first 24 months of use. On

the other hand, this fraction for nearline disks increases super-linearly with increasing disk age.

For example, the fraction of E-1 disks that develop latent sector errors in the time period between

18 and 24 months after shipping is 5.25%, while it is only 2.72% between 12 and 18 months after

shipping. More generally,(P (Xt+6 ≥ 1) − P (Xt ≥ 1)) > (P (Xt ≥ 1) − P (Xt−6 ≥ 1)), where

t ≤ 24.

Observation 3.4 Annual sector error rates vary greatly across disk models but on average are

considerably worse during the second year for nearline disks.

Figure 3.4 shows the annual sector error rates (ASERs) computed for the disk models, as well

as the cumulative nearline and enterprise error rates. The error rates are for the first and second

year of disk use. The sample covers all drives in the field for 24 months (the same sample as in

Figure 3.2). The figure can be represented asE(Xt − Xt−12)/(sectors per disk) for t = {12, 24}
months. Note that the figure does not show error bars since most disks have 0 errors. For nearline

drives the sector error rates for the second year increase considerably over the first year. However,

this is not the case for the enterprise drives. About half of the enterprise models show this trend,

while half do not.

3.3.2.2 Disk Size

Figure 3.3(a) shows the fraction of disks with latent sectorerrors across the various disk fami-

lies. For each disk family, the graph groups the data by disk model (disk capacity). We restrict the

disk families in the graph to those for which there are at least 1000 disks in the field with an age

of at least 18 months foreachdisk size. This age maximizes the number of disk models we can

study. Figure 3.3(a) can be represented asP (X18 ≥ 1) for different disk models.

Observation 3.5 We observe that as disk size increases, the fraction of diskswith latent sector

errors increases across all disk models.
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Figure 3.3 The impact of disk size. (a) Fraction of disks with at least one latent sector error within
18 months of shipping to the field. (b) Average number of latent sector errors per GB observed within 18
months of shipping to the field.
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We observe the same trend even for those families that did notsatisfy the 1000-disk requirement

with the only exception being disk family ‘l’. As disk capacity rapidly increases, storage systems

will need to deal with a larger percentage of drives that develop latent sector errors. However, since

many factors contribute to latent sector errors (see Section 2.2.2), we cannot draw any specific

conclusion beyond the trend we observe in the data.

Observation 3.6 The amount of probable data loss due to latent sector errors per Gigabyte does

not increase or decrease consistently as disk size increases.

Figure 3.3(b) presents the average number of latent sector errors per Gigabyte. It can be represented

as E(X18)/Capacity. Interestingly, unlike Figure 3.3(a), the data does not show a consistent

increase or decrease across disk size for the same disk family. Thus, we see that a higher fraction

of disks with errors does not imply a greater amount of probable data loss.

3.3.3 Properties

The studies in this subsection focus on the properties of latent sector errors. We first study the

actual number of errors that occur in a disk with at least one latent sector error, then whether latent

sector errors within the same disk are spatially-local, andfinally, the temporal behavior of latent

sector errors.

3.3.3.1 Errors per Error Disk

Figure 3.5 shows the fraction of error disks that experiencea given number of latent sector

errors within a 18-month period after the ship date. We only include disk models that satisfy both

the 1000 disk and 50 error disk limits. Thus, we can representthe figure using our notation as the

conditional probabilityP (X18 ≤ x|X18 ≥ 1) for x={1, 2, 3, 4, 5, 10, 20, 50}.

Observation 3.7 A large fraction of disks with latent sector errors develop fewer than 50 errors.

The data shows that, on average, 37% of nearline error disks and 39% of enterprise error disks

have only one error; that is, they do not develop any additional latent sector errors after the first
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one. Furthermore, over 80% of error disks have fewer than 50 errors. Since disk drives typically

have thousands of spare sectors and since failed sectors canbe recovered from elsewhere (e.g.,

from RAID), it is possible to re-map bad sectors and continueoperation for a large fraction of

error disks.

Observation 3.8 Enterprise and nearline disks are equally likely to developmore than one error

once they develop their first error, in contrast to the very different probabilities of enterprise and

nearline disks developing their first error.

While enterprise disks seem to be more resilient to latent sector errors in general, enterprise disks

and nearline disks show similar behavior once they exhibit at least one latent sector error; compare

the Nearline and Enterprise lines in Figure 3.5(a) and Figure 3.5(b), respectively. Surprisingly,

some enterprise disk models are worse than nearline disks – alarger fraction of enterprise error

disks develop many more errors than nearline error disks. However, one should note that the

actual number of latent sector errors for nearline disks could be somewhat higher (as described in

Section 3.2.3).

Observation 3.9 Latent sector errors are not independent of each other. A disk with latent sector

errors is more likely to develop additional latent sector errors than a disk without a latent sector

error.

We find that the occurrence of a latent sector error depends onprevious occurrences of latent

sector errors on the same disk. In particular, we find that thefraction of disks developing at least 1

additional error inx amount of time given that the disk has at least 1 error,P (Xt+x ≥ 2|Xt ≥ 1),

is greater than the (non-conditional) fraction of disks that develop at least 1 error inx amount of

time (P (Xt+x ≥ 1) - P (Xt ≥ 1)). For example,P (X18 ≥ 2|X12 ≥ 1) = 0.671, which is much

greater thanP (X18 ≥ 1) - P (X12 ≥ 1) = 0.018.

3.3.3.2 Address Space Locality

Figure 3.6 presents the fraction of latent sector errors that have at least one other latent sector

error occurring within a given radius, for disks with at least 2 errors and at most 10 errors. An
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upper bound of 10 errors is used in order to avoid skew introduced by disks with a large number

of errors; note, the median number of errors for error disks is 3. Since address space locality is

time-invariant as long as the number of errors is bounded, the sample includes all disks irrespective

of their time in the field. We only include disk models that have at least 1000 total disks and 50

error disks with between 2 and 10 errors for the entire 32 months. We can express the data in our

notation asP (Xr
t ≥ 1|2 ≤ Xt ≤ 10) with no specific restriction on time (0< t < 32), whereXr

is the number of other latent sector errors in the interval〈a − r, a + r〉 centered around sectora;

sectora contains a latent sector error.

Observation 3.10 There is significant locality in the occurrence of latent sector errors across

logical sector addresses.

Figure 3.6 shows that for most disk models, the fraction of latent sector errors that have at least

one other latent sector error within a 10 MB radius of it is 0.5. In fact, the fraction is more than 0.6

for many models. Additionally, for many disk models, the fraction increases significantly between

radii of 100 KB and 1 MB. This suggests a coarse correlation between the logical and physical

block space. However, we note that the observed address space locality is not perfect and may not

be as correlated as system designers believe. Finally, we note that the fraction varies considerably

across disk models.

Figure 3.7 presents the mean value ofXr (Xr is the same as above) for different disk models.

This figure provides an insight into how errors typically cluster together. For most models, the

average number of other errors within a 10 MB radius of a latent sector error is more than 1; for

some models it is as high as 2.5. When Figures 3.6 and 3.7 are compared, we see that a higher

probability of a spatially local error does not necessarilyimply a higher average number of spatially

local errors. For example, for a 10 MB radius, g-2 has a higherprobability of a spatially local error

than l-3, but l-3 has more spatially local errors than g-2 on average.
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3.3.3.3 Temporal Behavior

We study temporal behavior in two ways:temporal localityanddecay. Temporal locality is a

study of how “bursty” latent sector errors are. We study temporal locality by measuring the inter-

arrival time of errors. Decay is a study of the time taken to develope additional latent sector errors

since the first latent sector error.

Figure 3.8 shows the fraction of latent sector errors that arrive withinx minutes of the preceding

error. The arrival times are binned by minute. We only include disk models that satisfy both the

1000-disk and 50 error disk limits. The figure can be represented asP (Xt+x ≥ k + 1|Xt =

k ∧ XT≥k + 1) for 0 < k ≤ 1000, and 0< t < T < 32 and 1≤ x ≤ 1e+06 minutes.

Observation 3.11 All disk models exhibit high temporal locality of latent sector errors.

Depending upon the model, between 40%-80% of errors arrive within one minute of the previous

error. As can be seen, the arrival-time distributions have very long tails. The observed locality

implies that the errors are detected close in time (even though they may have developed long before

they were detected). However, due to media scrubs, there is typically only a short lag time between

the occurrence and the discovery of an error. Thus, errors that develop at different times (e.g., a

month apart) are likely to be detected at different times. Itis likely that the observed temporal

locality implies actual temporal locality.

Figure 3.9 presents the fraction of disks that develop at least e additional errors within a given

time period since the discovery of the first error, for nearline and enterprise disk classes. We use

disks that developed the first error at least 6 months before the end of the study. Both nearline

and enterprise disk classes had at least 10,000 eligible units. The figure can be represented as

P (Xt+x ≥ e + 1|Xt = 1) for x = {1, 2, 3, 4, 5, 6}, e = {1, 5, 10, 25, 50}, 0 < t < 26.

Observation 3.12 Disks that develop errors beyond the first error see most of the additional errors

within one month after the first error.

First, we see that for 54.8% of nearline error disks and 62.0%of enterprise error disks, at least one

additionalerror is developed within one month of the first ever error. Second, there is a significant
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probability (nearline: 0.05, enterprise: 0.10) that a diskwith one error will develop 50 additional

errors within one month of the first error. Third, we observe that the fraction of disks with one error

that develop at leaste more errors does not increase significantly with disk age formost values

of e. Most of the additional errors develop within 1 month of the first error. Interestingly, this

behavior is even more pronounced for enterprise disks than for nearline disks. Finally, comparing

the numbers across the two graphs, we observe that surprisingly enterprise disks in general have a

higher fraction of disks with one error that develop additional errors within a given period of time,

the only exception being fore = 1.

3.3.4 Correlations

We now explore whether disks that exhibit latent sector errors also exhibit other kinds of errors.

Specifically, we consider recovered errors and not-ready-condition errors.

3.3.4.1 Recovered Errors

As discussed in Section 2.2.2, recovered errors are errors that a disk drive encounters when

accessing sectors and is able to recover from them through a combination of retries and error-

correcting codes (ECC). Latent sector errors occur when such disk drive-level recovery fails. Sim-

ilar to latent sector errors, the storage system proactively re-maps sectors associated with recovered

errors.

The error logs contain recovered errors returned by enterprise disks. We found that 52971

enterprise disks exhibited at least one recovered errors (4.5% of enterprise disks) over the period

of 32 months (P (Zt ≥ 1) = 0.045, whereZ is the number of recovered errors returned by a disk).

Observation 3.13 There is a high correlation between latent sector errors andrecovered errors

for enterprise disks.

Interestingly, despite the fact that we observed latent sector errors in less than 2% of enterprise

disks (P (Xt ≥ 1) < 0.02), the fraction of disks that develop a latent sector error out of disks that
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experienced a recovered error is 13 times higher (P (Xt ≥ 1|Zt ≥ 1) = 0.26). This suggests that

the two kinds of errors are not independent.

3.3.4.2 Not-Ready-Condition Errors

As discussed in Section 2.2.2, a not-ready-condition erroris an error during which the disk

is not available to respond to requests. The storage layer handles not-ready-condition errors by

retrying the operation a few times. If these efforts fail, the data is reconstructed by the RAID layer

from parity.

We found that 13% of nearline disks and 1% of enterprise disksencountered not-ready-condition

errors. Thus, with no specific restriction on time (0< t < 32),P (Zt ≥ 1) = 0.13 for nearline disks,

whereZ is the number of not-ready-condition errors returned by a disk.

Observation 3.14 There is a high correlation between latent sector errors andnot-ready-condition

errors for nearline disks.

The fraction of disks that develop a latent sector error out of the disks that had a not-ready-condition

error,P (Xt ≥ 1|Zt ≥ 1), is 0.38. This value is much higher than the fraction of disksthat develop

a latent sector error out of all nearline disks (P (Xt ≥ 1) = 0.085). Thus, it is highly likely that

the two kinds of errors are not independent. We did not see a similar correlation in the case of

enterprise disks whereP (Xt ≥ 1|Zt ≥ 1) = 0.014 andP (Xt ≥ 1) = 0.019.

3.3.5 Detection

Figure 3.10 presents the fraction of latent sector errors that are discovered by read, write and

verify operations. In the system, read and write operationsare issued in order to satisfy user or

file system requests. Verify operations are issued by the media scrubber; see Section 3.1.2.3. We

restrict models to those with at least 1000 disks in the field with at least 50 error disks in the entire

32-month study period.

Observation 3.15 Disk scrubbing detects a large percentage of observed latent sector errors.
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65

The data shows that for many disk models, a high percentage ofrequests that experience a latent

sector error are verify operations. On average, 86.6% of alllatent sector errors in nearline disks

and 61.5% of latent sector errors in enterprise disks are discovered by verify operations, while

reads discover 13.4% of errors in nearline disks and 19.1% oferrors in enterprise disks, and writes

discover 0% of errors in nearline disks and 19.3% of errors inenterprise disks. This demonstrates

that the method in which the systems perform media scrubbingis useful for discovering errors.

Note, since nearline disks automatically and transparently perform sector reassignment, disk writes

in these systems do not report latent sector errors (see Section 3.2.3).

While verify operations discover a widely varying proportion of latent sector errors across disk

models, on average 77.4% of all errors are detected by verifyrequests across all disk models. We

speculate that the differences we observe are in part due to the different workloads the systems

with different disk models experience.

3.4 Silent Data Corruptions

This section presents the results of our analysis of silent data corruptions. We focus primarily

on checksum mismatches. First, we provide basic statisticson the occurrence of checksum mis-

matches in the entire population of disk drives. Second, we examine various factors that affect the

probability of developing checksum mismatches, includingdisk class, disk model, disk age, disk

size and workload. Third, we analyze various properties of checksum mismatches, such as spatial

locality. Fourth, we look for correlations between the occurrence of checksum mismatches and

other system or disk errors. Fifth, we analyze the source of the disk requests that detect the mis-

matches. Sixth, we present an analysis showing that corruption may be block-number dependent.

Finally, we present basic statistics on identity discrepancies and parity inconsistencies.

3.4.1 Summary Statistics

During the 41-month period covered by our data we observe a total of about 400,000 check-

sum mismatches. Of the total sample of 1.53 million disks, 3855 disks developed checksum mis-

matches – 3088 of the 0.36 million nearline disks (0.86%) and767 of the 1.17 million enterprise
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disks (0.065%). Using our probability representation,P (Yt ≥ 1) = 0.0086 for nearline disks, and

P (Yt ≥ 1) = 0.00065 for enterprise disks whereY is the number of checksum mismatches that

occur in the time since the disk was shipped,t.

This indicates that nearline disks may be more susceptible to corruption leading to checksum

mismatches than enterprise disks. On average, each disk developed 0.26 checksum mismatches.

Considering only corrupt disks(i.e., disks that experienced at least one checksum mismatch), the

mean number of mismatches per disk is 104, the median is 3 and the mode (i.e., the most frequently

observed value) is 1 mismatch per disk. The maximum number ofmismatches observed for any

single drive is 33,000.

3.4.2 Factors

We examine the dependence of checksum mismatches on variousfactors: disk class, disk

model, disk age, disk size, and workload.

3.4.2.1 Disk Class, Model and Age

Figures 3.11 and 3.12 show the fraction of disks that developtheir first checksum mismatch

within a specific age for nearline and enterprise disks respectively. The graphs plot the cumulative

distribution function of the time until the first checksum mismatch occurs. The figures can be

represented asP (Yt ≥ 1) for t = {3, 6, 9, 12, 15, 17} months, that is, the fraction of disks with at

least one checksum mismatch aftert months. Note the different y-axis scale for the nearline and

enterprise disks. We see from the figures that checksum mismatches depend on disk class, disk

model and disk age.

Observation 3.16 Nearline disks (including the SATA/FC adapter) have an order of magnitude

higher probability of developing checksum mismatches thanenterprise disks.

Figure 3.11 (line NL – Nearline average) shows that 0.66% of nearline disks develop at least one

mismatch during the first 17 months in the field (P (Y17 ≥ 1) = 0.0066), while Figure 3.12(b) (line
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68

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0  3  6  9  12  15  18

F
ra

ct
io

n 
of

 to
ta

l d
is

ks
 w

ith
 a

t l
ea

st
 1

 C
M

Disk age (months)

(a) Enterprise (set 1)

f-1
f-2
g-2
g-3
h-2
h-3
j-1
j-2
k-1
k-2

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0  3  6  9  12  15  18

F
ra

ct
io

n 
of

 to
ta

l d
is

ks
 w

ith
 a

t l
ea

st
 1

 C
M

Disk age (months)

(b) Enterprise (set 2)

k-3
l-1
l-2
l-3
m-2
n-1
n-2
n-3
o-1
o-2
ES
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ES) indicates that only 0.06% of enterprise disks develop a mismatch during that time (P (Y17 ≥ 1)

= 0.0006).

Observation 3.17 The fraction of disks that develop checksum mismatches varies significantly

across different disk models within the same disk class.

We see in Figure 3.11 that there is an order of magnitude difference between models C-1 and E-2

for developing at least one checksum mismatch after 17 months; that is,P (Y17 ≥ 1) is 0.035 for

C-1 and 0.0027 for E-2.)

Observation 3.18 Age affects different disk models differently with respectto the fraction of disks

that develop checksum mismatches.

On average, as nearline disks age, the fraction of disks thatdevelop a checksum mismatch is fairly

constant, with some variation across the models. As enterprise disks age, the fraction that develop

the first checksum mismatch decreases after about 6-9 monthsand then stabilizes.

3.4.2.2 Disk Size

Observation 3.19 There is no clear indication that disk size affects the development of checksum

mismatches.

Figure 3.13 presents the fraction of disks that develop checksum mismatches within 17 months

of their ship-date (i.e., the rightmost data points from Figures 3.11 and 3.12;P (Y17 ≥ 1)). The

disk models are grouped within their families in increasingsize. Since the impact of disk size on

the fraction of disks that develop checksum mismatches is not constant across all disk families (it

occurs in only 7 out of 10 families), we conclude that disk size does not necessarily impact the

probability of developing checksum mismatches.

3.4.2.3 Workload

Observation 3.20 There is no clear indication that workload affects the development of checksum

mismatches.
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The systems in the study collect coarse workload data including the number of read and write

operations, and the number of blocks read and written for each week of our study. To study the

effect of workload on checksum mismatches, we computed the correlation coefficient between the

workload data and the number of checksum mismatches observed in the system. We find that in all

cases the correlation coefficient is less than 0.1 (in fact, in most cases less than 0.001), indicating

no significant correlation between workload and checksum mismatches. However, these results

might be due to having only coarse per-system rather than per-drive workload data. A system

consists of at least 14 disks and can have as many as several hundred disks. Aggregating data

across a number of disks might blur existing correlations between an individual drive’s workload

and corruption behavior.

3.4.3 Properties

In this subsection, we explore various characteristics of checksum mismatches. First, we an-

alyze the number of mismatches developed by corrupt disks. Then, we examine whether mis-

matches are independent occurrences. Finally, we examine whether the mismatches have spatial

or temporal locality.

3.4.3.1 Checksum Mismatches per Corrupt Disk

Figure 3.14 shows the cumulative distribution function of the number of checksum mismatches

observed per corrupt disk (i.e., the y-axis shows the fraction of corrupt disks that have fewer than

or equal toy number of corrupt blocks). The figure can be represented asP (Y17 ≤ y|Y17 ≥ 1) for

y = {1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 500, 1000}.

Observation 3.21 The number of checksum mismatches per corrupt disk varies greatly across

disks. Most corrupt disks develop only a few mismatches each. However, a few disks develop a

large number of mismatches.

Figure 3.14 shows that a significant fraction of corrupt disks (more than a third of all corrupt near-

line disks and more than a fifth of corrupt enterprise disks) develop only one checksum mismatch.
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Figure 3.14Checksum mismatches per corrupt disk.The fraction of corrupt disks as a function of
the number of checksum mismatches that develop within 17 months after the ship date for (a) nearline disk
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used only to help distinguish the points of different disk models, and their slopes are not meaningful.
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On the other hand, a small fraction of disks develop several thousand checksum mismatches. The

large variability in the number of mismatches per drive is also reflected in the great difference

between the mean and median: while the median is only 3 mismatches per drive, the mean is 78.

A more detailed analysis reveals that the distributions exhibit heavy tails. A large fraction of

the total number of checksum mismatches observed in our study is experienced by a very small

fraction of the corrupt disks. More precisely, 1% of the corrupt disks (the top 1% corrupt disks

with the largest number of mismatches) produce more than half of all mismatches recorded in the

data.

Observation 3.22 On average, corrupt enterprise disks develop many more checksum mismatches

than corrupt nearline disks.

Figure 3.14(a) (line NL) and Figure 3.14(b) (line ES) show that within 17 months 50% of corrupt

disks (i.e., the median) develop about 2 checksum mismatches for nearline disks, but almost 10 for

enterprise disks. The trend also extends to a higher percentage of corrupt disks. For example, 80%

of nearline corrupt disks have fewer than 20 mismatches, whereas 80% of enterprise disks have

fewer than 100 mismatches. Given that very few enterprise disks develop checksum mismatches

in the first place, in the interest of reliability and availability, it might make sense to replace the

enterprise disk when the first mismatch is detected.

Observation 3.23 Checksum mismatches within the same disk are not independent.

We find that the fraction of disks that develop further checksum mismatches, given that a disk has

at least one mismatch, is higher than the fraction of disks that develop the first mismatch in the

same amount of time. For example, while the fraction of nearline disks that develop one or more

checksum mismatches in 17 months is only 0.0066, the fraction developing more than 1 mismatch

given that the disk already has one mismatch is as high as 0.6 (1 minus 0.4, the fraction of disks

where exactly 1 block has a checksum mismatch in Figure 3.14).

Finally, it is interesting to note that nearline disk model E-1 is particularly aberrant – around

30% of its corrupt disks develop more than 1000 checksum mismatches.
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3.4.3.2 System-Level Dependence

Observation 3.24 The probability of a disk developing a checksum mismatch is not independent

of that of other disks in the same storage system.

While most systems with checksum mismatches have only one corrupt disk, we do find a consid-

erable number of instances where multiple disks develop checksum mismatches within the same

storage system. In fact, one of the systems in the study that used nearline disks had 92 disks de-

velop checksum mismatches. Taking the maximum number of disks in the systems in the study

into consideration, the probability of 92 disks developingerrors independently is less than 1e-12,

much less than 1e-05, the approximate fraction of systems represented by one system.

The observed dependence between disks in the same system is perhaps indicative of a common

corruption-causing component, such as a shelf controller or adapter. In fact, NetAppTM engineers

have observed instances of the SATA/FC adapter (a common component) causing data corruption

in the case of disk models A-1, D-1 and D-2; therefore, it is also very likely that the statistics for

these disk models are influenced by faulty shelf controllers.

3.4.3.3 Spatial Locality

We measure spatial locality by examining whether each corrupt block has another corrupt block

(a neighbor) within progressively larger regions (locality radius) around it on the same disk. For

example, if in a disk, blocks numbered 100, 200, and 500 have checksum mismatches, then blocks

100 and 200 have one neighbor at a locality radius of 100, and all blocks (100, 200, and 500) have

at least one neighbor at a locality radius of 300.

Figure 3.15 shows the fraction of corrupt blocks that have atleast one neighbor within dif-

ferent locality radii. Since a larger number of checksum mismatches will significantly skew the

numbers, we consider only disks with 2 to 10 mismatches. The figure can be represented as

P (Y r
t ≥ 1|2 ≤ Yt ≤ 10). Y r is the number of corrupt blocks in block numbers< a − r, a + r >

around corrupt blocka (but excludinga itself). The values for radiusr are{1, 10, 100, ..., 100M}
blocks, and 0< t ≤ 41 months. The figure also includes a lineRandomthat signifies the line that
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Figure 3.15 Spatial Locality. The graphs show the fraction of checksum mismatches with another
checksum mismatch within a given radius (disk-block range). Each figure also includes a line labeled
“Random” corresponding to when the same number of mismatches (as nearline and enterprise respectively)
are randomly distributed across the block address space. Only disks with between 2 and 10 mismatches are
included.
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would be obtained if the checksum mismatches were randomly distributed across the block address

space. This line can be used as a comparison point against theother lines. Note that this line is at

0 for most of the graph, signifying that there is no spatial locality for a random distribution.

For the actual data for the different disk models, we see thatmost disk models are much higher

on the graph thanRandomwhen the x-axis value is 1; for more than 50% of the corrupt blocks

in nearline disks and more than 40% of the corrupt blocks in enterprise disks, the immediate

neighboring block also has a checksum mismatch (on disks with between 2 and 10 mismatches).

These percentages indicate very high spatial locality.

Observation 3.25 Checksum mismatches have very high spatial locality. Much of the observed

locality is due to consecutive disk blocks developing corruption. Beyond consecutive blocks, the

mismatches show very little spatial locality.

We see from the figures that, while the lines for the disk models start at a very high value when

the x-axis value is 1, they are almost flat for most of the graph, moving steeply upwards to 1 only

towards the end (x-axis values more than 1e+06). This behavior shows that most of the spatial

locality is due to consecutive blocks developing checksum mismatches. However, it is important

to note that even when the consecutive mismatch cases are disregarded, the distribution of the

mismatches still has spatial locality.

Given the strong correlation between checksum mismatches in consecutive blocks, it is inter-

esting to examine the run length of consecutive mismatches,that is, how many consecutive blocks

have mismatches. We find that, among drives with at least 2 checksum mismatches(and no upper

bound on mismatches), on average 3.4 consecutive blocks areaffected. In some cases, the length

of consecutive runs can be much higher than the average. About 3% of drives with at least 2 mis-

matches see one or more runs of 100 consecutive blocks with mismatches. 0.7% of drives with at

least 2 mismatches see one or more runs of 1000 consecutive mismatches.
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Figure 3.16 Inter-arrival times. The graphs show the cumulative distribution of the inter-arrival times
of checksum mismatches per minute. The fraction of mismatches per model is plotted against time. The
arrival times are binned by minute.
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3.4.3.4 Temporal Locality

Figure 3.16 shows the fraction of checksum mismatches that arrive (are detected) withinx

minutes of a previous mismatch. The figure can be representedasP (Yt+x ≥ k + 1|Yt = k ∧
YT≥k + 1) for k ≥ 1, 0≤ t < T ≤ 41 months, and 1≤ x ≤ 1e+06 minutes.

Observation 3.26 Most checksum mismatches are detected within one minute of aprevious detec-

tion of a mismatch.

The figure shows that the temporal locality for detecting checksum mismatches is extremely high.

This behavior may be an artifact of the manner in which the detection takes place (by scrubbing)

and the fact that many mismatches are spatially local and aretherefore likely to be discovered

together. Further analysis shows that this is not necessarily the case.

In order to remove the impact of detection time, we examine temporal locality over larger time

windows. For each drive, we first determine the number of checksum mismatches experienced

in each 2-week time window that the drive was in the field and then compute the autocorrelation

function on the resulting time series. The autocorrelationfunction (ACF) measures the correlation

of a random variable with itself at different time lagsl. The ACF can be used to determine whether

the number of mismatches in one two-week period of our time-series is correlated with the number

of mismatches observedl 2-week periods later. The autocorrelation coefficient can range between

1 (high positive correlation) and -1 (high negative correlation). A value of zero would indicate no

correlation, supporting independence of checksum mismatches.

Observation 3.27 Checksum mismatches exhibit temporal locality over largertime windows and

beyond the effect of detection time as well.

Figure 3.17 shows the resulting ACF. The graph presents the average ACF across all drives in the

study that were in the field for at least 17 months and experienced checksum mismatches in at

least two different 2-week windows. Since the results are nearly indistinguishable for nearline and

enterprise drives, individual results are not given. If checksum mismatches in different 2-week

periods were independent (no temporal locality on bi-weekly and larger time-scales) the graph
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Figure 3.17Temporal autocorrelation. The graph shows the autocorrelation function for the number
of checksum mismatches per 2-week time windows. This representation of the data allows us to study
temporal locality of mismatches at larger time-scales without being affected by the time of detection.
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would be close to zero at all lags. Instead we observe strong autocorrelation even for large lags in

the range of up to 10 months.

3.4.4 Correlations

We now establish correlations for checksum mismatches withother errors such as system re-

sets, latent sector errors, and not-ready-condition errors.

Observation 3.28 Checksum mismatches correlate with system resets.

The fraction of systems that experience a system reset at some point of time, given that one of

the disks in the system has a checksum mismatch, is about 3.7 times the unconditional fraction of

systems that experience a system reset.

Observation 3.29 There is a weak positive correlation between checksum mismatches and latent

sector errors.

