O

HEEE FEEEEEECENE
[I T T T lelelelelelel T T T T

|
I
-
I

T T T T 7 ™ ™ ™M T T T
Ol T Tef TTTTT T Te' T T T
. = % = .
= . =
' Characteristics, Impact, ‘
and Tolerance of
Partial Disk Failures

Lakshmi N. Bairavasundaram ﬁ
.

[T T T MM T T T T T 7T WNTT
HlE B BEEEEEEE Bl
HE =EE B B EEEEES

| N | [T T T
[T T B

CHARACTERISTICS, IMPACT, AND TOLERANCE OF PARTIAL DISK FAl

by

Lakshmi Narayanan Bairavasundaram

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2008

LURES

To my parents and my sister

ACKNOWLEDGMENTS

| would like to thank my advisors, Andrea and Remzi, for makimy Ph.D. experience truly
wonderful. | have learned a great deal from them about howotoedearch as well as how to
present my work. Even more than that, | have learned the itapoe of commitment and zeal for
research; I'll never forget that Remzi sent me an email witihments about a paper in the middle
of the night — as he was waiting for their daughter Maddy to e bFinally, | cannot thank them
enough for the care and concern they showed for my well-biirggighout my Ph.D.

| would like to thank my other thesis-committee members, 8smiJha, Ben Liblit, Mike Swift,
and Kjell Doksum, for their insights, questions, and advimemy research. | really enjoyed
working with Mike Swift on a paper that is a part of this didsdion.

During my six years in Madison, | have thoroughly enjoyed kitog with my colleagues Nitin
Agrawal, John Bent, Nate Burnett, Tim Denehy, Haryadi Gupdadd Jones, Shweta Krishnan,
Andrew Krioukov, Joe Meehan, Florentina Popovici, Vijaygnabhakaran, Abhishek Rajimwale,
Meenali Rungta, Muthian Sivathanu, and Swami Sundarara@altaborating with Muthian and
Vijayan during my initial years here has influenced my reslea great deal. Haryadi has been an
awesome officemate all of these years (he’s the kind thaishes the office with a nice couch).

| have benefited greatly from internships at IBM T.J. Wats@séarch Center, Intel Corpora-
tion, and NetApp, Inc. | would like to thank the companies &l \ws my mentors and managers
there: Bulent Abali and Mohammad Banikazemi at IBM Resedbtéve Bennett, Alain Kagi, and
Rich Uhlig at Intel, and David Ford, Garth Goodson, Stepharpister, and Shankar Pasupathy at
NetApp. In addition, | had a great experience working witt Schindler, Kiran Srinivasan, and
Randy Thelen at NetApp. The data on disk failures that | aeayat NetApp forms an important

part of my dissertation. | would like to thank NetApp, Inc.r fgiving me the opportunity to do

the analysis. During my internship at NetApp in 2007, | alsal the opportunity to collaborate
with Bianca Schroeder. | would like to thank her for sharireg msights on disk failures, system
failures and data analysis with me.

A lot of my motivation for pursuing a Ph.D. came from my expeiges as an undergrad at
Anna University in Chennai, India. | would like to espegyalhank my advisor there, Ranjani
Parthasarathi, for instilling in me the love for research.

| would like to thank my roommates of five years, Gautham anthNior making my stay in
Madison simply amazing. They have appreciated the best aindgout up with the worst of me.
They have indeed been my family here. | loved the passiomgtarents with “Gau” about things
completely unrelated to us. I've always been surprised &t Rdin can put up with me both at
work and at home. | would also like to thank Anoop for being & pathe family for the two years
he was in Madison.

| consider myself very lucky to have made some great friendnd my years in Madison.
The company of Igor, Jessie, Koushik, “Lacrosse”, Megarthdile, and Sharon made the winters
seem much milder than they probably were. The hours and Halkiag about everything and
nothing with Igor were just wonderful. Jessie has an uncammack for knowing when | am
feeling down and cheering me up. She also made sure | ate @ctizse to deadlines when food
is typically low on the priority list.

| am very thankful for the splendid support that my friendsnfrhigh school and college have
given me. Naveen, Pothi, and Rajesh have always been themeefoThe conference calls with
Arumugam, Pradeep, Sai, Sibi, and Vijayaraghavan havethedimes | have laughed the hardest
(much needed!). Sam and Vijay have given me great supporgrisijuate school years have been
punctuated with awesome trips to meet all of them.

Finally, | would like to thank my family, without whose lovend support this Ph.D. would
have been impossible. My sister, Archana, has cheered mar@s fong as | can remember. It is
unbelievable how much my success means to her; | even recaistance in our childhood when
she teared up because | didn't score as high on an exam asatyghth deserved. Her husband,

Bhupesh, has now joined her in cheering me on. My parents$aarfficed much in making great

education opportunities a possibility. They have alwaysnbihere for me when | needed them.
They were with me the first day of kindergarten, and they weith we the day of my Ph.D.

defense (they even prepared and brought me lunch!). | diediics dissertation to my family.

DISCARD THIS PAGE

TABLE OF CONTENTS

Page
LISTOF TABLES e s e e e e e X
LISTOFFIGURES e e e e e Xii
ABSTRACT . . . XV
1 Introduction e e 1
1.1 Characteristics of Partial Disk Failures 2
1.2 Impactof Partial Disk Failures, 4
1.21 RAIDSystems 4
1.2.2 Type-Aware FaultInjection. 6
1.2.3 Virtual-Memory Systemso 7
1.2.4 FileSystems 8
1.3 Tolerating Partial Disk Failures with N-Version Filessgms 9
1.4 OVEIVIEBW o e e e e e e 11
2 Background e 12
2.1 StorageStack 12
2.1.1 DiskDrives 14
2.2 DiskFailures e 15
2.21 SourcesofFailures 16
2.2.2 Typesof Partial Disk Failures 18
2.3 RAID . . . e 19
2.4 IRONTaxonomy o i i et e 12
2.4.1 DetectionLevels 21
24.2 ReactionlLevels. 24
2.4.3 PreventionlLevels. 25
2.5 Analysis of Failure Behavior e 26
2.5.1 Type-Aware FaultInjection. 26

2.5.2 AnalysisofFileSystems 28

Vi

Page
3 Characteristics of Partial Disk Failures 35
3.1 Storage-System Architecture e 36
3.1.1 Storage Stack 6 3
3.1.2 Failure-Handling Mechanisms, 37
3.1.3 DataCollection 41
3.2 Methodology 42
3.21 Terminology e 42
3.2.2 Analysis Methodology 42
3.2.3 Limitations 44
3.2.4 Motivation e 44
3.25 Notation e 46
3.3 LatentSectorErrors. e e e 47
3.3.1 Summary Statistics a7
3.3.2 Factors e 48
3.3.3 Properties e 25
3.34 Correlations 62
3.35 Detection 63
3.4 SilentDataCorruptions L e e 65
3.4.1 Summary Statistics 65
3.4.2 Factors e 66
3.4.3 Properties e 17
3.4.4 Correlations e 80
3.4.5 Detection e 81
3.4.6 Block-Specific Corruption 83
3.4.7 Identity Discrepancies e 85
3.4.8 ParityInconsistencies. e 85
3.5 DISCUSSION e 88
3.5.1 Latent Sector Errors vs. Checksum Mismatches 88
3.5.2 LessonslLearned e Q 9
3.6 Conclusion e 92
4 Impacton RAID Systems. e e 93
4.1 Enterprise Data Protection e 95
4.2 ModelChecking. e 97
4.2.1 Model-Checker Primitives 97
4.2.2 Modeling Partial Disk Failures 98
4.2.3 Model-CheckerStates 100
4.3 Analysis e 100

Vii

Page
4.3.1 Bare-bonesRAID. 011
4.3.2 DataScrubbing 051
4.3.3 Checksums 106
4.3.4 Write-Verify 10
4.35 Identity 31
4.3.6 Version Mirroring o o e e 116
4.3.7 DISCUSSION 112
4.4 Probability of Loss or Corruption. e 122
45 Conclusion e 125
Impact on Virtual-Memory Systems 126
5.1 Virtual-Memory Systems e e 127
5.1.1 Linux2.6.13 e 712
5.1.2 FreeBSD 6.0 e 128
5.2 Methodology 128
5.2.1 FailureModel 291
5.2.2 Fault-Injection Framework, 129
5.2.3 Type AWareness o e e e 013
5.3 ExperimentalResults e 133
5.3.1 Linux2.6.13 e 313
532 FreeBSD 6.0 137
5.3.3 Prevention Techniques 140
534 Windows XP 141
5.4 DISCUSSION o i e e 142
5.4.1 Failure-Handling Approaches 142
55 Conclusion 144
Impacton File Systems. 145
6.1 Why Pointer Corruption? e 147
6.2 Type-Aware Pointer Corruption. 147
6.2.1 Terminology e 814
6.2.2 CorruptionModel 49
6.2.3 Corruption Framework o 149
6.3 NTFSDetails e 150
6.3.1 NTFS Data Structures 150
6.3.2 NTFS Pointer Corruption. 152
6.4 Results. 156

6.4.1 Terminology for System Behavior 156

Page
6.4.2 \VisualizationofResults, 157
6.4.3 NTFSBehavior e 016
6.4.4 User-Visible NTFSResults u.. 166
6.45 Ext3Results 117
6.4.6 DISCUSSION 117
6.5 Conclusion 172
N-Version File Systems. e 174
7.1 AnN-Version Approach 176
7.1.1 N-Version Programming 176
7.1.2 N-Version Programming in File Systems177
7.2 AnN-Version File System 180
7.21 AssumptionsandGoals 0. 180
7.2.2 Basic Architecture 181
7.23 DesignDetails 831
7.3 Achieving Opportunistic N-Versioning oo 187
7.3.1 Imprecise Specification 187
7.4 Single-Instance Store e 189
7.5 Reliability Evaluation e 192
7.5.1 Non-Matching File SystemContent192
7.5.2 Partial Disk Failures 194
7.6 Conclusion 206
Related Work 208
8.1 Failure Characteristics e 208
8.1.1 SystemFailures. 208
8.1.2 Diskand Storage Failures 210
8.2 Analysis of Failure Behavior e 211
8.2.1 Software FaultInjection 211
8.2.2 Other Approaches 122
8.3 Handling Partial Disk Failures 213
8.4 N-VersionProgramming i e e 214
Conclusionsand Future Work L 216
9.1 Summary e e e e 621
9.1.1 Characteristics 216
9.1.2 Impact e e 218

viii

Page
9.1.3 Tolerance e 122
9.2 LessonslLearned e 222
9.3 Future Work e e 222
9.3.1 Characteristics of Partial Disk Failures223
9.3.2 SystemAnalysis 242
9.3.3 N-VersionFileSystems 224

LISTOF REFERENCES e e e 227

DISCARD THIS PAGE

LIST OF TABLES

Table Page

2.1 IRON detectiontaxonomy i v i i it e e 21

2.2 IRONreactiontaxonomy i i i i e e e 22

2.3 IRON preventiontaxonomy i i i it e e e 22

2.4 JFSbehaviordetails e 32

3.1 Comparison of latent sector errors and checksum migreatc. 89
4.1 Protection techniquesinreal systems 96

4.2 Modeloperations e e e e 99

4.3 Probability of loss or corruption e 124
5.1 Blocktypes e 131

5.2 Contexts 132

5.3 Linux 2.6.13 detectiontechniques 134
5.4 Linux 2.6.13reactiontechniques 135
5.5 FreeBSD 6.0 detectiontechniques 138
5.6 FreeBSD 6.0reactiontechniques. 139
6.1 NTFSterminology e 151

6.2 NTFSdiskpointers e e e 153

6.3 NTFS pointer corruptionvalues imm .. 154

Xi

Table Page
6.4 NTFSworkloads 155
6.5 NTFSbehaviordetails e 159
6.6 NTFS behaviorsummary e e 163
6.7 Ext3behaviorsummary e 170
7.1 File-system contentexperiments ieiee e 193
7.2 JESdatastructures e 195
7.3 Ext3datastructures. e 196

7.4 Probability of undesirableresults oL 204

DISCARD THIS PAGE

Xii

LIST OF FIGURES

Figure Page
2.1 Thestoragestack 13
2.2 JFSdetectionpolicies e 30
2.3 JFSreactionpolicies e 31
3.1 Data-Integrity Segment e 39
3.2 Impactofdiskage e 49
3.3 Theimpactofdisksize e 51
3.4 Annual sectorerrorrates (ASERS) 53
3.5 Errorspererrordisk 54
3.6 Addressspacelocality e 56
3.7 Countof spatially-localerrors 57
3.8 Inter-arrivaltime e 59
3.9 Temporaldecay e e e 60
3.10 Detection 64
3.11 Impactofdiskage onnearlinedisks, 67
3.12 Impact of disk age on enterprisedisks 68
3.13 Theimpactofdisksize e 70

3.14 Checksum mismatches per corruptdisk 72

Xiii

Figure Page
3.15 SpatialLocality e e 75
3.16 Inter-arrivaltimes e 77
3.17 Temporal autocorrelation e e 79
3.18 Detection e 82
3.19 Distribution of errors across block numbers oL oL 84
3.20 Identitydiscrepancies. e e 86
3.21 ParityinCoONSIStENCIES o e e 87
4.1 Modelofbare-bonesRAID e 102
4.2 State machine for bare-bonesRAID L 104
4.3 State machine for RAID with scrubbing 105
4.4 State machine for sector checksums oo 107
4.5 State machine for block checksums L Ln L 108
4.6 State machine for parentalchecksums 109
4.7 Parity pollutionsequence e 111
4.8 State machine for write-verify L o 112
4.9 State machine for physicalidentityo L. 114
4.10 State machine for logicalidentity 115
4.11 State machine forversionmirroring Lo e e 117
4.12 State machine for complete data protection oL 119
6.1 NTFSbehavior e 158
6.2 User-visibleresultsfor NTFS 167
7.1 Comparison of corruption detection a oo 179

Xiv

Figure Page
7.2 N-versionfile systeminLinux e 182
7.3 ReaderrorexperimentsforJFS L L e 197
7.4 Corruption experimentsforJFS e 198
7.5 Readerrorexperimentsforext3 Lo 201
7.6 Corruption experimentsforext3 e 202
7.7 Buginext3lookup 205

CHARACTERISTICS, IMPACT, AND TOLERANCE OF PARTIAL DISK FAlI LURES
Lakshmi Narayanan Bairavasundaram
Under the supervision of Professors Andrea C. Arpaci-Daissend Remzi H. Arpaci-Dusseau

At the University of Wisconsin-Madison

Hard-disk failures are one of the primary causes of data Idésst disk failures are partial failures,
where only some sectors are unavailable due to a latentrsseto or some blocks are silently corrupted.
This dissertation focuses on all aspects of such parti&lfdifures — theircharacteristicstheirimpacton
different systems, and techniques that can be tdedatethem.

We perform the first large-scale study of partial disk fagsirinvolving 1.53 million disks. We find
that partial disk failures affect a large percentage of liskle also find that (i) SATA drives have a higher
probability of developing partial disk failures and (ii)ili&res are not independent; failures within the same
disk have high spatial and temporal locality.

We examine the impact of partial disk failures on a varietysgétems. We use model checking to
examine data protection in RAID systems, and find that md&mees do not protect against one or more
failures, leading to data loss. We appfype-aware fault injectioio examine the impact of partial disk
failures on the virtual-memory systems of Linux, FreeBSBbd &V/indows XP. We find that these systems
use simplistic or inconsistent failure-handling polici&¥e analyze the impact of corrupt on-disk pointers
on file systems NTFS and ext3. We find that these systems dsadault-tolerance techniques effectively,
resulting in data loss.

We have built arN-version file systerto tolerate partial disk failures. This system stores datd/i
different file systems, thereby eliminating the relianceaingle complex file system. Our system uses ex-
isting file systems, such as ext3 and JFS, thus avoiding tredafement costs of building different versions.

Our experiments show that an N-version file system signifigaaduces the probability of data loss.

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

XV

ABSTRACT

Hard-disk failures are one of the primary causes of datailog®th enterprise storage sys-
tems and personal computers. Most disk failures are pdailakes, where only some sectors are
unavailable due to a latent sector error or some blocks #&atlyi corrupted. This dissertation
focuses on all aspects of such partial disk failures — ttlgaracteristicstheirimpacton different
systems, and techniques that can be wskdlatethem.

We perform the first large-scale study of partial disk faglsirinvolving 1.53 million disks in
more than 50,000 storage systems. We find that partial dikkda affect a large percentage of
disks €.g, in the worst case, latent sector errors affect up to 20% efdisks in 2 years). We
also find that (i) inexpensive SATA drives have a higher plolitst of developing partial disk
failures, (ii) failures are not independent; failures witkthe same disk have high spatial and tem-
poral locality, and (iii) many failures are detected by bgiund scans of disk blocks called “disk
scrubbing.”

We examine the impact of partial disk failures on a varietgygtems. We use model checking
to examine data protection in RAID systems. We find that s@seim many RAID systems are
broken; they do not protect against one or more failureslitepto unrecoverable data loss or cor-
rupt data being returned to applications. We apgphe-aware fault injectioto examine the impact
of partial disk failures on the virtual-memory systems ofillx, FreeBSD, and Windows XP. We
find that these systems use simplistic or inconsistentriihandling policies, thus causing data
corruption and system-security violations. We analyzeittgact of corrupt on-disk pointers on
two file systems, NTFS and ext3. We find that these systems dasecavailable fault-tolerance
techniques effectively, resulting in data loss and non-imalie file systems. Overall, we find that

a single system cannot be depended upon to reliably stoae dat

XVi

We have built arN-version file systernto tolerate partial disk failures. This system stores
and retrieves data fronV different file systems, thereby eliminating the need to mlya single
complex file system. Our system uses existing file systent$y as ext3 and JFS, thus avoiding
the development costs of building different versions. Wevslising fault-injection experiments

that an N-version file system significantly reduces the poditg of data loss.