The fraction of disks that develop latent sector errors,P (Xt ≥ 1), is 0.137 for nearline disks and

0.026 for enterprise disks (X is the number of latent sector errors, 0< t ≤ 41 months). The

fraction of disks that develop a latent sector error out of disks that also have a checksum mismatch,

P (Xt ≥ 1|Yt ≥ 1), is 0.195 for nearline disks and 0.0556 for enterprise disks, which are 1.4 times

and 2.2 times that of the unconditional fractions. These values indicate a weak positive correlation

between the two disk errors.

In order to test the statistical significance of this correlation we performed a chi-square test

for independence. We find that we can, with high confidence, reject the hypothesis that checksum

mismatches and latent sector errors are independent, both in the case of nearline disks and enter-

prise disks (confidence level of more than 99.999%). Interestingly, the results vary if we repeat the

chi-square test separately for each individual disk model (including only models that had at least

15 corrupt disks). We can reject independence with high certainty (at least 95% confidence) for

only four out of seven nearline models (B-1, C-1, D-1, E-2) and two out of seven enterprise models

(l-1, n-3).
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Observation 3.30 There is a weak correlation between checksum mismatches andnot-ready-

condition errors.

The probability of a disk developing not-ready-condition errors,P (Zt ≥ 1), is 0.18 for nearline and

0.03 for enterprise disks.P (Zt ≥ 1|Yt ≥ 1) is 0.304 for nearline and 0.0155 for enterprise disks.

Thus, the conditional probability of a not-ready-condition error, given that a disk has checksum

mismatch, is about 1.7 times the unconditional probabilityof a not-ready-condition error in the

case of nearline disks and about 0.5 times the unconditionalprobability for enterprise disks. These

values indicate mixed behavior – a weak positive correlation for nearline disks and a weak negative

correlation for enterprise disks.

In order to test the statistical significance of the correlation between not-ready-condition errors

and checksum mismatches, we again perform a chi-square testfor independence. We find that for

both nearline and enterprise disks we can reject the hypothesis that not-ready-condition errors and

checksum mismatches are independent with more than 96% confidence. We repeat the same test

separately for each disk model (including only models that had at least 15 corrupt disks). In the

case of nearline disks, we can reject the independence hypothesis for all models, except for two

(A-1 and B-1) at the 95% confidence level. However, in the caseof enterprise disks, we cannot

reject the independence hypothesis for any of the individual models at a significant confidence

level.

3.4.5 Detection

Figure 3.18 shows the distribution of requests that detect checksum mismatches into different

request types. There are five types of requests that discoverchecksum mismatches: (i) Reads by the

file system (FS Read) (ii) Partial RAID-stripe writes by the RAID layer (Write) (iii) Reads for disk-

copy operations (Non-FS Read) (iv) Reads for data scrubbing(Scrub), and (v) Reads performed

during RAID reconstruction (Reconstruction). Note that these request types are different (and more

specific) from those for latent sector errors in Section 3.3.5 since the low-level error messages for

latent sector errors do not differentiate between the source of different read operations for file

system, disk copy, and reconstruction.
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Figure 3.18Detection.The figure shows the distribution of requests that discover checksum mismatches
across the request types scrub, non-file sytstem read (say, disk copy), write (of partial RAID stripe), file
system read, and RAID reconstruction.
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Observation 3.31 Data scrubbing discovers a large percentage of the checksummismatches for

many of the disk models.

We see that on the average data scrubbing discovers about 49%of checksum mismatches in near-

line disks (NL in the figure), and 73% of the checksum mismatches in enterprise disks (ES in the

figure). It is quite possible that these checksum mismatchesmay not have been discovered in the

absence of scrubbing, potentially exposing the system to double failures and data loss. We do not

know the precise cause for the disparity in percentages between nearline and enterprise disks; one

possibility this data suggests is that systems with nearline disks perform many more disk-copy

operations (Non-FS Read), thus increasing the percentage for that request type.

Observation 3.32 RAID reconstruction encounters a non-negligible number ofchecksum mis-

matches.

Despite the use of data scrubbing to avoid double failures, we find that RAID reconstruction dis-

covers about 8% of the checksum mismatches in nearline disks. For some models more than 20%

of checksum mismatches were detected during RAID reconstruction. This observation implies

that (a) data scrubbing should be performed more aggressively, and (b) systems should consider

protection against double disk failures [3, 22, 35, 57, 59, 98].

3.4.6 Block-Specific Corruption

We find that specific block numbers could be much more likely toexperience corruption than

other block numbers. This behavior is observed for the disk model E-1. Figure 3.19 presents

for each block number, the number of disk drives of disk modelE-1 that developed a checksum

mismatch at that block number. We see in the figure that many disks develop corruption for a

specific set of block numbers. We also verified that (i) other disk models did not develop multiple

checksum mismatches for the same set of block numbers (ii) the disks that developed mismatches

at the same block numbers belong to different storage systems, and (iii) the software stack of the

storage system has no specific data structure that is placed at the block numbers of interest.
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Figure 3.19Distribution of errors across block numbers. For each disk block number, the number
of disks of disk model E-1 that develop checksum mismatches at that block number is shown. The units on
the x-axis have been omitted in order to anonymize the disk size of disk model E-1.
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These observations indicate that hardware or firmware bugs that affect specific sets of block

numbers might exist. Therefore, RAID-system designers mayconsider usingstaggeredstripes

such that the blocks that form a stripe (providing the required redundancy) are placed at different

block numbers on different disks.

We also observed a number of block-specific errors on other drive models. In at least one of

these instances, the block contained a heavily read and written file system metadata structure – a

structure akin to the superblock. This suggests the importance of replicating important metadata

structures [104, 126].

3.4.7 Identity Discrepancies

These corruptions were detected in a total of 365 disks out ofthe 1.53 million disks. Fig-

ure 3.20 presents the fraction of disks of each disk model that developed identity discrepancies

in 17 months. We see that the fraction is more than an order of magnitude lower than that for

checksum mismatches for both nearline and enterprise disks.

Since the fraction of disks that develop identity discrepancies is very low, the system recom-

mends replacement of the disk once the first identity discrepancy is detected. It is important to

note, that even though the number of identity discrepanciesare small, silent data corruption would

have occurred if not for the validation of the stored contextual file system information (the use of

this em logical-identity information will be analyzed in Section 4.3.5).

3.4.8 Parity Inconsistencies

These corruptions are detected by data scrubbing. In the absence of a second parity disk,

one cannot identify which disk is at fault. Therefore, in order to prevent potential data loss on

disk failure, the system fixes the inconsistency by rewriting parity. This scenario provides further

motivation for double-parity protection schemes.
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Figure 3.20 Identity discrepancies. The figures show the fraction of disks with at least one identity
discrepancy within 17 months of shipping to the field for (a) nearline disk models, and (b) enterprise disk
models.
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Figure 3.21 Parity inconsistencies. The figures show the fraction of disks with at least one parity
inconsistency within 17 months of shipping to the field for (a) nearline disk models, and (b) enterprise disk
models.
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Figure 3.21 presents the fraction of disks of each disk modelthat caused parity inconsistencies

within 17 months since ship date. The fraction is 4.4 times lower than that for checksum mis-

matches in the case of nearline disks and about 3.5 times lower than that for checksum mismatches

for enterprise disks.

These results assume that the parity disk is at fault. We believe that counting the number of

incorrect parity disks reflect the actual number of error disks since: (i) entire shelves of disks are

typically of the same age and same model, (ii) the incidence of these inconsistencies is quite low;

hence, it is unlikely that multiple different disks in the same RAID group would be at fault.

3.5 Discussion

In this section, we first compare the characteristics of latent sector errors and data corruption

identified by checksum mismatches. Next, we use results fromour analysis of latent sector er-

rors and data corruption to develop lessons on how storage systems can be designed to deal with

corruption.

3.5.1 Latent Sector Errors vs. Checksum Mismatches

Table 3.1 compares the characteristics of latent sector errors and checksum mismatches. Some

of the interesting similarities and differences are as follows.

Frequency: The fraction of disks that develop checksum mismatches is about an order

of magnitude smaller than that for latent sector errors. However, given that the enterprise

storage world uses millions of disk drives, it is important to handle both kinds of partial disk

failures. Also, latent sector errors are more likely to be detected by system software, since

an actual error is reported by the disk drive; since data corruptions are silent, they may pose

a bigger threat to data, especially on systems without checksumming infrastructure.

Disk model: The fraction of disks affected by both kinds of partial disk failures varies

greatly by disk model. Interestingly, in comparing disk models across the two partial disk
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Characteristic Latent sector errors Checksum mismatches

Nearline Enterprise Nearline Enterprise

% disks affected per year (avg) 9.5% 1.4% 0.466% 0.042%

Disk age⇑, P(1st error) ⇑ ⇔ Varies Varies

Disk size⇑, P(1st error) ⇑ ⇑ Varies Varies

No. of errors per disk with errors Low Low Low Low

Are errors independent ? No No No No

Spatial locality
√ √ √ √

Temporal locality
√ √ √ √

Correlations with not-ready conditions + No + −
Correlations with recovered errors No + No Unknown

Correlations with system resets Unknown Unknown + +

Activity that detects most errors Media scrub Media scrub Data scrub Data scrub

Table 3.1 Comparison of latent sector errors and checksum mismatches. This table compares
our findings for latent sector errors and checksum mismatches for both nearline and enterprise disk models.
We look at factors that affect error rates, characteristicsof errors, how the error is detected, and correla-
tions with other errors. In addition to these correlations,latent sector errors and checksum mismatches
share a positive correlation for both nearline and enterprise disks. The symbols used are as follows.⇑ for
increases,⇔ for remaining constant,

√
to confirm existence,+ for positive correlation, and− for negative

correlation.
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failures we find that the nearline disk model E-2 has the highest percentage of disks develop-

ing latent sector errors, but the lowest percentage of disksdeveloping checksum mismatches

within the set of nearline disk models, despite latent sector errors and checksum mismatches

having a positive correlation (Section 3.4.4).

Impact of disk class: For both latent sector errors and checksum mismatches, enterprise

disks are less likely to develop an error than nearline disks. Surprisingly, however, in both

cases, once an error has developed, enterprise disks develop a higher number of errors than

nearline disks.

Spatial locality: Both latent sector errors and checksum mismatches show highspatial lo-

cality. Interestingly, the difference in the locality radii that capture a large fraction of errors

– about 10 MB for latent sector errors versus consecutive blocks for checksum mismatches

– provides an insight into how the two errors could be caused very differently. Latent sector

errors may be caused by media scratches that could go across tracks as opposed to consec-

utive sectors (hence a larger locality radius) while consecutive blocks may have checksum

mismatches simply because the corruption(s) occurred whenthey were written together or

around the same time.

3.5.2 Lessons Learned

We present some of the lessons learned from the analysis. Some of these lessons are specific

to RAID systems, while others can be applied to file systems aswell.

• Latent sector errors affect a significant percentage of diskdrives. They affect up to 20%

of the drives of one of the SATA disk models. Such a high percentage implies a need for

maintaining redundant information to protect against dataloss. Single-disk systems should

strive for intra-disk redundancy, perhaps in the form of replicated file-system metadata, while

RAID systems should consider protecting against double disk failures [3, 22, 35, 57, 59, 98]

• Albeit not as common as latent sector errors, data corruption does happen; we observed

more than 400,000 cases of checksum mismatches. For some drive models as many as 4%
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of drives develop checksum mismatches during the 17 months examined. Similarly, even

though they are rare, identity discrepancies and parity inconsistencies do occur. Protection

offered by checksums and block identity information is therefore well-worth the extra space

needed to store them.

• A significant number (8% on average) of corruptions are detected during RAID reconstruc-

tion, creating the possibility of data loss. In this case, protection against double disk fail-

ures [3, 22, 35, 57, 59, 98] is necessary to prevent data loss.More aggressive scrubbing can

speed the detection of errors, reducing the likelihood of anerror during a reconstruction.

• Although, the fraction of disks that develop corruption is lower for enterprise drives, once

they develop one corruption, many more are likely to follow.Therefore, replacing an enter-

prise drive on the first detection of a corruption might make sense (drive replacement cost

may not be a huge factor since the probability of first corruption is low).

• Some block numbers are much more likely to be affected by corruption than others, poten-

tially due to hardware or firmware bugs that affect specific sets of block numbers. RAID

system designers might consider usingstaggeredstripes such that the blocks that form the

stripe are not stored at the same or nearby block number.

• Strong spatial locality for both latent sector errors and checksum mismatches suggests that

redundant data structures should be stored distant from each other.

• The high degree of spatial and temporal locality for checksum mismatches also begs the

question of whether many corruptions occur at the exact sametime, perhaps when all blocks

are written as part of the same disk request. This hypothesissuggests that important or

redundant data structures that are used for recovering dataon corruption should be written

as part of different write requests spaced over time.

• Strong spatial and temporal locality (over long time periods) also suggests that it might be

worth investigating how the locality can be leveraged for smarter scrubbing; for example,

one can trigger a scrub before it’s next scheduled time, whenprobability of latent sector



92

errors or corruption is high or performselectivescrubbing of an area of the drive that’s likely

to be affected.

• Failure prediction algorithms in systems should take into account the correlation of latent

sector errors and corruption with other errors such as not-ready-condition errors and with

each other, increasing the probability of one error when an instance of the other is found.

3.6 Conclusion

Our large-scale study of partial disk failures shows that partial disk failures do occur. In fact,

latent sector errors affect an alarming number of disk drives for some disk drive models. Likewise,

data corruption affects around 3% of disk drives within justa year and a half for many nearline disk

models, which are the kind used in commodity systems like ourdesktops and laptops. Further, the

use of more expensive enterprise drives does not eliminate data corruption. Therefore, it is essential

that the storage stack be able to detect and recover from partial disk failures.

The analysis of the characteristics of partial disk failures provides us with insights that can be

used to build and evaluate reliable storage systems. In particular, data protection techniques should

factor in the spatial and temporal locality of partial disk failures. The analysis also shows that disk

scrubbing techniques could play a vital role in proactivelydetecting partial disk failures.

There is a rich space for future work on characterizing partial disk failures. Specifically, future

studies could focus on the impact of factors such as environment and workload. These avenues for

future studies are discussed in Section 9.3.1.
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Chapter 4

Impact on RAID Systems

RAID (Redundant Array of Independent Disks) stores data on multiple disks in a redundant

fashion in order to survive the failure of one or more of the disks [101]. Since it was originally

proposed, it has been employed in nearly every enterprise storage system [43, 65, 68, 94].

RAID is specifically targeted towards handling disk failures; therefore, one would expect a

thorough and verifiable failure-handling scheme. With simple disk failures (e.g., an entire disk

failing in a fail-stop fashion), designing such protectionschemes to cope with disk failures is not

overly challenging. For example, early systems successfully handle the failure of a single disk

through the use of mirroring or parity-based redundancy schemes [21, 81, 101]. Although getting

an implementation to work correctly may be difficult (often involving hundreds of thousands of

lines of code [146]), one could feel confident that the designproperly handles the expected failures.

Unfortunately, as the data in Chapter 3 shows, storage systems today are confronted with a

much richer landscape of disk failures involving latent sector errors and silent data corruptions.

These partial disk failures, especially silent data corruptions, considerably complicate the con-

struction of correctly-designed protection strategies.

A number of techniques have been developed and used in enterprise RAID systems to cope

with silent data corruptions. For example, various forms ofchecksumming can be used to de-

tect corruption [18, 129]; combined with redundancy (e.g., mirrors or parity), checksumming en-

ables both the detection of and recovery from certain classes of corruptions. However, given the

broad range of techniques used (including sector checksums[18, 37, 65], block checksums [131],

parental checksums [130], write-verify operations [131],identity information [107, 131], and disk
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scrubbing [37, 119, 130, 131], to list a few), exactly which techniques protect against which fail-

ures is sometimes unclear; worse, combining different approaches in a single system may lead to

unexpected gaps in data protection.

We propose an approach based on model checking [73] to analyze the design of protection

schemes in current-day storage systems. We develop and apply a simplemodel checkerto examine

different data protection schemes. We first implement a simple logical version of the protection

scheme under test; the model checker then applies differentsequences of read, write, and failure

events to exhaustively explore the state space of the system, either producing a chain of events that

lead to data loss or a “proof” that the scheme works as desired.

We use the model checker to evaluate a number of different approaches found in real RAID

systems, focusing on schemes that use one parity block per RAID stripe. We analyze how they

detect and recover from a single partial disk failure and findholes in all of the schemes examined,

where systems potentially exposes data to loss or returns corrupt data to the user. We find that many

of these systems suffer from a general problem that we callparity pollution, wherein corruption to

a disk block on a data disk can spread to the parity disk, thereby rendering the data unrecoverable.

We use our analysis to construct a protection scheme to address all issues we discover including

parity pollution; this scheme uses several techniques including block checksums, both logical and

physical identity information, and version mirroring.

With analyses of each scheme in hand, we also show how a systemdesigner can combine real

data of failure probability (from our study of the characteristics of partial disk failures in Chapter 3)

with our model checker’s results to arrive upon a final estimation of data-loss probability. Doing

so enables one to compare different protection approaches and determine which is best given the

current environment.

The rest of the chapter is structured as follows. Section 4.1briefly discusses the evolution

of data protection in real systems. Section 4.2 describes our approach to model checking and

Section 4.3 presents the results of using the model checker to deconstruct a variety of protection

schemes. Section 4.4 presents the results of our analysis ofdata-loss probability for each scheme

and Section 4.5 concludes the chapter.
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4.1 Enterprise Data Protection

Protection techniques in real systems have evolved greatlyover time. Early multiple disk sys-

tems focused almost solely on recovery from entire disk failures; detection was performed by

the controller, and redundancy (e.g., mirrors or parity) was used to reconstruct data on the failed

disk [32].

As disk drives became bigger, faster, and cheaper, new and interesting failure modes began

to appear, and storage-system vendors added techniques to tackle the new failures. For example,

NetAppTM recently added protection against lost writes [131]. Many other systems do not (yet)

have such protections, and the importance of such protection is difficult to gauge. This anecdote

serves to illustrate the organic nature of data protection.While it would be optimal to simply write

down a set of assumptions about the fault model and then design a system to handle the expected

failures, in practice such an approach is not practical. Disks (and other storage subsystem compo-

nents) provide an ever-moving target; tomorrow’s disk failures may not be present today. Worse, as

new problems arise, they must be incorporated into existingschemes, rather than attacked from first

principles. This aspect of data protection motivates the need for a formal and rigorous approach to

help understand the exact protection offered by combinations of techniques.

Table 4.1 shows the protection schemes employed by a range ofsystems. Although the table

may be incomplete (e.g., a given system may use more than the protections we list, as we only

list what is readily made public via published papers, web sites, and documentation), it hints at

the breadth of approaches employed as well as the on-going development of protection techniques.

We discuss each of these techniques in more detail in Section4.3, where we use our model checker

to determine their efficacy in guarding against partial diskfailures.

Depending on the protection techniques in place, partial disk failures may have one or more of

the following outcomes:

Data recovery: The scenario where the protection scheme detects the partial disk failure and uses

parity to successfully recover data.
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Hardware RAID card
√

(e.g., AdaptecTM 2200 S [1])

Linux software RAID [47, 97]
√ √

Pilot [107]
√ √

Tandem NonStopTM [18]
√ √ √

DellTM PowervaultTM [37]
√ √ √ √

Hitachi Thunder 9500TM [65, 66]
√ √ √

NetApp Data ONTAPTM [94, 131]
√ √ √ √ √ √

ZFS [130] with RAID-4
√ √ √

Table 4.1 Protection techniques in real systems.This table shows the known protection techniques
used in real-world systems. Some systems have additional protection techniques: Pilot uses a scavenger
routine to recover metadata, and Powervault uses a 1-bit “write stamp” and a timestamp value to detect
data-parity mismatches. Systems may use further protection techniques whose details not made public.
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Data loss: The scenario where the protection scheme detects the partial disk failure, but is unable

to successfully recover data. In this case, the storage system reports an error to the user.

Corrupt data: The scenario where the protection scheme does not detect thepartial disk failure

and therefore returns corrupt data to the user.

4.2 Model Checking

We have developed a simple model checker to analyze the design of various data protection

schemes. The goal of the model checker is to identify all execution sequences, consisting ofuser-

level operations, protection operations, anda single partial disk failure, that can lead to either

data loss or corrupt data being returned to the user. The model checker exhaustively evaluates all

possible states of asingle RAID stripeby taking into account the effects of all possible operations

and partial disk failures for each state.

We have chosen to build our own model checker instead of usingan existing one since it is

easier to build a simple model checker that is highly specificto RAID data protection; for example,

the model checker assumes that the data disks are interchangeable, thereby reducing the number

of unique states. However, there is no fundamental reason why our analysis cannot be performed

on a different model checker.

Models for the model checker are built on top of some basic primitives. ARAID stripeconsists

of N disk blocks where the contents of each disk block is defined bythe model using primitive

components consisting of user data entries and protections. Since both the choice of components

and their on-disk layout affect the data reliability, the model must specify each block as a series of

entries (corresponding to sectors within a block). Each entry can be atomically read or written.

The model checker assumes that the desired unit of consistency is one disk block. All protection

schemes are evaluated with this assumption as a basis.

4.2.1 Model-Checker Primitives

The model checker provides the following primitives for useby the protection scheme:
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Disk operations: The conventional operations disk read and disk write are provided. These

operations are atomic for each entry (sector) and not over multiple entries that form a disk

block.

Data protection: The model checker and the model in conjunction implement various pro-

tection techniques. The model checker uses model-specifiedknowledge of the protections

to evaluate different states. For example, the result of checksum verification is part of the

system state that is maintained by the model checker. Protections like parity and checksums

are modeled in such a way that “collisions” do not occur; we wish evaluate the spirit of the

protection, not the choice of hash function.

The model defines operations such as user read and user write based on the model checker

primitives. For instance, a user write that writes a part of the RAID stripe will be implemented by

the model using disk read and disk write operations, parity calculation primitives, and protection

checks.

4.2.2 Modeling Partial Disk Failures

The model checker injects exactly one partial disk failure during the analysis of the protection

scheme. The model checker supports different types of partial disk failures, including latent sector

errors and the different types of data corruption. We now describe how the different failures are

modeled.

Latent sector errors: These failures are modeled as inaccessible data – an explicit error is

returned when an attempt is made to read the disk block. Disk writes always succeed; it is

assumed that if a latent sector error occurs, the disk automatically remapsthe sectors.

Bit corruptions: These failures are modeled as a change in value of a disk sector that

produces a new value (i.e., no collisions).

Lost writes: These failures are modeled by not updating any of the sectorsthat form a disk

block when a subsequent disk write is issued.
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Operation Description Notation

User read Read for any data disk R(X)

User write Write for any combination of disks in the

stripe (the model performs any disk reads

needed for parity calculation)

W() is any write,WADD() is write

with additive parity,WSUB() is sub-

ractive; Parameters: X+ is “data

disk X plus others”, !X is “other

than diskX”, full is “full stripe”

Scrub Read all disks, verify protections, recom-

pute parity from data, and compare with

on-disk parity

S

Latent sector

error

Disk read to a disk returns failure FLSE(X), FLSE(P) for data diskX

and parity disk respectively

Bit corrup-

tion

A new value is assigned to a sector FCORRUPT(X), FCORRUPT(P) for

data diskX and parity disk respec-

tively

Lost write Disk write issued is not performed, but

success is reported

FLOST(X), FLOST(P) for data disk

X and parity disk respectively

Torn write Only the first sector of a disk write is

written, but success is reported

FTORN(X), FTORN(P) for data disk

X and parity disk respectively

Misdirected

write

A disk block is overwritten with data fol-

lowing the same layout as the block, but

not meant for it

FMISDIR(X), FMISDIR(P) for data

diskX and parity disk respectively

Table 4.2 Model operations. This table shows the different sources of state transitions: (a) operations
that are performed on the model, and (b) the different partial disk failures that are injected.
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Torn writes: These failures are modeled by updating only a portion of the sectors that form

a disk block when a subsequent disk write is issued.

Misdirected writes: In a real system, these failures manifest in two ways: (i) they appear

as a lost write for the block the write was intended to (the target), and (ii) they overwrite a

different disk location (the victim). We assume that the target and victim are on different

RAID stripes (otherwise, it would be a double failure), and therefore can be modeled sepa-

rately. Thus, we need to model only the victim, since the effects of a lost write on the target

is a failure we already study. A further assumption we make isthat the data being written is

block-aligned with the victim. Thus, a misdirected write ismodeled by performing a write

to a disk block (with valid entries) without an actual request from the model.

4.2.3 Model-Checker States

A state according to the model checker is defined using the following sub-states: (a) the validity

of each data item stored in the data disks as maintained by themodel checker, (b) the results of

performing each of the protection checks of the model, and (c) whether valid data and metadata

items can be regenerated from parity for each of the data disks. The data disks are considered

interchangeable; for example, data diskD0 with corrupt data is the same as data diskD1 with

corrupt data as long as all other data and parity items are valid in both cases. As with any model

checker, the previously explored states are remembered to avoid re-exploration.

The output of the model checker is a state machine that startswith the RAID stripe in the clean

state and contains state transitions to each of the unique states discovered by the model checker.

Table 4.2 contains a list of operations and errors that causethe state transitions.

4.3 Analysis

We now analyze various protection schemes using the model checker. We add protection tech-

niques – RAID, data scrubbing, checksums, write-verify, identity, version mirroring – one by one,

and evaluate each setup.
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4.3.1 Bare-bones RAID

The simplest of protection schemes is the use of parity to recover from failures. This type of

scheme is traditionally available through RAID hardware cards [1]. In this scheme, failures are

typically detected based on error codes returned by the diskdrive.

Figure 4.1 presents the model of bare-bones RAID, specified using the primitives provided by

the model checker. In this model, a user read command simply calls a RAID-level read, which

in turn issues a disk read for all disks. The disk read primitive returns the “data” successfully

unless a latent sector error is encountered. On a latent sector error, the RAID read routine calls the

reconstruct routine, which reads the rest of the disks, and recovers data through parity calculation.

At the end of a user read, in place of returning data to the user, a validity check primitive is called.

This model checker primitive verifies that the data is indeedvalid; if it is not valid, then the model

checker has found a hole in the protection scheme that returns corrupt data to the user.

When one or more data disks are written, parity is recalculated. Unless the entire stripe is

written, parity calculation requires disk reads. In order to optimize the number of disk reads, parity

calculation may be performed in an additive or subtractive manner. In additive parity calculation,

data disks other than the disks being written are read and thenew parity is calculated as the XOR

over the read blocks and the blocks being written. In subtractive parity calculation, the old data

in the disks being written and the old parity are first read. Then, the new parity is the XOR of

old data, old parity, and new data. Since parity calculationuses data on disk, it should verify the

data read from disk. We shall see in the subsections that follow that the absence of this verification

could violate data protection.

When the model checker is used to evaluate this model and onlyone partial disk failure is

injected, we obtain the state machine shown in Figure 4.2. Note that the state machine shows only

those operations that result in state transitions (i.e., self-loops are omitted). The model starts in

theclean state and transitions to different states when failures occur. We now describe the state

transitions with an example. A latent sector error to data diskX places the model in stateDiskX

LSE. The model could then transition back toclean state on a disk read to diskX. This disk read

could be initiated due to various reasons. First, a user readto disk X (i.e., R(X)) could cause
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UserRead(Disks[])
{

data[] =RaidRead(Disks[]);
if(raid read failed)

Declare double failure and return;
else

CheckValid(Disks[], data[]);
}

UserWrite(Disks[], data[])
{

if(Additive parity cost lower for num(Disks[]))
{

otherdisks[] =RaidRead(AllDisks[] - Disks[]);
if(raid read failed)

Declare double failure and return;
parity data =Parity (data[]+ otherdisks[]);

}
else// subtractive parity
{

old data[] =RaidRead(Disks[] + ParityDisk);
if(raid read failed)

Declare double failure and return;
parity data =Parity (data[]+ old data[]);

}
for(x = 0 to num(Disks[]))
{

DiskWrite (Disks[x], data[x]);
}
DiskWrite (ParityDisk, paritydata)
return SUCCESS;

}

RaidRead(Disks[])
{

for(x = 0 to num(Disks[]))
{

data[x] =DiskRead(Disks[x]);
if(disk read failed) // LSE
{

data[x] =Reconstruct(Disks[x]);
if(reconstruct failed) // another LSE
{

return FAILURE;
}

}
}
return data[];

}

Reconstruct(BadDisk)
{

for(x = 0 to num(AllDisks[]))
{

if(Disks[x] is not BadDisk)
data[x] =DiskRead(Disks[x]);

else
data[x] =DiskRead(ParityDisk);

if(disk read fails) // LSE
return FAILURE;

}
new data =Parity (data[x]);
DiskWrite (Disks[x], newdata);
return newdata;

}

Figure 4.1Model of bare-bones RAID.The figure shows the model of bare-bones RAID specified using
the primitivesDiskRead, DiskWrite , Parity , andCheckValid provided by the model checker.CheckValid
is called when returning data to the user and the model checker verifies if the data is actually valid.
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the corresponding disk read. Second, a user write to diskX could initiate a disk read to it for

subtractive parity calculation (WSUB(X+)). Third, a user write to some disk may result in additive

parity calculation, thereby causing diskX to be read (WADD()). We see from the example that the

model can recover from a latent sector error to data disks. The state machine shows that the model

can recover from a latent sector error to the parity disk as well.

Let us now consider the state transitions that lead to corrupt data being returned to the user. We

retain the names of states involved in these transitions forother data protection schemes as well,

since the role they play is similar across schemes.

Any of the silent data corruptions, lost write, torn write, misdirected write, or bit corruption

to data diskX when inclean state, places the model in stateDiskX Error. In this state, disk

X contains wrong data and the (correct) parity on the stripe istherefore inconsistent with the data

disks. A user read to diskX will now return corrupt data to the user (Corrupt Data), simply

because there is no means of verifying that the data is valid.If a user write to disks other than disk

X triggers additive parity calculation (WADD(!X)), the corrupt data in diskX is used for parity

calculation, thereby corrupting the parity disk as well. Inthis scenario, both diskX and the parity

diskP contain corrupt data, but they are consistent. We term this process of propagating incorrect

data to the parity disk during additive parity calculation asparity pollutionand it corresponds to the

statePolluted Parity. Parity pollution does not impact the probability of data loss or corruption

in this case since bare-bones RAID does not detect any form ofcorruption. However, as we shall

see, parity pollution causes problems for many other protection schemes.

When in stateDiskX Error, if a user write involving diskX leads to subtractive parity cal-

culation (WSUB(X+)), the corrupt data in diskX is used for the parity calculation. Therefore, the

new parity generated is corrupt (and also inconsistent withthe data disks). However, since diskX

is being written, diskX is no longer corrupt. This state is named asParity Error in the state

machine. We see that the same state can be reached fromclean state when a silent data corruption

occurs for the parity disk. This state does not lead to further data loss or corruption in the absence

of a second failure (if a second failure is detected on one of the data disks, the corruption will be
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A B C D E F

start clean

Disk x
Error

FLOST(x) | FMISDIR (x) | FTORN(x) | FCORRUPT(x)

Disk x
LSEFLSE(x)

Parity
LSE

FLSE(P)

Parity
Error

FLOST(P) | FMISDIR (P) | FTORN(P) | FCORRUPT(P)

WADD (x+)

WSUB(x+)

Polluted
Parity

WADD (!x)
Corrupt

Data

R(x)

R(x) | WADD () | WSUB(x+)

W()

WADD ()

W(x+)

R(x)

Figure 4.2 State machine for bare-bones RAID.The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a bare-bones RAID-4 stripe and a
single partial disk failure is injected.
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Corrupt

Data
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S | WADD ()

W(x+)

R(x)

Figure 4.3 State machine for RAID with scrubbing. The figure shows the state machine obtained
from the model checker when different RAID operations are performed on a RAID-4 stripe, and a single
partial disk failure is injected. The protection techniqueused in addition to RAID is scrubbing.

propagated to that disk as well). Thus, we see that, bare-bones RAID protects against latent sector

errors, but not against silent data corruptions.

4.3.2 Data Scrubbing

In this scheme, we add data scrubbing to the bare-bones RAID protection scheme. As we

discussed in Section 3.1.2.3, data scrubs read all disk blocks that form the stripe and reconstruct

the data if a failure is detected. The scrub also recomputes the parity of the data blocks and

compares it with the parity stored on the parity disk, thereby detecting any inconsistencies. Thus,

the scrubbing mechanism can convert the RAID recovery mechanism into a corruption-detection

technique. Note that if an inconsistency is detected, bare-bones RAID does not offer a method to

resolve it. The scrub should fix the inconsistency (by recomputing the contents of the parity disk)

because inconsistent data and parity lead to further data corruption if a second failure occurs and

reconstruction is performed.

When the model checker is used to examine this model, we obtain the state machine shown

in Figure 4.3. We see that the state machine is very similar tothat of bare-bones RAID, except

that some edges include the scrub operationS. One such edge is the transition from the state

DiskX Error, where data in diskX is wrong, toPolluted Parity, where both the data and
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parity are wrong, but consistently so. This transition during a scrub is easily explained – inDiskX

Error, the scrub detects a mismatch between data and parity and updates the parity to match the

data moving the model to statePolluted Parity. We see that the addition of the scrub has not

improved protection when only one failure occurs; scrubs are intended to lower the chances of

double failures, not of loss from single failures. In fact, we shall see later that the tendency of

scrubs to pollute parity increases the chances of data loss when only one failure occurs.

4.3.3 Checksums

Checksumming techniques have been used in numerous systemsover the years to detect data

corruption. Some systems store the checksum along with the data that it protects [18, 37, 131],

while other systems store the checksum on the access path to the data [129, 130]. We will explore

both alternatives. We also distinguish between the schemesthat store per sector checksums [18, 37]

and those that use per-block checksums [131].

Sector checksums:In the case of sector checksums, a separate checksum is generated for

each sector and stored along with data in that sector. Figure4.4 shows the state machine obtained

for sector-level checksum protection. The obvious change from the previous state machines is the

addition of two new statesDiskX Corrupted andParity Corrupted. The model transitions

to these states from theclean state when a bit corruption occurs to diskX or the parity disk

respectively. The use of sector checksums enables the detection of these bit corruptions whenever

the corrupt block is read (including scrubs), thus initiating reconstruction and thereby returning

the model toclean state. However, the use of sector checksums does not protectagainst torn

writes, lost writes, and misdirected writes. For example, torn writes update a single sector, but

not the rest of the block. The checksum for all sectors is therefore consistent with the data in that

sector. Therefore, sector checksums do not detect these scenarios (R(X) from DiskX Error leads

to Corrupt Data).

Block checksums:The goal of block checksums is to ensure that a disk block is one consistent

unit, unlike with sector checksums. Therefore, a checksum is generated for each disk block (that

consists of multiple sectors) and it is stored along with thedata in the block. Figure 4.5 shows
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S | W()
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Figure 4.4 State machine for sector checksums.The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a RAID-4 stripe, and a single partial
disk failure is injected. The protection techniques used are scrubbing and sector-level checksums.
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Figure 4.5 State machine for block checksums.The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a RAID-4 stripe, and a single partial
disk failure is injected. The protection techniques used are scrubbing and block-level checksums.
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Figure 4.6State machine for parental checksums.The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a RAID-4 stripe and a single partial
disk failure is injected. The protection techniques used are scrubbing and checksums stored in a parent
block.

the state machine obtained for block-level checksum protection. Again, the addition of new states

that do not lead toCorrupt Data signifies an improvement in the protection. The new states

added correspond to torn writes. Unlike sector-level protection, block-level protection can detect

torn writes (detection denoted by transitions from statesDiskX Torn Write andParity Torn

Write to clean) in exactly the same manner as detecting bit corruptions. However, we see that

corrupt data could still be returned to the user. A lost writeor a misdirected write transitions the

model from theclean state toDiskX Error. When a lost write occurs, the disk block retains the

data and the corresponding checksum written on a previous occasion. The data and checksum are

therefore consistent. Hence, the model does not detect thatthe data on disk is wrong. A read to

diskX now returns corrupt data to the user. The scenario is similarfor misdirected writes as well.

Parental checksums:A third option for checksumming is to store the checksum of the entire

disk block in a parent block that is accessed first during userreads (e.g., an inode of a file is read

before its data block). Parental checksums can thus be used to verify data during all user reads, but

not for other operations such as data scrubs.

Figure 4.6 shows the state machine for this scheme. We noticemany changes to the state

machine as compared to block checksums. First, we see that the states successfully handled by
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block checksums (such asFTORN(X)) do not exist. Instead, the transitions that led fromclean to

those states now place the model inDiskX Error. Second, none of the states return corrupt data

to the user. Instead, a new node calledData Loss has been added. This change signifies that the

model detects a double failure and reports data loss. Third,the only transition toData Loss is

due to a read of diskX when in thePolluted Parity state. Thus, parity pollution now leads to

data loss. As before, the causes of parity pollution are datascrubs or additive parity calculations

(transitionsS or WADD(!X) lead fromDiskX Error to Polluted Parity). Figure 4.7 presents a

pictorial view of the transitions from clean state to paritypollution and data loss. At the root of the

problem is the fact that parental checksums can be verified only for user reads, not other sources

of disk reads such as data scrubs or parity calculations. Anyprotection technique that does not

co-operate with RAID, allows parity recalculation to use bad data, causing irreversible data loss.

Of the three checksums techniques evaluated, we find that block checksumming has the fewest

number of transitions to data loss or corruption. Therefore, we use block checksums as the starting

point for adding further protection techniques.

4.3.4 Write-Verify

One primary problem with block checksums is that lost writesare not detected. Lost writes are

particularly difficult to handle. If the checksum is stored along with the data and both are written

as part of the same disk request, they are both lost, leaving the old data and checksum intact and

valid. On later reads to disk block, checksum verification compares the old data and old checksum

which are consistent, thereby not detecting the lost write.

One simple method to fix this problem is to ensure that writes are not lost in the first place.

Some storage systems perform write-verify [65, 131] (also called read-after-write verify) for this

purpose. This technique reads the disk block back after it iswritten, and uses the data contents in

memory to verify that the write has indeed completed.

Figure 4.8 shows the state machine for write-verify with block checksums. Comparing this

figure against Figure 4.5, we notice two differences: First,the states representing torn data or parity

do not exist anymore. Second, the transitionsFTORN(X), FTORN(P), FLOST(X), andFLOST(P) are
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Figure 4.7 Parity pollution sequence. This figure shows a sequence of operations, along with inter-
mediate RAID states, that lead to parity pollution and subsequent data loss. Each horizontal set of disks
(Data disks d0, d1 and d2 and Parity disk) form the RAID stripe. The contents of the disk blocks are shown
inside the disks.a, b, etc. are data values, and{a, b} denotes the parity of valuesa andb. The protection
scheme used is parental checksums. Checksums are shown nextto the corresponding data disks. At each
RAID state, user read or write operations cause corresponding disk reads and writes, resulting in the next
state. The first write to disk d0 is lost, while the checksum and parity are successfully updated. Next, a user
write to disks d1 and d2 uses the bad data in disk d0 to calculate parity, thereby causing parity pollution.
A subsequent user read to disk d0 detects a checksum mismatch, but recovery is not possible since parity is
polluted.
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Figure 4.8 State machine for write-verify. The figure shows the state machine obtained from the
model checker when different RAID operations are performedon a RAID-4 stripe, and a single partial disk
failure is injected. The protection techniques used are scrubbing, block-level checksums, and write-verify.
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now fromclean to itself, instead of to other states (self-loops shown for readability). Write-verify

detects lost writes and torn writes as and when they occur, keeping the RAID stripe in clean state.

Unfortunately, write-verify has two negatives. First, it does not protect against misdirected

writes. When a misdirected write occurs, write-verify would detect that the original target of

the write suffered a lost write, and therefore simply reissue the write. However, the victim of

the misdirected write is left consistent with consistent checksums but wrong data. A later user

read to the victim thus returns corrupt data to the user. Second, although write-verify improves

data protection, every disk write now incurs a disk read as well, possibly leading to a loss in

performance.

4.3.5 Identity

A different approach that is used to solve the problem of lostor misdirected writes without the

performance penalty of write-verify is the use of identity information.

Different forms of identifying data (also called self-describing data) can be stored along with

data blocks. An identity may be in one of two forms: (a) physical identity, which typically consists

of the disk number and the disk block (or sector) number to which the data is written [18], and (b)

logical identity, which is typically an inode number and offset within the file [107, 131].

Physical identity: Physical identity consists of the disk number and the disk block number to

which the data is written. This identity is stored along withthe data in the disk block. Figure 4.9

shows the state machine obtained when physical identity information is used in combination with

block checksums. Compared to previous state machines, we see that there are two new states

corresponding to misdirected writes,DiskX Misdir Write andParity Misdir Write. These

states are detected by the model when the disk block is read for any reason (scrub, user read,

or parity calculation) since even non-user operations likescrub can verify physical identity. Thus,

physical identity is a step towards mitigating parity pollution. However, parity pollution still occurs

in state transitions involving lost writes. If a lost write occurs, the disk block contains the old data,

which would still have the correct physical block number. Therefore, physical identity cannot

protect against lost writes, leading to corrupt data being returned to the user.
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Figure 4.9 State machine for physical identity. The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a single RAID-4 stripe, and a single
partial disk failure is injected. The protection techniques used are scrubbing, block checksums, and physical
identity.
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Figure 4.10 State machine for logical identity. The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a single RAID-4 stripe, and a single
partial disk failure is injected. The protection techniques used are scrubbing, block checksums, and logical
identity.
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Logical identity: The logical identity is typically an inode number and offsetwithin the file.

It is stored along with the data in the disk block. The logicalidentity of disk blocks is defined

by the block’s parent and can therefore be verified only during user reads. Figure 4.10 shows

the state machine obtained when logical identity protection is used in combination with block

checksums. Unlike physical identity, misdirected writes do not cause new states to be created

for logical identity. Both lost and misdirected writes place the model in theDiskX Error state.

At this point, parity pollution due to scrubs and user writesmoves the system to thePolluted

Parity state since logical identity can be verified only on user reads, thus causing data loss. Thus,

logical identity works in similar fashion to parental checksums: (i) in both cases, there is a check

that uses data from outside the block being protected, and (ii) in both cases, corrupt data is not

returned to the user and instead, data loss is detected.

4.3.6 Version Mirroring

The use of identity information (both physical and logical)does not protect data from exactly

one scenario – parity pollution after a lost write. We now introduce version mirroring to detect lost

writes during scrubs and parity calculation. Herein, each data block that belongs to the RAID stripe

contains a version number. This version number is incremented with every write to the block. The

parity block contains a list of version numbers of all of the data blocks that it protects. Whenever

a data block is read, its version number is compared to the corresponding version number stored

in the parity block. If a mismatch occurs, the newer block will have a higher version number, and

can used to reconstruct the other data block.

Note that when this approach is employed during user reads, each disk block read would now

incur an additional read of the parity block. To avoid this performance penalty, version numbers

can be used in conjunction with logical identity. Thus, logical identity is verified during file system

reads, while version numbers are verified for parity re-calculation reads and disk scrubbing. This

approach incurs an extra disk read of the parity block only when additive parity calculation is

performed.
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Figure 4.11State machine for version mirroring. The figure shows the state machine obtained from
the model checker when different RAID operations are performed on a single RAID-4 stripe, and a single
partial disk failure is injected. The protection techniques used are scrubbing, block checksums, logical
identity, and version mirroring.
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A primitive form of version mirroring has been used in real systems: Dell Powervault storage

arrays [37] use a 1-bit version number called a “write stamp”. However, since the length of the

version number is restricted to 1-bit, it can only be used todetecta mismatch between data and

parity (which we already can achieve through parity recompute and compare). It does not provide

the power to identify the wrong data (which would enable recovery). This example illustrates that

the bit-length of version numbers limits the failures that can be detected and recovered from.

Figure 4.11 shows the state machine obtained when version mirroring is added to logical iden-

tity protection. We find that there are now states corresponding to lost writes (DiskX Lost Write

andParity Lost Write) for which all transitions lead toclean. However,Data Loss could still

occur, and in addition,Data Loss Declared could occur as well. The only failure that causes

state transitions to any of these nodes is a misdirected write.

A misdirected write to diskX places the model inDiskX Misdir Write. Now, an additive

parity calculation that uses diskX will compare the version number in diskX against the one in

the parity disk. The misdirected write could have written a disk block with a higher version number

than the victim. Thus, the model trusts the wrong diskX and pollutes parity. A subsequent read to

diskX uses logical identity to detect the corruption, but the parity has already been polluted.

A misdirected write to the parity disk causes problems as well. Interestingly, none of the pro-

tection schemes so far face this problem. The sequence of state transitions leading toData Loss

Declared occurs in following fashion. A misdirected write to the parity disk places new version

numbers in the entire list of version numbers on the disk. When any data disk’s version number is

compared against its corresponding version number on this list (during a write or scrub), if the par-

ity’s (wrong) versions numbers are higher, reconstructionis initiated. Reconstruction will detect

that none of the version numbers of the data disks match the version numbers stored on the parity

disk. In this scenario, a multi-disk failure is detected andthe model declares data loss. This state

is different fromData Loss, since this scenario is a false positive while the other has actual data

loss.

The occurrence of theData Loss Declared state indicates that the policy used when multiple

version numbers mismatch during reconstruction is faulty.It is indeed possible to have a policy that
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Figure 4.12 State machine for complete data protection. The figure shows the state machine
obtained from the model checker when different RAID operations are performed on a single RAID-4 stripe,
and a single partial disk failure is injected. The protection techniques used are scrubbing, block checksums,
both physical and logical identity, and version mirroring.
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fixes parity instead of data on a multiple version number mismatch. The use of a model checker

thus enables identification of policy faults as well.

We know from the previous subsection that physical identityprotects against misdirected

writes. Therefore, if physical identity is added to versionmirroring and logical identity, we could

potentially eliminate all problem nodes. Figure 4.12 showsthe state machine generated for this

protection scheme. We see that none of the state transitionslead to data loss or data corruption.

The advantage of using physical identity is that the physical identity can be verified (detecting

any misdirected write) before comparing version numbers. Thus, we have identified a scheme that

eliminates data loss or corruption due to a realistic range of disk failures.

We now review the techniques used in the scheme that protectsagainst all failures:

RAID: RAID stores a parity block for each set of data blocks and thusprovides the ability

to recover from single failures.

Block checksums: This technique stores a checksum for each disk block along with the

block. It provides the ability to detect bit corruptions whenever the disk block is read. Note

that the checksum protects both the data in the block as well as other protection elements

such as identity information.

Physical identity: This form of identity is typically a combination of the disk number and

the disk block number; it is stored along with the disk block.It is used to detect misdirected

writes whenever the disk block is read.

Version mirroring: In this technique, a version number is stored in each data block and a

copy of it is stored in the parity block. This version number is incremented for each disk

write. The version numbers on the data and parity blocks are compared whenever parity is

updated. This technique detects lost writes during parity calculations.

Logical identity: This form of identity is typically a combination of the inodenumber of

the file to which the disk block belongs and the offset within that file. The logical identity

of a disk block is stored in the disk block. This technique is used to detect lost writes during
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user read of the disk block. While version mirroring is sufficient for this purpose, logical

identity does so without an extra disk read and is therefore useful.

4.3.7 Discussion

The analysis of multiple schemes has helped identify the following key data protection issues.

Parity pollution: We believe that any parity-based system that re-uses existing data to com-

pute parity is potentially susceptible to data loss due to disk failures, in particular lost and

misdirected writes. In the absence of techniques to perfectly verify the integrity of exist-

ing disk blocks used for recomputing the parity, disk scrubbing and partial-stripe writes can

cause parity pollution, where the parity no longer reflects valid data.

In this context, it would be interesting to apply model checking to understand schemes with

double parity [22, 35]. Another interesting scheme that could be analyzed is one with RAID-

Z [24] protection (instead of RAID-4 or RAID-5), where only full-stripe writes are per-

formed and data is protected with parental checksums.

Parental protection: Verifying the contents of a disk block against any value – either iden-

tity or checksum, written using a separate request and stored in a different disk location –

is an excellent method to detect failures that are more difficult to handle such as lost writes.

However, in the absence of techniques such as version mirroring, schemes that protect data

by placing checksum or identity protections on the access path should use the same access

path for data scrubbing, parity calculation, and reconstructing data; this approach ensures

that parental protection is used to verify block contents onevery read. Note that this ap-

proach could slow down these processes significantly, especially when the RAID is close to

full space utilization.

Mirroring: Mirroring of any piece of data provides a distinct advantage: one can verify

the correctness of data through comparison without interference from other data items (as

in the case of parity). Version mirroring utilizes this advantage in conjunction with crucial

knowledge about the items that are mirrored – the higher value is more recent.
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Physical identity: Physical identity, like block checksums, is extremely useful since it is

knowledge available at the RAID-level. We see that this knowledge is important for perfect

data protection.

Recovery-integrity co-design:Finally, it is vital to integrate data integrity with RAID re-

covery, and do so by exhaustively exploring all possible scenarios that could occur when the

protection techniques are composed.

Thus, a model-checking approach is very useful in deconstructing the exact protection offered

by a protection scheme, thereby also identifying importantdata-protection issues. We believe that

such an exhaustive approach would prove even more importantin evaluating protections against

double failures.

4.4 Probability of Loss or Corruption

One benefit of using a model checker is that we can assign probabilities to various state tran-

sitions in the state machine produced, and thus easily generate approximate probabilities for data

loss or corruption. These probabilities help compare the different schemes quantitatively.

We use the data for nearline disks (since they are being increasingly used in enterprise storage

systems) in Chapter 3 to derive per-year probabilities for the occurrence of the different partial

disk failures. For instance, the probability of occurrenceof FLSE (a latent sector error) for one disk

is 0.1 (derived from 0.2 for 2 years). The data does not distinguish between corruption and torn

writes; therefore, we assume an equal probability of occurrence ofFCORRUPT andFTORN (0.0022).

We derive the probabilities forFLOST andFMISDIR based on the assumptions in Section 4.2.2 as

0.0003 and 1.88e-5 respectively.

We also compute the probability for each operation to be the first to encounter the stripe with

an existing failure. For this purpose, we utilize the distribution of how often different requests

detect corruption in Section 3.4.5. The distribution is as follows. P(User read): 0.2, P(User write):

0.2, P(Scrub): 0.6. We assume that partial stripe writes of varying width are equally likely.
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Note that while we attempt to use as realistic probability numbers as possible, the goal is not

to provide precise data loss probabilities, but to illustrate the advantage of using a model checker,

and discuss potential trade-offs between different protection schemes.

Table 4.3 provides approximate probabilities of data loss derived from the state machines pro-

duced by the model checker. We consider a 4-data-disk, 1-parity-disk RAID configuration for all of

the protection schemes for calculating probabilities. This table enables simple comparisons of the

different protection schemes. We can see that generally, enabling protections causes an expected

decrease in the chance of data loss. The use of version mirroring with logical and physical identity,

block checksums and RAID produces a scheme with a theoretical chance of data loss or corruption

as 0. The data in the table illustrates the following trade-offs between protection schemes:

Scrub vs. No scrub:Systems employ scrubbing to detect and fix errors and inconsistencies

in order to reduce the chances of double failures. However, our analysis in the previous

section shows that scrubs could potentially cause data lossdue to parity pollution. The data

in the table shows that it is indeed the case. In fact, since scrubs have a higher probability

of encountering failures, the probability of data loss is significantly higher with scrubs than

without. For example, using parental checksums with scrubscauses data loss with a prob-

ability 0.00486, while using parental checksums without scrubs causes data loss with a 3

times lesser probability 0.00153.

Data loss vs. Corrupt data: Comparing the different protection schemes, we see that

some schemes cause data loss whereas others return corrupt data to the user. Interestingly,

we also see that the probability of data loss is higher than the probability of corrupt data.

For example, using parental checksums (with RAID and scrubbing) causes data loss with a

probability 0.00486, while using block checksums causes corrupt data to be returned with a

an order of magnitude lesser probability 0.00041. Thus, while in general it is better to detect

corruption and incur data loss than to return corrupt data, the answer may not be obvious

when the probability of loss is much higher.
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Table 4.3Probability of loss or corruption. The table provides an approximate probability of at least
1 data loss event and of corrupt data being returned to the user at least once, when each of the protection
schemes is used for storing data. It is assumed that the storage system uses 4 data disks, and 1 parity disk.
A (*) indicates that the data loss is detectable given the particular scheme (and hence can be turned into
unavailability, depending on system implementation).



125

If the precise probability distributions of the underlyingfailures, and read, write, and scrub

relative frequencies are known, techniques like Monte-Carlo simulation can be used to generate

actual probability estimates that take multiple failures into consideration [39].

4.5 Conclusion

In this chapter, we have presented a formal approach to analyzing the design of data protection

strategies. Whereas earlier designs were simple to verify by inspection (e.g., a parity disk success-

fully adds protection against full-disk failure), today’ssystems employ a host of techniques, and

their interactions are subtle and often non-obvious.

With our approach, we have shown that a variety of approachesfound in past and current

systems are successful at detecting a variety of problems but that some interesting corner-case

scenarios can lead to data loss or corruption. In particular, we found that the problem of parity

pollution can propagate errors from a single (bad) block to other (previously good) blocks, and

thus lead to a gap in protection in many schemes. The additionof version mirroring and proper

identity information, in addition to standard checksums, parity, and scrubbing, leads to a solution

where no single error should (by design) lead to data loss.

In the future, as protection evolves further to cope with thenext generation of disk problems,

we believe approaches such as ours will be critical. Although model checking implementations is

clearly important [150], the first step in building any successful storage system should begin with

a correctly-specified design.



126

Chapter 5

Impact on Virtual-Memory Systems

This chapter explores the impact of partial disk failures onvirtual-memory systems. A virtual-

memory system is an integral part of most operating systems,and like file systems, is a significant

user of disk storage.

The virtual-memory system uses disk space to store memory pages that are not expected to

be of immediate use, thereby freeing-up physical memory forother memory pages. When a page

stored on disk is accessed again, it is brought back into physical memory. Thus, the virtual-memory

system is responsible for handling disk failures that affect these memory pages.

Since the virtual-memory system is an integral element of the storage stack, it is important to

understand how a virtual-memory system responds to partialdisk failures. We extend the type-

aware fault-injection techniques presented in Section 2.5.1 to identify the failure-handling policies

of the virtual-memory systems of two operating systems, Linux 2.6.13 and FreeBSD 6.0. We

also perform a preliminary study of the Windows XP virtual-memory system. We characterize the

policies of these systems based on the IRON taxonomy presented in Section 2.4.

From our experiments, we find that these virtual-memory systems are not well-equipped to deal

with partial disk failures. Like the file systems studied in Section 2.5.2, the virtual-memory systems

use policies that are illogically inconsistent and their failure-handling routines have bugs. In most

cases, the failure-handling policy is simplistic, and in some cases, even absent. This disregard for

partial disk failures leads to many problems, ranging for loss of physical memory abstraction, to

data corruption, and even to system-security violations.

The rest of the chapter is organized as follows. Section 5.1 provides a background on virtual-

memory systems. Section 5.2 describes our fault-injectionand analysis methodology. Section 5.3
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presents experimental results, Section 5.4 analyzes the failure-handling approaches of the systems,

and Section 5.5 concludes the chapter.

5.1 Virtual-Memory Systems

A virtual-memory system uses disk storage to provide applications with an address space larger

than available physical memory. This helps the system execute multiple processes with large ad-

dress spaces simultaneously. The disk area used by the virtual-memory system is calledswap

space. The virtual-memory system uses swap space to store memory pages that are not expected

to be of immediate use. Typically, systems tend to remove pages that have not been accessed re-

cently or that are not accessed frequently from memory and store them on disk (calledpage-out).

When a page stored on disk is accessed again, it is brought back into physical memory (calledpage-

in). The page-out/page-in process is transparent to applications (except for performance effects).

Thus, the virtual-memory system is responsible for handling partial disk failures and maintaining

the illusion that the page is actually in physical memory.

Virtual-memory systems make use of file systems in two scenarios. First, instead of directly

using on-disk space, swap space can also be maintained as a file in a file system. Second, virtual-

memory systems allow applications to memory-map file data (e.g.using themmapsystem call).

When a file (or a portion of a file) is memory-mapped, applications can operate on file data as if

they were memory locations. User code pages are also memory-mapped from the executable file

when a program is executed. In such scenarios involving a filesystem, the virtual-memory system

depends on the file system to recover from or report partial disk failures.

The following subsections outline the features of two virtual-memory systems, Linux 2.6.13

and FreeBSD 6.0 whose failure-handling policies have been studied in this chapter. The features

of the Windows XP virtual-memory system will be discussed with its evaluation in Section 5.3.4.