Chapter 1

Introduction

Much of the value people place in computer systems stems tinerwalue of the data stored
therein. Today, this emphasis on data is true not only foerpnise systems in corporate or gov-
ernment settings, but also for personal computers, whimte staluable photos, home videos, and
important documents such as tax returns. By some estimabesit 5 exabytes of information
was produced in the world in just a single year (2002), aneétyhtwo percent of this new infor-
mation was stored on magnetic media, mostly on hard dislkedii87]. Thus, it is primarily the
information stored in our computer systems that makes trewakiable to us.

Given the rising importance of information, it is not suging that data reliability and integrity
are considered vital to storage systems. Performancegrabtan be tuned, tools can be added
to cope with management issues, but data loss is seen as@aités As Keetoret al. state, data
unavailability may cost a company “... more than $1 millioour” and the price of data loss is
“even higher” [78].

Unfortunately, disk drives fail, and they fail more oftemthmanufacturers expect them to [118].
Even in well-designed, high-end systems, disk-relateate@re still one of the main causes of po-
tential trouble [84]. With the increasing amount of valuabiformation stored on hard disks, the
onus is now on file systems and storage systems to handlealigket, thereby preserving data
over long periods of time.

For many years, file-system and storage-system designezsalsaumed that disks operate in a
“fail-stop” manner [116]; within this classic model, thes#ds either are working perfectly, or fail
absolutely and in an easily-detectable manner. The fathodel presented by current disk drives,

however, is much more complex. For example, drives can @ailent sector error$35, 77, 119],

where a disk block or set of blocks are inaccessible. Woiisk ldocks sometimes becomsgently
corrupted[18, 54, 130, 131]. We refer to this complex set of failurepasial disk failures

Partial disk failures occur due to a variety of reasons;iglag within disk drives could cause
scratches thereby rendering sectors unreadable [5, 1a8¢ceptably high gaps between the disk
read/write head and the medium cause data to be writtenypd]; firmware bugs could cause
corrupted data to be returned or cause writes to completeowitactually writing data to the
magnetic medium [48, 54, 130, 131]; software bugs in filemystand device drivers could corrupt
data [34, 45, 133, 148, 150].

The goals of this dissertation are three-fold: first, to ekxahe magnitude of the threat that
partial disk failures pose and identify the charactersst€ such failures; second, to evaluate the
impact of partial disk failures on current systems; thimdevelop techniques for tolerating these
failures.

We address the goals of this dissertation as follows. Rirstanalyze the occurrence and char-
acteristics of two important classes of partial disk fasir latent sector errors and silent data
corruptions [12, 13]. Second, we examine the impact of thpeséal disk failures on various
storage-stack components — enterprise RAID systems [88)Jal-memory systems [11], and file
systems [14, 15]. Third, we develop an N-version file systarsplution for tolerating all par-
tial disk failures that affect file systems, including dataraption due to file-system bugs. The

following sections elaborate on each of these contribstmirthe dissertation.

1.1 Characteristics of Partial Disk Failures

Detailed knowledge of real-world failure characteristis®ssential for building systems that
can tolerate failures effectively and for examining whetbeisting systems meet fault-tolerance
goals. For example, Gray [51] used information about sydahares in the field to garner the
insight that system administration was the primary caudaibfres at that time. Such insight has
proven extremely valuable: it has spurred research eftori$) verify whether the observation

is true in other systems [91, 96], (i) examine how resilisgstems are to human errors [79,

143], and (iii) develop techniques to handle potential peots and failures introduced by operator
mistakes [27, 126].

The need for real-world data applies to partial disk faitues well. Unfortunately, there is
little field data available about partial disk failures. $kituation persists despite the recent influx
of data on absolute disk failures [41, 102, 118]. Thereforarent techniques to handle partial
disk failures have to be built based on anecdotal inforrmasiod back-of-the-envelope calcula-
tions [119].

In this dissertation, we present the first large-scale sgudf partial disk failures. We focus on
two important types of partial disk failures: latent seaaors and silent data corruptions. These
two types of failures are important since both of them coaltito data loss.

To perform the study, we analyze data from more than 50,00@ymtion and development
storage systems developed by NetAp@nd installed at many of their customer sites. The data
pertains to partial disk failures affecting the 1.53 mitlidisks used by these storage systems.

Through our study, we answer several important questioostadartial disk failures, including:

What is the magnitude of this threat? What are the averagevanst-case percentages of

disks affected by partial disk failures in given period onh&?

e What factors impact the development of partial disk fare=or instance, do older disks
have a higher probability of being affected? The world is mgwvto larger capacity disk

drives; does this exacerbate the problem of partial didkries?

e Are partial disk failures independent events? Some fileesgstuse intra-disk redundancy
to overcome partial disk failures [20, 88]; should theseeays be concerned about spatial

locality of partial disk failures?

e Are the partial disk failures in our study and other disk esritke not-ready-condition errors

independent occurrences?

e What techniques are useful for detecting partial disk fas® Is “disk scrubbing,” a periodic

scan of all disk blocks, useful for detecting partial disiuiees?

One important lesson we learn from the study is that paright thilures affect a significant
percentage of disk drives; latent sector errors affect upO%b of the drives of one of the SATA
disk models in just 2 years. Such a high percentage impliesed for maintaining redundant in-
formation to protect against data loss. Single-disk systsiould strive for intra-disk redundancy,
perhaps in the form of replicated file-system metadata [80,184], while RAID [101] systems
should consider protecting against double disk failure2f3 35, 57, 59, 98].

1.2 Impact of Partial Disk Failures

Given that partial disk failures affect a large number okdist is important to understand how
the partial disk failures impact current systems. If exigtsystems handle partial disk failures in an
efficient manner, then there is no need for new techniquéseif are somewhat inefficient, such a
study would show us where the systems fall short and suggestivements to the failure-handling
techniques used by the systems.

Many different types of systems use disk drives directlgluding RAID systems, file systems,
virtual-memory systems, and database systems. In thisrthé®n, we examine the impact of
partial disk failures on three types of systems: RAID systewnirtual-memory systems, and file
systems.

We use model checking [73] to examine the design of data @otein RAID systems, and ex-
tend a fault-injection technique called type-aware fanjic¢tion [104] to examine virtual-memory
systems and file systems. We first outline our analysis of RABN briefly describe type-aware

fault injection, then discuss our analyses of virtual-mensystems and file systems.

1.2.1 RAID Systems

RAID (Redundant Array of Independent Disks) stores data aitipte disks in a redundant
fashion in order to survive the failure of one or more of thekdi[101]. Since it was originally
proposed, it has been employed in nearly every enterprasagt system [43, 65, 68, 94].

RAID is specifically targeted towards handling disk failsiréherefore, one would expect a

thorough and verifiable failure-handling scheme. Althowgitting an implementation to work

correctly may be challenging (often involving hundreds lobusands of lines of code [146]),
one could feel confident that the design properly handlegxpected failures. Indeed, over the
years, analytical modeling has been used to evaluate thtetdderance capability of RAID sys-
tems [17, 39, 49, 76, 119] under the assumption that diskrzsl whether absolute or partial, will
be detected by the RAID system. While such an assumptionddald true for absolute failure or
any partial failure that is reported by the disk drived, a latent sector error), it is not necessarily
true for silent data corruptions. Failures that cause sil@ta corruption considerably complicate
the construction of correctly-designed protection styes.

A number of techniques have been developed and used in BsgéeRAID systems to cope
with silent data corruption. For example, various forms bécksumming can be used to de-
tect corruption [18, 129]; combined with redundaneygy, mirrors or parity), checksumming en-
ables both the detection of and recovery from certain ctas$eorruptions. However, given the
broad range of techniques used (including sector checkfl®n87, 65], block checksums [131],
parental checksums [130], write-verify operations [13déntity information [107, 131], and disk
scrubbing [37, 119, 130, 131], to list a few), exactly whiekhniques protect against which fail-
ures is sometimes unclear; worse, combining different @ggres in a single system may lead to
unexpected gaps in data protection.

We propose an approach based on model checking [73] to an#ligzdesign of protection
schemes in RAID systems. We develop and apply a simdel checketo examine different
data protection schemes. We first implement a simple logieedion of the protection scheme
under test; the model checker then applies different sempseaf read, write, and partial-failure
events to exhaustively explore the state space of the systiéiner producing a chain of events
that lead to data loss or a “proof” that the scheme works asetbesWe apply the model checker
on various real single-parity schemes used in enterpriseesys and show that all of the schemes
could lead to data loss under a single silent data corrupt@nfind that many of these systems
suffer from a general problem that we cpérity pollution, wherein corruption to a disk block on
a data disk can spread to the parity disk, thereby rendehiaglata unrecoverable. In addition

to analyzing existing schemes, we identify a protectioregod that can handle our entire set of

partial disk failures; this scheme uses several techniguedsding block checksums, both logical
and physical identity information, and version mirroring.

We also show how a system designer can combine real datalwfefgrobability (from our
study of the characteristics of partial disk failures) withr model checker’s results for a given
scheme to arrive upon a final estimation of data-loss prdibafor that scheme. Doing so enables
one to compare different protection approaches and determvhich is best given the current

environment.

1.2.2 Type-Aware Fault Injection

We developed type-aware fault injection in earlier work4L@ study the impact of certain
types of partial disk failures on commodity file systems. @pproach is to inject faults just
beneath the system under test and observe how the systeomdsspMany standard fault injec-
tors [26, 123] that take this approach fail disk blocks ty@e-obliviougnanner; that is, a block is
failed regardless of how it is being used by the system. Heweepeatedly injecting faults into
random blocks and waiting to uncover new aspects of ther&apolicy would be a laborious and
time-consuming process, likely yielding little insight.

The key idea that allows us to test a system in a relativelgiefit and thorough manner is
type-aware fault injectiorwhich builds on our previous work with “semantically-sriafisk sys-
tems [16, 125, 126, 127]. With type-aware fault injectior, fail blocks of a specific types(g, an
inode block in a file system or a user data page in a virtual-argreystem). Type information is
crucial for reverse-engineering failure policy, allowing to extract the different strategies that a
system applies for its different data structures. In additve believe that different code paths in
the system may not respond in the same manner even when tleetygaenof disk block is failed.
Therefore, we also use a suite of fine-grained workloadssbfédure behavior for each type of
disk block.

Previously, we have used type-aware fault injection toyshav commodity file systems (ext3,

JFS, ReiserFS, and NTFS) respond to block read and writeseawrad completely-corrupt disk

blocks [104]. The study found that file systems use illodycaiconsistent failure policies, and do
not detect partial disk failures in various scenarios.

In this dissertation, we extend type-aware fault injectmmork with virtual-memory systems
and study how they respond to block read and write errors anaptetely-corrupt disk blocks.
We also extend the technique to study the impact of specifraptons to on-disk pointers of file

systems.

1.2.3 Virtual-Memory Systems

A virtual-memory system is an integral part of most opemgtsystems, and like file systems,
is a significant user of disk storage. The virtual-memontesysuses disk space to store memory
pages that are not expected to be of immediate use, thertpd-up physical memory for other
memory pages. When a page stored on disk is accessed agaibyatught back into physical
memory. Thus, the virtual-memory system is responsiblentordling disk errors that occur to
these memory pages.

Since the virtual-memory system is an integral element efsiorage stack, it is important to
understand how a virtual-memory system responds to pditklfailures. To do so, we apply type-
aware fault injection to study the virtual-memory systerhsa® operating systems, Linux 2.6.13
and FreeBSD 6.0, in detail. We also perform a preliminandgtaf the Windows XP virtual-
memory system.

From our experiments, we find that these virtual-memoryesystare not well-equipped to deal
with partial disk failures. Like the file systems studied imop work [104], the virtual-memory
systems use policies that are illogically-inconsisterngin FreeBSD, a read error for a user data
page may result in a error report in one case, while it resukernel panic in another). In addition,
we find that the failure-handling routines in virtual-memesystems have bugs. In most cases, the
failure-handling policy is simplistic, and in some casegreabsent. This disregard for partial disk
failures leads to many problems, ranging from loss of ptgisieemory abstraction, to further data

corruption, and even to system-security violations.

1.2.4 File Systems

A file system is a crucial component of the storage stack; mypglications use file systems to
store data. In commodity systems, such as desktops ang#file systems are also tasked with
the responsibility of ensuring that data is stored relialdiile we have analyzed how file systems
respond to block read and write errors and completely-gamlisk blocks in previous work [104],
here we develop a thorough understanding of how file systes®ond to more nuanced forms
data corruption. In particular, we corrupt the on-disk peis of file systems.

Although any block on disk may become corrupt, some coramgtiare more damaging than
others. If a data block of a file is corrupt, then only the aggtiion that reads the file is impacted.
However, if a disk block belonging to file-system metadataosupt, then the entire file system
can be affected; for example, a corrupt on-disk pointeriiresily referring to data belonging to a
different data structure can cause that data to be oveenréhd corrupted as well. Therefore, an
integral part of ensuring the long-term availability of d& ensuring the reliability and availability
of pointers, theaccess path® data.

File systems today use a variety of techniques to proteéhageorruption. ReiserFS, JFS and
Windows NTFS perform lightweight checks to detect corraptiike type checking [104]; that is,
ensuring that the disk block being read contains the expgeatdéa type. In order to recover from
corruption, most systems rely on replicated data strustufer example, JFS and NTFS replicate
key data structures, giving them the potential to recovemficorruption of these structures [20,
128].

We seek to evaluate how a set of corruption-handling teclesgvork in reality. To analyze the
file systems, we develdgpe-aware pointer corruptigran extension of type-aware fault injection.
Type-aware pointer corruption explores failure behavipsipstematically changing the values of
only one disk pointer of each type in the file system and olisgiits behavior. Further, it corrupts
the pointers to refer to each type of data structure, insdééarandom disk blocks. The technique
is successful because different block types are used eliftigrby the file system, thus causing the

blocks and the pointers that point to them to be protectddreiftly.

We apply type-aware pointer corruption on two widely-usézldystems, Windows NTFS and
Linux ext3. We examine their use of type checking, sanityckirey, and replication to deal with
corrupt pointers, and verify whether these techniques waakin practice. The study of NTFS is
particularly interesting since it is a closed-source gyster which little information is available
about exact failure policies.

We find that both file systems fail to recover from many poim@ruptions despite the avail-
ability of redundant information. This failure to recoverdue to poor use of techniques like type

checking and replication.

1.3 Tolerating Partial Disk Failures with N-Version File Systems

This section describes our solution for tolerating partiesk failures in personal computer
systems. This solution is influenced by the lessons leanmed 6ur study of partial disk failures

and our analysis of file systems:

o Partial disk failures do occur; they affect a significantqestage of disk drives. These
failures affect a higher percentage of inexpensive SATA disves that are used in our
desktops and laptops. In fact, latent sector errors affietd 20% of the drives of one of the

SATA disk models in just 2 years.

e Commodity file systems (that use the SATA disk drives) aresemely poor at handling disk
failures; they use inconsistent policies and contain badaiiure-handling code. As a result,
they fail to detect many instances of data corruption andaddewerage available replication

to recover from corruption.

In addition to these lessons, recent research has showifilehaystems themselves contain
many bugs [148, 149, 150]. These bugs could potentiallyeedasa loss or corruption. The bugs
and poor use of failure-handling techniques exist despiefite systems being widely-used and
potentially well-tested. Therefore, we believe that onened rely on a single file system to handle

all partial disk failures, including file-system bugs.

10

Our solution to the problem of partial disk failures is Brversion file systemAn N-version
file system is an instance of N-version software [6]. In andé¥sion file system, data is storedin
differentfile systems. All file operations performed by the user areikex by a simple software
layer that then performs the operation on all the file systanasdelivers the majority result to the
user. Thus, we eliminate the reliance on a single complessfitgem, and place it on a simpler
software layer. We design the N-version file system with gicity as one of its important goals,
and from our experience in building it, we find that it can betk@mple.

One major issue in building an N-version-software systethaeshigh development costs asso-
ciated with formulating a common specification for the sgstand creatingV different versions
of the system. In order to reduce these costs, we hypothdstdor an N-version file system,
(i) we can use an existing specification, such as POSIX, asdimmon specification, and (ii) we
can use existing file systems, such as ext3, JFS, etc., as th#erent file-system versions. In
building an N-version file system using an unmodified speatifom and existing file systems, we
verify these hypotheses.

A second issue in using an N-version file system is the higfopeance and disk-space over-
heads introduced by storing and retrieving data fréynfile systems instead of one. Our solution
to this issue is to use a block-level single-instance stodetneath the file systems. A block-
level single-instance store uses content hashing to fgesisk blocks with the same content; it
then stores a single copy of these blocks on disk. In an Nierefée system, user data stored in
the different file systems will have the same content andtivédlefore be coalesced into a single
block, while file-system metadata of different file systemb ave different contents and will
not be coalesced. Therefore, a single-instance storegtsagainst partial disk failures that affect
metadata (thereby protecting the important access patlet#), but not against failures that affect
data blocks. A single-instance store is especially usefaases where file-system bugs are the
main contributors to partial disk failures.