5.1.1 Linux 2.6.13

The Linux 2.6.13 virtual-memory system has largely been derived from the previous Linux ver-

sions. It performs swapping only for user-mode pages [25]. User-mode pages are the data, stack,
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and code pages that form the user process. In order to keep thevirtual-memory system simple,

pages that belong to the kernel are not paged out. This simplification is not highly restrictive as

kernel pages occupy only a small portion of main memory. The page replacement algorithm used

is similar to the “2Q” algorithm [71]. When paged-out pages are accessed, space is created for

the pages and they are read from disk. The system also issues reads in advance (i.e., read-ahead)

based on application accesses to improve performance. The swap area can either be a separate disk

partition or a file in a file system. It contains aswap headerthat has information about the swap

area like number of blocks, a list of faulty blocks and so on.

5.1.2 FreeBSD 6.0

The design of the virtual-memory system in FreeBSD is based on the Mach 2.0 virtual-memory

system, with considerable updates over the years. The FreeBSD 6.0 virtual-memory system allo-

cates pages when requested from a free list of pages and it maintains sufficient free pages by paging

out less frequently used (inactive) pages [89]. The FreeBSDvirtual-memory system also provides

for paging out entire processes. This implies that in addition to user-mode pages, the kernel thread

stacks of processes can be paged out and page tables can be freed when the system is under ex-

treme memory pressure [89]. Unlike Linux, the FreeBSD virtual-memory system does not perform

extra read-ahead; that is, it does not issue separate block read commands, although it tries to read

as many as 8 blocks as part of one read command for a block that is needed. Like in Linux, the

FreeBSD swap area can either be a disk partition or a file. The FreeBSD swap area does not have

any data structures like the Linux swap header.

5.2 Methodology

In this section, we describe our fault injection and analysis methodology. As in the file-system

study in the previous chapter, the methodology is primarilyderived from type-aware fault injection

described in Section 2.5.1. In this section, we first describe the failure model used, then describe

our fault-injection framework, and finally discuss type-awareness for a virtual-memory system.
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5.2.1 Failure Model

The different types of partial disk failures injected are read errors, write errors, and bit corrup-

tions. In the case of read and write errors (latent sector errors experienced during read and write

respectively), an error code (EIO) is returned to the virtual-memory system. We also zero-out the

page in memory (ensuring that valid data is not placed in memory) if the read is failed with an error

code. This zeroing-out is needed because the virtual-memory system may ignore an error code re-

turned; in such a case, if valid data is placed in the respective memory page, the system may seem

to work just fine. For bit corruption, the block contents are altered; we zero-out the block in our

experiments and in case the corruption is detected, we perform a more detailed analysis, corrupting

each field of the data structure with field-specific values in separate experiments. All partial disk

failures are permanent; no amount of retrying of the disk operation will yield correct data.

5.2.2 Fault-Injection Framework

Our fault-injection framework consists of two components,theharnessand theinjector. The

harness sets the system up for exposure to disk faults. This layer consists of three types of user

processes: acoordinatorfor managing the benchmarking and fault injection,victimsthat allocate

a large memory region, sleep for a while and then read the memory region, andaggressorsthat

allocate large memory regions to force out the victims’ pages to the swap area or to the file system.

Partial disk failures are injected either when the victims’pages are paged out to disk or when they

are read back by the victims.

The fault injection is performed by the injector, which interposes between the virtual-memory

system and the hard disk. Specifically, the injector has beenbuilt as a pseudo-device driver for

Linux 2.6.13, as a geom layer [89] for FreeBSD 6.0, and as an upper filter driver for Windows XP.

The failure-handling policy of the system is identified by a manual observation of the results

of fault injection. Specifically, we use the following sources of information:

• The injector logs all I/O operations in detail, enabling us to determine some failure-handling

policies; for instance, the logs show whether the virtual-memory system is performing retries



130

(read or write is repeated with the same disk block number) orremapping (disk write is

repeated for a different disk block, but with the same memorypage).

• The harness records all return values and signals received.This helps in determining whether

an error is reported. The harness also checks (and reports) the validity of data read back. This

helps in checking whether there is data corruption.

• We manually examine the system message log for any error messages recorded by the

virtual-memory system.

We characterize the different failure-handling policies using the IRON taxonomy described in

Section 2.4. The techniques described in this subsection are primarily used to determine detection

and reaction policies. We discuss experiments to determineprevention policies in Section 5.3.3.

5.2.3 Type Awareness

We performtype-aware andcontext-aware fault injection by injecting partial disk failures for

specific disk blocks at specific times. An example of a block type in a virtual-memory system is a

user-level private data segment (user data). Therefore, a fault injected for a disk block that holds a

private user data page is type-aware. A context is a basic function performed by the virtual-memory

system or an interface offered by the virtual-memory systemto applications. An example of a

context is theswapoff system call. Therefore, a fault injected for a disk block when swapoff is

in progress is context-aware. Table 5.1 presents various block types for which failures are injected

and indicates which virtual-memory systems use them, and Table 5.2 presents different contexts

when fault injection can be performed. The different types and contexts that can be explored are

dependent on the particular system under study.

As discussed in Section 2.5.1, in order to perform type-aware fault injection, the injector should

be able to detect the type of blocks being read or written. This detection is accomplished in a

variety of ways. The harness communicates type informationregarding data pages to the injector.

For example, the harness allocates user data pages and initializes those pages to contain specific

values and conveys the values to the injector. Thus, in such cases, the injector uses blockcontent
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Block Type Description Detection System

swap header Describes the swap space Disk location Linux

user data Page from private user data segmentContent Linux, FreeBSD

user stack Page from user stack segment Content Linux, FreeBSD

shared Shared memory page used by many

processes

Content Linux, FreeBSD

mmapped Memory-mapped file data Content Linux, FreeBSD

user code Page from user code segment Disk location Linux, FreeBSD

kernel stack Page from kernel thread stack of a

user process

Kernel information FreeBSD

Table 5.1 Block types. The table describes the different types of blocks that are failed and gives the
detection method and applicable virtual-memory system foreach type. In order to detect kernel thread
stack pages, we made a simple modification to the FreeBSD kernel to obtain the memory addresses of these
pages.
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Context Workload Virtual-memory system actions

swapon Makes swap space available for

swapping

Read swap header if any, initialize in-

core structures

swapoff Removes swap space from use Page-in valid blocks and free the swap

space

pagetouch Page is accessed by the victim Read page from disk

readahead Workload induces readahead by

reading nearby pages

Perform read-ahead by reading blocks

from disk

madvise Victim issues madvise

(MADV WILLNEED) to hint

possible future reads

May or may not page-in the blocks

specified in hint

pageout Aggressors create memory pres-

sure causing page-out

Write inactive memory pages to disk

umount The file system is unmounted May have to write of “dirty” mmaped

file data

complete Process scheduled again after

complete page-out

Page-in essential data structures of

process

Table 5.2 Contexts. The table shows the workload for the different contexts thatare used in the experi-
ments and the actions performed by the virtual-memory system for each context.
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to determine the block type. Another method employed to determine the type is to use thedisk

locationof the block. For example, the Linuxswap headeris always located at block 0 in the disk

partition. Table 5.1 also provides the detection method foreach block type.

Thus, we use fault injection to determine the failure-handling policies adopted by virtual-

memory systems for different combinations of block type, context, and type of partial disk failure.

5.3 Experimental Results

In this section, we present the results of our type-aware fault-injection experiments on three

virtual-memory systems, Linux 2.6.13, FreeBSD 6.0, and Windows XP. We have performed a de-

tailed analysis of the Linux 2.6.13 and FreeBSD 6.0 virtual-memory systems, and a preliminary

analysis of the Windows XP virtual-memory system. We first focus on IRON detection and re-

action techniques of Linux and FreeBSD, then discuss prevention techniques of those systems,

and finally evaluate Windows XP. The different levels of the IRON taxonomy are described in

Section 2.4.

We present about 30 different scenarios (combinations of block type, context, and type of par-

tial disk failure) for Linux and FreeBSD. All experiments involving swap space are performed

using a separate disk partition as swap space (except for Windows XP), while experiments involv-

ing memory-mapped files or user code pages use the ext3 file system [141] in Linux 2.6.13 and the

Unix File System (UFS2) [89] in FreeBSD 6.0. The observed failure-handling policy for experi-

ments involving a file system is a combination of the policiesof the virtual-memory system and

the file system.

5.3.1 Linux 2.6.13

Tables 5.3 and 5.4 present the results of fault injection on the Linux 2.6.13 virtual-memory

system.

Detection: We find that most read errors are detected usingDErrorCode, which is checking

of return codes. The exceptions occur duringswapoff (when the virtual-memory system pages

valid blocks into memory); the error is not detected (DZero) and the application to which the data
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user data — Z E E — — —

user stack — Z E E — — —

shared — Z E E — — —

mmapped — — E E E — —

user code — — E — — — —

R
ea

d
E

rr
o

rs

swap header E — — — — — —

user data — — — — — Z —

user stack — — — — — Z —

shared — — — — — Z —

mmapped — — — — — Z Z

user code — — — — — — —

W
rit

e
E
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rs

swap header — — — — — — —

user data — Z Z Z — — —

user stack — Z Z Z — — —

shared — Z Z Z — — —

mmapped — — Z Z Z — —

user code — — Z — — — —

C
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p
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swap header Y1 — — — — — —

Symbols: ZZero E Errorcode Y Sanity — Not applicable

Comments (1) Sanity checks for swap space signature, version number and bad block count

Table 5.3Linux 2.6.13 detection techniques.This table presents the Linux 2.6.13 detection techniques
for read errors, write errors, and corruptions for combinations of block type (rows) and context (columns).
Comments, if any, are provided below the tables.
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user data — Z P1 D5 — — —

user stack — Z P1 D5 — — —

shared — Z P1,6 D5 — — —

mmapped — — R2,P1 D5 D5 — —

user code — — R2,P1 — — — —

R
ea

d
E
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rs

swap header † R3,4 — — — — — —

user data — — — — — Z —

user stack — — — — — Z —

shared — — — — — Z —

mmapped — — — — — Z Z

user code — — — — — — —

W
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rs

swap header — — — — — — —

user data — Z Z Z — — —

user stack — Z Z Z — — —

shared — Z Z Z — — —

mmapped — — Z Z Z — —

user code — — Z — — — —
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swap header P — — — — — —

Symbols: ZZero P Propagate R Retry D Record — Not applicable

Comments (1) SIGBUS signal (2) One separate retry for every block needed in the original request
(3) Retry is not actually used (4) Operation fails but success is returned (error is not reported) (5) This
operation is remembered when page is actually touched (6) Error is reported to all processes that touch the
page after the read error occurs

Table 5.4 Linux 2.6.13 reaction techniques.This table presents the techniques used by Linux 2.6.13
to react to read errors, write errors and corruptions for combinations of block type (rows) and context
(columns). † indicates a possible bug in the implementation. Comments, if any, are provided below the
tables.
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belongs is given junk data on a future memory access. This could lead to application crashes or

data corruption.

None of the write errors are detected (DZero). A read of the page after an ignored write error

causes the virtual-memory system to page-in the disk block with its previous contents. Missing

these errors can lead to application crashes or applicationdata corruption (because of bad data)

or even system security problems since the application could possibly read data that belongs to

another process.

Almost all corruptions are not detected and the corrupted data is returned to the application.

One exception is the use ofDSanity for the swap header duringswapon. The checks are for (a)

the correct swap space signature (i.e., a type check) (b) the correct version number, and (c) the

number of bad blocks being less than the maximum allowable. When we used a zeroed-out block

as corrupted data, the check for the swap space signature occurred; we then modified specific fields

in the swap header without modifying the signature to identify the other sanity checks.

Reaction: For cases where the partial disk failure is detected, Linux uses basic reaction mech-

anisms. On a read error for an application-accessed page, theSIGBUS signal is used to inform the

application of an error (RReport). In the case of a shared memory page, all processes that touch the

pageafter the read error occurs receive theSIGBUS signal – in other words, the virtual-memory

system does not retry the read when each process accesses thepage. Another use ofRReport is

when the swap header is corrupted, in which case an error is returned for theswapon call.

In the experiments with memory-mapped file data and user code, a retry is observed (RRetry)

for the specific disk block that the system actually needs; even if the original operation involved

many disk blocks, the retry is performed for only one block. This retry may have been initiated by

the file system and not the virtual-memory system. When a readto the swap header fails during

swapon, a retry is performed (RRetry), but perhaps due to implementation bugs, the results of the

retry are not actually used. Also,swapon returns success during read errors even though the call

fails internally (i.e., it does not report the error).

RRecord is used to handle read errors forreadahead andmadvise. By usingRRecord, the system

records the failure of the read for future reference. In bothreadahead andmadvise, the data is
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not required immediately – read-ahead is only an optimization by the virtual-memory system and

madvise is only a hint that the block will likely be accessed.In thereadahead case, the error is

reported when the page is actually touched and formadvise, a retry is performed when the page is

touched – both actions use the fact that the first read was unsuccessful.

5.3.2 FreeBSD 6.0

Tables 5.5 and 5.6 present the results of fault injection on the FreeBSD 6.0 virtual-memory

system.

Detection: DErrorCode is used in every single case for detecting both read and writeerrors –

the FreeBSD 6.0 virtual-memory system always checks the error code returned. FreeBSD does not

detect block corruption (DZero). While this leads to application crash or data corruption in most

cases, it leads to a kernel crash when corruption of kernel thread stack blocks is not detected; in

this case serious errors like system becoming unbootable are also possible.

Reaction: Various reaction mechanisms are used in FreeBSD 6.0 to deal with detected errors.

RRetry is used when memory-mapped data is written during a file system unmount. In fact, the

system retries as many as 6 times for eachumount call. We believe that these retries are performed

by the file system and not the virtual-memory system (we stilldocument the behavior here since it

is the behavior observed by an application using memory-mapped file data, a feature supported by

the virtual-memory system).

Read errors during page accesses cause the virtual-memory system to deliver aSIGSEGV (seg-

mentation fault) to the application, an instance ofRReport. Experiments showed that in the case of

shared memory, unlike in Linux, processes sharing the memory region operate independently; that

is, even if the error has been reported to one of the processesthat accessed the page, the disk access

is retried when a second process accesses the page.RReport is also used when all write retries are

failed duringumount; an I/O error is returned to the application.

RStop is used for read errors duringswapoff and for read errors during a page-in of the kernel

thread stack. In both cases, the result is a kernelpanic, a conservative action. Duringpageout,

the virtual-memory system attempts to free memory pages by writing them to swap space. If write
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user data — E E — — — —

user stack — E E — — — —

shared — E E — — — —

mmapped — — E — — — —

user code — — E — — — —

R
ea

d
E

rr
o

rs

kernel stack — E — — E — —

user data — — — — — E —

user stack — — — — — E —

shared — — — — — E —

mmapped — — — — — E E

user code — — — — — — —

W
rit

e
E

rr
o

rs

kernel stack — — — — — E —

user data — Z Z — — — —

user stack — Z Z — — — —

shared — Z Z — — — —

mmapped — — Z — — — —

user code — — Z — — — —

C
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kernel stack — Z — — Z — —

Symbols: ZZero E Errorcode — Not applicable

Table 5.5 FreeBSD 6.0 detection techniques.This table presents the FreeBSD 6.0 detection tech-
niques for read errors, write errors, and corruptions for combinations of block type (rows) and context
(columns). FreeBSD does not read any block duringswapon and does not read pages in formadvise (— in
the table).
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user data — S3 P2 — — — —

user stack — S3 P2 — — — —

shared — S3 P2 — — — —

mmapped — — P2 — — — —

user code — — P2 — — — —
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kernel stack — S3 — — S3 — —

user data — — — — — D4 —

user stack — — — — — D4 —

shared — — — — — D4 —

mmapped — — — — — D4 R5,P6

user code — — — — — — —
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kernel stack — — — — — D4 —

user data — Z Z — — — —

user stack — Z Z — — — —

shared — Z Z — — — —

mmapped — — Z — — — —

user code — — Z — — — —
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kernel stack — Z1 — — Z1 — —

Symbols: ZZero P Propagate R Retry D Record SStop — Not applicable

Comments: (1) Kernel crash when the stack is used (2)SIGSEGV signal (3) Kernel panic (4) Memory
page not freed; alternate victim chosen for page-out (5) Upto 6 retries of the disk write (for all blocks)
(6) I/O error returned

Table 5.6 FreeBSD 6.0 reaction techniques.This table presents the techniques used by FreeBSD 6.0
to react to read errors, write errors, and corruptions for combinations of block type (rows) and context
(columns). Comments, if any, are provided below the tables.FreeBSD does not read any block during
swapon and does not read pages in formadvise (— in the table).
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errors occur during this page-out process, the FreeBSD virtual-memory system reaction isRRecord.

In this case, the virtual-memory system remembers that the write operation has not been performed

successfully, so that the memory page is not freed. Since thevirtual-memory system is not able to

successfully free the memory page, it proceeds to select an alternate victim for page-out.

5.3.3 Prevention Techniques

Determining prevention policies is more difficult than determining detection and reaction poli-

cies since the prevention policy may not be triggered by a particular disk fault. Therefore, our

methodology for uncovering the prevention policy is to use aspecific test for each prevention

technique.

PRemember is the only prevention technique that may be triggered by faults. We test for use of

PRemember by injecting a “sticky” error repeatedly for the same disk block and checking whether

the virtual-memory system stops using the disk block. The workload performs 10 iterations of a

page-out/page-in of victim pages (user data). For both Linux 2.6.13 and FreeBSD 6.0 we find that

the “bad” disk block is used repeatedly, in spite of returning an error each time. The same results

are obtained for both read and write errors. This indicates that Linux and FreeBSD likely do not

keep track of bad blocks (i.e., PRemember is not used).

We test forPLoadBalance by causing the virtual-memory system to page-out many user data

pages numerous times and checking whether all blocks in the swap area are used fairly evenly.

This workload performs 10 iterations of a page-out/page-inof victim pages. In both Linux and

FreeBSD, the same disk blocks are reused repeatedly, even though many other blocks in the swap

area have not been written to even once. This indicates that the systems likely do not perform

wear-leveling (i.e., PLoadBalance is not used).

Finally, to detectPReboot andPScan we simply observe whether these activities occur over an

interval of using the virtual-memory system. Given that we did not observe any instance ofPReboot

orPScan during any of our experiments, we infer that it is likely thatneither Linux nor FreeBSD use

these techniques. In summary, our experiments indicate that neither Linux 2.6.13 nor FreeBSD 6.0

appear to use any of the prevention techniques.
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5.3.4 Windows XP

This subsection first outlines particular features of the Windows XP virtual-memory system,

then discusses its failure-handling policies. Windows XP uses a file in an NTFS partition to store

memory pages that get paged-out. Therefore, the failure-handling policy we extract is a combina-

tion of policies of NTFS and the virtual-memory system. Windows XP allows for paging out of

both user and kernel memory. We inject faults only foruser data pages. Read errors and corrup-

tion are injected duringpagetouch and write errors are injected duringpageout. We use the error

codeSTATUS DEVICE DATA ERRORfor read and write errors.

Detection: Windows XP uses the error code returned by the disk to detect both read and write

errors (DErrorCode). Corruptions are not detected (DZero).

Reaction: Reaction to read errors is terminating the user application, reporting the errorIn-

PageError(RReport). The reaction to write errors is more involved. It primarily usesRRecord: the

memory pages for which the error occurs are written elsewhere when they are selected for pag-

ing out again. As for the disk block with the error, it is first read back. If this read succeeds, a

half-block write is performed. If the read fails, a half-block read is performed. Irrespective of the

success or failure of the half-block operations, the block is used for future writes, usingRRecord to

deal with any errors to these writes. We have not been able to identify the purpose of the half-block

operations. Also, after a transient write error, although the disk blocks are subsequently success-

fully written, they are not read back even when the application accesses the data, thereby leading to

the application receiving junk data. This indicates a possible bug in handling write errors. Further

investigation is required to ascertain this behavior.

Prevention: Fault-injection experiments demonstrated that a given disk block is not re-used

after about 6 errors for the block (PRemember). The block is added to abad cluster fileand is never

used again unless the disk is re-formatted. We did not observe the use of any of the other prevention

techniques.
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5.4 Discussion

In this section, we first discuss the failure-handling approach of the virtual-memory systems,

and then discuss our experience with the fault injection techniques used.

5.4.1 Failure-Handling Approaches

In this section, we discuss the approaches that current virtual-memory systems adopt to han-

dle disk failures, contrasting the techniques used and identifying the deficiencies of the systems.

We also compare the approach of virtual-memory systems to that of file systems (discussed in

Section 2.5.2). We start by summarizing the different approaches of the virtual-memory systems:

Linux: Linux fails to detect many partial disk failures (even ones where error codes are

returned) and follows simple reaction schemes to deal with detected errors. With respect to

corruption, onlyswap headercorruption is detected.

FreeBSD: FreeBSD correctly detects all disk errors with error codes,but ignores corrup-

tions. It uses simple reaction schemes to deal with errors, although it is more conservative

than Linux for some cases – the kernel callspanic to stop the entire system when a read

fails duringswapoff, even if the read affects only a single application.

Windows XP: Windows XP detects disk errors with error codes but ignores corruptions.

It uses simple reaction schemes. It is the only system for which we observed a prevention

technique (PRemember).

In general, the systems suffer from the following deficiencies:

Simple reaction techniques:The virtual-memory systems studied use only simple reaction

techniques to deal with partial disk failures. There is no attempt to use techniques like

redundancy to completely recover from partial disk failures.

Ignore data corruption: Of all our data corruption experiments, only one case (Linuxswap

header) is detected. Virtual-memory systems assume that disks store data reliably, which

may not be true for commodity hardware.
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Under-developed mechanisms:A prime example of an under-developed mechanism is

remembering bad blocks. The Linux swap header has a provision to store a list of bad

blocks. This list can be used effectively to prevent data loss (PRemember). However, the list

is initialized duringmkswap and not updated afterward when new errors occur (on the other

hand, Windows XP actively uses and updates a bad cluster file to avoid using error-prone

blocks).

Memory abstraction mismatch: Applications expect all their pages to behave as if they are

always in memory. The virtual-memory system should maintain this memory abstraction

even when partial disk failures occur. An important part of maintaining the abstraction is

error reporting. If an failure cannot be handled by the system, it should be reported in a

manner that fits the memory abstraction. For example, Linux uses theSIGBUS signal to

report page read errors (by definition, hardware failures can causeSIGBUS to be generated).

However, FreeBSD uses theSIGSEGV signal (which almost always is intended to indicate a

programming error) to report read errors, which is not appropriate.

Very few retries: There were very few instances of retrying an operation when an error

occurs. Retrying can solve the problem in the case of a transient error and systems would

benefit greatly by employing retries [53].

Illogical inconsistency:The reaction techniques employed are inconsistent for cases which

are not very different. For example, in FreeBSD, a read errorfor a user data page may result

in a report in one case (pagetouch), while it results in kernel panic in another (swapoff).

Buggy implementation: It is observed in Linux that failure-handling code is buggy.For

example, the result of a retry is ignored, making it useless.We suspect that failure-handling

code is rarely tested and is thus likely to have bugs, as seen elsewhere [93].

Security issues:A system that is fairly secure during normal operation couldbecome in-

secure when there is a partial failure. In Linux, when data isread back after a failed write,

the disk block’s previous contents are returned to the application, possibly delivering data
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that the application is not authorized to read. Such failures need to be dealt with given that

there is an increasing awareness towards exploiting even transient hardware errors to attack

systems [50].

Kernel exposure: Systems should take special care when kernel-mode data is stored on

disk. In FreeBSD, corruption of the kernel thread stack is not detected. This may result in

undesirable crashes or severe data corruption.

5.5 Conclusion

The virtual-memory system is an important component of the storage stack in nearly every

operating system. Therefore, virtual-memory systems should be designed to handle partial disk

failures. From our fault-injection experiments, we find that current virtual-memory systems do

not employ consistent failure policies that provide complete recovery from partial disk failures.

Improving the failure-awareness of these systems would enable them to truly virtualize memory,

providing applications with a robust memory abstraction.
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Chapter 6

Impact on File Systems

A file system is a crucial component of the storage stack; mostapplications use file systems to

store data. In commodity systems, such as desktops and laptops, file systems are also tasked with

the responsibility of ensuring that the data is stored reliably. Since partial disk failures could have

a huge adverse impact on data reliability, it is extremely important to understand how current file

systems react to partial disk failures.

In previous work [104] (described in Section 2.5), we examined how various file systems han-

dle latent sector errors and completely-corrupt disk blocks. In this chapter, we develop a more

thorough understanding of how file systems react to corruption. In particular, we perform targeted

non-random corruption of on-disk pointers of file systems.

File systems today use a variety of techniques to protect against corruption. ReiserFS, JFS, and

Windows NTFS perform lightweight corruption checks like type checking [104]; that is, ensuring

that the disk block being read contains the expected data type. These file systems also employ

sanity checking (verifying that particular values in data structures follow certain constraints) to

detect corruption [104]. ZFS checksums both data and metadata blocks to protect against corrup-

tion [130]. The techniques above are useful for detecting corruption. In order to recover from cor-

ruption, most systems rely on replicated data structures. For example, JFS and NTFS replicate key

data structures, giving them the potential to recover from corruption of these structures [20, 128].

We seek to evaluate how a set of corruption-handling techniques work in reality. While con-

ceptually simple, there may be design or implementation details that preclude a file system from

reaping the full reliability benefit of these techniques. Weevaluate file systems using software fault

injection.
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One difficulty with a pointer-corruption study is the potentially huge exploration space for

corruption experiments. To deal with this problem, we develop a fault-injection technique called

type-aware pointer corruption, an extension of type-aware fault injection. Type-aware pointer

corruption (TAPC) reduces the search space by systematically changing the values of only one disk

pointer of each type in the file system, then exercising the file system and observing its behavior.

We further narrow the large search space by corrupting the disk pointers to refer to each type of data

structure, instead of to random disk blocks. The technique is successful because different block

types are used differently by the file system, thereby implying that the blocks and the pointers that

point to them might be protected in different ways. An important advantage of TAPC is that it

helps understand the underlying causes for observed systembehavior. TAPC works outside the file

system, obviating the need for source code.

We use TAPC to evaluate two widely-used file systems, WindowsNTFS [128] and Linux

ext3 [141]. We examine their use of type checking, sanity checking, and replication to deal with

corrupt pointers. We ask the simple question:do these techniques work well in reality?We focus

on NTFS in this study; NTFS is a closed-source system for which little information is available

about exact failure policies, thus making its study very interesting. Our analysis of ext3 is less-

detailed, primarily aimed at demonstrating the general utility of our approach.

From our pointer-corruption experiments, we find that both file systems fail to recover from

many pointer corruptions despite the availability of redundant information. This failure to recover

is due to poor use of techniques like type checking and replication. Our observations help us

identify several lessons and pitfalls for building corruption-proof file systems.

The rest of this chapter is organized as follows. Section 6.1discusses why we explore pointer

corruption. Section 6.2 describes type-aware pointer corruption. Section 6.3 presents a brief

overview of NTFS and how we have applied TAPC to study NTFS. Section 6.4 presents the results

of our analysis of both NTFS and ext3, and Section 6.5 concludes the chapter.
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6.1 Why Pointer Corruption?

Although any block on disk may become corrupt, some corruptions are more damaging than

others. If a data block of a file is corrupt, then only the application that reads the file is impacted.

However, if a disk block belonging to file-system metadata iscorrupt, then the entire file system

can be affected; for example, if the boot sector is corrupt, the file system may not be mountable.

In other cases, a corrupt on-disk pointer incorrectly referring to data belonging to a different data

structure can cause the data to be overwritten and corrupted. Therefore, an integral part of ensuring

the long-term availability of data is ensuring the reliability and availability of pointers, theaccess

pathsto data.

Pointers are fundamental to the construction of nearly all data structures. This observation is

especially true for file systems, which rely on pointers located in on-disk metadata to access data.

This reliance necessitates that pointers should be managedwith care. File systems researchers have

long recognized the salience of metadata and especially of pointers in metadata with a view toon-

disk consistency management. For example, many early UNIX file systems [88, 111] carefully

order writes to prevent the creation of bad on-disk pointers. Subsequent work on soft updates [46]

and journaling file systems [60, 120] also treat pointers with care to maintain metadata consistency

in the presence of crashes.

On-disk pointers could become corrupt due to the any of the silent data corruptions we study.

Since pointers are fundamental to data access, it is important to understand how file systems behave

when their on-disk pointers are corrupt. Therefore, in thischapter, we explore this facet of file-

system behavior.

6.2 Type-Aware Pointer Corruption

To identify the behavior of file systems when disk pointers are corrupted, we develop and

apply type-aware pointer corruption(TAPC). TAPC is an extension of type-aware fault injection

described in Section 2.5.1. We observe how the file system responds after we modify different

types of on-disk pointers to refer to disk blocks containingdifferent types of data.
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A pointer-corruption study is especially difficult becauseit is nearly impossible to corrupt every

pointer on disk to every possible value in a reasonable amount of time. Often, the solution has

been to use random values [123]. This approach suffers from two problems: (a) a large number of

corruption experiments might be needed to trigger the interesting scenarios, and (b) use of random

values makes it more difficult to understand underlying causes of observed behavior.