Our 3-version file system uses ext3, JFS, and ReiserfeRilsfile systemso store data. We

evaluate its reliability against that of the individuallchiile systems using fault injection, and find

11

that the 3-version file system successfully recovers fromoal all scenarios where a child file

system has incorrect contents or is affected by a partiélfditure.

1.4 Overview

The rest of this dissertation is organized as follows.

Background: Chapter 2 provides a background on the storage stack andidiss, disk
and storage-stack failures, a taxonomy of failure-hamggdtechniques used within a single

disk, and the type-aware fault-injection technique we hdexeloped to analyze systems.

Characteristics: Chapter 3 presents our study of the characteristics of twammant types
of partial disk failures, latent sector errors and silertadzorruptions; we analyze the impact
of factors such as disk age, properties of errors such asakfmatality, and the efficacy of

different methods used to detect partial disk failures.

Impact: Chapters 4, 5, and 6 discuss our analyses of the impact ohlpdigk failures on
RAID systems, virtual-memory systems, and file systems;p@&tad presents our model-
checking-based analysis of the effectiveness of schenezsinsenterprise RAID systems
to detect and recover from partial disk failures; Chapteetads our analysis of the failure
policies of virtual-memory systems using type-aware fayéiction; Chapter 6 discusses the

impact of corrupt on-disk pointers on file systems.

Tolerance: Chapter 7 presents our design and evaluation of N-versiens§istems, our

solution for tolerating all partial disk failures, incluudj file-system bugs.

Related Work: Chapter 8 summarizes research efforts focusing on chaizatien of sys-
tem and storage failures, techniques used to analyze tlneefdniehavior of systems, tech-

niques used to handle disk failures, and N-version progreagm

Conclusions and Future Work: Chapter 9 concludes this dissertation, first summarizing
our work and highlighting the lessons learned, and therudisiag various avenues for future

work that arise from our research.

12

Chapter 2

Background

This chapter provides a background on various aspectsraitepthis dissertation. First, we
provide a brief overview of the storage stack in a computstesy, focusing on the lowest com-
ponent of the stack, disk drives (Section 2.1). Second, seuds failures that occur in the storage
stack and describe specific partial disk failures that adeesbed in this dissertation (Section 2.2).
Third, we discuss RAID [101], a technique used in nearly yegrterprise storage system to han-
dle disk failures (Section 2.3). This discussion servesasvarview; Chapter 4 is a more detailed
examination of enterprise RAID data protection. Fourth present the IRON taxonomy [104] of
failure-handling policies (Section 2.4). This discussidsp serves as an overview of the different
techniques that may be used within a single disk to handkeapdrsk failures. Last, we present a
fault-injection technique calletype-aware fault injectiofil04]. We use the IRON taxonomy and
type-aware fault injection to analyze the failure behawbboth file systems and virtual-memory

systems in later chapters.

2.1 Storage Stack

A storage stack is an integral part of most computer systérhe.role of the storage stack is
to provide a means to store data. As in a communication pob&tack, the different layers of
the stack use the abstraction provided by the layer belowild the abstraction and services that
it provides to layers above. Figure 2.1 shows the storage staa typical computer system. It

consists of hardware, software, as well as firmware compsnen

13

Generic File System
Specific File System

Host
1
1
1
1
1
]
1
1
1
1
1
1
1
:
|

Generic Block 1/0
Device Driver
Device Controller

> Transport {

Firmware -

Electrical
Mechanical

 weda___)
———

Cache

Storage Subsystem

Disk

Figure 2.1 The storage stack.We present a schematic of the entire storage stack. At this tihje file
system; beneath are the many layers of the storage subsyStamnshading implies software or firmware,
whereas white (unshaded) is hardware.

14

At the bottom of the storage stack is the disk drive. Connegcthe drive to the host is the
transport. In low-end systems, the transport medium isxatbus €.g, SCSI), whereas networks
are common in higher-end systengsq, Fibre-Channel). At the top of the stack is the host, in
which there is a hardware controller that communicates ighdevice, and above it a software
device driver that controls the hardware. Block-level waite forms the next layer, providing a
generic device interface and implementing various optatdns €.g, request reordering). On top
of the generic block-1/O layer is the file system. This laygepften split into two pieces: a high-
level component common to all file systems, and a specific oot that maps generic operations
onto the data structures of the particular file system. Adaghinterfaced.g, Vnode/VFS [82])

is positioned between the two.

2.1.1 Disk Drives

Hard disk drives serve as the primary storage medium botntergrise environments and in
personal computers. As discussed above, they are at thetl@vel of the storage stack.

Disk drives are complex entities; as shown in Figure 2.1y tb@ntain media, mechanical,
electrical, memory, and firmware components. In a hard diaka is recorded oplatterscoated
with a ferromagnetic material by magnetizing the matenad ispecific direction, and data is read
by detecting the direction in which the material is magrestiz Disks typically have multiple
platters, where each platter usually has two surfaces,@&adssed by a dedicated read/write head.
A single surface is divided into tens of thousands of conmtentrcular tracks and each track is
subdivided intosectors the smallest addressable unit of data access, usually &2 n size.
Each sector is protected by error correcting codes (ECCg. Aumber of sectors on each track
varies depending on whether the track is close to the cehthealisk or farther away, with tracks
farther away containing more sectors.

Beyond the magnetic medium, there are mechanial, (the motor and arm assembly) and
electrical componentg(g, buses) that read and write the data. A particularly impdtamponent

is firmware — the code embedded within the drive to control tnedsts higher-level functions,

15

including caching, disk scheduling, and error handling.isTirmware code is often substantial
and complex€.g, a Seagate drive circa 2005 contains roughly 400,000 lihesde [38]).

Disks typically use one of two different interfaces to commuate with the host: SCSI [135]
or ATA [136]. SCSI and ATA disks are different in nearly evesgmponent of the disk — me-
chanics, materials, electronics, and firmware [5]; SCSkgligre built towards achieving better
performance and reliability characteristics, and aredftge more expensive. While there is no
inherent interface-related requirement that SCSI disksAdA disks be built differently, they are
built differently since they address different market segis. Over the years, SCSI disks have
typically been used in enterprise systems involving missiotical or business-critical applica-
tions, while ATA disks have typically been used in persormahputers. More recently, ATA disks
are being increasingly used in various enterprise systamgd (e.g, archival, or backup storage
systems) [12, 48]. In this dissertation, we also refer to Aligks amearlinedisks and SCSI disks
asenterprisedisks. Note that while the logical interface (command se$CSI in an enterprise
disk, the physical interface (connector/transport) maglifferent .g, Fibre-Channel).

The disk interface abstracts the disk as a linear array odlexjimed blocks each identified by a
logical block number (LBN). Internally, the disk reservesmall portion of sectors callespares
which are not initially mapped to a particular LBN. The diskrfivare can map a spare sector to
the LBNs of failed sectors. Today’s disk drives allocate & faousand spare sectors for such

re-mapping

2.2 Disk Failures

This section provides a background on disk failures, witb@u$ on partial disk failures. We
first discuss the different sources of failures in the sterstgqck and then describe specific types of
partial disk failures. In reality, any element of the staragack could cause a failure that appears
as a “disk failure.” We refer to such failures in other suliteys components as disk failures as
well; most systems today cannot distinguish between fsltinat occur at different levels of the

stack.

16

2.2.1 Sources of Failures

This section presents different causes of partial failumeke storage subsystem. Almost all

layers of the storage stack contribute to these partialriesl.

Media: There are two primary problems that occur in the magneticiomed First, the

medium may have imperfections. These imperfections coitleeecause the medium to
be poorly magnetized during writes, or could cause a “headltt where the drive head
contacts the surface momentarily. Second, a medium sceatall occur when a particle
is trapped between the drive head and the media [119]. Suuheds are well-known to
drive manufacturers, and hence today’s disks park the dirdael when the drive is not in
use to reduce the number of head crashes; SCSI disks soraetiohede filters to remove

particles [5]. Media errors most often lead to permaneidfaiof individual disk blocks.

Mechanical: “Wear and tear” eventually leads to failure of moving pargsdrive motor
can spin irregularly or fail completely. Erratic arm movem®can cause head crashes and
media flaws. Inaccurate arm movement caused by rotatiobedtion can misposition the
drive head during writes, leaving blocks inaccessible arupmed upon subsequent reads.
“High-fly” writes, in which the gap between the disk head amelmedium is too high, could
cause data to be poorly written, thereby causing an ECC efnen the sector is eventually

read.

Electrical: A power spike or surge can damage in-drive circuits and hésae to drive

failure [138]. Thus, electrical problems can lead to emndisk failure.

Drive firmware: Interesting errors arise in the drive controller, which sisits of many
thousands of lines of real-time, concurrent firmware. Farmegle, disks have been known
to return correct data but circularly shifted by a byte [85]have memory leaks that lead
to intermittent failures [138]. One of the disk drive modatsour study of partial disk
failures [13] had a bug specific to flushing the disk’s writeloa Upon reception of a cache

flush command, the disk drive sometimes returned succebsuticommitting the data to

17

the disk medium. If, for any reason, the disk was then poweled the data just written
was lost. This type of silent data corruption is called at'lwgte” [131]. In summary, drive

firmware bugs often lead to sticky or transient block coriapt

Transport: The transport connecting the drive and host can also begmwdiic. For exam-
ple, a study of a large disk farm [137] reveals that most oftfstems tested had interconnect
problems, such as bus timeouts. Parity errors also occwitbdome frequency, either caus-
ing requests to succeed (slowly) or fail altogether. Thiug ttansport often causes transient

errors for the entire drive.

Bus controller: The main bus controller can also be buggy. For example, tBEEon-

troller on a particular series of motherboards incorreatlyicates completion of a disk re-
guest before the data has reached the main memory of thddedityg to silent data corrup-
tion [145]. A similar problem causes some other controlteneturn status bits as data if the
floppy drive is in use at the same time as the hard drive [54je@thave also observed IDE
protocol version problems that yield corrupt data [48]. imsnary, controller problems can

lead to transient block failure and silent data corruption.

Low-level drivers: Recent research has shown that device driver code is maly li&
contain bugs than the rest of the operating system [34, 45, ¥8hile some of these bugs
will likely crash the operating system, others can issu& dégjuests with bad parameters,

data, or both, resulting in silent data corruption.

File system: Finally, at the very top of the storage stack, the file systesalfimay contain
bugs that lead to silent data corruption. Recent researslhdeatified various bugs various
file system components including the journaling infrasinoe, file-system mount code, and
in failure-handling code [104, 148, 149, 150].

18

2.2.2 Types of Partial Disk Failures

We now describe specific types of partial disk failures edab this dissertation. Many of the
problems described in the previous subsection result inoomeore of the following partial disk

failures.

Latent sector error: This error occurs when the disk drive cannot read or writeréiqdar disk
sector or when the disk encounters an uncorrectable ECC &mny data previously stored
in the sector is usually lost. Causes of latent sector efrmiside: (a) medium imperfec-
tions, (b) loose particles causing medium scratches, (gh*fly” writes leading to incorrect
bit patterns on the medium, (d) rotational vibration, (egd&vrite head hitting a bump or
medium, and (f) off-track reads or writes. Latent sectooeyiare detected and reported by
the disk drive. They are called latent because this deteetil report occurs only when the

sector is accessed by the system and the error is hiddersualiltime.

Before reporting latent sector errors, disks typicallyfpen error correction with multiple
retries of a given operation. Additionally, after a (configlble) number of unsuccessful
retries, disk drives can automaticalfg-mapfailed writes to spare sectors. Sparing and
re-mapping can only occur on detected write errors; reanre€nequire higher-level mecha-

nisms such as RAID reconstruction to obtain the lost data.

Not-ready-condition error: These errors are reported by the disk drive when the driveots n
ready to handle a command from the host. This error couldial$icate that the disk itself
is not accessible. These errors are often resolved by sgdigmwaiting and retrying the disk
operation. These errors do not lead to permanent data ldssauine disk has experienced a

complete failure.

Recovered error: These “errors” are warnings issued by the disk drive. Theguo scenarios
very similar to that of latent sector errors. The only (butaal) difference is that in this
case, disk-level retries and error correction successfatiover data from a sector (although

the operation failed the first time it was tried).

19

Silent data corruption: This partial disk failure is a situation where the data in skddlock is
incorrect. The corruption could be caused by any elemerti@&torage stack. The causes
are typically bugs in either software or firmware componeriiee main issue with silent
data corruption is that it is not reported by the disk drivaoy other hardware component.
Various forms of silent data corruption could occur. The agmng partial disk failures

below are different forms of silent data corruption.

Bit corruption: These corruptions are scenarios in which the bits storeddiskablock get cor-

rupted, or the bits are modified by some element of the statagpe during a write operation.

Torn write: These corruptions are scenarios in which the disk drive apdegriting only a portion
of the original disk request. Often, this occurs when theelis power-cycled in the middle
of processing the write request. Therefore, future reatigmesome sectors with the new

data and some with the old data.

Lost write: These corruptions occur when buggy firmware componentsiretiguccess code to

indicate completion of a write, but do not perform the writethe disk medium in reality.

Misdirected write: These corruptions occur when buggy firmware writes the dagwrite re-
guest to the wrong disk or the wrong location within a disk. eTéffect of this error is
two-fold: the original disk location does not receive thatevit is supposed to receive (lost
write), while the data in a different location is overwrittéwith effects similar to bit corrup-

tion, torn write, or lost write depending on how the disk iHas used).

2.3 RAID

RAID stands for “Redundant Array of Independent Disks”. dtthe general name for tech-
niques that store data on multiple disks in order to surviwe failure of one or more of the
disks [101]. Since it was originally proposed, it has beempleyed in nearly every enterprise
storage system. RAID has also been implemented using badlvhee and software; various off-

the-shelf hardware RAID cards [1] and software implemeotest [47] are available; even in the

20

case of enterprise systems, some have adopted a hardvaa@-dggproach [37], while some use a
software-based approach [94]. In the storage stack (Figurg the RAID layer can be inserted

just below the generic block I/O layer if it is implementedsioftware or as the device controller

itself if it is implemented in hardware.

Many differentlevelsof RAID have been proposed [101]; the levels differ in thedkof re-
dundant data that is stored, and hence in the number of digkegthat can be tolerated, the extra
space used, and the performance overheads. One popular IB¢dDis RAID-1 or “mirroring,”
wherein each data block is stored on two different disk dxig® that the failure of one of the disks
does not lead to any data loss. Other popular RAID levelsigdeRAID-4 and RAID-5, wherein
parity information is calculated for corresponding blocksa set of disks and is stored on another
disk; in the case of RAID-4, the parity block is always stomda separate parity disk, while in
RAID-5, each disk performs the role of the parity disk for atpm of the disk blocks. The set of
corresponding blocks for which parity is calculated is redd to as atripe

Over the years, various kinds of enhancements have beelodeddor RAID. One example is
the AutoRAID system [146], where different data blocks ie 8torage system are automatically
stored at different RAID levels, depending on their usagsoAwhile the original RAID levels (up
to 5) guaranteed protection against a single disk failuseperous schemes have been developed
to tolerate double disk failures [3, 22, 35, 57, 59, 98]

The primary role of RAID is to tolerate complete disk failaravhile also offering protection
against errors such as latent sector errors that are repbyt¢he disk drive. More recent RAID
systems also offer varying degrees of protection againt darruption [24, 37, 65, 131]. In
some of these cases, extra protection is possible due tddbke mteraction of the file system
and RAID layers [24, 130, 131]. We identify some implicasasf partial disk failures for RAID-
system design in discussing the characteristics of falur€Chapter 3 and then perform a detailed

examination of the exact data protection offered by varlRA$D systems in Chapter 4.

21

Level Technique Comment

Dzero No detection Assumes disk works
DEgrrorcode | Check return codes from lower levelsAssumes lower level can detect errors

Dsanity Check data structures for consistericy May require extra space per block

D Redundancey | R€dundancy over one or more block®etects corruption in end-to-end way

Table 2.1 IRON detection taxonomy. The table describes the different levels of detection inRIGN
taxonomy.

2.4 |RON Taxonomy

We now describe an extended version of the IRON taxonomy ibfréahandling strategies
that we developed in previous work [104]. IRON stands fotémal RObustNess”; it focuses on
failure-handling strategies to be used, aotossdisks as is common in RAID systems, buthin
a single disk.

To cope with partial disk failures, storage-stack compdsmemay include machinery toetect
(Level D) these failuresieact(Level R) to them, and alspreventhem (LevelP). Tables 2.1, 2.2,
and 2.3 present our IRON detection, reaction, and preveméronomies, respectively. We have
found from experience that this taxonomy can be used to geritiy describe the failure-handling
strategies of various file systems and virtual-memory sgsteHowever, the taxonomy is by no
means complete. Many other techniques are likely to exist,gs many different RAID variations
have been proposed over the years [4, 146]; indeed, we haweded the taxonomy to include a

prevention axis since it was originally proposed.

2.4.1 Detection Levels

Level D techniques are used by systems to detect that a problem tasext(.e., that a block

cannot currently be accessed or has been corrupted).