We use type-awareness to address both problems. Type-awareness reduces the exploration

space for corruption experiments by assuming that system behavior depends only on two types:

(i) the type of pointer that has been corrupted, and (ii) the type of block that it points to after

corruption. Examples are (i) corrupting File A’s data pointer is the same as corrupting File B’s data

pointer, and (ii) corrupting a pointer to refer to inode-block P is the same as corrupting it to refer

to inode-block Q (if all inodes in P and Q are for user files). This approach is motivated by the

fact that code paths within the file system that exercise the same types of pointers are the same,

and disk blocks of the same type of data structure contain similar contents. Thus, TAPC greatly

reduces the experimental space while still covering almostall of the interesting cases. Also, by its

very design, this approach attaches file system semantics toeach experiment, which can be used to

understand the results.

6.2.1 Terminology

The following terms are used to describe methodology and discuss results.

Container: disk block in which the disk pointer is present. Corrupting the pointer involves mod-

ifying the contents of thecontainer.

Targetoriginal: disk block that the disk pointer should point to, that is, theblock pointed to on no

corruption.

Targetcorrupt: disk block being pointed to by a corrupt disk pointer.
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6.2.2 Corruption Model

Any of the sources of corruption discussed in Section 2.2.1 could produce a corrupt file system

image on disk. Our corruption model reflects the state of a filesystem on functioning hardware

that experienced a corruption event in the past:

• Exactly one pointer is corrupted for each experiment. The rest of the data is not corrupted.

Also, other faults like crashes or sector errors are not injected.

• We emulate pointer corruptions that arepersistent. The corruption is persistent because

simply re-reading the pointer from disk will not recover thecorrect value.

• The pointer corruption isnot sticky. Future writes to the pointer by the file system can

potentially correct the corruption. Reads performed aftera write will be returned the newly

written data and not the corrupt data.

6.2.3 Corruption Framework

Our TAPC framework has been designed to work without file system source code. It consists

of acorrupterlayer that injects pointer corruption and atest harnessthat controls the experiments.

The corrupter resides between the file system and the disk drivers; the layer has been implemented

as a Windows filter driver for NTFS and as a pseudo-device for ext3. This layer corrupts disk

pointers and observes disk traffic. Thus, the corrupter has knowledge of the file system’s on disk

data structures [127]. The test harness is a user-level program that executes file system operations

and controls the corrupter. The experiments involve the following steps:

• The test harness creates a file system on disk with a few files and directories. It then instructs

the corrupter to corrupt a specific pointer to a specific valueand performs file operations (e.g.,

mount,CreateFile, etc. for NTFS and mount,creat, etc. for ext3) to exercise the pointer

under consideration. We execute the file operations from a user with limited permissions

(non-administrator).
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• The corrupter intercepts the disk accesses performed by thefile system and scans the requests

for the container (the disk block containing the pointer). When that disk block is read,

exactly one pointer in the data structure is modified to a specific value.

• The corrupter continues to monitor disk accesses. The same corruption is performed on

future reads to thecontainer. Disk writes to thecontainer may overwrite any corruption

and therefore further reads to the disk block are returned the newly-written data.

• All disk accesses, system call return values, and the systemevent log are examined in or-

der to identify the behavior of the file system. This holisticview of system behavior in

co-ordination with type-awareness is essential to understanding the underlying design or

implementation flaws that lead to any system failures.

Our experiments are performed on an installation of WindowsXP (Professional Edition without

Service Pack 2) for NTFS and Linux 2.6.12 for ext3. We run themboth on top of VMWare

Workstation for ease of experimentation. The experiments use a separate 2GB IDE virtual disk.

We believe that the use of VMWare does not change the results;since the corrupter layer is between

the file system and the virtual disk, we observe all disk requests and responses, and we did not

detect any anomaly. In addition, we have verified our ext3 results by reading through source code.

6.3 NTFS Details

Although TAPC can be applied to any file system, the specific pointers to be corrupted and

the interesting corruption values depend upon the file system under test. As an example, we now

describe how we have applied TAPC to NTFS.

6.3.1 NTFS Data Structures

We provide a brief introduction to NTFS. A detailed description can be found elsewhere [128].

NTFS, the Windows NT File System, is the standard file system for Windows NT, 2000, XP and

Vista. It is a journaling file system that guarantees the integrity of its metadata structures on a

crash. All user data and metadata structures in an NTFS volume are contained in files, allowing
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Term Description
Cluster The fundamental unit of disk storage; it consists of a fixed number of sectors, similar

to a UNIX disk block.
LCN A Logical Cluster Number (LCN) is assigned to each disk cluster. This is the same

as a physical block number in UNIX -based systems. On-disk pointers contain the
LCN of the cluster they point to.

VCN A Virtual Cluster Number is the same as a file offset (in numberof blocks) in UNIX .
Data run The format of NTFS on-disk pointers, consisting of a base LCNand length, and a

series of<offset,length> fields. E.g., if base LCN isX, length isa, and the first
<offset,length> combination is< b, c >, the data is located at LCNsX to X + a
and then fromX + b to X + b + c. In our experiments we corrupt the base LCN.

Boot sector The boot sector is the sector read first by NTFS when the file system is mounted. It
is the starting point for discovering the LCNs of all other data structures. The last
cluster of the file system contains a copy of the boot sector.

MFT Master File Table contains an entry for each file (both user and system). First 24
entries are reserved for system files.

MFT entry Equivalent of a UNIX inode. Most pointers that are corrupted are located in different
MFT entries in form of data runs.

MFT VCN 0 This is the first cluster of the MFT. Its LCN is present in the boot sector. The first
entry of this cluster is a file that contains LCNs of itself andthe rest of the MFT.

MFT mirror This is a replica of MFT VCN 0. Its LCN is also present in the boot sector.
Index buffer An index buffer consists of a series of index entries that provide information for

indexing into any data structure.
Directory A directory in NTFS consists of index buffers. The entries inthese buffers point to

MFT entries of the directory’s files.
MFT bitmap This is a bitmap that tracks whether MFT entries are allocated or not.
Volume bitmap This is a bitmap that tracks whether disk clusters are allocated or not.
Log file NTFS implements ordered journaling: when a user writes datato disk, the data

cluster is flushed first, followed by log updates, and finally the metadata clusters.
The log file is organized as a restart area, a copy of the restart area, and a “logging
area”, which consists of log records that each denote a disk action.

$Secure NTFS stores information about the owner of the file and the permissions granted to
other users by the owner (in form of ACLs) in a security descriptor. Each unique
descriptor is stored in $Secure along with its hash and givena security id. This
security id is stored in the MFT entry of the file for looking upthe correct descriptor
from $Secure. The descriptors in $Secure are indexed on the hash of the security
descriptor and the security id.

Upcase table This is an upper case - lower case character conversion tableessential for directory
path name traversal.

Table 6.1 NTFS terminology. This table provides brief descriptions of NTFS terminologyand data
structures. The descriptions offer a simplified view of NTFS, eliminating details that are not essential for
understanding the experiments.
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NTFS to flexibly allocate disk space for its metadata. Table 6.1 defines important NTFS terms and

data structures that we use in our descriptions and results.For example, aclusteris the NTFS term

for a disk block. We recommend a quick pass through the table for easier understanding of the rest

of the chapter.

6.3.2 NTFS Pointer Corruption

We corrupt 14 of the 15 different pointer types that NTFS useson disk. Table 6.2 summarizes

these pointers. We give each pointer a unique name based on its Targetoriginal, and resolving

name conflicts by prefixing those names with itscontainer. Note that NTFS replicates important

data structures like Boot and MFT VCN 0. Thus, the pointersBoot-MFT0, Boot-MFTM, MFT0-MFT,

MFTBitmap, MFT0-MFTM, andLogFile are replicated. Security descriptors are also replicated and

their indexes can be rebuilt; thus, some form of redundancy exists for the pointersSDS, SDH, and

SII. Also note that the security descriptor indexesSDH andSII, and directories use the same index

data structure format.

The pointers are corrupted to 27 different types of values. In addition to using disk locations

that belong to all the different NTFS data types (e.g., directory index buffer and MFT cluster), we

also include clusters of a certain type that serve a special purpose (e.g., MFT VCN 0, MFT mirror),

unallocated clusters, and out-of-range values. Table 6.3 lists the different types of values used as

Targetcorrupt. In most cases, the data structure used asTargetcorrupt is at a specific location,

while for FileData, we create a file and use the location of itsdata block as the numerical value for

corruption. Thus, we perform 360 experiments on NTFS, corrupting 14 different pointers with 27

different values.

In each experiment, we run a specialized workload to exercise the corrupt pointer. Table 6.4

indicates the workload used for each of the pointers. Most workloads involves modifications to

Targetoriginal, potentially creating the worst case scenario in case the corruption is not detected.

We now describe the disk accesses that take place during the mount workload, as this is our work-

load for exercising most of the disk pointers. When an NTFS volume is mounted, first the boot

sector is read. The boot sector is used by NTFS to discover theon-disk location of MFT VCN 0
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Pointer Container Targetoriginal

Boot-MFT0 Boot MFT VCN 0
Boot-MFTM Boot MFT mirror
MFT0-MFT MFT VCN 0 The MFT clusters (to itself)
MFTBitmap MFT VCN 0 MFT bitmap
MFT0-MFTM MFT VCN 0 MFT mirror
LogFile MFT VCN 0 Log file
RootSecDesc MFT VCN 1 Root directory

security descriptor
RootIndxBuf MFT VCN 1 Root directory index buffers
SDS MFT VCN 2 $Secure security descriptors
SDH MFT VCN 2 Index of security

descriptors’ hash
SII MFT VCN 2 Index of security

descriptors’ ids
UpCase MFT VCN 2 Upcase table
DirIndxBuf MFT any VCN A directory’s index buffer
FileData MFT any VCN A file’s data cluster

Table 6.2NTFS disk pointers. This table presents the different on-disk pointers used by NTFS.
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Value Description
Boot The boot sector (LCN 0)
LogRes Log restart area
LogResDup Copy of Log restart area
LogData Log data cluster
MFTBitmap The MFT bitmap
MFT0 MFT VCN 0
MFT1 MFT VCN 1
MFT2 MFT VCN 2
MFTRes Contains unused, reserved MFT entries
MFTFree Unallocated MFT entries
MFT6 MFT VCN 6
MFTOthers Contains user file MFT entries
SDS Security descriptors
AttrDef File with definitions of file attributes
SDH Index of security descriptor hash
SII Index of security descriptor ids
MFTMirror The MFT mirror
RootIndxBuf Root directory index buffer
RootSecDesc Root dir security descriptor
VolBitmap Volume bitmap
UpCase Upcase table
DirIndxBuf Any directory index buffer
FileData Any user file data cluster
Unalloc Unallocated clusters
Last-Size+1 Data Run ends at last cluster
LastCluster Boot sector copy
Out-of-Bounds Data Run exceeds disk partition

Table 6.3NTFS pointer corruption values. This table presents the different values used for corrupting
disk pointers used by NTFS, sorted in the order of typical disk location. In total, 27 different values are
used. Note that the value Last-Size+1 is applicable only forpointers that point to data runs of length> 1.
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Workload Pointer
Boot-MFT0, Boot-MFTM, MFT0-MFT,

mount MFT0-MFTM, LogFile, RootSecDesc,
SDS, SII

mount then MFTBitmap, RootIndxBuf, SDH,
CreateFile DirIndxBuf

mount then UpCase

ReadFile

mount then FileData

WriteFile

Table 6.4 NTFS workloads. This table presents the workloads that exercise the disk pointers. mount
enables the file system volume for use; it consists of aDeviceIoControl system call with the control code
FSCTLUNLOCK VOLUMEperformed on a previously “locked” volume.CreateFile creates a new file of
size 0,ReadFile reads the first cluster of a file, andWriteFile writes the first cluster of a file.
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and its replica, MFT Mirror, and both clusters are read. MFT’s VCN 0 is itself acontainer for

four more pointers, including ones to the MFT bitmap (MFTBitmap) and the logfile (LogFile).

The logfile pointer is then used to perform a series of log operations. MFT’s VCN 0 also contains

its self pointer (MFT0-MFT). The cluster indicated by this self pointer is read. In the absence of

corruption, this leads to MFT VCN 0 being read again. This is followed by reads to the rest of the

system file records in the MFT. NTFS now has the locations of various system data structures. The

$UpCase table is read in next, followed by other data structures, namely, the volume bitmap, MFT

bitmap, root directory’s security descriptor, root directory’s index allocation structure and clusters

of the $Secure file. Finally, a series of log operations mark the termination of a successful mount.

6.4 Results

This section discusses the results of our analysis. First, we describe some terminology, then

our visual representation of the results. Then, we discuss NTFS behavior as observed by the

experimenter. Our discussion focuses on how NTFS deals withpointer corruption, whether NTFS

misses opportunities to improve fault tolerance, and what design principles are useful with respect

to dealing with pointer corruption. Next, we discuss the user-visible results of NTFS pointer

corruption. This view is important since the primary concern of end users is the observed data and

system reliability. Finally, we present results for ext3. We organize our results intoobservations

(facets of system behavior uncovered by TAPC),lessonsfor corruption-handling techniques, and

potential designpitfalls.

6.4.1 Terminology for System Behavior

We use a subset of the detection and reaction policies of IRONtaxonomy described in Sec-

tion 2.5 to characterize system behavior. Specifically, we use the following terms:

Detection: The file system identifies that either the pointer or the disk block pointed to is corrupt.

The IRON detection level is typicallyDSanity (that includes sanity checks and type checks).
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Recovery: The file system is able to regenerate the data lost due to pointer corruption using re-

dundant information, thereby continuing execution without errors. The corresponding IRON

reaction level isRRedundancy.

Report: The file system informs the application or user that it has encountered an error (IRON

reaction levelRReport).

Retry: The file system repeats the set of disk accesses needed for themount operation (IRON

reaction levelRRetry).

Repair: The file system modifies corrupt data structures in order to continue execution. The

modification does not necessarily lead to error-free execution (IRON reaction levelRRepair).

Detection is essential for the rest of the actions to occur. Recovery is the ideal action the file

system can perform. If recovery is not possible, repair is analternative approach for continuing

execution. If a file operation fails due to corruption, the file system is expected to report an error.

6.4.2 Visualization of Results

Presenting the data from our experiments is a difficult task,as the data represents the results

of hundreds of experimental runs, and the outputs are not readily quantified. We divide the obser-

vations into two: the behavior of NTFS as observed by the experimenter (Figure 6.1, Tables 6.5

and 6.6), and the user-visible results (Figure 6.2).

We now describe the visualization in Figures 6.1 and 6.2. In the two figures, each row presents

the results of corrupting one pointer (e.g., Boot-MFT0). Every row is divided into 27 columns, each

corresponding to differentTargetcorrupt values used to corrupt the pointer (e.g., LogData). Each

cell is marked with a symbol representing our observations when the pointer for its row is corrupted

with the column value. A dot before pointer name indicates that some form of redundancy exists for

the pointer or forTargetoriginal. In the ideal case, NTFS would be able to recover from corruption

to these pointers.

We provide an example from Figure 6.1 to illustrate the interpretation of the figures. The results

of corruptingBoot-MFT0 is presented in the first row. The first cell corresponds to theboot sector
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Legend

Figure 6.1NTFS behavior. Ths figure shows how NTFS responds to corruption Each row characterizes
the behavior for the given pointer. Each cell in a row is marked with the behavior observed for the given
pointer when it is corrupted with the value of that column. Ofthe values, Last-Size+1 denotes Last Cluster
- Size of data run + 1 and is applicable only for data runs of length more than 1. A dot next to a pointer
name for any row implies that some form of redundancy exists;in the ideal case NTFS would recover from
corruption to these pointers. Note that for unallocated clusters, further corruption just implies that the
cluster is overwritten since, by definition, the cluster cannot be “corrupted”.
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Pointer NTFS Behavior Details
Boot-MFT0 Reports error andretries mount for values MFTMirror, LastCluster and Out-

of-bounds;recoversusing replica for others.
Boot-MFTM Reports error andretries mount for values MFT0, LastCluster and Out-of-

bounds;recoversusing replica for others.
MFT0-MFT Recoversusing MFT mirror for values RootSecDesc, LastCluster and Out-

of-bounds; reports error and retries mount for others – however, both
Targetcorrupt and the replica (MFT Mirror) are corrupted if the value isnot
an MFT entry or Boot.

MFTBitmap Recoversonly for an out-of-bounds value;reports error for the value Boot
(however, NTFS corrupts Boot); does not detect all other cases corrupting
Targetcorrupt and possibly an MFT entry.

MFT0-MFTM Recoversfor an out-of-bounds value;reports error for LastCluster; does not
detect all other cases and corruptsTargetcorrupt. Interestingly, this corruption
of Targetcorrupt is reversed for LogRes and LogResDup due to the order of
disk operations.

LogFile Recoversfor an out-of-bounds value or LastCluster; attemptsrepair but cor-
rupts clusters for LogResDup; reports error and retries forothers but corrupts
the replica of the pointer in MFT mirror.

RootSecDesc Reports error andretries mount for values LastCluster and Out-of-bounds;
other cases are undetected.

RootIndxBuf Reports error andretries mount for all values except for other index buffers
(SDH, SII or DirIndxBuf) which go undetected thus corrupting Targetcorrupt.

SDS Reports error and retries for Boot, LastCluster Last-Size+1 and out-of-
bounds (For Last-Size+1, report and retry occur after corrupting it); attempts to
repair data structure for other cases, resulting in corruption ofTargetcorrupt.

SDH Reports and retries during mount for an out-of-bounds value;reports error
duringCreateFile for other values except for index buffers (SII, RootIndxBuf
and DirIndxBuf) which go undetected thus corruptingTargetcorrupt.

SII Reportsandretries mount for all values.
UpCase Reports error andretries mount for the 10 detected cases (refer Figure 6.1);

undetected cases do not cause further corruption.
DirIndxBuf Reports an error for all values except for other index buffers (thesego unde-

tected, thus corruptingTargetcorrupt).
FileData Reports an error for values Last Cluster and out-of-bounds; others are not de-

tected leading to corruption ofTargetcorrupt. The corruption is reversed for
LogRes, LogResDup, MFT0, and MFTMirror due to the order of disk opera-
tions.

Table 6.5 NTFS behavior details. The table presents the details of NTFS behavior when its pointers
are corrupted.
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(Boot). The symbol in the cell corresponds to “Detects and recovers.” This indicates that when the

pointerBoot-MFT0 is corrupted to the value Boot, NTFS detects the corruption and fully recovers

from it, thus continuing normal operation. The same behavior is observed for most of the cells in

this row. When theTargetcorrupt is MFTMirror (column number 17), the symbol indicates that

NTFS “detects, but does not recover” from the corruption. The same behavior is observed for

values LastCluster and Out-of-bounds at the end of row. The value MFT0 (column 6) is the correct

value for the pointer and hence the “Not applicable” symbol is used. Note that there is no similar

correct value for pointers likeFileData since we can use data locations of adifferentfile to corrupt

the pointer. Finally, the value “Last-Size+1” is not applicable for pointers with a data-run length

of 1.

6.4.3 NTFS Behavior

We discuss the behavior of NTFS when each of its pointers are corrupted. The detailed results

are presented in Figure 6.1 and Table 6.5. Table 6.6 summarizes these results. This subsection

distills the results into higher-level observations on system behavior and lessons to be learned.

The goal is to analyze whether NTFS effectively uses its typeinformation and redundancy, and to

understand why NTFS is or is not able to detect and recover from pointer corruption.

Out of 360 corruption experiments, NTFS detects corruptionin 238 cases (66%) and recovers

in only 51 cases (14%). Despite the availability of redundant information for recovery for most

cases, NTFS either simply reports an error to the user or retries the mount operation. Also, despite

detecting the corruption, NTFS itself causes further corruption in 42 cases (12%).

6.4.3.1 Detection

From our experiments, we find that NTFS uses type checking andsanity checking to detect

pointer corruption. Both techniques belong to theDSanity level of detection in the IRON taxonomy

(Section 2.4). We review each of these techniques below.
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Type checkingverifies that a disk cluster conforms to the requirements fora data type. Typi-

cally, type information for a cluster is encoded in the form of a “magic” number and stored in the

cluster. In order to perform type checking, the cluster pointed to should be read.

Sanity checkingverifies that certain values in data structures follow constraints. A pointer can

be compared with well-known values, such as locations of metadata like the boot sector or disk

partition size, to ensure that the pointer is not corrupt. This technique enables the system to detect

corruption before the cluster pointed to is read. Sanity checks are especially important when type

information cannot be stored along with the cluster (like for file data clusters).

We determine whether type checking or sanity checking basedon whether the detection occurs

before or after theTargetcorrupt (cluster pointed to) is read.

Observation 6.1 NTFS detects corruption errors primarily through type checking.

We observe that NTFS detects corruption errorsafter readingTargetcorrupt for many pointers,

includingBoot-MFT0, MFT0-MFT, LogFile, RootIndxBuf, SII, andDirIndxBuf. An examina-

tion of the corresponding data structures shows that they contain “magic” numbers (“FILE” for

MFT clusters, “RSTR” for log restart area, “INDX” for index buffers) that identify the clusters as

a certain data type.

Lesson 6.1Type checking is useful for detecting pointer corruption. However, systems that use

type checking should not overload the data types.

NTFS does not detect corruption when one index buffer pointer (RootIndxBuf, SDH, SII, or

DirIndxBuf) points to a wrong index buffer. In this case, the type “INDX”is overloaded; it

is used to represent different data structures used for different purposes. Not detecting corruption

in these cases leads to further corruption by NTFS. Thus, when a data type is used for different

purposes in different places, it must be assigned a different type identifier to prevent corruption

across uses.

Pitfall 6.1 Inadequate or inconsistent use of sanity checks.
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We observe that NTFS detects corruption to any pointer with an out-of-bounds value without read-

ing Targetcorrupt. Similarly, the corruption is detected immediately whenBoot-MFTM is assigned

the value MFT0 (Row 2, column 6 in Figure 6.1). These immediate detections indicate the use

of sanity checks. However, while NTFS detects the above corruption scenario where pointers

Boot-MFTM andBoot-MFT0 are equal, it allowsMFT0-MFTM andMFT0-MFT to be equal (Row 5,

column 6 in Figure 6.1), although theTargetoriginal for each pointer is the same as before. This

difference in behavior points to the lack of a consistent approach to sanity checking. There are

more examples of inconsistencies – pointers for which some corruptions are recovered from, while

others are not even detected.

Lesson 6.2Type checks do not work for all pointers. Therefore, detailed sanity checks should be

performed.

Type checking is not useful for pointers likeFileData since a type identifier cannot be stored in

a user data cluster. In these cases, sanity checking assumesgreater significance. However, NTFS

does not perform many simple sanity checks that can determine whether a pointer is corrupt. For

example, NTFS does not check whether a pointer is pointing tothe boot sector (Boot). Another ex-

ample sanity check that NTFS could but does not perform is checking the “in-use” flag of an MFT

entry before allocating it. The absence of such a check prevents NTFS from detecting corruption

to MFTBitmap, causing further corruption.

We note that not all NTFS behavior can be explained based on sanity or type checking. NTFS

detects corruption ofUpCase after readingTargetcorrupt for some experiments but does not detect

for others. It is not clear what kind of check is used for this pointer.

6.4.3.2 Reactions

NTFS reacts in various ways on detecting corruption. It either recovers from corruption, or

reports an error to the application, or retries the mount operation, or attempts to repair a seemingly

corrupt data structure.

Observation 6.2 NTFS typically uses replication to recover from corruption.
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√
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MFTBitmap
√

1 1 23 24 24
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√

1 1 23 20

LogFile
√

2 23 1 1 24

RootSecDesc 2 25

RootIndxBuf 22 3 3

SDS
√

3 24 24

SDH
√

22 3 3

SII
√

25

UpCase 10 17

DirIndxBuf 22 4 4

FileData 2 24 20

Total 51 145 42 122 115 64

Total recoverable
√

51 87 42 49 88 64

Table 6.6 NTFS behavior summary. The table summarizes observed NTFS behavior on corruption
for the different pointers. The first column indicates whether some form of redundancy exists for either the
pointer orTargetoriginal. Columns 2 to 5 summarize the number of cases for which NTFS behaves in a
certain manner (from Figure 6.1). The last two columns indicate the total number of cases for which further
corruption occurs and for which the replica of the pointer isdestroyed. The penultimate row is the sum of
all rows and the last row is the sum of rows that have a

√
for the “Redundancy?” column.
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We observe that NTFS uses replication of MFT VCN 0 to recover from corruption to the pointer

Boot-MFT0. In this case, it uses the MFT mirror to obtain the required information. Similarly,

NTFS uses redundant information in MFT VCN 0 to recover from corruption toBoot-MFTM. Inter-

estingly, for both pointers, this recovery istemporary; that is, NTFS does not overwrite the corrupt

pointer with the correct value. Thus, the same recovery has to be performed for each mount. This

approach could lead to unrecoverable data loss in the event of a second failure (loss or corruption).

When an out-of-bounds value is used for the pointersMFT0-MFT, MFTBitmap, MFT0-MFTM, and

LogFile, NTFS performspermanentrecovery; that is, the pointer value is overwritten with the

correct value, thus completely healing the file system image.

Observation 6.3 NTFS uses error reporting and retries in response to corruption when it is unable

to recover.

As described in Table 6.5, typically, NTFS reports an error to the application when corruption

is detected. For a subset of cases, NTFS also retries the mount operation, perhaps hoping that

the corruption is transient and mount will succeed the second time. These retries do not succeed

since the corruption is persistent. Examples of pointers for which this behavior is observed include

MFT0-MFT andLogFile, andRootIndxBuf.

Observation 6.4 NTFS attempts to repair certain data structures that it believes to be corrupt.

When the pointerSDS is corrupted, NTFS assumes that the security descriptors pointed to bySDS

are corrupt and attempts to reinitialize the data structure, thus corruptingTargetcorrupt. Similar

behavior occurs whenLogFile points to LogResDup instead of LogRes (the log restart area). In

this case, the first cluster of the data region of the log is corrupted.

Pitfall 6.2 Detecting that a pointer target is corrupt instead of detecting that the pointer is corrupt.

The instances under Observation 6.4 above show that NTFS trusts the pointer to be correct, while

not trusting the cluster pointed to. Thus, attempting to repair a seemingly corrupt target causes

more harm than good if the corruption is actually to the pointer.
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In general, we observe that there are multiple instances where NTFS does not detect the cor-

ruption or detects the corruption but does not recover from it despite possessing type information

to detect corruption and redundancy to recover from corruption. Table 6.6 shows that despite pos-

sessing redundant information, NTFS detects an error but does not recover from it in 87 cases, and

in fact, causes further corruption in 88 cases. From these failures, we derive more potential pitfalls

when handling pointer corruption.

Pitfall 6.3 Ineffective replica management: (a) not using replicas when available, (b) destroying

secondary replicas without verifying the primary, and (c) not maintaining independent access

paths for replicas.

(a) When pointers in MFT VCN 0 are corrupted, NTFS does not usethe copy of pointers available

in the MFT mirror for most scenarios. For some pointers, NTFScould but does not use the replica

for comparing and detecting that the pointer is possibly corrupt. An example isMFTBitmap. For

other pointers, NTFS detects corruption through differentmeans (type or sanity checking). How-

ever, NTFS does not use the replica for recovering from the corruption. Example pointers are

MFT0-MFT andLogFile. Thus, the advantage of replication is completely lost for these pointers.

(b) There are 64 instances where the replica of the pointer isoverwritten by NTFS with the corrupt

value (the last column of Table 6.6). In particular, in the cases where the primary MFT (MFT

VCN 0) is corrupt, but the MFT mirror is correct, NTFS erroneously synchronizes the two copies

by overwriting the MFT mirror with data in the corrupt MFT. (c) For some of the data structures in

NTFS, the replica is placed at a fixed virtual offset from the regular copy, thus often using a single

pointer value to access both. The security descriptors are an example. Corruption to the pointer

SDS will thus make both the regular copy and the replica inaccessible (Figure 6.1 shows that NTFS

does not recover whenSDS is corrupted).

Pitfall 6.4 Not realizing that most indexes are simply performance improvements and that their

unavailability should not cause complete failure.
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NTFS uses two indexes SDH and SII for its security descriptors in $Secure. The security descrip-

tors contain all information necessary to rebuild both the indexes. However, when eitherSDH or

SII is corrupted, NTFS does not recover despite detecting the corruption.

Thus, using type-aware corruption to characterize NTFS behavior yields many lessons for han-

dling corruption in addition to providing an insight into the inner workings of NTFS. If NTFS

follows the lessons discussed herein, it can completely recover from corruption in 229 scenarios

(that is, for pointersBoot-MFT0, Boot-MFTM, MFT0-MFT, MFTBitmap, MFT0-MFTM, LogFile, SDS,

SDH, andSII).

6.4.4 User-Visible NTFS Results

The previous subsection detailed NTFS behavior in responseto pointer corruption. However,

understanding these actions does not imply an understanding of how they manifest to users or ap-

plications. The primary concern for users is data and systemreliability. Hence, in this subsection,

we discuss user-visible results of NTFS behavior. Figure 6.2 presents the user-visible results.

Observation 6.5 The system works correctly when NTFS recovers from corruption.

The system works without problems in 61 scenarios (17%), primarily because NTFS detects and

recovers from corruption. For example, corruption of any one pointer field (MFT, MFTMirror) in

the boot sector does not affect normal operation. In 10 othercases, even though NTFS does not

recover, pointer corruption does not cause problems due to the order of disk operations or due to

non-use ofTargetcorrupt.

Observation 6.6 The most frequent user-visible result is an unmountable filesystem.

The file system becomes unmountable when NTFS detects corruption to a pointer used during

mount, but is unable to recover. This situation applies to many pointers across the range of

Targetcorrupt values used. An example of such a pointer isLogFile. The file system could also

become unmountable when undetected pointer corruption (e.g., for FileData) causes key data

structures to be corrupted. The file system is rendered unmountable in 133 scenarios (37%).
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Figure 6.2 User-visible results for NTFS.These figures presents the user-visible results of corrupting
NTFS pointers. Each row characterizes the results observedfor the given pointer. Each cell in a row is
marked with the result observed for the given pointer when itis corrupted with the value of that column. Of
the values, Last-Size+1 denotes Last Cluster - Size of data run + 1 and is applicable only for data runs of
length more than 1. A dot next to a pointer name for any row implies that some form of redundancy exists;
in the ideal case, normal operation would occur when these pointers are corrupted.
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Observation 6.7 The second most frequent user-visible result is loss of dataor user-visible meta-

data

Data or metadata loss occurs in 102 scenarios (28%). Data is rendered inaccessible when the point-

ersDirIndxBuf, RootSecDesc, SDS, andUpCase are corrupted. In the case ofDirIndxBuf, the

pointer simply points elsewhere and therefore the directory’s contents are lost and inaccessible.

In the case ofRootSecDesc andSDS, security descriptors (metadata) are lost due to corruption.

NTFS thereforerestricts accessto directories and files allowing access only to users with adminis-

trator privileges; other users cannot access even their ownfiles. From this experience, we also learn

that pointer corruption experiments should be performed using user accounts with different access

privileges. Note that we are able to identify that corruption toRootSecDesc or SDS leads to inac-

cessible data because the file operations are performed on a user account with non-administrator

privileges.

Observation 6.8 File operations can be significantly affected by pointer corruption.

For some corruption scenarios, file operations fail since NTFS does not recover from the pointer

corruption. An example is corruption toSDH; attempts to create files fail while files already created

can be accessed. Note that operations also fail when data or metadata is lost. In total, file operations

fail in 127 scenarios (35%). In some of the scenarios, the error code returned by NTFS correctly

identifies the corruption. In others, the error code returned is misleading; it has no relation to the

data structure that is corrupt. One example occurs whenUpCase is corrupted to point to Boot.

Observation 6.9 In addition to data loss, users could also observe data corruption.

User data corruption is said to occur when user file data is overwritten with other data or metadata

thereby corrupting it. An instance of this situation occurswhen a file data pointer points to another

file’s data clusters. User data is corrupted in 8 scenarios (2%).

Lesson 6.3Undetected pointer corruption can pose a significant security risk.
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One would expect that pointer corruption might affect data on a particular disk. However, it could

be worse; most experiments involving the pointerMFTBitmap result in a system crash (22 cases),

thus affecting the entire system. By systematically setting bits contained inTargetcorrupt (the disk

block being pointed to after corruption), we observe that the system crash happens whenever the

allocation status bits corresponding to the system files $Quota, $ObjId and $Reparse happen to be

zero (instead of one), resulting in their MFT entries getting re-used (and hence corrupted). Thus,

a particular series of operations (mount,CreateFile) can be performed on specifically corrupted

file system images to cause crashes. Such malicious disk images [149] could become a security

threat with the widespread use of portable flash drives and disk image downloads.

In general, we observe that for many scenarios, the user-visible results follow readily from the

reactions of NTFS (or lack thereof). However, it is not as straightforward for some scenarios. An

interesting case in point occurs whenFileData is corrupted to the value SDS (Last row, column

13 in Figure 6.1). Figure 6.1 shows that the observed NTFS behavior is that of no detection and

theTargetcorrupt cluster is therefore corrupted. However, the result of thispointer corruption is

user data corruption and not metadata loss (as seen in the last row, column 13 in Figure 6.2). This

result occurs because the clusters of the SDS file are replicated; after an unmount, on a subsequent

mount, NTFS detects that the SDS cluster is corrupt, reads the replica, and restores the corrupted

cluster. This action causes file data to be overwritten and hence leads to data corruption. Similar

behavior is observed for the pointerMFT0-MFTM with Targetcorrupt as SDS. Once again, although

SDS information is lost when MFT mirror updates occur, the information is recovered from the

redundant copy of the SDS cluster and the system works fine.

In certain pointer corruption scenarios, the user-visibleresults depend on the actual data present

in various clusters. CorruptingMFTBitmap with the location of a file data cluster (FileData) is an

example. In this case, user data is corrupted. In addition, depending on the exact values of bits in

the file data cluster, there may be a system crash, or data might be lost.



170

Pointer R
ed

un
da

nc
y?

D
et

ec
ts

&
R

ec
ov

er
s

D
et

ec
ts

,b
ut

no
re

co
ve

ry

D
et

ec
ts

,b
ut

co
rr

up
ts

N
o

de
te

ct
io

n

F
ur

th
er

co
rr

up
tio

n

R
ep

lic
a

de
st

ro
ye

d

Block bitmap
√

1 12 12

Inode bitmap
√

5 8 8

Inode table
√

13

Journal superblock 13

Root directory 11 2 2

Directory data 11 3 3

File data 1 13 13

Total 0 55 0 38 38 0

Total recoverable
√

0 19 0 20 20 0

Table 6.7 Ext3 behavior summary. The table summarizes observed ext3 behavior on corruption.The
columns are the same as in Table 6.6. The first column indicates whether some form of redundancy exists for
either the pointer orTargetoriginal. Columns 2 to 5 summarize the number of cases for which the system
behaves in a certain manner. The last two columns indicate the total number of cases for which further
corruption occurs and for which the replica of the pointer isdestroyed. The penultimate row is the sum of
all rows and the last row is the sum of rows that have a

√
for the “Redundancy?” column.
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6.4.5 Ext3 Results

We corrupt 7 primary ext3 pointers with 14Targetcorrupt values each, chosen in similar fashion

to NTFS. Table 6.7 presents a summary of ext3 results. We describe the key ext3 observations

below, focusing on how it is similar to or different from NTFS.

• Unlike NTFS, ext3 relies more on sanity checks than on type checks. For example, it verifies

that bitmap and inode table pointers point within the block group. Also, when allocating

inodes ext3 verifies that the inode bitmap has marked “reserved” inodes as allocated, unlike

the NTFS mishandling ofMFTBitmap. However, lack of type checks causes ext3 to use the

superblock as directory data.

• Like NTFS, ext3 typically assumes that the cluster pointed to (rather than the pointer) is

corrupt.

• Even though ext3 replicates the group descriptors, it neveruses these replicas even when a

pointer in the primary copy is detected as corrupt.

• The typical reaction on detecting corruption is to report anerror and remount the file system

as read-only. Ext3 does not recover even in one corruption scenario.

In summary, our analysis of ext3 shows that it is no better than NTFS in pointer protection. Our

analysis also demonstrates that TAPC can be applied to very different file systems. One advantage

with ext3 is that we have verified our results by reading ext3 source code.

6.4.6 Discussion

Using TAPC to characterize system behavior yields many lessons for handling corruption, in

addition to providing an insight into pitfalls for real file system implementations. If NTFS and

ext3 follow these lessons, they can completely recover fromover 63% and 40% of the corruption

scenarios respectively. In this subsection, we discuss general issues related to TAPC and corruption

handling.
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First, TAPC does not consider the likelihood of different values used for corruption. This

likelihood depends on the source of corruption. For example, if the corruption values are arbitrary,

more than 99% of the values will be out-of-bounds, while corruption due to bit flips will imply that

the corrupt value is “closer” to the correct value. While ourlikelihood-agnostic approach does not

provide probabilities for file system failures due to corruption, it provides interesting insights into

how a file system handles corruption.

Second, a question that arises from the results is whether type and sanity checks are the right

techniques to use, especially when there are many pitfalls involved. While it is true that the use

of checksums (like in ZFS [130]) might significantly improvecorruption handling, it does not

subsume the protection offered by type and sanity checks. For example, checksums cannot protect

against file-system bugs that place the wrong pointer value and checksum it as well.

Third, it is non-trivial to add checksums and other protection to a file system without changing

the on-disk format. Type-aware pointer corruption helps identify potential sanity checks that can

be used without format changes.

6.5 Conclusion

Preserving data access paths is integral to any system that wishes to preserve data as illustrated

by the following anecdote:

One of the terms of the settlement of Control Data Corporation v. IBM, the first

antitrust suit against IBM, was that the ‘CDC database’ should be destroyed. This

database was prepared by Control Data legal staff as a means of organizing the eval-

uation of the enormous quantity of documents subpoenaed from IBM. IBM could

not legally destroy the documents themselves, but through this settlement they could

destroy theindexto the documents, making the millions of documents virtually use-

less [62].

File systems rely on on-disk pointers to access data. As file systems employ different and newer

techniques to protect against corrupt pointers, we need to understand how these techniques perform
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in reality. We have developed type-aware pointer corruption as a way to rapidly and systematically

analyze the corruption-handling capability of file systems. We have applied type-aware pointer

corruption to NTFS and ext3, and find that despite their potential to recover from many pointer-

corruption scenarios, they do not, causing data loss, unmountable file systems, and system crashes.

We use this study to learn important lessons on how to handle corrupt pointers.

We believe that future file systems should be more careful in implementing pointer protec-

tion techniques. A first step would be to develop a consistentcorruption-handling policy and the

corresponding machinery that can be used by all file system components.
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Chapter 7

N-Version File Systems

We learn from our study of partial disk failures that these failures affect a high percentage

of inexpensive SATA disk drives. These drives are the kind used in our desktops and laptops.

Unfortunately, as the previous chapter shows, the commodity file systems that manage these drives

are not effective at handling partial disk failures. Therefore, we need to develop a solution for

tolerating partial disk failures in personal computers.

Typical approaches to solving this problem have been to either fix one of the commodity file

systems, or develop a better file system, or ensure that partial disk failures are handled in some

layer just beneath the file system. Indeed, over the years, many research efforts and real systems

have adopted one of these options [18, 55, 60, 104, 107, 129, 130, 131]. The main problem with

any of these approaches is the dependence on the file system itself to maintain the reliability and

integrity of data.

The file system is a complex piece of software that not only handles partial disk failures poorly

(despite the availability of techniques to tolerate them),but also contains bugs. The bugs and poor

use of failure-handling techniques exist despite the file systems being widely-used and potentially

well-tested. Indeed, recent research efforts, including ours, have uncovered numerous bugs in file-

system code [104, 148, 149, 150]. File-system bugs could cause data corruption that may not be

caught by techniques within or beneath the file system.1

1Techniques within the file system may be useful to a limited extent. For instance, Hagmann [60] states “A bug in
the file system will often show up as an error in comparing the computed label with the disk label.” while describing
the Cedar File System.
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Our solution for handling partial disk failures is anN-version file system. An N-version file

system is an instance of N-version software [6]. In such a filesystem, data is stored inN different

file systems. All file operations performed by the user are received by a simple software layer that

issues the operation to allchild file systems. This layer then determines the majority resultfrom

those returned by the child file systems and delivers it to theuser. Thus, we eliminate the reliance

on a single complex file system, and place it on a simpler software layer.

One major issue in building an N-version-software system isthe high development costs asso-

ciated with formulating a common specification for the system, and creatingN different versions

of the system. In order to reduce these costs, we hypothesizethat for an N-version file system,

(i) we can use an existing specification, such as POSIX, as thecommon specification, and (ii) we

can use existing file systems, such as ext3, JFS, etc., as theN different file-system versions. In

building an N-version file system using an unmodified specification and existing file systems, we

verify these hypotheses.

A second issue in using an N-version file system is the high performance and disk-space over-

heads introduced by storing and retrieving data fromN file systems instead of one. Our solution

to this issue is to use a block-level single-instance store underneath the file systems. A block-

level single-instance store uses content hashing to identify disk blocks with the same content; it

then stores a single copy of these blocks on disk. In an N-version file system, user data stored in

the different file systems will have the same content and willtherefore be coalesced into a single

block, while file-system metadata of different file systems will have different contents and will

not be coalesced. Therefore, a single-instance store protects against partial disk failures that affect

metadata (thereby protecting the important access paths todata), but not against failures that affect

data blocks. A single-instance store is especially useful in cases where file-system bugs are the

main contributors to partial disk failures.

We evaluate the reliability of a 3-version file system (that uses ext3, JFS, and ReiserFS as child

file systems) through fault-injection experiments. We find that the 3-version file system can recover

from a partial disk failure or a file system with incorrect contents in almost all scenarios; many of
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these scenarios cause irreparable data loss or non-mountable file systems in the child file systems

that the 3-version file system is composed of.

In addition to the reliability benefits of using an N-versionfile system, the detailed information

it maintains about the child file systems makes it attractivefor use as a diagnostic tool. As an

example, one of our reliability experiments triggered a bugin ext3 that led to a system crash.

When ext3 was used as part of a 3-version file system, the 3-version file system not only avoided

the bug, but also helped identify the location of the bug.

The rest of the chapter is organized as follows. Section 7.1 describes the N-version program-

ming approach and how it can be applied to file systems. Section 7.2 presents the design of the

N-version file system and Section 7.3 discusses how the N-version file system has been built to

use the existing POSIX specification and available file systems. Section 7.4 describes the single-

instance store layer we have developed to address performance and disk-space overheads. Sec-

tion 7.5 evaluates the reliability of a 3-version file systemand Section 7.6 concludes the chapter.

7.1 An N-Version Approach

This section provides a background on N-version programming and then motivates why it is

particularly suitable for file systems.

7.1.1 N-Version Programming

N-version programming [6, 7, 31] has been used over the yearsto build reliable systems that

can tolerate software bugs. A system based on N-version programming usesN different versions

of the same software and determines a majority result from the ones produced by the different

versions. These different versions of the software are created byN different developers or devel-

opment teams for the same software specification. It is assumed (and encouraged using the speci-

fication) that different developers will design and implement the specification differently, lowering

the chances that the versions will contain the same bugs or will fail in similar fashion.

The benefits of N-version programming have been validated byvarious experiments [9, 10]. In

one such experiment, Avižienis and Kelly [9] study the results of using three different specification
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languages to develop 18 different versions of an airport scheduler program. They perform 100

demanding transactions with different sets of 3-version units and determine that while at least one

version failed in 55.1% of the tests, a collective failure occurred only in 19.9% of the cases.

The N-version approach has been used primarily in computerized control systems where safety

is critical, such as for train switching and flight control operations [144]. More recently, with

the increase in both the threat of bug-induced failures and the cost of such failures, many recent

research efforts have explored the use of N-version software in various other systems, including

network file systems [112], database systems [142], and for security [36].

N-version programming has three important aspects: (a) producing the initial specification

for the software, (b) developing theN different versions of the software, and (c) creating the

environment that supports the execution of the different versions and also contains algorithms to

determine a consensus result from the ones produced by the different versions [6].

7.1.2 N-Version Programming in File Systems

The aim of our work is to explore the use of N-version programming in file systems for the

purpose of reliably storing and retrieving data. An N-version file system receives user operations

and issues them to multiplechild file systems. It then determines the majority result from the

results produced by the different file systems, and deliversit to the user.

The advantages of an N-version file system can be broken down as follows.

Diversity: This advantage is the traditional advantage of an N-versionsoftware system. File

systems that store data using different data structures maybe used to provide diversity. This

diversity would reduce the chances of common bugs.

Storage redundancy:Since data is stored in multiple file systems, an N-version file system

provides the benefits of replication. Data lost due to a partial disk failure (including corrup-

tion due to a file-system bug) in one file system can still be accessed through the other file

systems.
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Operational Redundancy: Each file operation is performed multiple times, once in each

file system. Each of the file systems also issue disk operations that cause the the rest of the

(possibly buggy) storage stack to perform multiple operations that have the same purpose.

The redundancy in operations lowers the chances that a givenfile operation will fail in all

file systems.

In addition to these advantages, the use of N-version programming in file systems is partic-

ularly attractive since the design and development effort required for the first two aspects (i.e.,

specification and version development) of creating N-version software could be much lower than

the typical case:

Specification: Many existing file systems answer to a common interface; userfile opera-

tions use the POSIX interface, which internally translatesto the Virtual File System (VFS)

interface for all Linux file systems. Thus, by using the POSIX/VFS interface, the effort

needed in developing a common specification could be minimized. By building an N-version

file system using the POSIX/VFS interface, we evaluate the suitability of the interface for

N-versioning; we have addressed various issues in order to use this existing specification

(Section 7.3.1).

N file systems: There are many diverse file systems available today, such as ext3, JFS,

and ReiserFS, that are built for the POSIX/VFS interface. These different file systems have

drastically different data structures, both on disk and in memory. This diversity reduces

the chances of common file-system bugs. In addition to a smaller chance of common bugs,

we find from our experiments that different file systems behave differently when they en-

counter partial disk failures. Figure 7.1 shows the resultsfrom our analysis of whether

commodity file systems detect corruption (from previous work [104]). Each row in the fig-

ure corresponds to a file-system data structure, each columncorresponds to a workload, and

the symbol in each cell denotes whether or not corruption to the data structure for that row

is detected when the workload for that column is executed. When we compare file-system

behavior on corruption to similar data structures, we see that there are cases where a subset



179

ext3: 1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

19

F
S

-r
ec

ov
er

y

20

lo
g-

w
rit

e

jdata
jcommit
jdesc
jrevoke
jsuper
gdesc
super
data
indirect
imap
bmap
dir
inode

JFS: 1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3
S

E
T

-2
4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

19

F
S

-r
ec

ov
er

y

20

lo
g-

w
rit

e

imapcntl
aggr-inode-1
imapdesc
jdata
jsuper
super
data
internal
imap
bmap
dir
inode

ReiserFS: 1

pa
th

-t
ra

ve
rs

al

2

S
E

T
-1

3

S
E

T
-2

4

re
ad

5

re
ad

lin
k

6

ge
td

ire
nt

rie
s

7

cr
ea

t

8

lin
k

9

m
kd

ir

10

re
na

m
e

11

sy
m

lin
k

12

w
rit

e

13

tr
un

ca
te

14

rm
di

r

15

un
lin

k

16

m
ou

nt

17

S
E

T
-3

18

um
ou

nt

19

F
S

-r
ec

ov
er

y

20

lo
g-

w
rit

e

internal
root
jdata
jcommit
jdesc
jheader
super
data
indirect
bmap
dir
inode

Figure 7.1 Comparison of corruption detection. The figures indicate whether or not the file systems
ext3, JFS, and ReiserFS detect corruptions to their data structures when the data structures are read in
response to different workloads. Each row corresponds to a data structure and each column corresponds
to a file operation. The symbol[|] denotes that the corruption is detected and[©] denotes that it is not. A
gray box indicates that the workload is not applicable for the block type.
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(but not all) of the file systems detect the corruption. For example, consider directory data

blocks (row “dir”) and the workload getdirentries (column “6”): ReiserFS and JFS detect the

corruption while ext3 does not. The availability of such diversity motivates the opportunistic

use of existing file systems as opposed to building new ones.

It is our hypothesis that we can leverage an existing specification and file systems that have

already been developed to this specification to build an N-version file system. Such opportunis-

tic approach of using an existing specification and an existing set of systems has previously been

employed successfully by Rodrigueset al. [112]; they have used the NFS specification to build

Byzantine-fault-tolerant NFS servers using different off-the-shelf file systems. More recently, Van-

diver et al. [142] have developed a Byzantine-fault-tolerant transaction processing system using

heterogeneous replicas.

7.2 An N-Version File System

This section describes the design of an N-version file system. We focus on the third aspect of

building N-version software, that is, the execution environment. We first outline the goals that in-

fluence the design of this environment. Next, we present the basic architecture of the environment,

and finally discuss various details of the design of this environment.

7.2.1 Assumptions and Goals

Overall, the design of the N-version file system is influencedby the following goals and as-

sumptions:

Simplicity: As systems have shown time and again, complexity is the source of many bugs.

Therefore, the N-version file system should be as simple as possible. This goal primarily

translates to avoiding persistent metadata for the N-version file system, thereby avoiding

issues such as disk-block allocation and protection of metadata against partial disk failures.

Single disk: The N-version file system is intended for use in a commodity system. There-

fore, it will replicate data across multiple local file systems that use the same disk drive. This
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goal translates to a need for reducing disk-space overheads; we develop a single-instance

store to address this goal (Section 7.4).

Non-malicious file systems:The N-version file system should protect against partial disk

failures and file-system bugs that lead to errors in the persistent state of file systems. The N-

version file system does not protect against malicious behavior by file systems or file-system

bugs that corrupt the rest of the kernel.

No application modifications: Applications should not need modifications to use an N-

version file system instead of a single local file system.

7.2.2 Basic Architecture

An N-version file system receives application file operations, issues the operations to multiple

child file systems, compares the results of the operation on all file systems, and returns the majority

result to the application. Each child file system stores its data and metadata in its own disk partition.

We have built the N-version file system for Linux. Figure 7.2 shows the basic architecture.

The N-version file system consists of a software layer NVFS that operates underneath the virtual

file system (VFS) layer. NVFS operates underneath VFS because VFS provides core functionality

(like ordering of file operations) that is hard to replicate without modifying applications. The VFS

layer has been heavily tested over the years and, hence, is likely to have fewer bugs that the file

systems themselves; in a study of file systems, Yanget al. [150] find 2 bugs in the VFS layer while

they find 2 bugs in ext2, 5 in ext3, 2 in ReiserFS and 21 in JFS.

The NVFS layer executes file operations that it receives on multiple child file systems. We have

used ext3 [141], IBM’s JFS [20], and ReiserFS [108] for this purpose. We have chosen these file

systems due to their popularity, our experience in analyzing these file systems, and the differences

in the handling of partial disk failures across these file systems (as shown in Figure 7.1).

Similar to stackable file systems [63], NVFS interposes transparently on file operations; it acts

as a normal file system to the VFS layer and as the VFS layer to the child file systems. It thus

presents file-system data structures and interfaces that the VFS layer operates with and in turn
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Figure 7.2 N-version file system in Linux. The figure presents the architecture of a 3-version file
system with ext3, ReiserFS and JFS as the 3 child file systems.The core layer is the NVFS layer; it is
responsible for issuing file operations to all 3 file systems,determining a majority result from the ones
returned by the file systems, and returning it to the VFS layer. The SIS layer beneath the file systems is a
single-instance store built to work in an N-version setting; it coalesces user data stored by the different file
systems in order to reduce performance and space overheads.
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manages the data structures of the child file systems; it has its own in-memory inodes, dentry

structures, etc., to interact with the VFS layer and in turn manages the allocation and deallocation

of such structures for child file systems. This management ofdata structures of child file systems

includes tracking the status of each data structure, that is, whether it matches with the majority

and whether it needs to be deallocated. In keeping with our simplicity goal, we have designed the

N-version file system so that it does not maintain any persistent data structures of its own. This

decision affects various parts of the design, from handlingfaulty file systems (Section 7.2.3.2), to

handling system crashes (Section 7.2.3.4), and to management of inode numbers (Section 7.3.1).

We have implemented wrappers for file and directory operations.2 These wrappers first verify

the status of necessary objects in the child file system before issuing the operation to it. For

example, NVFS verifies whether the status of both the file and its parent directory are valid in the

case of an unlink operation. Each operation is issued in series to the child file systems. Issuing an

operation in parallel to all file systems will increase the complexity of the NVFS layer and it is not

clear that such an approach will have much of a performance benefit considering that the child file

systems likely share the same disk drive. When the operations complete, the results are compared

to determine the majority result; this result is then returned to the user. When no majority result

is obtained, NVFS returns an I/O error to the user; future implementations can consider using

the response of a “primary” file system in such cases. The nextsubsection describes the result

comparisons and actions taken when a file system does not agree with the majority in more detail.

7.2.3 Design Details

This subsection describes the details of various design choices that we made in building the N-

version file system, including the comparison of results, handling cases when file systems disagree,

ordering of file operations, and the implications of system crashes.

2Our current implementation of NVFS does not include themmap operation.
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7.2.3.1 Result Comparison

The NVFS layer compares the results of all operations acrossthe different child file systems.

For example, for a file read operation, NVFS compares (a) the size of data read (or the error code

returned), (b) the actual content read, and (c) the file position at the end of the read. For all file

operations where inodes may be updated, NVFS compares (and copies to the NVFS-level inode)

the contents of the individual inodes. We have developed comparators for different file-system data

types like superblocks, inodes, and directories. For example, an inode comparator checks whether

the fieldsi nlink, i mode,i uid, etc. in the different inodes are the same.

In performing read operations, we would like to avoid the performance overhead of allocating

memory to store the results returned by all of the file systems. Therefore, the NVFS layer uses

the memory provided by the application as part of theread system call. This choice influences

two decisions: (i) NVFS calculates a checksum on the data returned and compares the checksums

for different file systems, since a more thorough byte-by-byte comparison would require memory

for all copies of data, and (ii) NVFS issues the read operation in series to child file systems only

until a majority opinion is reached (the read is not issued tothe remaining child file systems); this

choice eliminates the problem of issuing reads again in casethe latest file system to perform the

read returns incorrect data; in addition, in the common case, when file systems agree, we save on

extra reads.3

In choosing the checksum algorithm used to compare data, we have to remember that the cost

of checksumming can be significant for reads that hit in the file-system buffer cache. We have

measured using microbenchmarks that this cost is especially high for cryptographic checksums

such as MD-5 and SHA-1. Therefore, in keeping with our goal ofprotecting against bugs, but

not potentially malicious behavior of child file systems, weuse a simple TCP-like checksum for

comparisons.

3We choose not to take the same issue-only-until-majority approach with other VFS operations like lookup since
the limited performance gain for such operations is not worth the complexity involved, say in tracking and issuing a
sequence of lookups for the entire path when a lookup returnserroneous results in one file system.
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7.2.3.2 Handling Disagreement

An important part of an N-version file system is the handling of cases where a child file system

disagrees with the majority result. This part is specifically important for local file systems since

the ability to perform successive operations may depend on the result of the current operation (e.g.,

a file read cannot be issued when the open operation for a file fails).

If the result produced by a child file system disagrees with the majority result across all child

file systems, the N-version file system operates indegraded-modefor the associated object; that is,

it does not perform future operations on the object for the file system with the error. The N-version

file system continues to perform operations on other objectsfor that file system. As an example,

if a child file system’s file inode is declared faulty, then read operations for that file are not issued

to that file system. As another example, if a lookup operationcompletes successfully for only one

file system, its corresponding in-memorydentrydata structure is deallocated, and any future file

create operation for that dentry is not issued to that file system.

The validity information for objects is not maintained persistently. In the absence of an option

to repair the child file system, this choice maintains the simplicity goal. Note that permanent

errors will likely be detected again during future operations, while we allow the child file systems

to return to normal operation for transient errors as long asthe object is not modified in the interim.

When an error is detected, in order to restore the N-version file system to full replication,

the erroneous child file system should be repaired. Our N-version file system currently does not

repair child file systems. As an example of why logical file-system repair is difficult, consider the

following scenario. A file with two hard links to it may have incorrect contents. If the N-version

file system detects the corruption through one of the links, it may create a new file in the file system

to replace the erroneous one. However, there is no simple wayto identify the directory where the

other link is located, so that it can be fixed as well (except through an expensive scan of the entire

file system).
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7.2.3.3 Operation Ordering

As in many replication-based fault tolerance schemes, determining an ordering of operations

is extremely important; in fact, recent work in managing heterogeneous database replicas focuses

primarily on operation ordering [142]. In the context of a file system, consider the scenario where

multiple file operations are issued for the same object. If anordering is not predetermined for these

operations, their execution may be interleaved such that the different child file systems perform the

operations in a different order and therefore produce different results even in the absence of bugs.