22

Level Technique Comment

Rzero No recovery Assumes disk works

Rpgeport Report error Informs user

RRecord Record that operation did not succeed Stops/pauses dependent actions
Rstop Stop activity (crash, prevent writes) Limit amount of damage

Rauess Return “guess” at block contents Could be wrong; failure hidden
Rpetry Retry read or write Handles failures that are transient
RRepair Repair data structs Could lose data

Rremap Remaps block or file to different localeAssumes disk informs system of failure
RRedundancy Block replication or other forms Enables recovery from loss/corruption

Table 2.2 IRON reaction taxonomy. The table describes the different levels of reaction in R@N

taxonomy.
Level Technique Comment
Prero No prevention Assumes disk works
Premember Remembers disk errors Prevents usage of blocks with errors
Preoot Periodically re-initializes the system Tries to avoid bugs due to excess state

PLoadBalance

PSccm

Table 2.3 IRON prevention taxonomy. The table describes the different levels of preventionén th

Balances the read/write load on blocksAttempts to reduce “wear” on blocks

Performs read/write checks

IRON taxonomy.

Detects possibly “sticky” block errors

23

Zero. The simplest detection strategy is none at all; the file sysiesumes the disk works and
does not check return codes. As we will see in the analysiambws systems, this approach

is surprisingly common (although often it is applied unitttenally).

ErrorCode: A more pragmatic detection strategy that a system can imgi¢m to check return

codes provided by the lower levels of the storage system.

Sanity: The system can verify that the data structures stored onateskonsistent. This check
can be performed either within a single block or across dodkvo kinds of checks that can
be performed are type checks and sanity checks. Type cheekiifies that a disk block
contains a specific type of data structure (such as an indgpjcally, type information for
a disk block is encoded in the form of a “magic” number andesdon the disk block. Sanity
checking verifies that certain values in data structurelevioconstraints. For example, a
pointer value in the data structure can be compared withkvedlvn values, such as locations
of metadata structures like the boot sector or the size oflislepartition, to ensure that the

pointer is not corrupt.

Redundancy: The final level of the detection taxonomy is redundancy. M&mns of redun-
dancy can be used to detect block corruption. For exampliisagssed in the previous sub-
section,checksummingas been used in reliable systems for years to detect cmrui8]
and has recently been applied to improve security as well I29]. Checksums are par-
ticularly well-suited for detecting corruption due to firrave componentse(g, a buggy
controller that misdirects a disk write to the wrong locatar does not write a given block
to disk at all). However, checksums must be carefully immatad to detect these prob-
lems [18, 130]; specifically, a checksum that is stored alaith the data it checksums
will not detect such misdirected or lost writes. We discusshsissues in greater detail in

analyzing the protection offered by enterprise RAID systé@hapter 4).

24

2.4.2 Reaction Levels

Level R of the IRON taxonomy describes techniques used in reaabitptk failure within a

single disk drive. These techniques handle both latenbseators and block corruptions.

Zero. Again, the simplest approach is to implement no strategyl,ab@ even notifying clients

that a failure has occurred.

Report: A straightforward reaction strategy is to report errors luptigh the system; for example,
the file system informs the application that an error ocaliened assumes the client program

or user will respond appropriately to the problem.

Record: At this level, the system records that the 1/0 operation dilsucceed. This level pre-
vents the system from performing any action that assumesessaful completion of the I/O
operation. For example, when a write error is detected aadyistem records the error, it
does not free the “dirty” memory page assuming that it has Iseecessfully written out to

disk, thus avoiding data loss.

Stop: One way to react to a disk failure is to stop current systenviact This action can be
taken at many different levels of granularity. At the coatdevel, one can crash the entire
machine. One positive feature is that this mechanism turaetectedlisk failures into fail-
stop failures and likely preserves the integrity of on-disita structures. However, crashing
assumes the problem is transient; if the faulty block corstagpeatedly-accessed dagay(

a script run during initialization), the system may repdtaeboot, attempt to access the
unavailable data, and crash again. In the case of a file systeencan choose a less drastic
approach and mount the file system in a read-only mode. Tlpgaph is advantageous in

that it does not take down the entire system and thus allonsated processes to continue.

Guess: As recently suggested by Rinaed al. [110], another possible reaction to a failed block
read would be to manufacture a response, perhaps allowehgystem to keep running in

spite of a failure. The negative is that an artificial resgomsy be less desirable than failing.

25

Retry: A simple response to failure is to retry the failed operatiBetry can appropriately handle

transient errors, but wastes time retrying if the failureideed permanent.

Repair: If a system can detect an inconsistency in its internal datgtsires, it can likely repair
them. For example, in a file system, a block that is not poitdedut is marked as allocated

in a bitmap, could be freed.

Remap: Similar to sector remapping performed by disk drives, aystean perform block remap-
ping. This technique can be used to fix errors that occur wheting a block, but cannot
recover from failed reads. Specifically, when a write to aegiblock fails, the system could
choose to simply write the block to another location. Morglssticated strategies could

remap an entire “semantic unit” at a time g, a user file), thus preserving logical contigu-

ity.

Redundancy: Finally, redundancy (in its many forms) can be used to recfvoen block loss. The
simplest form isreplication, in which a given block has two (or more) copies in different
locations within a disk. Another redundancy approach egwgploarity to facilitate error
correction. Similar to RAID 4/5 [101], by adding a parity bloper block group, a system

can tolerate the unavailability or corruption of one bloaoleach such group.

2.4.3 Prevention Levels

Level P techniques can be used to reduce the probability of occeerehpartial disk failures
or of encountering them. This prevention axis is a new aodito the IRON taxonomy; it was not

a part of the taxonomy when it was originally proposed [104].

Zero. Inthe simplest case, the system does not use any speciahpi@vtechniques; the system

assumes either that the disk works or that errors can bedéhltvhen they occur.

Remember: A basic prevention strategy that can be used is to rememhbeathpecific block is
“bad” once the system has had at least one bad experiencanmthe block. This strategy

could prevent future data loss.

26

Reboot: A phenomenon that has been observed for a long time is thitregsare either less likely
to fail or faults are cured if the systems are rebooted oiitialized [28] (since the systems
can be rid of effects of transient bugs accumulated over)tinidnis fact can be used as
a failure prevention strategy by periodically rebootindpsystems [69]. For example, the
rebooting strategy for a file system could range from unmiogrind re-mounting the file

system periodically to even re-initializing the driversdagisk controllers.

LoadBalance: This prevention technique attempts to reduce the wear dérbthsks by balancing
the load on them. An example of this technique is the use of<esaling in file systems
for flash drives (like JFFS2 [106, 147]).

Scan: The final prevention technique is scanning the disk for badhd by performing accesses,
perhaps with bogus data. This technique is used in RAID systi® weed out potential
bad blocks — the process is called “disk scrubbing” [77, 118ystems can scan the disk
periodically during disk idle time or by using freeblock schuling [86] and avoid using disk

blocks found to be “bad” in the scan.

2.5 Analysis of Failure Behavior

In this section, we first describe a fault-injection techuacthat we developed in previous
work [104] to uncover the disk-failure-handling policy ofstems, and then present an overview

of the results we obtained when we applied our technique omuadity file systems.

2.5.1 Type-Aware Fault Injection

The primary objective of our fault-injection technique esdetermine which IRON detection
and reaction technigues each system uses and the assusrgdidnmakes about how the under-
lying storage system can fail. By comparing the failure gieb across systems, we can learn not
only which systems are the most robust to partial disk fagubut also suggest improvements for

each. We have used this methodology in studying the behatiboth virtual-memory systems

27

(Chapter 5) and file systems ([104] and Chapter 6). This@egirovides a brief outline of the
methodology; details specific to each study are describ#teicorresponding chapters.

Our approach is to inject faults just beneath the systemniedeand observe how the system
responds. If the fault policy is entirely consistent withisystem, this could be done quite simply;
we could run any workload, fail one of the blocks that is aseés and conclude that the response
to this block failure fully demonstrates the failure poligf/the system. However, systems are in
practice more complex: they employ different techniqugseteling upon the operation performed
and the type of the faulty block.

Therefore, to extract the failure policy of a system, we nitgger all interesting cases. Our
challenge is to coerce the system down its different codiespat observe how each path handles
failure. This requires that we run workloads exercisingeliévant code paths in combination with
induced faults on all data structures.

Type Awareness:Many standard fault injectors [26, 123] fail disk blocks iny@e oblivious
manner; that is, a block is failed regardless of how it is gaiised by the system. However,
repeatedly injecting faults into random blocks and waitiogincover new aspects of the failure
policy would be a laborious and time-consuming procesg|\ikielding little insight. The key
idea that allows us to test a system in a relatively efficietthorough manner ktype-aware fault
injection, which builds on our previous work with “semantically-sitialisk systems [16, 125, 126,
127]. With type-aware fault injection, we fail blocks of aesjific type €.g, an inode block in a
file system or a user data page in a virtual-memory systenpe fyformation is crucial in reverse-
engineering failure policy, allowing us to discern the difint strategies that a system applies for
its different data structures. The disadvantage of our-gypare approach is that the fault injector
must be tailored to each system. However, we believe thabehefits of type-awareness clearly
outweigh these complexities.

Context Awareness: Our goal in fault injection is to exercise the system as thghdy as
possible, following as many internal code paths as possibke believe that different code paths
using the same data structures may not respond to failurecegnsistent manner. Therefore, we

use a suite of workloads that stress the system in differagswThese workloads are fine-grained;

28

each workload performs a very specific action, often cowasgpng to a single system cak.@,
open oOf a file). Each system under test also introduces speciaksdést must be stressed. For
example, in the case of the ext3 file system, the inode usembalanced tree with indirect,
doubly-indirect, and triply-indirect pointers, to supptarge files; hence, our workloads ensure
that sufficiently large files are created to access thesetates.

Our mechanism for injecting faults is to use a software lajerctly beneath the systera.g,

a pseudo-device driver in Linux). This layer injects botbdi read and write errors, and can also
corrupt contents of disk blocks. By injecting failures josiow the system, we emulate faults that
could be caused by any of the layers in the storage subsy3teenefore, unlike approaches that
emulate faulty disks using additional hardware [26], we taitate faults introduced by buggy
device drivers and controllers. A drawback of our approactinat it does not discern how lower
layers handle disk faults; for example, some SCSI driveiry mommands after a failure [109].
However, given that we are characterizing how a specificesystsponds to partial disk failures,
we believe this is the correct layer for fault injection.

After running a workload and injecting a fault, the final sisgo determine how the system
behaved. To determine how a partial disk failure affecteddysstem, we compare the results of
running with and without the failure. We perform this compan across all observable outputs
from the system: any error codes and data returned by theray&PlI, the contents of the system
log, and the low-level 1/O traces recorded by the fault-etien layer. This is the most human-

intensive part of the process, as it requires manual ingpeof the visible outputs.

2.5.2 Analysis of File Systems

We have performed a failure-policy analysis for four comiiypfile systems: ext3 [141], Reis-
erFS (version 3) [108], and IBM’s JFS [20] on Linux and NTF28] on Windows XP; we have
analyzed the impact of read errors, write errors, and caioaof entire disk blocks in these file
systems. In this subsection, we first present the resultsowed for JFS, then summarize the

findings of the entire study [104].

29

Figures 2.2 and 2.3 present the detection and reactionitpesused by JFS to handle read,
write, and corruption failures. Each row in the set of figucesresponds to a data structure. Each
column corresponds to a specific workload. The symbols i €atl corresponds to how JFS
responds when the data structure for that row fails whensseckas a result of the workload for
that column. Note that symbols corresponding to differetigees may be superimposed. Table 2.4
summarizes our observations from the experiments.

We now summarize the observed response to partial diskéailior all of the file systems in

the study.

Ext3: Overall simplicity. Ext3 implements a simple and mostly reliable failure paglicy
matching the design philosophy found in the ext family of Blestems. It checks error
codes, uses a modest level of sanity checking, and reactspoyting errors and aborting
operations. The main problem with ext3 is its failure hanglfor write errors, which are

ignored and cause serious problems including possibleygtem corruption.

ReiserFS: First, do no harm. ReiserFS is the most concerned about disk failure. This
concern is particularly evident upon write failures, whiatten induce ganic; ReiserFS
takes this action to ensure that the file system is not caedipReiserFS also uses a great
deal of sanity and type checking. These behaviors combirfierto a Hippocratic failure

policy: first, do no harm.

JFS: The kitchen sink. JFS is the least consistent and most diverse in its failurectien

and reaction techniques. For detection, JFS sometimesaséy, sometimes checks error
codes, and sometimes does nothing at all. For reaction,@R8tenes uses available redun-
dancy, sometimes crashes the system, and sometimes migesions, depending on the

block type that fails, the error detection and the API thas walled.

NTFS: Persistence is a virtue. Compared to the Linux file systems, NTFS is the most
persistent, retrying failed requests many times beforéengiwp. It also seems to report
errors to the user quite reliably. We draw more detailed tumions about NTFS behavior in

analyzing its response to corrupt pointers in Chapter 6.

30

g g 2
% < .‘% ©(x L = %J 2
ZlEl<l5|E =] 5|55 |2 Bls| (B2 2|25
SR EHEEEEEEHEEEEAEHRE
. 112 (314516 (7 |8 [9 |10[11]|12(13]|14[15]|16(17]|18[19]|20
Read error:
inode] -
dir — —
bmap —
Imap — — —
internal — — —
data —
super — | —
jsuper — O
Jdata —
Imapdesc —
aggr-inode-1 —
imapcntl —
g g 2
% X % o |x i) = % g
b b I e e S MR EMERE
. HASEEHEEEEEEHEEEEAERE
. 112 (314516 (7 |8 [9 |10[11]|12(13]|14[15]|16(17]|18[19]|20
Write error:
inode OO0 OO0
bmap scececooonine
internal EEEEEeoN Q)
data O
super O (X
JSU er "))] ::;;
Jdata O0N000000000 0 N0
Imapdesc O OO C X
aggr-inode-1 C X)
imapcntl (X
g g 2
% = % o< (& e % £
R N S E PR HEENEEE
. HASEEHEEEEEEHEEEEAEHRE
B 112 (314516 (7 |8 [9 |10[11]|12(13]|14[15]|16(17]|18[19]|20
Corruption:
inode 1] I I ()
dir | O
bmap [O |
Imap | I ()
internal | [LTE] O
data 0 O
super
jsuper O
Jdata
Imapdesc (
aggr-inode-1 ONNe
imapcntl Q0O

Figure 2.2 JFS detection policiesThe tables indicate the detection policies of JFS for readewand
corruption faults injected for each block type across a rmon§workloads. Each row corresponds to a block
type and each column corresponds to a file operation. Thealgabe[(O] for D zero, [—] fOr D grrorcodes
and[[] for Dsanity. A gray box indicates that the workload is not applicabletfoe block type. If multiple
policies are observed, the symbols are superimposed.

31

E: 3 >
|| |2lE HERE PR “e
ZIE R |55 ml 5|5 e S5 (2|52 3|23
= MHEHEEEHEHEHEEE SR E
Read error: 1121314 |5 |6 |7 |8 |o |1012]12]13]14]15]16]17]18]19]20
inode H
dir aE
bmap T
Imap T
internal -
data —
super N T
jsuper (L O
Jdata +
Imapdesc | T
aggr-inode-1 T
imapcntl HHOHH
E: 3 >
é e |E £ ele| |8 olo|E % £
ZIE R |55 w5 lE e S5 (2|52 3|23
. =M EHEEEHEHEEEE AR E
Write error: 1121314 |5 |6 |7 I8 lo |1011]12]13]14]15]16]17]18]19]20
inode OO €L XI CXXLL) ()
mgg 000000000 ()
internal EEEEEeoN Q)
data O
super (X))
JSU er ")) ::;;
Jdata 00N000000000]INNG
Imapdesc O O O C X
aggr-inode-1 (XY
imapcntl
E: 3 >
EHN o ele| |8 meE%“é
e EHEEMEEEEEEEEEEHE
. Slo|ln|e|2|S|5|E|E|S|a|2|2|E|S|E|n|S|L|e
COI’TUptlon: 1121314 |5 |6 |7 [8 lo |1012]12]13]14]15]16]17]18]19]20
inode H H O+ ; O
dir . | ®
bmap HOHH 1
Imap + mm +H Q)
internal o +—H + O
data 0O O
super + |+
jsuper H O+
Jdata H
Imapdesc)
aggr-inode-1 ONNe
imapcntl Q0O

Figure 2.3 JFS reaction policies.The tables indicate the reaction policies of JFS for readteyand
corruption faults injected for each block type across a rmon§workloads. Each row corresponds to a block
type and each column corresponds to a file operation. The slgnaibe[(O] for Rzc,o, [/] fOr Rretry, [—]

for Rreports [\] fOr RRedundancy, @nd[|] for Rs:,. A gray box indicates that the workload is not applicable
for the block type. If multiple policies are observed, thabgls are superimposed.

32

Detection

Error codes Dgrrorcode) are used to detect read failures, while most write erroesigw
nored (Oz..,), with the exception of journal superblock writes. JFS epgplonly minimal
type checking; the superblock and journal superblock haagiocand version numbers that
are checked. Other sanity check3(,..;,) are used for different block types. For exam-
ple, internal tree blocks, directory blocks, and inode k#contain the number of entries
(pointers) in the block; JFS checks to make sure this nunstdess than the maximum pos-
sible for each block type. As another example, an equaligcklon a field is performed
for BMAP to verify that the block is not corrupted.

Reaction

The reaction strategies of JFS vary dramatically depenaimttpe block type. For example
when an error occurs during a journal superblock write, JEStes the systenRg:,,);

however, other write errors are ignored entirel..,). On a block read failure to th
primary superblock, JFS accesses the alternate cBRy:{,qanc,) t0 COMplete the moun
operation; however, a corrupt primary results in a mourufei (Rs:.,). Explicit crashes
(Rstop) are used when BMAP or IMAP read fails. Error codes for all metadata reads |are
handled by generic file-system code called by JFS; this genede attempts to recover
from read errors by retrying the read a single tinfe(;.,). Finally, the reaction for a
failed sanity check is to report the errak £.,..,.) and remount the file system as read-only
(Rstop); during journal replay, a sanity-check failure causesrépday to abort Rs;.p).