Unlike for databases, the dependence between operations can be predetermined in the case of

file systems. In our NVFS implementation, we rely on the locking provided by the Linux VFS

layer to order metadata operations. As explained earlier, this reliance cannot be avoided without

modifying applications (to issue operations to multiple replicas of VFS that execute an agreement

algorithm). In addition to the VFS-level locking, we perform file locking at the NVFS layer for

reads and writes to the same file. This locking is necessary since the VFS layer does not (and has

no need to) order file reads and writes.

7.2.3.4 System Crashes

When a system crash occurs, file-system recovery in an N-version file system consists of per-

forming file-system recovery for all child file systems before the N-version file system is mounted

again. This approach leads to consistent states for each of the child file systems (assuming that they

use techniques like journaling to maintain consistency on crashes). However, it is possible that the

different file systems recover to different states. Specifically, when a crash occurs in the middle of

a file operation, NVFS could have issued (and completed) the operation for only a subset of the

file systems, thereby causing the file systems to recover to different states. In addition, file systems

like ext3 maintain their journal in memory, flushing the blocks to disk periodically; in this case,

journaling provides consistency and not durability. For the N-version file system, the state modi-

fications that occur durably for a majority of file systems before the crash are considered to have

completed. The differences in the minority set can be detected when the corresponding objects

are read, either during user file operations or during a proactive file system scan. There are corner
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cases where a majority result will not be obtained when a system crash occurs. In these cases,

choosing the result of any one file system will not affect file-system semantics; future N-version

file system implementations could choose to use the result from a designated “primary” child file

system.

7.3 Achieving Opportunistic N-Versioning

We now discuss how well it works to opportunistically use an existing specification and avail-

able file systems for an N-version file system. We first focus onthe ways in which the POSIX

specification is imprecise for use in an N-version setting and how we address the issues that arise,

and then discuss the implications of using a shared address space for all child file systems.

7.3.1 Imprecise Specification

One of the problems that we encounter in building an N-version file system is the fact that file

systems do not use the same specification. While most file systems support the POSIX/VFS inter-

face (which serves as the interface exported by the N-version file system), they differ in various

user-visible aspects that are not a part of the POSIX interface. For example, the POSIX specifi-

cation does not specify the order in which directory entriesare to be returned when a directory

is read. Thus, different child file systems return directoryentries in a different order. As another

example, the inode number of files is available to users and applications through thestat system

call, and different file systems issue different inode numbers to the same file.

One approach to addressing this problem would be to make the specification more precise and

change the file systems to adhere to the new specification. Thefirst problem with this approach

is that it discourages diversity across the different file systems. For example, in the inode number

case, all file systems will be forced to use the same algorithmto allocate inode numbers, perhaps

causing them to also use the same data structures, thereby inviting common bugs. The second

problem with the approach is the development effort needed to change each file system in order to

use it as a child file system. The third problem is that non-determinism and difference in operation

ordering could cause different behavior even if the same filesystem is used as allN “versions.”
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Our approach is to address the differences in specification at the NVFS layer. In the directory

entry example, the NVFS layer reads all directory entries from all file systems, and then returns

results that occur in a majority of file systems (as opposed toreading exactly as many entries

as the user provides space for). This approach increases theoverhead for thegetdirentries

system call for very large directories. We handle the inode-number issue by having the N-version

file system assign inode numbers as and when a new object is encountered. In keeping with our

simplicity goal, inode numbers so assigned are not persistent; that is, an object has a specific inode

number only between mount and the corresponding unmount. This decision impacts only a few

applications, such as NFS servers (pre-NFSv4) and rsync, that depend on the persistence of local

file system inode numbers.

7.3.1.1 Shared Environment

One problem with using multiple local file systems for replication is that the different file

systems execute within the same address space, thus exposing the N-version file system to two

problems: (a) kernel panics called or caused by any file system, and (b) memory bugs in the file

systems that corrupt the rest of the kernel. A solution to both problems would be to completely

isolate the child file systems using a technique such as Nooks[133]. However, due to the numer-

ous interactions between the VFS layer and the file systems, such isolation comes at a very high

performance cost. Therefore, we explore a more limited solution to this problem.

We find the current practice of file systems issuing a call topanic when they encounter errors

to be too drastic4 [104]. This scenario is one instance where using existing file systems for N-

versioning causes problems. In the case of ext3 and JFS, a mount optionerrors can be used to

specify the action to be taken when a problem is encountered;we could specifyerrors=continue

to ensure that panic is not called by the file systems. However, this option is not available on all

file systems. Therefore, our solution is to replace calls topanic, BUG, andBUG ON by child file

4File system developers seem to agree, as evidenced by the following comment in ext3 code: “Give ourselves just
enough room to cope with inodes in which iblocks is corrupt: we’ve seen disk corruptions in the past which resulted
in random data in an inode which looked enough like a regular file for ext3 to try to delete it. Things will go a bit crazy
if that happens, but at least we should try not to panic the whole kernel.”
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systems with a call to anvfs child panic routine in NVFS layer. This simple replacement is

performed in file-system source code. Thenvfs child panic routine disables issuing of further

file operations to the failed file system. However, since the intent of the child file system is to cause

the system to crash, one cannot guarantee that crash-free progress can be made in all cases when

execution is allowed to continue.

7.4 Single-Instance Store

Two issues that arise in using an N-version file system are thedisk-space and performance

overheads. Since data is stored inN file systems, there is anN-fold increase (approximately) in

disk space used. Since each file operation is performed on allfile systems (except for file reads),

the likely disk traffic isN times that for a single file system.

Our solution is to these problems is to apply single-instance storage technology [23, 42, 105].

Our block-level single-instance store trades-off some data reliability for disk space and perfor-

mance, while still maintaining metadata reliability for the different child file systems. We have

designed this single-instance store specifically for use inan N-version file system setting.

In our system, the disk operations of the multiple child file systems pass through a block-level

single-instance store layer. This layer computes a contenthash (SHA-15) for all disk blocks being

written and uses the content hash to detect duplicate data; the single-instance store writes out only

unique disk blocks.

The single-instance store layer ensures that only one copy of each user data block will be stored

since data blocks produced by different file systems will likely have the same content6. Thus, disk-

space usage is reduced. However, any disk failure that affects a data block in one file system will

also affect the data block in the other file systems. The question that arises now is:why use a

single-instance store underneath an N-version file system if all file systems will be affected?

5Using SHA-1 does not impact performance greatly when used indisk operations.
6We only require that each of the file systems use a minimum block size of 4 KB
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There are two reasons why a single-instance store is applicable. First, the reliability of file-

system metadata is not affected by the use of a single-instance store; since the format of file-

system metadata is different across different file systems,metadata blocks of different file systems

will have different hash values and will therefore be storedseparately. Thus, the single-instance

store layer can distinguish between data and metadata blockswithoutany knowledge of file-system

data structures. Since metadata form the access path to multiple units of data, their reliability may

be considered more important than that of a data block. Second, file-system bugs that cause in-

memory corruption of data blocks will result in the data stored by different file systems having

different content hashes, thus maintaining the isolation between different file systems’ data. There-

fore, while disk failures will affect multiple file systems,they are still protected against each other’s

file-data corruptions. Thus, the single-instance store is especially applicable when file-system bugs

are the primary contributors to partial disk failures.

The design of a single-instance store specifically for an N-version file system should satisfy

slightly different requirements than a conventional single-instance store. At the same time, these

requirements provide new opportunities for optimizations. The new requirements and opportuni-

ties are as follows.

• The ability of child file systems to recover from failures to their metadata blocks should be

retained. This ability may depend on the availability of replicas for these disk blocks. For

example, JFS replicates its superblock and uses the replicato recover from a latent sector

error to the primary. Thus, our single-instance store does not coalesce disk blocks with the

same content if they belong to the same file system. This feature has the additional benefit

of maintaining any file-system remapping of disk blocks whena disk error occurs.

• In order to use unmodified file systems (that have no knowledgeof content addressing), the

single-instance store also virtualizes the disk address space; it exports a virtual disk to the file

system, and maintains a mapping from each file system’s virtual disk address to the corre-

sponding physical disk address, as well as the reference counts for each physical disk block.
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The single-instance store uses file-system virtual addresses as hints for assigning physical

disk blocks in order to maintain as much sequentiality and spatial locality as possible.

• Since the goal of the single-instance store is to coalesce common data from different file

systems, we can take advantage of the fact that in an N-version file system, this common

data is always written around the same time. Therefore, in our single-instance store, the

content hash information for each disk block is not stored persistently; the content hashes

are maintained in memory and deleted after some time has elapsed (or afterN file systems

have written the same content). This ephemeral nature of content hashes also reduces the

probability of data loss or corruption due hash collisions [64].

• In an N-version file system, reads of the same data blocks willoccur around the same time

as well. Thus, the single-instance store layer services reads from different file systems by

maintaining a very small read cache, thus reducing the number of disk reads. This read

cache holds only those disk blocks whose reference count (number of file systems that use

the block) is more than 1. It also tracks the number of file systems that have read a block

and removes a block from cache as soon as this number reaches the reference count for the

block.

Thus, the single-instance store data structures include: (i) virtual-to-physical mappings, (ii)

allocation information for each physical disk block in the form of reference count maps, (iii) a

content-hash cache of recent writes and the identities of the file systems that performed the write,

and (iv) a small read cache.

We have built the single-instance store as a pseudo-device driver in Linux. It exports virtual

disks that are used by the file systems. Our current implementation of the single-instance store

does not store virtual-to-physical mappings and reference-count maps persistently; future imple-

mentation efforts could focus on a reliable persistent store for these data structures.
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7.5 Reliability Evaluation

We evaluate the reliability improvements of a 3-version filesystem that uses ext3, JFS, and

ReiserFS (version 3) as the child file systems. All our experiments use the versions of these file

systems that are available as part of the Linux 2.6.12 kernel.

We evaluate the reliability of the 3-version file system in two ways: First, we examine whether

the 3-version file system recovers from scenarios where file-system content is different in one out

of the three child file systems. Second, we examine whether itcan recover from partial disk failures

that affect one of the child file systems.

7.5.1 Non-Matching File System Content

The first set of experiments is intended to mimic the scenariowhere one of the file systems

has a consistent but incorrect disk image. Such a scenario might occur either when (i) a system

crash occurs and one the child file systems has written eithermore or less to disk than the other

file systems, and (ii) a bug causes one of the file systems to corrupt file data, say by performing a

misdirected write of data belonging to one file to another file.

We experiment by modifying the contents of one child file system and executing a set of file

operations on the 3-version file system. We have explored various file-system content differences,

including extra or missing files or directories, and differences in file or directory content. The

different file operations performed include all possible file operations for the object. Our file

operations include those that are expected to succeed as well as those that are expected to fail with

a specific error code. Note that the ability to perform some file operations depends on whether

the object exists. For example, a file read can be attempted only on a file that exists, while a file

open can be attempted for both existing and absent files. These experiments are intended to verify

whether the 3-version file system detects differences correctly, and responds to requests with the

majority opinion.

Table 7.1 presents the results of the file-system content experiments. We find that the 3-version

file system correctly detects (and reports to the system log)all differences. In addition, it returns
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Difference in content Number of Correct Correct

experiments success error code

None 28 17 / 17 11 / 11

Different directory contents in one file system 13 6 / 6 7 / 7

Directory is present in only two file systems 13 6 / 6 7 / 7

Directory is present in only one file system 9 4 / 4 5 / 5

Different file contents in one file system 15 11 / 11 4 / 4

Different file metadata in one file system 45 33 / 33 12 / 12

File is present in only two file systems 15 11 / 11 4 / 4

File is present in only one file system 9 3 / 3 6 / 6

Total 147 91 / 91 56 / 56

Table 7.1 File-system content experiments.This table presents the results of issuing file operations
to 3-version file system objects that differ in data or metadata content across the different child file systems.
The first column describes the difference in file-system content. The second column presents the total number
of experiments performed for this content difference; thisis simply the number of applicable file operations
for the file or directory object. The third column is the fraction of operations that return correct data and/or
successfully complete. The fourth column is the fraction ofoperations that correctly return an error code
(and it is the expected error code) (e.g., -ENOENT when an unlink operation is performed for a non-existent
file). We see that the 3-version file system successfully usesthe majority result in all 147 experiments.
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the majority result to the user in all cases, either returning the expected data or returning the

expected error code. The N-version file system can also be successfully mounted and unmounted

in all cases. We find that the results are the same irrespective of which file system (ext3, JFS, or

ReiserFS) has incorrect contents.

7.5.2 Partial Disk Failures

The second set of experiments is intended to analyze whethera 3-version file system recovers

when a child file system is affected by a partial disk failure.We experiment by injecting partial disk

failures for JFS and ext3. We use type-aware fault injectionfor our experiments (Section 2.5.1).

In each experiment, we inject a fault when a specific file-system data structure is read by the child

file system in response to a specific file operation. Tables 7.2and 7.3 briefly describe the JFS and

ext3 data structures for which faults are injected. The tables also provide the approximate fraction

of disk blocks of each type in a typical file system on a 40-GB disk partition. We inject two types

of partial disk failures: read errors and corruption. For read errors, the error code EIO is returned

to the file system. In addition, the read buffer is zeroed out.7 For corruption, the entire buffer is

zeroed out, but no error code is returned. We first present a reliability comparison of JFS and 3-

VFS, then a comparison of ext3 and 3-VFS. Next, we derive approximate probabilities for different

user-visible results such as data loss, and finally discuss some key observations that arise from our

evaluation.

7.5.2.1 Partial Disk Failures in JFS

Figures 7.3 and 7.4 compare the user-visible results of injecting read errors and corruptions

respectively for JFS data structures. Each figure compares the results between (a) JFS used stand-

alone and (b) JFS used as one of the child file systems in a 3-version file system that uses ext3 and

ReiserFS as the other child file systems.

7We find that it is important to not have correct data in the buffer since JFS often ignores error codes and uses the
data in the buffer.
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Data structure Description Fraction

INODE Inode block containing 8 inodes 0.01

DIR Directory data block 1.5e-03

BMAP Block-allocation bitmap block; these blocks

are organized as a tree

1.2e-04

IMAP Inode map block that contains pointers to in-

ode blocks

2e-05

INTERNAL Indirect block of a file, containing pointers to

data blocks

1e-04

DATA File data block 0.5

SUPER Superblock of the file system 1e-07

JSUPER Superblock of the journal 1e-07

JDATA Journal data block 1.2e-03

AGGR-INODE-1 First block of the aggregate inode table 1e-07

IMAPDESC Third block of the aggregate inode table; con-

tains pointers to imap blocks

1e-07

IMAPCNTL Inode map control block with summary infor-

mation about the inode map

1e-07

Table 7.2JFS data structures.The table describes the different JFS data structures and the fraction of
disk blocks of that type in a typical file system.
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Data structure Description Fraction

INODE Inode block 0.01

DIR Directory data block 1.5e-03

BMAP Block-allocation bitmap block 3e-05

IMAP Inode-allocation bitmap block 3e-05

INDIRECT Indirect block of a file, containing pointers to

data blocks

5e-04

DATA File data block 0.5

SUPER Superblock of the file system 1e-07

JSUPER Superblock of the journal 1e-07

GDESC Group descriptor block 3e-07

Table 7.3 Ext3 data structures. The table describes the different ext3 data structures and the fraction
of disk blocks of that type in a typical file system.
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Figure 7.3 Read error experiments for JFS.The figures show the results of injecting read errors for JFS data structures when (a)
JFS is used stand-alone and (b) when JFS is one of the child filesystems in a 3-version file system. Each row in the figures corresponds
to the data structure for which the fault is injected; each column corresponds to a file operation; each symbol representsthe user-visible
result of the fault injection. Note that (i) the column SET-1denotes file operations access, chdir, chroot, stat, statfs, lstat, and open; SET-2
denotes chmod, chown, and utimes; SET-3 denotes fsync and sync, (ii) some symbols are a combination of two symbols, one ofwhich is the
light-gray square for “read-only file system,” (iii) [a] denotes cases where one of two possibilities could occur depending on disk state.
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Figure 7.4 Corruption experiments for JFS. The figures show the results of injecting corruption into JFSdata structures when (a)
JFS is used stand-alone and (b) when JFS is one of the child filesystems in a 3-version file system. Each row in the figures corresponds
to the data structure for which the fault is injected; each column corresponds to a file operation; each symbol representsthe user-visible
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light-gray square for “read-only file system,” (iii) [a] denotes cases where one of two possibilities could occur depending on disk state.
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Each row in the figures corresponds to the data structure for which the fault is injected. Each

column in the figures corresponds to different file operations. The exact instance of the data struc-

ture might be different for the different columns in a row. For example, while the first row is for

inode blocks, in some cases it is a file inode (e.g., unlink), while in some others it is a directory

inode (e.g., path traversal) and so on. The different symbols representthe user-visible results of

the fault; examples of user-visible results include data loss, and a non-mountable file system. For

example, in Figure 7.3a, when an inode block has an error during path traversal (column 1), the

symbol indicates that (i) the operation fails, and (ii) the file system is remounted in read-only mode.

In most cases, there is only one user-visible result that could occur. Sometimes, there could

be more than one possible result depending on disk state; forexample, the symbol [a] denotes

that eitherdata lossor a combination ofoperation failureand read-only file systemoccurs. In

addition to the symbols for each column, the symbol next to the data structure name for all the

rows indicates whether or not the loss of the disk block causes irreparable data or metadata loss.

As shown in Figure 7.3a, JFS is able to recover from the read error and continue normal opera-

tion in very few of the cases; it uses a copy of the superblock to continue normal operation when a

read to the superblock fails; it can continue normal operation when the read to the block-allocation

bitmap fails during truncate and unlink (although disk blocks that should have been freed are now

no longer available for allocation).

In most cases, partial disk failures result in undesirable results. Data loss is indicated for many

of the rows; the loss of these data structures cannot be recovered from (there is no redundancy).

Often, the operation fails and JFS remounts the file system inread-only mode. The loss of some

data structures also results in a file system that cannot be mounted. In one interesting case, JFS

detects the read error to an internal (indirect) block of a file and remounts the file system in read-

only mode, but still returns corrupt data to the user.

In comparison to stand-alone JFS, the 3-version file system recovers from all except one of the

read errors (Figure 7.3b). The 3-version file system detectserrors reported by JFS and also detects

corrupt data returned by JFS when the internal block fails during file read. In all these cases, the
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3-version file system uses the two other file systems to continue normal operation. Therefore, no

data loss occurs when any of the data structures is failed.

In one fault-injection experiment, a system crash occurs both when using JFS stand-alone

and when using it in a 3-version file system. In this experiment, the first aggregate inode block

(AGGR-INODE-1) is failed, and the actions of JFS lead to a kernel panic during paging. Since this

call topanic is not in JFS code, it cannot been replaced as described in Section 7.3.1.1. Therefore,

the kernel panic occurs both when using JFS stand-alone and when using a 3-version file system.

The results for corruption (Figure 7.4) are nearly-identical to the results for read errors. This

similarity arises because JFS uses sanity checks (and not error codes) to detect both kinds of errors.

Interestingly, JFS does not use the superblock copy to recover from corruption to the superblock

while it uses the copy when a read error occurs. As in the case of read errors, the 3-version file

system recovers and continues normal operation for all corruptions but one.

7.5.2.2 Partial Disk Failures in Ext3

Figures 7.5 and 7.6 show the results of injecting read errorsand corruption respectively for ext3

data structures. As in the case of JFS, each figure compares ext3 against a 3-version file system.

We first examine the results of injecting read errors (Figure7.5). Since ext3 does not utilize

the available redundancy in data structures, none of the fault-injection scenarios lead to normal

operation. In most cases, there is unrecoverable data loss (as denoted by the symbol next to each

data structure name in the figures), and either the operationfails (ext3 reports an error) or the

file system is remounted in read-only mode or both. In the remaining cases, the file system cannot

even be mounted. We see from Figure 7.5b that the 3-version file system is able to continue normal

operation in every single case.

We now examine the results of injecting corruption (Figure 7.6). Ext3 detects the corruption in

various cases but cannot restore normal operation (the file operation fails and data loss occurs). In

other cases, ext3 fails to detect corruption (e.g., IMAP, INDIRECT), thereby either causing data loss

(IMAP) or returning corrupt data to the user (INDIRECT). Finally, in one scenario (corruptINODE

during unlink), the failure to handle corruption leads to a system crash when the file system is
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Figure 7.5 Read error experiments for ext3. The figures show the results of injecting read errors for ext3data structures when (a)
ext3 is used stand-alone and (b) when ext3 is one of the child file systems in a 3-version file system. Each row in the figures corresponds
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light-gray square for “read-only file system.”
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Figure 7.6 Corruption experiments for ext3. The figures show the results of injecting corruption into ext3 data structures when (a)
ext3 is used stand-alone and (b) when ext3 is one of the child file systems in a 3-version file system. Each row in the figures corresponds
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denotes chmod, chown, and utimes; SET-3 denotes fsync and sync, (ii) some symbols are a combination of two symbols, one ofwhich is the
light-gray square for “read-only file system.”
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unmounted. In comparison, Figure 7.6b shows that the 3-version file system can continue normal

operation in every single experiment, including in the system-crash case. We discuss this case in

greater detail in Section 7.5.2.4.

7.5.2.3 Probability Estimates

We now derive approximate probabilities of (at least 1) occurrence of each of the user-visible

results in one year due to a read error. These estimates can beused to quantify the reliability impact

of using a 3-version file system.

For this calculation, we use: (i) the probability of occurrence of read errors (latent sector errors)

on a single disk in one year (from Section 3.3.2.1), (ii) the approximate fraction of disk blocks that

belong to each block type (from Tables 7.2 and 7.3), and (iii)the results of injecting read errors

(Figures 7.3, and 7.5),

We assume that (i) each disk block has an equal probability ofbeing affected by a partial disk

failure irrespective of the data structure it holds, (ii) the different file operations in the columns

of fault-injection result figures will definitely occur at least once in a year, thereby triggering the

corresponding user-visible result, (iii) multiple partial disk failures will not affect more than one of

the replicas of the 3-version file system (less likely since the replicas do not have spatial locality),

and (iv) the 3-version file system has JFS as one child file system and ext3 as two child file systems

(since we have not characterized behavior with ReiserFS).

Table 7.4 presents the probability that each user-visible result will occur at least once in a year,

comparing JFS, ext3, and a 3-version file system. We see that the 3-version file system is more

reliable than either JFS or ext3, with a zero data-loss probability under one read error. The only

non-zero probability for the 3-version file system is that ofa system crash (1e-08).

7.5.2.4 Discussion

In this subsection, we discuss some key observations from our fault-injection experiments.

Bug localization: We find that corruption to an ext3 inode block read duringunlink results in

a system crash when the file system is subsequently unmounted. The system crash does not occur
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User-visible result JFS Ext3 3-VFS

Data loss 0.0512 0.0512 0

Data corruption 0.050 0 0

Operation failure 0.0512 0.0512 0

Non-mountable file system 0.001 0.001 0

Read-only file system 0.0012 0.0012 0

System crash 1e-08 0 1e-08

Table 7.4 Probability of undesirable results. This table presents the probability of each user-visible
result occurring at least once in a given year due to read errors for: JFS, ext3, and a 3-version file system.
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Linux 2.6.12

static struct dentry *

ext3_lookup(struct inode * dir, struct dentry *dentry, struct nameidata *nd)

{

struct inode * inode;

...

if (bh) {

...

inode = iget(dir->i_sb, ino);

if (!inode)

return ERR_PTR(-EACCES);

}

if (inode)

return d_splice_alias(inode, dentry);

d_add(dentry, inode);

return NULL;

}

Linux 2.6.23

static struct dentry *

ext3_lookup(struct inode * dir, struct dentry *dentry, struct nameidata *nd)

{

struct inode * inode;

...

if (bh) {

...

inode = iget(dir->i_sb, ino);

if (!inode)

return ERR_PTR(-EACCES);

if (is_bad_inode(inode)) {

iput(inode);

return ERR_PTR(-ENOENT);

}

}

return d_splice_alias(inode, dentry);

}

Figure 7.7Bug in ext3 lookup. The figure compares the code forext3 lookup in Linux kernel versions
2.6.12 and 2.6.23. The checkif(is bad inode(inode))in 2.6.23 is missing in 2.6.12 and its absence causes a
system crash when a corrupt inode is unlinked.
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in the case of the 3-version file system, not because ext3 is modified to callnvfs child panic, but

because the code paths that cause the panic are avoided. In particular, the 3-version file system

detects that the inode returned by ext3 in response to a lookup (that is performed by VFS prior to

the actual unlink) is faulty. Therefore, it does not issue the subsequent unlink operation to ext3,

hence avoiding actions that cause the panic altogether. Interestingly, the bug that causes the crash

is actually in the lookup operation, the first point where the3-version file system detects a problem.

Note that in the absence of a 3-version file system, one would find that the system crashed on an

unmount, but will not have information linking the crash to the unlink system call or the bug in

ext3 lookup. Figure 7.7 shows the code forext3 lookup in Linux kernel versions 2.6.12 and

2.6.23. The checkif(is bad inode(inode))and corresponding actions in 2.6.23 is missing in 2.6.12

and its absence causes the system crash. This experience highlights the potential for using an

N-version file system to localize bugs in file systems.

Error codes: We find that different file systems use different error codes to report errors. The

error codes vary from “Input/output error” to “Permission denied” to “Read-only file system” and

so on. However, the system log shows that in most of these cases the file system detects a read error

or corruption. A consistent error code to represent these scenarios would enable the N-version file

system take further action than just the measures discussedin Section 7.2.3.2; for instance, any

repair of file systems could retain a (dummy) file whose data block has a latent sector error so that

the file system does not re-use this disk block for other files.In addition, if multiple file systems

are affected by disk errors, in the absence of consistent error codes, the NVFS layer only detects

the lack of a majority error code and reports an I/O error, butcannot detect a more pervasive disk

problem. We find that this issue is one of the limitations of using existing file systems, one that

cannot be solved by simple replacement of function calls as in handling kernel panic.

7.6 Conclusion

We have proposed the use of an N-version file system to tolerate all partial disk failures, in-

cluding file system bugs. Our approach includes techniques that enable the use of existing file

systems, thereby significantly reducing the cost of development. We have also proposed the use



207

of a single-instance store to reduce the performance and disk-space overheads of an N-version file

system. The single-instance store is especially applicable in cases where file-system bugs are the

primary contributors to partial disk failures. We have built an N-version file system for Linux file

systems and show that it is significantly more reliable than file systems that it is composed of. We

also show that the N-version file system can be used to localize bugs in file systems.

Modern file systems are becoming more complex by the day; mechanisms to achieve data

structure consistency [140], scalability and flexible allocation of disk blocks [20, 132], and the

capability to snapshot the file system [67, 130] significantly increase the amount of code and com-

plexity in a file system. Such complexity could lead to bugs inthe file system that render any data

protection further down the storage stack useless. Thus, the use of an N-version file system would

prove to be particularly relevant as file systems evolve.
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Chapter 8

Related Work

This chapter discusses various research efforts and real systems that are related to this disser-

tation. We first discuss literature on characterization of system and disk failures, then summarize

research on analyzing the failure behavior of systems. Next, we outline techniques that have been

used to handle disk failures, and finally we discuss researchrelated to N-version programming.

8.1 Failure Characteristics

This section discusses research efforts that have analyzedreal-world data on failures. Such data

often provides great insights into failure handling, both in terms of identifying techniques that can

be used to tackle failures and in terms of fine-tuning the policies that trigger the use of different

techniques. We first summarize research on the characteristics of system failures and then discuss

research specifically targeted towards disk and storage subsystem failures.

8.1.1 System Failures

Various research efforts have studied real-world system failures. We focus on research on the

root causes of failures in our discussion, in order to check whether disk failures play a major role

in causing system failures.

One of the very first and very influential studies of system failure was by Gray [51]. Gray

analyzes the cause of system failures reported to Tandem over a 7-month period for a sample set

that covered more than 2000 systems. A total of 166 failures were reported, of which 42% of the

failures were due to system administration. Software bugs caused 25% of the failures and hardware
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problems caused 18% of the failures (disk drives 7%). These results spurred further research on

system failures, especially with a view to verifying the impact of system administration on other

systems. Murphy and Gent [91] analyze failures that occurred in VAX systems and find that

from 1985 to 1993, the primary cause of failure shifted from software to system administration.