1%

~ (D

Bugs and Inconsistencies

We found various problems with the JFS failure policy. Fiwhile JFS has some built
in redundancy, it does not always use it as one would expecexample, JFS does npt
use its secondary copies of aggregate inode tables (speos used to describe the
file system) when an error code is returned for an aggregatieinead. Second, a blank
page is sometimes returned to the udes.(..,), although we believe this is not by design
(i.e, it is a bug); for example, this occurs when a read to an iatetmee block does nat
pass its sanity check. Third, some bugs limit the utility BE¥eaction mechanisms. Fpr
example, although generic file-system code detects reatseand retries, a bug in the JFS
implementation leads to ignoring the error; in most of themses JFS subsequently detgcts
a problem through sanity checks and reports an error (thegfigiuows only the) ;..o code
and Rg..,, since the rest of the response occurred due to a bug); in sasescthe bug
leads to JFS corrupting the file system.

Table 2.4 JFS behavior details. This table describes the various detection and reactioitjes used
by JFS and also points out inconsistencies and bugs in thdalk® handling.

33

Overall, we find that different file systems use differenss#tpolicies to detect and react to
partial disk failures. For example, JFS was only Linux filsteyn that used some redundancy to
recover (in the case of the superblock). Even in using theespoticies, the degree to which a
policy is used changes from one file system to another. Fanplg while all file systems employ
retries to some extent, NTFS retries a failed operation nmaose times than the other file systems.

We now present a broad analysis of the techniques appliedl bf/tae file systems to detect
and react to partial disk failures. We concentrate uponrtiegles that are underused, overused, or

used in an inappropriate manner.

Detection and Reaction: Illogical inconsistency is commanWe found a high degree of
illogical inconsistencyn failure policy across all file systems. For example, ReéiSeper-
forms a great deal of sanity checking; however, in one ingartase, it does not (journal
replay), and the result is that a single corrupted block eftle-system journal can corrupt
the entire file system. JFS is the most illogically incoresist employing different tech-
niques in scenarios that are quite similar. We note thatrisistency in and of itself is not
problematic [44]; for example, it would Hegically inconsistent (and a good idea, perhaps)
for a file system to provide a higher level of redundancy tadstuctures it deems more
important, such as the root directory [126]. What we arda@ziing are inconsistencies that
are undesirable (and likely unintentional); for examplES Will attempt to read the alter-
nate superblock if a read failure occurs when reading thegmy superblock, but it does not

attempt to read the alternate if it deems the primary coedipt

Detection and Reaction: Bugs are commorn\e also found numerous bugs across the file
systems we tested, some of which are serious, and many ohwanécnot found by other
sophisticated techniques [150]. We believe this is gehenadlicative of the difficulty of
implementing a correct failure policy; it certainly hintsat more effort needs to be put into
testing and debugging of such code. One suggestion in #ratlitre that could be helpful
would be to periodically inject faults in normal operatian@art of a “fire drill” [100]. Our

method reveals that testing needs to be broad and cover ag ecode paths as possible;

34

for example, only by testing the indirect-block handlingRdiserFS did we observe certain

classes of fault mishandling.

Reaction: Stop should not be overused. One downside to halting file-system activity in
reaction to failure is the inconvenience it causes: filaeysrecovery takes time and often
requires administrative involvement to fix. However, altloé file systems used some form
of Rs:,, When something as innocuous as a read failure occurre@gaidsif simply returning

an error to the requesting process, the entire system stS8psh draconian reactions to

possibly temporary failures should be avoided.

Detection and Reaction: Redundancy is not usedVhile virtually all file systems include
some machinery to detect disk failures, none of them amayndancyto enable recovery
from such failures. The lone exception is the minimal amafrduperblock redundancy
found in JFS; even this redundancy is used inconsistentlyo,AIFS places the copies in

close proximity, making them vulnerable to spatially-lbeaors.

These observations can help improve failure handling ircifipefile systems, and can also
influence the development of other techniques to toleratgapdisk failures. Indeed, these obser-
vations influence the fault-tolerance solution we have kbgpexl (Chapter 7). Specifically, since we
find that (i) no single file system is capable of handling pudisk failures, (ii) file systems also
contain bugs, and (iii) different file systems handle padiak failures differently, our solution

uses multiple different file systems to store data reliably.

35

Chapter 3

Characteristics of Partial Disk Failures

Detailed knowledge of real-world failure characteristisgssential for building systems that
can tolerate failures effectively and for examining whetbeisting systems meet fault-tolerance
goals. To date, there has been little field data availabletgmartial disk failures, other than from
small-scale studies [53]. This situation persists dedpigerecent influx of data on absolute disk
failures [41, 102, 118, 121, 122]. Therefore, current teghes to handle partial disk failures have
to be built based on anecdotal information and back-ofaivelope calculations [119].

In this chapter, we present the first large-scale study dfgatisk failures. We focus on two
important types of partial disk failurefatent sector error@ndsilent data corruptionsThese two
types of failures are important since both of them could keediata loss.

We analyze data from more than 50,000 production and deredapstorage systems devel-
oped by NetApp" and installed at many of their customer sitesy(different FAS series and
NearStore systems [95]). The data pertains to partial diglres affecting the 1.53 million disks
used by these storage systems. This set of disks is divlesgwere sourced from multiple ven-
dors; there are both nearline (SATA) and enterprise (Fbineannel) disks; within each of the two
classes, there are different disk families; within eachifgnthere are different capacities. This
diversity helps make the results of our study more geneegiplicable.

Our study is possible because NetAW¥storage systems use various techniques to detect and
recover from various partial disk failures. The partialldfailures thus detected are reported to
a central repository called thdetApp Autosupport Databas@ his repository also stores details

about each disk drive and storage system. We analyze theeiteported to this repository,

36

starting from January 2004 for a period of 32 months for thelgtof latent sector errors, and for
a period of 41 months for the study of silent data corruptions

Through our study, we answer several important questioostgdartial disk failures, including:

e What is the magnitude of this threat? What are the averagevanst-case percentages of

disks affected by partial disk failures in given period onh&?

e What factors impact the development of partial disk faire=or instance, do older disks

have a higher probability of being affected?

e Are partial disk failures independent events? Some fileesgstuse intra-disk redundancy
to overcome partial disk failures [20, 88]; should theseeays be concerned about spatial

locality of partial disk failures?

e What techniques are useful for detecting partial disk fa#@ Is “disk scrubbing,” a periodic

scan of all disk blocks, useful for detecting partial disiuiees?

The rest of the chapter is organized as follows. Section &stiibes the overall architecture of
the storage systems from which the data was collected. #e8tP describes our data collection
and analysis methodology and also outlines some limitatadrthe study. Section 3.3 presents
the analysis of latent sector errors. Section 3.4 presét@analysis of silent data corruptions.
Section 3.5 discusses lessons that we learn from the dataufioling systems that can tolerate

partial disk failures. Section 3.6 concludes the chapter.

3.1 Storage-System Architecture

In this section, we describe the overall architecture ofdtuage systems used in the study,

focusing on failure-handling mechanisms, and error-laggnfrastructure.

3.1.1 Storage Stack

Physically, the storage system is composed of a storageotlenthat contains the CPU, mem-

ory, network interfaces, and storage adapters. The stamaggeoller is connected to a set of disk

37

shelves via two independent Fibre-Channel loops. The disk/es house individual disk drives.

A system consists of at least 14 disks and can have as manyasaldeundred disks. These disks
may either be enterprise (Fibre-Channel) disk drives orlimea(SATA) disks. Nearline drives use

hardware adapters to convert the SATA interface to the Fitirannel protocol. Thus, the storage
controller views all drives as being Fibre-Channel (howglar the purposes of the study, we can
still identify whether a drive is nearline or enterprisengsits model type). Such an architecture
aids in using the same software stack for different hardwaraponents.

The software stack of the storage system is called Data ON'MA®]. Its back-end is primar-
ily composed of three layers: the WAF! file system [67], the RAID layer, and the storage layer.
The file-system layer processes client requests by isseiad) and write operations to the RAID
layer. The RAID layer transforms file-system requests intfidal-block requests and issues them
to the storage layer. The RAID layer also generates parityvfites and reconstructs data after
failures. The storage layer includes a set of customizeecdedrivers. This layer communicates

with physical disks using the SCSI command set [135].

3.1.2 Failure-Handling Mechanisms

The system, like other commercial storage systems, is dedi¢o handle a wide range of
disk-related failures including latent sector errors,onered errors, not-ready-condition errors,
transport problems, and various forms of silent data cdromp This failure-handling helps avoid
potential data loss or data unavailability due to thesaifed. This subsection describes the han-
dling of latent sector errors and silent data corruptiohs, pproactive detection of these failures,

and disk replacement decisions.

3.1.2.1 Latent Sector Errors

Latent sector errors are detected by the storage layer wieerisk drive returns &heck
conditionwith the sense code set kdedium error As the name suggests, a latent sector error is
reported at the granularity of a single disk sector (512 @ bgtes, depending whether the disk is

nearline- or enterprise-class). Error handling for latesttor errors depends on the type of disk

38

request and the type of disk. For enterprise disks, the g¢olayer re-maps the bad sector to a
spare sector. If the request is a write, the storage layestges the write to the re-mapped sector.
If the request is a verify or a read, the RAID layer recondBtice sector from the other disk drives
and passes it to the storage layer for rewrite. For nearliskesgsector re-mapping on failed writes
is automatically performed by the disk and not reported ®gtorage layer. The system handles

read and verify errors in the same fashion for both nearlimkenterprise drives.

3.1.2.2 Data Corruption

The system uses various data-integrity checks to deteatmown. The system writes a 64-byte
data-integrity segmeraiong with each disk block. Figure 3.1 shows two technigoestbring this
extra information, and also describes its structure. Foerpnise disks, the system uses 520-byte
sectors. Thus, a 4-KB file-system block is stored along witlbes of data-integrity segment in
eight 520-byte sectors. For nearline disks, the systemthsegefault 512-byte sectors and stores
the data-integrity segment for each set of eight sectotsaridllowing sector. Any corruption that
is detected is therefore at the granularity of a file-systémlko(i.e., 4 KB).

One component of the data-integrity segment is a checksutheoéntire 4-KB file-system
block. The checksum is validated by the RAID layer whenekerdata is read. Once a corruption
has been detected, the original block can usually be restbreugh RAID reconstruction. We
refer to corruptions detected by RAID-level checksum \atiioh aschecksum mismatche®
checksum mismatch could result from the following silertiedeorruptions: (i) bit corruption, (ii)

a torn write, or (iii) a misdirected write.

A second component of the data-integrity segment is bldekity information. In this case,
the fact that the file system is part of the storage systemlizad. The identity is the disk block’s
identity within the file systeme(.g, this block belongs to inode 5 at offset 100). This identity
is cross-checked at file-read time to ensure that the blogkgbead belongs to the file being
accessed. If, on file read, the identity does not match, tkeidaeconstructed from parity. We

refer to corruptions that are not detected by checksumsjduaicted through file-system identity

39

(a) Format for enterprise disks

4 KB File system data block #+——> 64-Dbyte Data
Integrity Segment

520| 520|520 520 520 520 520 520

(b) Format for nearline disks

4 KB File system data block 74—>64-b3{te Data
Integrity Segment +

1448 bytes unused

(@]

512| 512 512 512 512 512 512 5412

(c) Structure of the data-integrity segment (DIS)

Checksum of data block
Identity of data block

Checksum of DIS

Figure 3.1 Data-Integrity Segment. The figure shows the different on-disk formats used to share t

data-integrity segment of a disk block on (a) enterpriseesiwith 520-byte sectors, and on (b) nearline
drives with 512-byte sectors. The figure also shows (c) thetsire of the data-integrity segment. In

particular, in addition to the checksum and identity infation, this structure also contains a checksum of
itself.

40

validation asidentity discrepanciesAn identity discrepancy could result from a lost write, or a

misdirected write. Note that identity discrepancies candtected only during file-system reads.

3.1.2.3 Proactive Failure Detection

The storage system periodicalgrubsall disks as a proactive measure to detect latent sector
errors and corruption. Two types of scrubs are performed diagcrubs and data scrubs.

Media scrubs use a SCSE®IFY command to validate a disk sector’s integrity. This command
performs an ECC check of the sector’s content from withindlsk without transferring data to
the storage layer. On failure, the command returns a lagatoserror. The storage layer performs
media scrubs continuously in the background, with the ratemb adjusted so as not to impact
foreground performance. In most cases, media scrubs ctenpithin two weeks.

Data scrubs are primarily used to detect data corruptionis $brub issues read operations
for each disk block, computes a checksum over its data, caeaphe checksum to the checksum
located in the data-integrity segment, and reconstruaslibk block from other disk blocks in
the RAID stripe if the checksum comparison fails. If no restoaction is necessary, the parity of
the data blocks in the RAID stripe is generated and compartdtie parity stored in the parity
block. In a RAID system with single parity, if the parity dosst match the verified data, the scrub
process fixes the parity by regenerating it from the dataksloén a system protected by double
parity [35], it is possible to tell which of the parity or dabéock is corrupt, thus initiating recon-
struction for the corrupt one. We refer to all of these cagasismatch between data and parity as
parity inconsistenciesA parity inconsistency could result from a lost write, a directed write, a
processor miscalculation, or a software bug. Note that slatabs are unable to validate file sys-
tem identity information stored in the data-integrity semsince, by its nature, this information
only has meaning to the file system and not the RAID-levellsciDepending on system load,
data scrubs are initiated on Sunday evenings. From ourwatéind that an entire RAID group is
data-scrubbed approximately once every two weeks on aag®eHowever, we cannot ascertain

from the data that every disk in the study has been scrubbed.

41

3.1.2.4 Disk Replacement

The storage system uses proprietary heuristics for detemgiwhen to replace a disk drive.
These heuristics are threshold-based and take into actiogrtiime between partial failures, as
well as the total number of failures encountered. Otheresgstuse similar heuristics to predict
further disk failures based on observed failures; for exanipnux systems often use SMART [2].

Our study enables the tuning of thresholds used to preds&tfdilures.

3.1.3 Data Collection

The storage system has a built-in, low-overhead mecharadied@utosupporto log impor-
tant system events back to a central repository calledNtit&App Autosupport Databas@hese
messages can be enabled for a variety of system eventsimglpdrtial disk failures. These logs
allow customized support based on observed events. For@&artrenables proactive actions such
as replacement of a disk based on the number of latent secbos ghat have been observed during
a time window. Not all NetApp customers enable logging, @lifjh a large percentage do. Those
that do, sometimes do so only after some period of initial e NetApp Autosupport Database
has been used for other disk failure studies as well [70,.122]

Disks undergo rigorous testing both at NetApp and by the désidor before they are shipped.
The partial disk failures detected in in-house testing atereported to the database and thus not
reflected in our study. Sectors with errors are automaticalmapped during this testing process.
Note that this testing may even eliminate disks that woulgel@herwise shown up in our data as
highly error-prone.

We study disk-failure data reported to the NetApp Autosuppatabase, starting from January
2004 for a period of 32 months for the study of latent sectaorer and for a period of 41 months

for the study of silent data corruptions.

42

3.2 Methodology

We first describe some terminology and our analysis mettoagol Then, we outline some
limitations of the study. Next, we motivate why we perforne get of analyses that we do. Finally,

we present notation used to discuss our results.

3.2.1 Terminology
We use the following terms in the remaining sections.
Disk class: Enterprise or nearline disk drives with respectively Fikileannel and ATA interfaces.

Disk family: A particular disk drive product. The same product (and hendisk family) may be
offered in different capacities (sizes). Typically, diskghe same family only differ in the

number of platters and/or read/write heads [121].
Disk model: The combination of a disk family and a particular disk size.

Disk age: The amount of time a disk has been in the field since its ship, dather than the
manufacture date. In practice these these two values ai@tlypwithin a month of each

other.
Error disk: A disk drive that has at least one latent sector error.
Corrupt block: A 4-KB file-system block with a checksum mismatch.

Corrupt disk: A disk drive that has at least one corrupt block.

3.2.2 Analysis Methodology

Our analysis of partial disk failures is based on a sample %8 iillion disk drives of 2 dif-
ferent disk classes (nearline and enterprise), 14 diftatisk families and 31 distinct disk models
across these families. In our analyses, we typically sépanat the results by the disk model; as
we shall see later, the disk model may impact the developofeydrtial failures.

We now describe various constraints that we use in our aisalys

43

e We constrain the data by the age of the disk drives; that igypieally look at the failures
that occur in the firstV months of use of the disk drive. This constraint is used tmielate
the impact of variations due to disk age; many of the drivethenstudy were shipped on
different dates and have been in the field for different an®woi time. IV is typically 18

months for analyses involving latent sector errors and 1@thefor corruptions.

e We analyze only those disk models of which there are at |Badisks in the field for the
time period of a given analysis. This constraint is usedesatisk failures may be rare events
and one needs to have a sufficient number of disk drives tgeaat conclusions with a
reasonable degree of confidencl.is 1000 for the various analyses of both latent sector

errors and corruptions.

e We analyze only those disk models of which there are at IBastor disks (or corrupt disks)
for the time period of a given analysis. This constraint isdifor the same reason as the
previous one. It is applied only in those cases where thegptigs of error disks are being
analyzed €.g, the number of partial failures that an error disk develogs)s 50 for latent

sector errors and 15 for corruptions.

e We analyze only those disk models for which there are totat éfastr failures for the time
period of an analysis. This constraint is only applied ins#hcases where the properties of
the failures are being analyzed.g, the fraction of failures detected by different types of

disk requests)F’ is 1000 for latent sector errors and 500 for corruptions.