Oppenheimeret al.[96] study internet systems and find that, again, operator error is the main cause

of failure in two out of three services. All of these findings have sparked research in examining the

effect of operator errors, as well as into techniques that can deal with the consequences [27, 79,

126, 143].

Other studies of system failure have laid the blame on software. In following up on his first

study of failures, Gray [52] finds that from 1985 to 1989 the primary cause of failures shifted from

system administration to software bugs (the cause of 62% of the failures in 1989); he surmises that

as other components of the system become more reliable, software became the primary cause of

failure. More recently, Murphy and Levidow [92] analyze thecauses of Windows NT 4 failures

and find that the core of NT caused failures 43% of the time, while drivers and hardware caused

failures 32% and 13% of the time respectively.

Finally, hardware has been the main root cause of failure in various systems. Schroeder and

Gibson [117] study failures in high-performance computingsystems and find that hardware is the

main contributor to system failure, causing about 60% of allfailures and about 60% of system

downtime. In a subsequent study focusing on disk failures, Schroeder and Gibson [118] find that

disk drives were the hardware components to be replaced mostfrequently in two out of three of the

data sets that they examined. They also find that disk drives were the third-most frequent hardware

cause of node outages, while the most frequent was the CPU.

Most of the above studies do not identify disk drive or storage subsystem failures as the primary

causes of system failure. However, the increasing trend of using large numbers of inexpensive hard

disks [48] are expected make disk failures larger contributors to system failure. From the point of

view of data loss, disk and storage failures are certainly the primary threats.
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8.1.2 Disk and Storage Failures

This subsection discusses research that analyzes disk and storage subsystem failures. Unfortu-

nately, very little data has been published on real-world disk and storage subsystem failures; there

have been no large-scale studies of partial disk failures prior to our work.

In one of the first studies to focus on disk failures, Talagalaand Patterson [137] analyze failures

and errors that occurred in a 3.2 TB storage system and find that (i) disk drives are more reliable

than other storage subsystem components, (ii) IDE disks areless reliable than SCSI disks, and (iii)

medium errors (latent sector errors) occur, albeit much less often than network errors. A more

recent study of storage subsystem failures by Jianget al. [70], which uses the same error database

as we do, agrees with Talagala and Patterson’s observation that disk drives fail less often than other

storage subsystem components. However, one must remember that although disk drives experience

failures less often, these failures may lead to actual data loss, while other subsystem components

typically lead to data unavailability.

Elerath and Shah have studied various aspects of disk-drivereliability in detail [40, 41, 121,

122]. These studies often do not provide actual numbers on disk failures, but use relative numbers

to highlight important trends. For instance, Shah and Elerath show that the reliability of disk drives

changes with theirvintage, that is, the batches in which they are produced [121]. This behavior is

explained by the maturing of manufacturing processes and changes to firmware code over time. In

another study, Shah and Elerath show that the cause of disk failure changes with disk age [122].

Indeed, the observation in our study that nearline disks have a greater probability of developing

latent sector errors as they age may contribute to this general phenomenon.

Recently, two large-scale studies of disk failure were published [102, 118]. Both studies focus

on “complete” disk failures, wherein it is known that the disk failed or was replaced, but the

exact cause of failure is not known or not presented. Schroeder and Gibson [118] study the disk

replacement logs of systems that use a total of around 100,000 disk drives. They find that (i) disks

fail more often than manufacturer-reported MTTF (Mean Timeto Failure) numbers suggest, (ii)

rather than have a significant infant-mortality effect, disk-replacement rates grow with age, and

(iii) there is little difference between the SCSI and SATA replacement rates if the rejection of a
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particularly bad batch of SATA disks is ignored. Pinheiroet al. [102] present numbers from a

study of disk failures that occurred at Google in a population of more than 100,000 disks. They

find that (i) there is very little correlation between disk failures and temperature, or activity levels,

and (ii) some SMART [2] parameters like scan errors and reallocation counts have a large impact

on failure probability.

In the study most related to ours, Gray and van Ingen [53] present a small-scale analysis of

partial disk failures. They moved 2 PB of data through about 17 disk drives over a period of

6 months, and detected 4 read error events. This number is lower in comparison to manufacturer-

reported bit-error rates. As we have observed in studying partial disk failures, they found a case

where the likely culprit was the disk controller and not the disk drive.

8.2 Analysis of Failure Behavior

This section presents research efforts that analyze how systems respond to failures, with a focus

on file systems and storage systems. We first discusses efforts that use software fault injection to

evaluate systems, and then discuss efforts that use other techniques such as model checking and

static analysis to examine systems.

8.2.1 Software Fault Injection

A multitude of software fault-injection techniques and frameworks have been developed over

the years [26, 33, 19, 29, 61, 74, 75, 90, 123, 139]. These frameworks differ in various ways:

the types of faults they can inject, the ease of use of the framework, the monitoring capability

they provide to track the propagation of faults, and so on. Some of the types of faults that can

be injected using these frameworks include processor, memory, and bus faults [19, 29, 61, 74, 75,

139], disk faults [26, 139], communication faults [19, 61, 74], software faults [33, 75], and faulty

user input [90].

The FTAPE [139] framework is closely related to our work. It consists of a workload generator

and a device-driver-level disk-fault injector (which injects disk errors, but not corruption). Unlike

our approach, the FTAPE fault injector does not inject type-aware faults. The framework was
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implemented for studying the Tandem Integrity S2 fault-tolerant computer. It performs stress-

based injection, in which faults are injected at times and locations of greatest workload activity.

The authors show that this approach leads to higher errors tofaults ratio, an indication that fault-

tolerant mechanisms are being well-exercised.

A second related fault-injection study is an analysis by Siewiorek et al. [123] of how a file

system reacts when various fields of file pointers are corrupt. Unlike our approach to pointer

corruption, they do not corrupt pointers in other metadata structures. Also, unlike us, they perform

the corruption in memory once a file has been opened and do not use type-aware corruption values.

As a result of these differences, their approach does not provide information about why the file

system is able or unable to handle the corruptions.

Also closely related to our work is the disk-fault injector developed by Brown and Patter-

son [26]. More than the fault-injection technique, it is their goal of unearthing thedesign philos-

ophyof the system, as opposed to simply reporting the fraction ofexperiments that the system

handled, that has inspired our own fault-injection methodology. For their experiments, they use a

PC as a SCSI “target”; code running on the PC emulates disk drives and their faults. Using the

framework, they measure the availability of software RAID systems in various operating systems,

and find that while the Linux version is paranoid about transient errors and values application

performance over reconstruction upon failure, the Windowsand Solaris versions tolerate transient

errors better and perform reconstruction more aggressively. It is interesting to see that some of

these design-philosophy findings are applicable to file systems as well; we find that Windows

NTFS performs many more retries of disk operations than Linux file systems do, thereby helping

it tolerate transient errors better.

8.2.2 Other Approaches

In addition to fault injection, various other approaches have been used to examine the fault-

tolerance capability of systems.

Analytical modeling has primarily been used to examine the reliability of RAID systems. Gib-

son [49] developed a model for RAID systems that focused on absolute disk failures. Over the
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years, the analytical models have been refined to include theimpact of latent sector errors and data

corruption, and additional techniques such as disk scrubbing [17, 39, 76, 119]. The results of our

analysis of the characteristics of partial disk failures, such as the fact that these failures are not

independent, can be used to refine the different models.

Model checking is a formal technique that has been used over the years to analyze a variety of

systems [73]. Recently, model checking has been adapted to work well with real operating system

code [93], and subsequently employed to find bugs in file systems [150]. Interestingly, our type-

aware fault-injection technique identifies a different setof bugs than the ones triggered by model

checking [104].

Static analysis is another formal technique that has been used to study file systems. Yanget

al. [149] use static analysis to analyze the disk mounting code of ext2, ext3, and JFS and find

bugs in all of them. These bugs could potentially cause a kernel panic or allow buffer overflow

attacks when a malicious disk image is mounted. We have observed a similar bug in NTFS, where

a corrupt on-disk pointer could cause a system crash (Chapter 6). Recently, Gunawiet al. [56] use

static analysis to investigate the propagation of errors through file system code and find that many

functions drop error codes that should have been propagatedup.

Some research efforts have manually inspected and analyzedsystems as well. In recent work,

Hafneret al. [58] manually analyze the impact of various forms of data corruption on RAID data

protection. They present an example of the parity pollutionproblem that we identified in Chapter 4

and show that such a problem could occur in a RAID system with double-disk parity protection as

well. Carrier [30] analyzes the importance of various fieldsin on-disk data structures in different

file systems from a forensic viewpoint. He also presents methods that can be used to recover data

in cases where one cannot use the file system itself to obtain the data (e.g., from deleted files).

8.3 Handling Partial Disk Failures

This section describes research efforts that focus on handling partial disk failures. We focus on

systems and techniques not discussed previously as background (Section 2.4) or in our evaluation

of RAID data protection (Chapter 4).
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Sivathanuet al. [124] develop a technique calledtype-safe disks, in which disk drives with

knowledge of file-system data structures prevent file systems from accessing data that it shouldn’t.

For example, if a file system does not read the inode containing the pointer to a data block prior

to accessing the data block itself, the disk drive returns anerror. This approach is particularly

useful in handling pointer-related file-system bugs. However, the approach relies on a disk drive’s

bug-free operation.

Gunawiet al. [55] present a technique calledI/O shepherding, using which a variety of data

protection techniques for file systems can be easily composed. The I/O shepherd co-operates with

the file system for various purposes including identifying the type (e.g., inode) of disk blocks,

performing disk block allocating, and journaling replicasused for fault-tolerance. While this ap-

proach provides more flexibility over previous data protection approaches [104, 129, 130], it does

not protect against file-system bugs.

8.4 N-Version Programming

Over the years, N-version programming has been used in various real systems and research

prototypes to reduce the impact of software bugs on system reliability. As noted by Avižienis [6],

N-version computing has very old roots:

“The most certain and effectual check upon errors which arise in the process of com-

putation, is to cause the same computations to be made by separate and independent

computers; and this check is rendered still more decisive ifthey make their computa-

tions by different methods.” – Dionysius Lardner,Edinburgh Review, 1834 [6]

“When the formula to be computed is very complicated, it may be algebraically ar-

ranged for computation in two or more totally distinct ways,and two or more sets of

cards may be made. If the same constants are now employed witheach set, and if un-

der these circumstances the results agree, we may then be quite secure of the accuracy

of them all.” – Charles Babbage,Unpublished Manuscript, 1837 [6]
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The concept was (re)introduced in computer systems by Avižienis and Chen in 1977 [7]. Since

then, various other efforts, many from the same research group, have explored the process as well

as the efficacy of N-version programming [8, 10, 9, 31, 80].

Avižienis and Kelly [9] study the results of using different specification languages; they use 3

different specification languages to develop 18 different versions of an airport scheduler program.

They perform 100 demanding transactions with different sets of 3-version units and determined

that while at least one version failed in 55.1% of the tests, acollective failure occurred only in

19.9% of the cases. This demonstrates that the N-version approach reduces the chances of failure.

Avižienis et al.also determine the usefulness of developing the different software versions in dif-

ferent languages like Pascal, C etc. [10]. As in the earlier study, the different versions developed

had faults, but only very few of these faults were common and the source of the common faults

were traced to ambiguities in the initial specification.

N-version computing has been employed in many systems. For many years, such uses have

primarily been in mission- or safety-critical systems [144, 151]. More recently, with the increas-

ing cost of system failures and the rising impact of softwarebugs, many research efforts have

focused on solutions that use N-version programming for improving system security and for han-

dling failures [36, 72, 112, 142]. Joukovet al. [72] store data across different local file systems

with different options for storing the data redundantly. However, unlike our approach, they do not

protect against file-system bugs, and inherently rely on each individual file system to report any

errors, so that data recovery may be initiated in RAID-like fashion. Rodrigueset al. [112] develop

a framework to allow the use heterogeneous network file systems as replicas for Byzantine-fault

tolerance. Vandiveret al. [142] explore the use of heterogeneous database systems forByzantine-

fault tolerance. They specifically address the issue of ordering of operations usingcommit barriers.

In our N-version file system, this issue is made simpler due totwo reasons: (i) in the absence of

transactions, file systems are not expected to provide atomicity across multiple operations on the

same file, and (ii) the VFS layer can easily identify conflictsthrough locking of file system data

structures.
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Chapter 9

Conclusions and Future Work

“There is much to be said for failure. It is much more interesting than success.”

– Max Beerbohm,Mainly on the Air, 1946.

Most disk-drive failures are partial failures, wherein only a few blocks on disk are inaccessible

or a few blocks are silently corrupted. These partial disk failures could lead to permanent data loss,

or worse, cause unwitting users and applications to use corrupt data.

We have adopted a complete and detailed approach to addressing the threat posed by partial

disk failures; we have examined the characteristics of these failures, analyzed how the failures

impact various storage-stack components, and developed a solution for tolerating these failures.

In this chapter, we first summarize each of the three components of our work, then discuss gen-

eral lessons learned over the course of this work, and finallyoutline directions for future research.

9.1 Summary

To summarize our work, we review our study of the characteristics of latent sector errors

and data corruption, then discuss our analysis of how partial disk failures impact RAID systems,

virtual-memory systems and file systems, and finally recap N-version file systems.

9.1.1 Characteristics

We have performed the first large-scale study of the characteristics of partial disk failures; our

sample of 1.53 million disk drives far exceeds the sample size of previous disk-failure studies [53,
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102, 118, 137]. The disk drives used in our study are also diverse: they were sourced from multiple

vendors; there were both nearline (SATA) and enterprise (FC) disks; within each class, there were

different disk families, and within each family, there weredifferent capacities. Such diversity helps

derive better conclusions.

Our study was made possible because NetAppTM storage systems use various techniques to

detect and recover from various partial disk failures. Our results show that partial disk failures

affect a large number of disks; therefore these techniques are extremely important and well-worth

the disk-space or performance overheads they impose.

We have studied two classes of partial disk failures, latentsector errors and data corruption,

both of which could lead to permanent data loss. Our important observations include:

Magnitude of threat: Latent sector errors affect a large percentage of disks. They affect

20% of the disks belonging to a specific nearline disk model in2 years. While silent data

corruption affects fewer disks that latent sector errors, they are not as rare as one would hope.

They affect more than 3% of disks of multiple nearline disk models in less than 1.5 years.

Factors: Disk classanddisk modelare important factors that influence the development

of partial disk failures. The more expensive enterprise disks are more reliable than nearline

disks with respect to partial disk failures; a smaller percentage of enterprise disks are affected

than the nearline ones, across all of the disk models in the study. On average, nearly an order

of magnitude fewer enterprise disks are affected by partialdisk failures.Disk ageandsize

are factors as well. In the case of nearline disk drives, the probability that a disk will develop

a latent sector error within a given period of time increasesas the age of the disk drive

increases. Higher-capacity disk drives are more likely to develop latent sector errors than the

lower-capacity ones of the same disk family.

Independence and locality:Partial disk failures arenot independentwithin the same disk

drive. They also show significantspatial and temporal locality. Data corruptions are not

independent even across different disks in the same storagesystem, indicating that the cause
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of corruption is perhaps a common component in the storage subsystem, such as a storage

adapter.

Correlations: Latent sector errors and silent data corruptions correlatewith each other and

with various other disk errors, such as not-ready-condition errors.

Detection: A large percentage of partial disk failures are discovered through different forms

of disk scrubbing. Also, a significant number of data corruptions are detectedduringRAID

reconstruction; in the absence of protection against double disk failures,these cases would

lead to data loss.

We have used these observations to derive important lessonsfor data protection including the

importance of using disk scrubbing and studying its benefitsin greater detail, and the need to place

redundant copies of data far away from each other when storedon the same disk.

9.1.2 Impact

We have examined the impact of partial disk failures on a variety of important storage-stack

components: RAID systems, virtual-memory systems, and filesystems. We first summarize the

analyses, then compare different systems and discuss our experience with the methodology used.

Of the different systems that use disk drives, RAID is specifically targeted towards handling

disk failures. Therefore, one would expect a thorough and verifiable failure-handling scheme. We

tested this premise by developing and using a simple model checker to examine data protection in

single-parity RAID systems. We have analyzed a range of dataprotection techniques used in real

systems, including disk scrubbing, various kinds of checksums, and two types of identity informa-

tion. We found that composing these techniques does not provide the expected fault-tolerance; in

each scheme, there are one or more scenarios that result in data loss or corrupt data being returned

to the user. Many schemes suffer from parity pollution, where corruption can propagate from a bad

data block to the parity block, thereby causing the data to become unrecoverable. We also showed

that the use of version mirroring along with block checksums, physical identity and logical identity
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provides an efficient way to tolerate all partial disk failures.1 In the future, as protection evolves

further to cope with the next generation of disk problems, webelieve that a formal approach such

as ours will be extremely useful in verifying the protection.

We have extended type-aware fault injection to analyze virtual-memory systems, a crucial com-

ponent of operating systems. We analyzed the virtual-memory systems of Linux, FreeBSD, and

Windows XP, and found that (i) the virtual-memory systems use only simple techniques to deal

with partial disk failures; there is no attempt to use techniques like redundancy to completely re-

cover from the failures, (ii) tolerance mechanisms are under-developed; for example, the Linux

swap header has a provision to store a list of bad blocks, but the list is not updated as and when

errors are detected, and (iii) virtual-memory systems do not detect most corruptions; this neglect

may have severe consequences as demonstrated by the system crash that occurs when FreeBSD

does not detect corruption of the kernel thread stack.

Our final analysis was motivated by the fact that any system that wishes to preserve data needs

to preserve access paths to the data. In the case of file systems, the pointers located in on-disk

data structures serve as the access paths. We have developedtype-aware pointer corruption, an

extension of type-aware fault injection, to observe how filesystems respond to corrupt on-disk

pointers. We analyzed two widely-used file systems, NTFS andext3, and found that while these

file systems use fault-tolerance techniques such as type checking, sanity checking, and replication,

these techniques are poorly-designed and implemented in the systems. As a result, the file systems

do not even detect some pointer corruptions that they could have otherwise recovered from.

Thanks to our analysis of both file systems and virtual-memory systems we can now compare

the failure-handling policies of the two kinds of systems:

• Both kinds of systems share problems like illogical inconsistency and implementation bugs

in failure-handling code. This points to a general disregard for partial disk failures, thus ex-

posing commodity computer systems to data loss, data corruption and inexplicable crashes.

1Specifically, version mirroring is storing version numberson a data block and its corresponding parity block;
block checksum is a checksum of the block stored in the block;physical identity is the disk number and disk block
number stored in the block; logical identity is the inode number and offset within a file for that block.
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• The Linux virtual-memory system, like some file systems [104], misses a large number of

write errors.

• Both virtual-memory systems and file systems do not deal withcorruption errors in an ele-

gant manner. We see that file systems perform some type and sanity checking to deal with

corruption to file system data structures, but there is no protection for user data (which is the

only data handled by virtual-memory systems for the most part). Recent file systems such as

ZFS [130] are targeted at addressing this issue; it would be interesting to examine how they

well they work in practice.

• The FreeBSD and Windows XP virtual-memory systems leveragean important difference

between file systems and virtual-memory systems in that writes are required to succeed in

file systems, while virtual-memory systems have alternatives like choosing an other page as

victim and writing it elsewhere on disk.

Experimenting with multiple systems not only helps us compare these systems, but also pro-

vides an insight into the advantages and limitations of our methodology. Our experience is that the

techniques are simple to use and can be applied to many different systems. In the case of type-

aware fault injection, while the tool has to be rewritten foreach environment, we found that the

task was not onerous.

We observed one particular limitation: there is no easy way to identify the source of disk ac-

cesses and the accesses may be attributed to error recovery while it may be unrelated. An example

of this problem occurred when a read error was injected for a user data page in FreeBSD or Win-

dows XP. We observed what seemed to be a “retry” of the read. Even if this “retry” succeeded, the

application was terminated, indicating a possible bug in the retry code. Only closer examination

revealed that the second read was performed to create a core dump and not to recover from the

error. It would therefore be interesting to explore techniques to identify the exact source of disk

accesses in future work.
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9.1.3 Tolerance

Our solution to the problem of partial disk failures was motivated by the lessons that we learned

from the above studies: partial disk failures affect a high percentage of SATA disks, the kind used

in our personal computers; commodity file systems that use these drives are poor at handling partial

disk failures, despite years of development and testing; the file systems also have numerous bugs.

Therefore, we cannot rely on a single complex file system to handle partial disk failures.

We have developed an N-version file system, in which data is stored and retrieved fromN dif-

ferent file systems. We started with the hypothesis that the N-version file system can be built to use

the existing POSIX specification and existing file systems, thereby reducing the high development

costs typically associated with building N-version software. We also made it a goal to keep the

software entity that replicates user operations across filesystems as simple as possible. From our

design and development effort, we found that it is indeed possible to build a simple entity that can

use existing file systems.

We have addressed the disk-space and performance overheadsof an N-version file system

by developing a block-level single-instance store that is specifically designed for an N-version

file system. This single-instance store uses content hashesto coalesce disk blocks with the same

content. Due to differences in data structures across different file systems, the layer coalesces only

user data and not file-system metadata, thereby providing metadata replication to protect against

file-system bugs and partial disk failures that affect metadata.

We have evaluated the reliability of the N-version file system using two types of experiments:

experiments where one of the file systems has wrong contents,and type-aware fault-injection ex-

periments where one of the file systems suffers a partial diskfailure. We found that the N-version

file system recovers successfully from almost all of the scenarios, thus significantly reducing the

probability of data loss or file-system unavailability due to partial disk failures.

Modern file systems are becoming more complex by the day. As a result, bugs in file systems

are becoming the norm rather than the exception. The use of N-version file systems could prove to

be even more relevant as file systems evolve.
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9.2 Lessons Learned

In this section, we briefly discuss general lessons we learned while working on our thesis.

Information and control for failures: In current systems, applications receive little in-

formation about failures other than a single error code, andhave little say in how failures

are handled. For example, disk errors could cause the virtual-memory system to deliver a

SIGBUS signal to the application; in the absence of more information about what memory

page(s) were lost, the application has no option but to terminate. Even worse, in some cases,

the error code delivered to applications does not even reflect the fact that a partial disk fail-

ure was detected (e.g., in many cases, JFS returns errors like “Permission denied”and “No

space left on device” instead of “Input/output error”). We believe that future system inter-

faces should provide for much richer information and control mechanisms for failures (e.g.,

applications could be allowed to register to receive a notification if an asynchronous write

fails).

Software bugs:One cannot expect that the complex software systems of todaywill be bug-

free. Software bugs and imperfections are the norm rather than the exception. While it

is important to focus on identifying and eliminating bugs, it is equally important to build

systems that can tolerate these bugs. A few recent systems are motivated by this theme, such

as Nooks [133, 134] and our N-version file system. We believe that the design of future

systems will be strongly influenced by the need to handle bugs.

9.3 Future Work

In this section, we outline various avenues for future research. We first discuss possible future

studies of failure characteristics, then outline potential analyses of failure-handling techniques, and

finally discuss extensions to N-version file systems.
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9.3.1 Characteristics of Partial Disk Failures

Future efforts to characterize partial disk failures couldfocus on various questions on latent

sector errors and data corruption that our current study does not answer. We discuss some such

questions below.

Our study looks at data corruption across different disk models. We find that the numbers vary

significantly across disk models, suggesting that disks (and their adapters) may directly or indi-

rectly cause corruption most of the time. However, disks areonly one of the storage-stack compo-

nents that could potentially cause corruption. A recent study shows that other storage subsystem

components do have a significant impact on storage failures [70]. Future studies could examine

corruption numbers across different models or versions of all hardware and software components.

Such a study may help pinpoint the exact sources of data corruption.

In our study, we examine various factors that affect the development of partial disk failures,

such as the age or capacity of the disk drive. Future studies could analyze the impact of various

other factors, including operating conditions. One important operating condition is the workload

that the disk is subject to. In the results we obtained, the impact of workload on the development

of latent sector errors or data corruption is unclear, especially due to the lack of fine-grained disk-

level workload information. Examples of such fine-grained information include the number of disk

seeks that are performed and how “bursty” the workload is. Future studies could thus examine on

correlations between fine-grained workload information and partial disk failures. In addition to

disk-level workload, a future study could analyze the impact of logical-level workload; for exam-

ple, one could study whether a data structure that is writtenfrequently is the one that is corrupted

frequently (we have seen indications that this may be so in Section 3.4.6). Thus, future studies may

focus on obtaining both logical- and disk-level workload information along with recording latent

sector errors and silent data corruptions in order to explore the impact of workload. A second im-

portant operating condition is temperature. Although a recent study of absolute disk failures found

that temperature does not affect failures significantly [102], a future study could examine this trend

in the context of partial disk failures.
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In addition to the above studies involving hard disks, future research could focus on partial

failures that affect emerging storage technologies such assolid-state drives [113, 114].

9.3.2 System Analysis

We have used two different techniques, model checking and type-aware fault injection, to ex-

plore how partial disk failures impact storage-stack components. We believe that both techniques

could be extended to study other systems.

We have used our RAID model checker to study a variety of data protection techniques in RAID

systems, focusing on systems with a single parity disk and injecting only one failure. Avenues for

future work would include extending our model checker to study the data protection offered by

storage systems that use two parity disks [35, 43]. Hafneret al. [58] point out that there cases

where the problems we discovered in single-parity schemes may extend to double-parity schemes

as well. In the case of double-parity schemes, it would also be interesting to explore the impact

of two partial failures. Finally, our analysis could be extended to analyze non-traditional RAID

schemes such as RAID-Z [24].

We have used type-aware fault injection to analyze numerousfile systems and virtual-memory

systems. We found that the failure-handling in many of thesesystems was simplistic; for example,

none of the systems used checksums to detect corruption. A newer file system such as ZFS [130]

is more corruption-aware; it uses parental checksums to detect corruption. An interesting future

project could look at how well checksumming works in practice by studying ZFS. Another avenue

for future work is to extend type-aware fault injection to study other data management systems

such as database systems, which are often configured to directly use disk drives.

9.3.3 N-Version File Systems

Future work on N-version file systems could focus on various enhancements, including file-

system repair, proactive error detection, and single-instance caching.

File-system repair: Our N-version file system currently does not repair child filesystems.

When the N-version file system detects that one of its child file systems is faulty (e.g., a file has
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different contents in one file system), in order to restore the N-version file system to full replication,

the erroneous child file system should be repaired. Future work in N-version file systems could

focus on different ways in which such repair can be accomplished.

A simple approach would be to treat the “partial file-system failure” as an absolute file-system

failure – completely erase the faulty file system and recreate it using data from the other child file

systems. This approach has the benefit that any unknown corruptions in the faulty file system will

be eliminated. However, recreating the entire file system would take time, and similar to RAID

reconstruction, reading the entire contents from the othertwo file systems may yield errors that

cannot be resolved.

A different approach would be to fix (create, replace, or delete) only the object that has wrong

contents. However, consider the following scenario. A file with two hard links to it may have

the wrong contents. If the N-version file system detects an error through one of the links, it may

create a new file in the file system to replace the erroneous one, but there is no way to identify

the directory where the other link is located (except through a scan of the entire file system). The

issues and trade-offs across different approaches make file-system repair an interesting problem

to address in future work. We believe that such “logical” file-system repair is applicable beyond

N-version file systems as well.

Proactive error detection: In an N-version file system that is capable of performing file-

system repair, system reliability could be further improved by detecting and fixing errors proac-

tively. We have seen from our study of partial disk failures that disk scrubbing is very useful for

detecting failures, thereby reducing the chances of doublefailures; “file-system scrubbing” that

scans file-system contents in the background may be equally useful in detecting partial file-system

failures.

Single-instance caching:In the current system, the block-level single-instance store interposes

on disk requests and coalesces disk blocks with the same content. This helps reduce disk-space

overheads and to avoid performance overheads that arise from disk accesses to the same data

by N file systems. However, in this system, for each file data block, N copies of the data are

maintained in the file-system cache, thereby wasting memoryspace. Future work could focus on
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eliminating this overhead by enhancing the block-level single-instance store such that it interposes

on file-system cache accesses as well; then, only one copy of each data block will be cached, thus

reducing the memory space overhead of an N-version file system.

In addition to these specific enhancements, future work may explore the utility of N-version

file systems in locating bugs in file systems. An N-version filesystem has a detailed view of both

file operations that are performed as well as the manner in which one file system disagrees with

other file systems. This information could potentially be leveraged to locate the bug in a file system

that causes its content or response to differ from the other file systems. Section 7.5.2.4 details one

such instance where our N-version file system helped locate abug in ext3. This instance serves as

proof of the potential that an N-version file system holds forlocating bugs.

“Prediction is very difficult, especially about the future.” – Niels Bohr
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