We use the specific numbers in the constraints above withva taeachieving a balance be-
tween obtaining as reliable statistics as we can for eadhrd®del and including as many disk
models in each analysis as possible.

While we usually present data for individual disk models,seenetimes also report averages
(mean values) for nearline disks and enterprise disks. eSihe sample size for different disk
models in each disk class varies considerably, we weigh\beage by the sample size of each

disk model in the respective class.

44

3.2.3 Limitations

The study has a few limitations that mostly stem from the datkection process.

First, for a variety of reasons, disks may be removed fronstfstem. Our study includes those
disks up to the point of their removal from the system. Tham@fwe may not observe errors from
otherwise error prone disks after some period of time.

Second, nearline disks automatically perform sector rgasgent for latent sector errors during
write operations; see Section 3.1.2.1. Thus, latent sectors encountered during writes for this
class of disks are not propagated beyond the disk and neaiior rates do not reflect these write
errors.

Third, since the logging infrastructure has been built vatistomized support as the primary
purpose, the data can be used to answer most but not all gpediat are interesting for a study
such as ours. For example, while we can identify the exaktwligen an error is detected during a
scrub, we cannot verify that every disk in the study has beearbbed periodically in the absence

of errors. This limits our ability to precisely identify trextent to which scrubbing is useful.

3.2.4 Motivation

In this subsection, we preview and motivate the variousyasesl we perform using our data:

Factors: We examine how different factors affect the developmentaotial disk failures.
First, we explore the impact of disk class. This analysisripartant because it identifies
systems that are likely to be affected. For example, if meartlisks were affected more,
then personal computers that mostly use such disks would teainclude mechanisms to
deal with partial disk failures. Second, we explore how tge af the disk drive affects the
development of partial disk failures. This analysis is usé&r checking if techniques that
handle partial disk failures need to be adapt as disks aged, Mae analyze whether disk
capacity is a factor by comparing different disk models efshme disk family. The world is
moving towards bigger capacity disks and we should analyesther that trend decreases or

increases the probability of encountering partial diskifais. Last, we perform a preliminary

45

examination of the impact of workload on corruptions. Thalgdf this analysis is to check

whether we need to manage the workload on disks so that teeyaire reliable.

Failures per error disk: This analysis measures exactly how many latent sectorseomor
checksum mismatches occur in a disk that has at least o &etor error or checksum
mismatch respectively. One goal of this analysis is to chebkther disks need to be re-
placed when the first partial disk failure is detected or wketve could continue using the
disk as long as we can recover the data in the few disk blocksikre lost. Another goal
is to check whether partial disk failures are independemy; gependence between failures
affects data reliability (and for that reason, it is essaritir analytical models of RAID reli-
ability [17, 39, 76, 119]); in addition, it may influence tetfues that can be used to handle

partial disk failures.

Address space locality:This analysis measures how close partial disk failures ersgme
disk are in the logical disk-address space. The spatialitpa errors is often considered
in the design of various existing file systems. For example,driginal Fast File System
(FFS) creates redundant spatially-distributed copieb@&uperblock, to protect against the
loss of a disk head or multiple media errors on the same tradylonder [88]. Our study
of file-system robustness [104] found that JFS stores sigmicopies close to each other
in the logical address space, possibly exposing it to loseudf copies. Likewise, ReiserFS
places its log across a contiguous set of logical blocks][1@8iltiple latent sector errors in

the log area may render the file system unusable.

Today, disk drives use a block-based interfaeg (SCSI or ATA) that obfuscates physical
block locations through complicated mapping schemes [1T3lis limits file systems to
use logical block locality unless more detailed informatean be derived [103]. Since file
system designers often make assumptions about spatityatahe logical block level, we
explore whether partial disk failures exhibit spatial Ibtyaat the logical level, referred to as

address space locality

46

Temporal locality: Another interesting characteristic of latent sector exisitheir temporal

behavior. Temporal locality is a study of how “bursty” latesector errors are. This analysis
is useful for setting various time-based thresholds usetetermine when a disk should be
replaced. In addition, it may influence policies on whethereractive disk scrubbing should

be performed when the first partial failure is detected.

Correlations: We also examine whether different types of partial diskui&$s correlate.
This information is useful for predicting future failureacalso for indicating whether dif-

ferent partial disk failures may have common causes.

Detection: Finally, we study the manner in which partial disk failures detected by the
system. lIdeally, a storage system would proactively dezectrs €.g, through periodic
scrubbing) before a user-initiated request. Sector emetscted early can be recovered
from RAID-style data reconstruction and re-mapped to a nests. Proactive detection of

partial disk failures reduces the likelihood of “doubleékiges” in a RAID system [17].

3.2.5 Notation

We denote each disk drive model gamily-size. For anonymization purposefamily is a
single letter representing the disk family asideis a single number representing the disk’s par-
ticular capacity. Although capacities are anonymizedatre¢ sizes within a family are ordered
by the number representing the capacity. For example, nk&ger than n-1, and n-3 is larger
than both n-1 and n-2. The anonymized capacities do not atmparisons across disk families.
Disk families fromA to E (upper case letters) are nearline disk families, while feamifromf to o
(lower case letters) are enterprise disk families. Lineg@aphs labeledL andESrepresent the
weighted average for nearline and enterprise disk mods{seutively.

We present data as the fraction of disks in a particular sartat develop: partial failures.
We use the probability notatioR(X; > z) to denote the fraction of disks developing at least
errors withint months since the disk’s first use in the field. We u$€X,) to refer to the mean

number of errors developed withirmonths since first use.

a7

3.3 Latent Sector Errors

This section presents the results of our analysis of latectos errors. First, we present sum-
mary statistics on latent sector errors collected over 3@thmfrom disk drives in the field. Second,
we analyze the impact of various factors that affect the oecwe of latent sector errors, including
disk class, disk model, disk age, and disk size. Third, wdystiarious properties of latent sector
errors, including the numbers of errors that occur in anredisk, the spatial locality of errors,
and the temporal behavior of errors. Fourth, we discussetaions between latent sector errors
and other disk errors such as recovered errors, and noyHeautition errors. Finally, we examine
the distribution of detection of latent sector errors asribe different types of disk requests: read,

write, and verify.

3.3.1 Summary Statistics

In our entire sample of 1.53 million, we find 53,820 (3.45%§kdi developed one or more
latent sector errors. For error disks (disks with at least emor), the median number of errors per
disk is three. However, the mode is one error (30% of the atigks). Only 0.2% of error disks
had more than 1000 errors per disk. Ignoring these “outliésks, the mean number of errors per

error disk is 19.7.
Observation 3.1 Enterprise disks are less likely to develop latent sectaorsithan nearline disks.

Overall, we find that nearline disks and enterprise diskskéixtifferent behavior with respect to
latent sector errors; about 8.5% of all nearline disks aiectdd by latent sector errors while only
1.9% of all enterprise disks are affected. Therefore, mbstio subsequent analyses break down
results by disk class.

Looking at disks of the same age, we find that 3.15% of neadliskes and 1.46% of enterprise
disks develop at least one latent sector error within twehesths of their ship date. This sample
includes 200,408 nearline disks (56% of all nearline disksur study) across 6 disk models and

715,033 enterprise disks (61% of all enterprise disks instudy) across 23 disk models. Using

48

our notation, these numbers can be representéd &3, > 1). We present more detail about error

rates as a function of time in Sections 3.3.2.1 and 3.3.3.3.

3.3.2 Factors

We now explore the impact of various factors on latent seetmrs: the disk class (nearline

versus enterprise), the disk model, the age of the disk daive its size.

3.3.2.1 Disk Class, Model, and Age

We study how the age of the disk drives affects (a) the fractibdisks that develop latent
sector errors, and (b) the fraction of sectors that devetap®(ASERS).

Figure 3.2 presents the fraction of disks that develop thest latent sector error within a
specific age. As described earlier, we include only disk nsdéth at least 1000 units in the
field for the entire 24-month period of this study. Using ootation, we can express the graph as
P(X; > 1) where,t={6, 12, 18, 24 months. The same sample of disks is used for all time periods.
The sample includes 68,380 nearline disks across threenthislels and 264,939 enterprise disks
across ten disk models.

As observed in the previous subsection (Observation 3.4 see that nearline disks are more
likely to develop latent sector errors. For example, almo of E-2 disks experience latent
sector errors within 24 months of their shipping. On the oth@nd, only 4% of k-3 disks, the
enterprise disk model with the highest error rate, expeadatent sector errors in the same time

period.

Observation 3.2 The fraction of disks with latent sector errors varies sfgaintly across manu-

facturers and disk models.

We see from Figure 3.2 that the fraction of disks with errdrtha end of 24 months could vary

from 5% to 20% for nearline disks. Enterprise disks also leitlai significant variation.

Observation 3.3 Over 24 months, the fraction of nearline disks developingrnasector errors

grows far more rapidly than the fraction of enterprise digkth errors.

49

(a) Nearline
0.22 T T T T

c-1
02 [E-1 * 1
E-2 %

0.18 | .
0.16 -
0.14 .
012 | §
01} K
0.08 | 1
0.06 | 1
0.04 ']

Fraction of total disks with at least 1 error

0.02

Disk age (months)

(b) Enterprise

0.04 |3
0.035
0.03
0.025
0.02
0.015
0.01

0.005

Fraction of total disks with at least 1 error

Disk age (months)

Figure 3.2Impact of disk age. The fraction of disks that develop latent sector errors asiagreases is
shown. Note that the fraction is cumulative. Also, note thaty-axis scale is different for the two graphs.

50

In the case of enterprise disks, we observe that the fractialsks that have latent sector errors
increases almost linearly with time. Thus, the fraction ofegprise disks that develop a latent
sector error in a given six month window is nearly the samdivithe first 24 months of use. On
the other hand, this fraction for nearline disks increasggeslinearly with increasing disk age.
For example, the fraction of E-1 disks that develop latentaeerrors in the time period between
18 and 24 months after shipping is 5.25%, while it is only 2oA2etween 12 and 18 months after
shipping. More generally,P (X6 > 1) — P(X: > 1)) > (P(X: > 1) — P(X;—¢ > 1)), where

t < 24.

Observation 3.4 Annual sector error rates vary greatly across disk modelsdiuaverage are

considerably worse during the second year for nearlinegisk

Figure 3.4 shows the annual sector error rates (ASERSs) ctaddor the disk models, as well
as the cumulative nearline and enterprise error rates. Trioe mtes are for the first and second
year of disk use. The sample covers all drives in the field fonfbnths (the same sample as in
Figure 3.2). The figure can be representedidX’; — X;_12)/(sectors per disk) fort = {12, 24}
months. Note that the figure does not show error bars since digls have 0 errors. For nearline
drives the sector error rates for the second year increassderably over the first year. However,
this is not the case for the enterprise drives. About halhefénterprise models show this trend,

while half do not.

3.3.2.2 Disk Size

Figure 3.3(a) shows the fraction of disks with latent seetoors across the various disk fami-
lies. For each disk family, the graph groups the data by disleh(disk capacity). We restrict the
disk families in the graph to those for which there are attl@@60 disks in the field with an age
of at least 18 months fagachdisk size. This age maximizes the number of disk models we can

study. Figure 3.3(a) can be represente®a¥ ;3 > 1) for different disk models.

Observation 3.5 We observe that as disk size increases, the fraction of digkslatent sector

errors increases across all disk models.

51

@

Nl . @@ HHH m%

B B B o 28 2
V%%%%%ﬁ%v%%%%av%%%%%%&%ﬂ%%%&%ﬂva%&%avmwxwxw

W%E%sz

R R R R R R R R R R R R RNERAERES,

R RS R RS,

R

0.09

0.08 |
0.07
0.06 |
0.05 |
0.04
0.03 |
0.02 |
0.01

1019 T 1sea| Je Yum SYSIp [e10] JO uonorld

0

A

Al

Tl

¢y
T-u

¢
T

¢

Disk Model

(b)

R N R N N N ORI
T%%%}&&%%?&&%%%&f
NN I
W&WAvava&a%&&a&a%&wa&n&a&avavavavavavavav
1 1 1 1
L) [e0] (o] < AN
o o o o o
o o o o (@
o o o o

a1AgehIb Jad si01id Jo Jaquinu abelany

Z-u

¢34
-3

Disk Model

Figure 3.3 The impact of disk size. (a) Fraction of disks with at least one latent sector errothirn

18 months of shipping to the field. (b) Average number of tageotor errors per GB observed within 18

months of shipping to the field.

52

We observe the same trend even for those families that didataify the 1000-disk requirement
with the only exception being disk family ‘I'. As disk capécrapidly increases, storage systems
will need to deal with a larger percentage of drives that tgykatent sector errors. However, since
many factors contribute to latent sector errors (see Se@id.2), we cannot draw any specific

conclusion beyond the trend we observe in the data.

Observation 3.6 The amount of probable data loss due to latent sector errersGigabyte does

not increase or decrease consistently as disk size incsease

Figure 3.3(b) presents the average number of latent sectws@er Gigabyte. It can be represented
as F(Xig)/Capacity. Interestingly, unlike Figure 3.3(a), the data does notshoconsistent
increase or decrease across disk size for the same disk/farhilis, we see that a higher fraction

of disks with errors does not imply a greater amount of préddata loss.

3.3.3 Properties

The studies in this subsection focus on the properties ehtatector errors. We first study the
actual number of errors that occur in a disk with at least atenit sector error, then whether latent
sector errors within the same disk are spatially-local, ainally, the temporal behavior of latent

sector errors.

3.3.3.1 Errors per Error Disk

Figure 3.5 shows the fraction of error disks that experiemagven number of latent sector
errors within a 18-month period after the ship date. We ontiude disk models that satisfy both
the 1000 disk and 50 error disk limits. Thus, we can repredenfigure using our notation as the
conditional probabilityP (X5 < x| X5 > 1) for z={1, 2, 3, 4, 5, 10, 20, 50

Observation 3.7 A large fraction of disks with latent sector errors develepér than 50 errors.

The data shows that, on average, 37% of nearline error dis#ts38% of enterprise error disks

have only one error; that is, they do not develop any addlitatent sector errors after the first

53

6e-09
5e-09 | v -
3 NS 8 5
@ 4e-09 | NS S .
B N 5 "
et N S |
o NS S :
S 309t N N I 2 -
3 J 2 .
& NS S "
[NN S
2 2009 N 1 1
c N - S
< o 3N
NS oF
N o S
1e-09 | J R B 1
I T k<
\\ % ? :)
SN XS
o NS 38
NN P
O uw c

Disk Model (Yr 1/Yr 2)

Figure 3.4 Annual sector error rates (ASERS). For each disk model that has been in the field for
at least two years, the first bar represents Year 1 and thergboepresents Year 2. The NL and ES bars
represent weighted averages for nearline and enterprisgedirespectively.

54

(a) Nearline

0.9

0.8
0.7

0.6

0.5
0.4

0.3

0.2

Fraction of error disks having upto X errors

0.1

0 1 1 1 1 1 1
1 2 3 4 5 10 20 50

Number of errors

(b) Enterprise

0.9
0.8

0.7

0.6

0.5
0.4

0.3

0.2

Fraction of error disks having upto X errors

0.1

0 1 1 1 1 1
1 2 3 4 5 10 20 50

Number of errors

Figure 3.5 Errors per error disk. The fraction of error disks as a function of the number of iate
sector errors that develop within a 18 month period aftershg date for (a) nearline disk models and (b)
enterprise disk models.

55

one. Furthermore, over 80% of error disks have fewer thanrfis Since disk drives typically
have thousands of spare sectors and since failed sectotsecastovered from elsewhere.g,
from RAID), it is possible to re-map bad sectors and contioperation for a large fraction of

error disks.

Observation 3.8 Enterprise and nearline disks are equally likely to devetogre than one error
once they develop their first error, in contrast to the verffedlent probabilities of enterprise and

nearline disks developing their first error.

While enterprise disks seem to be more resilient to latectoserrors in general, enterprise disks
and nearline disks show similar behavior once they exhtlié@ast one latent sector error; compare
the Nearline and Enterprise lines in Figure 3.5(a) and adub(b), respectively. Surprisingly,
some enterprise disk models are worse than nearline diskisrger fraction of enterprise error
disks develop many more errors than nearline error diskswev¥er, one should note that the
actual number of latent sector errors for nearline diskdatbe somewhat higher (as described in
Section 3.2.3).

Observation 3.9 Latent sector errors are not independent of each other. A with latent sector
errors is more likely to develop additional latent sectoroes than a disk without a latent sector

error.

We find that the occurrence of a latent sector error dependsrevious occurrences of latent
sector errors on the same disk. In particular, we find thafreion of disks developing at least 1
additional error int amount of time given that the disk has at least 1 edqrX,,, > 2|X; > 1),

is greater than the (non-conditional) fraction of diskst tth@velop at least 1 error im amount of
time (P(X: 1. > 1) - P(X; > 1)). For exampleP(X;s > 2|X;2 > 1) = 0.671, which is much
greater tharP (X3 > 1) - P(X;2, > 1) = 0.018.

3.3.3.2 Address Space Locality

Figure 3.6 presents the fraction of latent sector errorshhge at least one other latent sector

error occurring within a given radius, for disks with at le@serrors and at most 10 errors. An

56

(a) Nearline

0.1

1 1 1 1 1 1 1 1
- o © N~ © 1 g 0 o
o O O o o o o o

logyBiau T 1ses| Je Buiney siois Jo uonorl4

ASIp |Ind

g94900T

9907

99T

ano00T

anoT

anT

aM00T

aMoT

Locality Radius

(b) Enterprise

[[l

- NNAND Gy
LOxxy L L C

R

O
¥e)

o

1 1 1 1 1 1 1 1 1 1
- o ®© N~ © 1 g 0 o o
o O O O o o o o o

logyBiau T 1ses| Je Buiney sio4is Jo uonorlH

ASIp |Ind

g94900T

9907

99T

ano00T

anoT

anT

aM00T

aMoT

Locality Radius

Figure 3.6 Address space locality.The graphs show the fraction of latent sector errors withtheo

latent sector error within a given radius (address range).

57

(a) Nearline
T T T T T T T T T
¢ 5 .
o
o
(o))
£ 4 R
S}
Qo
=
2
2 3 1
S
g
E 2 T
2
() -
o)) g
g 1 JNCs 4
] s
o e
ol
0 ilé 1 1 1 1 1 1 1 1
m M m m m M oM m x
X 4 = = = O] Q O} =
o S S S S — S S o
- = - S - S =
LL
Locality Radius
(b) Enterprise
T T T T T T T T T
¢ 5 .
o
o
(o))
£ 4 i
S}
Qo
=
2
2 3 1
B
g
E 2 T
]
c
()
(o))
S 1 -
()
>
<
0

10KB | =
100KB

1GB |

10GB |
100GB
Full disk

Locality Radius

Figure 3.7 Count of spatially-local errors. The figure presents the mean number of other latent sector
errors within a given radius (neighbors) of an existing errdhe data uses only disks with 2 to 10 latent
sector errors, thus limiting the maximum value possible.to 9

58

upper bound of 10 errors is used in order to avoid skew intcedby disks with a large number

of errors; note, the median number of errors for error disk8.i Since address space locality is
time-invariant as long as the number of errors is boundedséimple includes all disks irrespective
of their time in the field. We only include disk models that éat least 1000 total disks and 50
error disks with between 2 and 10 errors for the entire 32 mm&an¥We can express the data in our
notation asP(X; > 1|2 < X; < 10) with no specific restriction on time (@ ¢ < 32), whereX”

is the number of other latent sector errors in the intefwal r, a +) centered around sectar

sectora contains a latent sector error.

Observation 3.10 There is significant locality in the occurrence of latenttseerrors across

logical sector addresses.

Figure 3.6 shows that for most disk models, the fraction t#rasector errors that have at least
one other latent sector error within a 10 MB radius of it is.Qrbfact, the fraction is more than 0.6
for many models. Additionally, for many disk models, thectian increases significantly between
radii of 100 KB and 1 MB. This suggests a coarse correlatidwéen the logical and physical
block space. However, we note that the observed address kadity is not perfect and may not
be as correlated as system designers believe. Finally, veetihat the fraction varies considerably
across disk models.

Figure 3.7 presents the mean valueXdt (X" is the same as above) for different disk models.
This figure provides an insight into how errors typically stier together. For most models, the
average number of other errors within a 10 MB radius of a faseator error is more than 1; for
some models it is as high as 2.5. When Figures 3.6 and 3.7 arpared, we see that a higher
probability of a spatially local error does not necessaniply a higher average number of spatially
local errors. For example, for a 10 MB radius, g-2 has a higihebability of a spatially local error

than I-3, but |-3 has more spatially local errors than g-2 werage.

59

(a) Nearline
o
o
o
S
c
8
8 04Ff 1
(I
Al —+—
C-1 -
0.2 1 D-1 %]
D-2 -
E-1 —&-
O 1 1 1 1 IE-2 o 1
1 10 100 1000 10000 100000 le+06
Minutes
(b) Enterprise
o
o
- x f-2
= A g-2
g B A
3]) k-2 -
g oaf 3 m]
[-1 --e--
-2 o
[-3 o
0.2 n_2 [
n-3 ——
0-1 —v—-
O 1 1 1 1 Ic’-2 ””Q””I
1 10 100 1000 10000 100000 le+06

Minutes

Figure 3.8 Inter-arrival time. The graphs show the cumulative distribution of the inteival times of
latent sector errors. The fraction of errors per model istd against time. The arrival times are binned
by minute.

60

(a) Nearline
1
1
00 + 5 i
10 =
0.8 |22 .
50 /=™

0.6

04

03

Fraction of multi-error disks
o
(03]
T

0.2 + .
0.1+ i
One
Time since first error (in months)
(b) Enterprise
1
1 s
09 + 5 i
10 e—
0.8 |25 ==X i
50

0.7 J

0.6

04 r

Fraction of multi-error disks
o
(6]
T

0.2

0.1

Four Five

Time since first error (in months)

Figure 3.9 Temporal decay. The figure shows the fraction of disks that experience at l&a5, 10,
25, and 50 additional latent sector errors within a givendieriod since the occurrence of the first latent
sector error.

61

3.3.3.3 Temporal Behavior

We study temporal behavior in two waytemporal localityanddecay Temporal locality is a
study of how “bursty” latent sector errors are. We study temaplocality by measuring the inter-
arrival time of errors. Decay is a study of the time taken tead@pe additional latent sector errors
since the first latent sector error.

Figure 3.8 shows the fraction of latent sector errors thatewithin = minutes of the preceding
error. The arrival times are binned by minute. We only ineutisk models that satisfy both the
1000-disk and 50 error disk limits. The figure can be reprekasP (X, > k + 1|X; =
kN Xr>k+1)for0< k <1000,and < t < T' < 32 and 1< z < 1e+06 minutes.

Observation 3.11 All disk models exhibit high temporal locality of latent s@cerrors.

Depending upon the model, between 40%-80% of errors arrittimone minute of the previous
error. As can be seen, the arrival-time distributions hagey Yong tails. The observed locality
implies that the errors are detected close in time (evenghdley may have developed long before
they were detected). However, due to media scrubs, theypitsally only a short lag time between
the occurrence and the discovery of an error. Thus, err@sdévelop at different time®(g, a
month apart) are likely to be detected at different timesis likely that the observed temporal
locality implies actual temporal locality.

Figure 3.9 presents the fraction of disks that develop &t keadditional errors within a given
time period since the discovery of the first error, for nealand enterprise disk classes. We use
disks that developed the first error at least 6 months befareehd of the study. Both nearline
and enterprise disk classes had at least 10,000 eligibts.uiihe figure can be represented as
P Xy, >e+1|X;=1)forx={1,2,3,4,5,6,e={1,5,10, 25,50, 0 < t < 26.

Observation 3.12 Disks that develop errors beyond the first error see mosteétiditional errors

within one month after the first error.

First, we see that for 54.8% of nearline error disks and 6200&nterprise error disks, at least one

additionalerror is developed within one month of the first ever erroc@wl, there is a significant

62

probability (nearline: 0.05, enterprise: 0.10) that a digth one error will develop 50 additional
errors within one month of the first error. Third, we obselvatithe fraction of disks with one error
that develop at least more errors does not increase significantly with disk ageniost values
of e. Most of the additional errors develop within 1 month of thestfierror. Interestingly, this
behavior is even more pronounced for enterprise disks thandarline disks. Finally, comparing
the numbers across the two graphs, we observe that suglyiginterprise disks in general have a
higher fraction of disks with one error that develop addiaberrors within a given period of time,

the only exception being far = 1.

3.3.4 Correlations

We now explore whether disks that exhibit latent sectorrsratso exhibit other kinds of errors.

Specifically, we consider recovered errors and not-reamhdition errors.

3.3.4.1 Recovered Errors

As discussed in Section 2.2.2, recovered errors are ernaitsat disk drive encounters when
accessing sectors and is able to recover from them througimdioation of retries and error-
correcting codes (ECC). Latent sector errors occur wheh digk drive-level recovery fails. Sim-
ilar to latent sector errors, the storage system proagtieemaps sectors associated with recovered
errors.

The error logs contain recovered errors returned by entaptisks. We found that 52971
enterprise disks exhibited at least one recovered erros844f enterprise disks) over the period

of 32 months P(Z; > 1) = 0.045, wheréeZ is the number of recovered errors returned by a disk).

Observation 3.13 There is a high correlation between latent sector errors abvered errors

for enterprise disks.

Interestingly, despite the fact that we observed latentosexrors in less than 2% of enterprise

disks (P(X; > 1) < 0.02), the fraction of disks that develop a latent sectasrayut of disks that

63

experienced a recovered error is 13 times hightgrX; > 1|Z; > 1) = 0.26). This suggests that

the two kinds of errors are not independent.

3.3.4.2 Not-Ready-Condition Errors

As discussed in Section 2.2.2, a not-ready-condition ag@n error during which the disk
is not available to respond to requests. The storage layadiés not-ready-condition errors by
retrying the operation a few times. If these efforts faik thata is reconstructed by the RAID layer
from parity.

We found that 13% of nearline disks and 1% of enterprise disksuntered not-ready-condition
errors. Thus, with no specific restriction on time<{Q < 32), P(Z, > 1) = 0.13 for nearline disks,

whereZ is the number of not-ready-condition errors returned bysk.di

Observation 3.14 There is a high correlation between latent sector errors aotiready-condition

errors for nearline disks.

The fraction of disks that develop a latent sector error 6th®disks that had a not-ready-condition
error, P(X; > 1|7, > 1), is 0.38. This value is much higher than the fraction of ditiet develop

a latent sector error out of all nearline disk3((X; > 1) = 0.085). Thus, it is highly likely that
the two kinds of errors are not independent. We did not seendasicorrelation in the case of
enterprise disks wherB(X, > 1|Z; > 1) = 0.014 andP(X, > 1) = 0.019.

3.3.5 Detection

Figure 3.10 presents the fraction of latent sector erroas dne discovered by read, write and
verify operations. In the system, read and write operatemesissued in order to satisfy user or
file system requests. Verify operations are issued by thaarsubber; see Section 3.1.2.3. We
restrict models to those with at least 1000 disks in the fiatt at least 50 error disks in the entire

32-month study period.

Observation 3.15 Disk scrubbing detects a large percentage of observedtiattor errors.

64

Write =72

Read

Verify mm—

SRR

N R

R I

R

IR

R]

L R

N]

SRREKS 3

R ERIIIIIILLLLLLLLLIIIIIIILLLS]
Setetotetoletototetotetetutetetetotetotetototetotetotetetoly

BRI IIXIRIL
[fe%ototetetototetetetetetototel
BRI IR
Lotetotetotetetatetotitotetetet

o

o O © N~ © I X M N o
©O © © o o o © o o

sisanbal pajre} Jo uonoel

P o
cccCc [oNeoNe]

1S

X X
Disk Model

1
LI

| ' |
ha oD

= o HN HN N HN N HANM HNM N HN N
< O oo wu

Figure 3.10 Detection. The figure shows the distribution of requests that deteentasector errors

across the request types read, write and verify.

65

The data shows that for many disk models, a high percentagegogsts that experience a latent
sector error are verify operations. On average, 86.6% da##ht sector errors in nearline disks
and 61.5% of latent sector errors in enterprise disks areodexed by verify operations, while
reads discover 13.4% of errors in nearline disks and 19.18&frofs in enterprise disks, and writes
discover 0% of errors in nearline disks and 19.3% of erromsnterprise disks. This demonstrates
that the method in which the systems perform media scrubisingeful for discovering errors.
Note, since nearline disks automatically and transpargeiiform sector reassignment, disk writes
in these systems do not report latent sector errors (se@86cR.3).

While verify operations discover a widely varying proportiof latent sector errors across disk
models, on average 77.4% of all errors are detected by vexifyests across all disk models. We
speculate that the differences we observe are in part dugetditferent workloads the systems

with different disk models experience.

3.4 Silent Data Corruptions

This section presents the results of our analysis of silatd dorruptions. We focus primarily
on checksum mismatches. First, we provide basic statistidhie occurrence of checksum mis-
matches in the entire population of disk drives. Second, xeenéne various factors that affect the
probability of developing checksum mismatches, includiigk class, disk model, disk age, disk
size and workload. Third, we analyze various propertiesheicksum mismatches, such as spatial
locality. Fourth, we look for correlations between the atence of checksum mismatches and
other system or disk errors. Fifth, we analyze the sourc@é®fdisk requests that detect the mis-
matches. Sixth, we present an analysis showing that caoruptay be block-number dependent.

Finally, we present basic statistics on identity discrepasand parity inconsistencies.

3.4.1 Summary Statistics

During the 41-month period covered by our data we observeah &b about 400,000 check-
sum mismatches. Of the total sample of 1.53 million disk§538isks developed checksum mis-
matches — 3088 of the 0.36 million nearline disks (0.86%) &id of the 1.17 million enterprise

66

disks (0.065%). Using our probability representatiédy; > 1) = 0.0086 for nearline disks, and
P(Y; > 1) = 0.00065 for enterprise disks wheYeis the number of checksum mismatches that
occur in the time since the disk was shippéd,

This indicates that nearline disks may be more susceptbteitruption leading to checksum
mismatches than enterprise disks. On average, each digkoged 0.26 checksum mismatches.
Considering only corrupt diskisé., disks that experienced at least one checksum mismateh), th
mean number of mismatches per disk is 104, the median is handadeice., the most frequently
observed value) is 1 mismatch per disk. The maximum numberisfatches observed for any

single drive is 33,000.

3.4.2 Factors

We examine the dependence of checksum mismatches on véaictoss: disk class, disk

model, disk age, disk size, and workload.

3.4.2.1 Disk Class, Model and Age

Figures 3.11 and 3.12 show the fraction of disks that deviiep first checksum mismatch
within a specific age for nearline and enterprise disks retypdy. The graphs plot the cumulative
distribution function of the time until the first checksumsamatch occurs. The figures can be
represented aB(Y; > 1) fort = {3, 6, 9, 12, 15, 1¥ months, that is, the fraction of disks with at
least one checksum mismatch aftanonths. Note the different y-axis scale for the nearline and
enterprise disks. We see from the figures that checksum nutesm depend on disk class, disk

model and disk age.

Observation 3.16 Nearline disks (including the SATA/FC adapter) have an oafenagnitude

higher probability of developing checksum mismatches @mderprise disks.

Figure 3.11 (line NL — Nearline average) shows that 0.66%eafriine disks develop at least one
mismatch during the first 17 months in the field({; > 1) = 0.0066), while Figure 3.12(b) (line

67

0.04 T T T T T

0.035

0.03

0.025

0.02

0.015

0.01

Fraction of total disks with at least 1 CM

0.005

0 3 6 9 12
Disk age (months)

15 18

Figure 3.11 Impact of disk age on nearline disks. The fraction of disks that develop checksum
mismatches as age increases is shown for nearline disk siddete that the fraction is cumulative.

68

(a) Enterprise (set 1)

0.0018 ; ; . . .
-1 —— -
f2 e s
= 00016 ¢ & T
- 9-3 - D' Ps L ° ° N °
= 0.0014 Fh-2 = - i
- ;
< h-3 --o--
o 1 e
% 00012l R 1
£ k-1 K
= 0.001 (k-2 —F— &)]
g v,'/ /
S 00008 | -
s—g ’ v
2 0.0006]
o
[
S 0.0004]
(8]
o
L 0.0002]
0
18
Disk age (months)
(b) Enterprise (set 2)
0.0018 ; ; . . .
s 0.0016]
O
—
% 0.0014]
48]
o
= 0.0012]
=
= 0.001]
Z
5 0.0008 T
8
2 0.0006]
o
[
S 0.0004]
(8]
@
L 0.0002]
0
18

Disk age (months)

Figure 3.12 Impact of disk age on enterprise disks.The fraction of disks that develop checksum
mismatches as age increases is shown for enterprise disklmddote that the fraction is cumulative.

69

ES) indicates that only 0.06% of enterprise disks develofsayatch during that time/{(Y;; > 1)
=0.0006).

Observation 3.17 The fraction of disks that develop checksum mismatchessraignificantly

across different disk models within the same disk class.

We see in Figure 3.11 that there is an order of magnituderdifiee between models C-1 and E-2
for developing at least one checksum mismatch after 17 nspitit is,P(Y;; > 1) is 0.035 for
C-1 and 0.0027 for E-2.)

Observation 3.18 Age affects different disk models differently with respetie fraction of disks

that develop checksum mismatches.

On average, as nearline disks age, the fraction of diskglthaglop a checksum mismatch is fairly
constant, with some variation across the models. As ensergisks age, the fraction that develop

the first checksum mismatch decreases after about 6-9 manthhen stabilizes.

3.4.2.2 Disk Size

Observation 3.19 There is no clear indication that disk size affects the dgwalent of checksum

mismatches.

Figure 3.13 presents the fraction of disks that develop lcdwen mismatches within 17 months
of their ship-datei(e., the rightmost data points from Figures 3.11 and 3.22y;; > 1)). The

disk models are grouped within their families in increassie. Since the impact of disk size on
the fraction of disks that develop checksum mismatchestisomstant across all disk families (it
occurs in only 7 out of 10 families), we conclude that diskesilbes not necessarily impact the

probability of developing checksum mismatches.

3.4.2.3 Workload

Observation 3.20 There is no clear indication that workload affects the depetent of checksum

mismatches.

70

(a) Nearline
0.035

0.03 b

0.025 - b

0.02 i

0.015 b

0.01 i

0.005 b

. N

N N N

) w w
Disk Model

Fraction of total disks with at least 1 CM

D-1

(b) Enterprise
0.0018

-
0.0016 4

0.0014 b

0.0012 b

0.001 4

0.0008 ~ b

0.0006 | b

0.0004

Fraction of total disks with at least 1 CM

0.0002 ~

N

X

Model

g-3
BESSSSS
B AN

-3 RN

o-1 &8

g-2 1

k-1 [

f-1

o
f-2 (3

h-2
h-3

LI

k-3
n-1
n-2
n-3
0-2

Dis

~

Figure 3.13The impact of disk size.The figures show the fraction of disks with at least one chauks
mismatch within 17 months of shipping to the field for (a) fimardisk models, and (b) enterprise disk
models.

71

The systems in the study collect coarse workload data imauthe number of read and write
operations, and the number of blocks read and written foh @aek of our study. To study the
effect of workload on checksum mismatches, we computeddirelation coefficient between the
workload data and the number of checksum mismatches olasirtiee system. We find that in all
cases the correlation coefficient is less than 0.1 (in faatiost cases less than 0.001), indicating
no significant correlation between workload and checksusrnmaiches. However, these results
might be due to having only coarse per-system rather thaiwtqper workload data. A system
consists of at least 14 disks and can have as many as sevadiedudisks. Aggregating data
across a number of disks might blur existing correlatiorntsveen an individual drive’s workload

and corruption behavior.

3.4.3 Properties

In this subsection, we explore various characteristicsheicksum mismatches. First, we an-
alyze the number of mismatches developed by corrupt diskeen,Twe examine whether mis-
matches are independent occurrences. Finally, we exarmether the mismatches have spatial

or temporal locality.

3.4.3.1 Checksum Mismatches per Corrupt Disk

Figure 3.14 shows the cumulative distribution functionte humber of checksum mismatches
observed per corrupt disk €., the y-axis shows the fraction of corrupt disks that havesiethian
or equal toy number of corrupt blocks). The figure can be represented(as; < y|Yi; > 1) for
y={1,2,3,4,5, 10, 20, 50, 100, 200, 500, 100

Observation 3.21 The number of checksum mismatches per corrupt disk varestlgracross
disks. Most corrupt disks develop only a few mismatches. édolwever, a few disks develop a

large number of mismatches.

Figure 3.14 shows that a significant fraction of corrupt digkore than a third of all corrupt near-

line disks and more than a fifth of corrupt enterprise disls)atiop only one checksum mismatch.

72

(a) Nearline

0.9

0.8
0.7

0.6

0.5
0.4

0.3

0.2

Fraction of corrupt disks having upto X CMs

0.1

1 2 3 4 5 10 20 50 100 200 500 1K
Number of CMs

(b) Enterprise

0.9
0.8

0.7

0.6
0.5

0.4 P

....
e

S k-2

i A v

0.2 !; e BD '225 ;E;]
CE c

0-2

‘ ‘ k o ¥ ! ! ! ! I !

1 2 3 4 5 10 20 50 100 200 500 1K
Number of CMs

\\\\\
e

0.3

RX o

0.1

Fraction of corrupt disks having upto X CMs

Figure 3.14 Checksum mismatches per corrupt disk.The fraction of corrupt disks as a function of
the number of checksum mismatches that develop within 1thmafter the ship date for (a) nearline disk
models and (b) enterprise disk models. Note that the x-axistilinear in scale — the lines in the graph are
used only to help distinguish the points of different disklei®, and their slopes are not meaningful.

73

On the other hand, a small fraction of disks develop sevamigand checksum mismatches. The
large variability in the number of mismatches per drive isoateflected in the great difference
between the mean and median: while the median is only 3 mitreaper drive, the mean is 78.

A more detailed analysis reveals that the distributionslakheavy tails. A large fraction of
the total number of checksum mismatches observed in ouy ssuelkperienced by a very small
fraction of the corrupt disks. More precisely, 1% of the cptrdisks (the top 1% corrupt disks
with the largest number of mismatches) produce more thdmohall mismatches recorded in the

data.

Observation 3.22 On average, corrupt enterprise disks develop many morekshiec mismatches

than corrupt nearline disks.

Figure 3.14(a) (line NL) and Figure 3.14(b) (line ES) shoattwithin 17 months 50% of corrupt
disks {.e., the median) develop about 2 checksum mismatches for nealisks, but almost 10 for
enterprise disks. The trend also extends to a higher pexgerf corrupt disks. For example, 80%
of nearline corrupt disks have fewer than 20 mismatchesyease80% of enterprise disks have
fewer than 100 mismatches. Given that very few enterprisksdilevelop checksum mismatches
in the first place, in the interest of reliability and availélp, it might make sense to replace the

enterprise disk when the first mismatch is detected.

Observation 3.23 Checksum mismatches within the same disk are not independen

We find that the fraction of disks that develop further checksnismatches, given that a disk has
at least one mismatch, is higher than the fraction of disks develop the first mismatch in the
same amount of time. For example, while the fraction of neartlisks that develop one or more
checksum mismatches in 17 months is only 0.0066, the fradgweloping more than 1 mismatch
given that the disk already has one mismatch is as high aslGvér{us 0.4, the fraction of disks
where exactly 1 block has a checksum mismatch in Figure 3.14)

Finally, it is interesting to note that nearline disk model & particularly aberrant — around

30% of its corrupt disks develop more than 1000 checksum atisines.

74

3.4.3.2 System-Level Dependence

Observation 3.24 The probability of a disk developing a checksum mismatclotsmlependent

of that of other disks in the same storage system.

While most systems with checksum mismatches have only omeptalisk, we do find a consid-
erable number of instances where multiple disks developksgwem mismatches within the same
storage system. In fact, one of the systems in the study Heat nearline disks had 92 disks de-
velop checksum mismatches. Taking the maximum number &Edisthe systems in the study
into consideration, the probability of 92 disks developergors independently is less than 1e-12,
much less than 1e-05, the approximate fraction of systepresented by one system.

The observed dependence between disks in the same systerhapg indicative of a common
corruption-causing component, such as a shelf controfladapter. In fact, NetApp engineers
have observed instances of the SATA/FC adapter (a commopaoanmt) causing data corruption
in the case of disk models A-1, D-1 and D-2; therefore, it soalery likely that the statistics for

these disk models are influenced by faulty shelf contrallers

3.4.3.3 Spatial Locality

We measure spatial locality by examining whether each pbbiock has another corrupt block
(aneighbo) within progressively larger regionsogality radiug around it on the same disk. For
example, if in a disk, blocks numbered 100, 200, and 500 hlgeksum mismatches, then blocks
100 and 200 have one neighbor at a locality radius of 100, hibtbaks (100, 200, and 500) have
at least one neighbor at a locality radius of 300.

Figure 3.15 shows the fraction of corrupt blocks that havieast one neighbor within dif-
ferent locality radii. Since a larger number of checksummagches will significantly skew the
numbers, we consider only disks with 2 to 10 mismatches. Tdwadican be represented as
P(Y;] > 1|2 <Y; < 10). Y is the number of corrupt blocks in block numbetsy — r,a + r >
around corrupt block (but excludinga itself). The values for radiusare{1, 10, 100, ..., 100\

blocks, and O< ¢t < 41 months. The figure also includes a liRendonthat signifies the line that

75

(a) Nearline

Fraction of CMs having at least 1 neighbor

JOAL —_—

031 / Cc-1 B
/' D-1 K

0.2 /D2 S
/ E-1 -

01k A E-2 R
7 N B

04— & A —be AT . Random — -~

1 10 100 1000 10000 100000 1le+06 1e+07 1e+08 1e+09
Locality Radius (in blocks)
(b) Enterprise
1 .

0.9
0.8
0.7
0.6 ’
054

| 3
0.4

Fraction of CMs having at least 1 neighbor

03 A .
L= . k-2 —

02} k-3 T
n-2 -

0.1 : n-3 e
5 ES o

T P S S AT . Random ~-&- 4

1 10 100 1000 10000 100000 1le+06 1e+07 1e+08 1e+09

Locality Radius (in blocks)

Figure 3.15 Spatial Locality. The graphs show the fraction of checksum mismatches witthano
checksum mismatch within a given radius (disk-block randeach figure also includes a line labeled
“Random” corresponding to when the same number of mismat{deenearline and enterprise respectively)
are randomly distributed across the block address spacéy @sks with between 2 and 10 mismatches are
included.

76

would be obtained if the checksum mismatches were randoistiyltlited across the block address
space. This line can be used as a comparison point againsthéelines. Note that this line is at
0 for most of the graph, signifying that there is no spatiablay for a random distribution.

For the actual data for the different disk models, we seerttat disk models are much higher
on the graph thalRandomwhen the x-axis value is 1; for more than 50% of the corruptkéo
in nearline disks and more than 40% of the corrupt blocks iterpnise disks, the immediate
neighboring block also has a checksum mismatch (on diskslvatween 2 and 10 mismatches).

These percentages indicate very high spatial locality.

Observation 3.25 Checksum mismatches have very high spatial locality. Mdicheoobserved
locality is due to consecutive disk blocks developing qatio;n. Beyond consecutive blocks, the

mismatches show very little spatial locality.

We see from the figures that, while the lines for the disk medéhrt at a very high value when
the x-axis value is 1, they are almost flat for most of the grapbving steeply upwards to 1 only
towards the end (x-axis values more than 1e+06). This behatiows that most of the spatial
locality is due to consecutive blocks developing checksusnmatches. However, it is important
to note that even when the consecutive mismatch cases aegalided, the distribution of the
mismatches still has spatial locality.

Given the strong correlation between checksum mismatehesrisecutive blocks, it is inter-
esting to examine the run length of consecutive mismatc¢hasis, how many consecutive blocks
have mismatches. We find that, among drives with at least @kslien mismatches(and no upper
bound on mismatches), on average 3.4 consecutive blocksdfanted. In some cases, the length
of consecutive runs can be much higher than the average.tA6wf drives with at least 2 mis-
matches see one or more runs of 100 consecutive blocks wiimatches. 0.7% of drives with at

least 2 mismatches see one or more runs of 1000 consecuswveatthes.

Fraction of checksum mismatches

Fraction of corruption events

(a) Nearline

0.4 i
Al —+—
C-1 —x—
0.2 D-1 %
D-2
E-1 —m—
0 1 1 1 1 IE-2) OW 1
10 100 1000 10000 100000 1le+06
Minutes

(b) Enterprise

0.4 k2 T
k-3 -
-1 %
[-2 o
0.2 n-2 ——m— 7
n-3 --o-
0-2 --e-
0 1 1 1 1 |0-3 o 1
10 100 1000 10000 100000 1le+06
Minutes

77

Figure 3.16Inter-arrival times. The graphs show the cumulative distribution of the inteivad times
of checksum mismatches per minute. The fraction of misesfohr model is plotted against time. The
arrival times are binned by minute.

78

3.4.3.4 Temporal Locality

Figure 3.16 shows the fraction of checksum mismatches thiakegare detected) within
minutes of a previous mismatch. The figure can be represesétY;., > k+ 1|Y; = kA

Yr>k+1)fork >1,0< ¢t <T <41 months, and ¥ x < 1e+06 minutes.

Observation 3.26 Most checksum mismatches are detected within one minutgre¥@us detec-

tion of a mismatch.

The figure shows that the temporal locality for detectingoisem mismatches is extremely high.
This behavior may be an artifact of the manner in which thecain takes place (by scrubbing)
and the fact that many mismatches are spatially local andharefore likely to be discovered
together. Further analysis shows that this is not necdgs$he case.

In order to remove the impact of detection time, we examingptaral locality over larger time
windows. For each drive, we first determine the number of kb&m mismatches experienced
in each 2-week time window that the drive was in the field arehtbompute the autocorrelation
function on the resulting time series. The autocorrelatiorction (ACF) measures the correlation
of a random variable with itself at different time lagsThe ACF can be used to determine whether
the number of mismatches in one two-week period of our tierges is correlated with the number
of mismatches observé®-week periods later. The autocorrelation coefficient carge between
1 (high positive correlation) and -1 (high negative cortiela). A value of zero would indicate no

correlation, supporting independence of checksum midmeatc

Observation 3.27 Checksum mismatches exhibit temporal locality over latoee windows and

beyond the effect of detection time as well.

Figure 3.17 shows the resulting ACF. The graph presentsvbiage ACF across all drives in the
study that were in the field for at least 17 months and expeei@érchecksum mismatches in at
least two different 2-week windows. Since the results aglgeéndistinguishable for nearline and
enterprise drives, individual results are not given. If dtsim mismatches in different 2-week

periods were independent (no temporal locality on bi-weekid larger time-scales) the graph

79

Autocorrelation

Lag (months)

Figure 3.17 Temporal autocorrelation. The graph shows the autocorrelation function for the number
of checksum mismatches per 2-week time windows. This espad®n of the data allows us to study
temporal locality of mismatches at larger time-scales withbeing affected by the time of detection.

80

would be close to zero at all lags. Instead we observe strotagarrelation even for large lags in

the range of up to 10 months.

3.4.4 Correlations

We now establish correlations for checksum mismatches e@itier errors such as system re-

sets, latent sector errors, and not-ready-condition grror
Observation 3.28 Checksum mismatches correlate with system resets.

The fraction of systems that experience a system reset a¢ paint of time, given that one of
the disks in the system has a checksum mismatch, is aboutr8g the unconditional fraction of

systems that experience a system reset.

Observation 3.29 There is a weak positive correlation between checksum niiiesand latent

sector errors.

The fraction of disks that develop latent sector errét&X; > 1), is 0.137 for nearline disks and
0.026 for enterprise disksX(is the number of latent sector errors,<0¢t < 41 months). The
fraction of disks that develop a latent sector error out ekdithat also have a checksum mismatch,
P(X; > 1|Y; > 1), is 0.195 for nearline disks and 0.0556 for enterprise digksch are 1.4 times
and 2.2 times that of the unconditional fractions. Thesaeslndicate a weak positive correlation
between the two disk errors.

In order to test the statistical significance of this corielawe performed a chi-square test
for independence. We find that we can, with high confidengectéhe hypothesis that checksum
mismatches and latent sector errors are independent, iholle icase of nearline disks and enter-
prise disks (confidence level of more than 99.999%). Intargly, the results vary if we repeat the
chi-square test separately for each individual disk moiel{ding only models that had at least
15 corrupt disks). We can reject independence with highagast (at least 95% confidence) for
only four out of seven nearline models (B-1, C-1, D-1, E-2) two out of seven enterprise models
(-1, n-3).

81

Observation 3.30 There is a weak correlation between checksum mismatchesatrctady-

condition errors.

The probability of a disk developing not-ready-conditioroes, P(Z; > 1), is 0.18 for nearline and
0.03 for enterprise disksP(Z; > 1]Y; > 1) is 0.304 for nearline and 0.0155 for enterprise disks.
Thus, the conditional probability of a not-ready-conditierror, given that a disk has checksum
mismatch, is about 1.7 times the unconditional probabdity not-ready-condition error in the
case of nearline disks and about 0.5 times the unconditpoakbility for enterprise disks. These
values indicate mixed behavior — a weak positive corretefito nearline disks and a weak negative
correlation for enterprise disks.

In order to test the statistical significance of the corietabetween not-ready-condition errors
and checksum mismatches, we again perform a chi-squar®téstiependence. We find that for
both nearline and enterprise disks we can reject the hypsthiat not-ready-condition errors and
checksum mismatches are independent with more than 96%eané. We repeat the same test
separately for each disk model (including only models tteat &t least 15 corrupt disks). In the
case of nearline disks, we can reject the independence linggistfor all models, except for two
(A-1 and B-1) at the 95% confidence level. However, in the adsenterprise disks, we cannot
reject the independence hypothesis for any of the individuzdels at a significant confidence

level.

3.4.5 Detection

Figure 3.18 shows the distribution of requests that deteetksum mismatches into different
request types. There are five types of requests that discheeksum mismatches: (i) Reads by the
file system (FS Read) (ii) Partial RAID-stripe writes by th&lR layer (Write) (iii) Reads for disk-
copy operations (Non-FS Read) (iv) Reads for data scrub@egub), and (v) Reads performed
during RAID reconstruction (Reconstruction). Note thad@ request types are different (and more
specific) from those for latent sector errors in Section3ssnce the low-level error messages for
latent sector errors do not differentiate between the soofcdifferent read operations for file

system, disk copy, and reconstruction.

82

Reconstruction zzz2

FS Read m==228

Write wzzzzzzza

Non-FS Read ==X

Scrub m—

‘340434.4.43ﬂ‘
R
B
RSN]

AW«qaaaﬁqga“‘u“
282
umuwmwmmmmammu A

N RN

1 1
S ™
o o

paIan09sIp SND JO uonoel

1 1
N o
o O

o

¢d
T-d

-0

v

Disk Model

Figure 3.18 Detection. The figure shows the distribution of requests that discokecksum mismatches
across the request types scrub, non-file sytstem read (&kycdpy), write (of partial RAID stripe), file

system read, and RAID reconstruction.

83

Observation 3.31 Data scrubbing discovers a large percentage of the checkaismatches for

many of the disk models.

We see that on the average data scrubbing discovers aboub#€3écksum mismatches in near-
line disks (NL in the figure), and 73% of the checksum mismasdh enterprise disks (ES in the
figure). It is quite possible that these checksum mismatotesnot have been discovered in the
absence of scrubbing, potentially exposing the system tiblédailures and data loss. We do not
know the precise cause for the disparity in percentagesdmtwearline and enterprise disks; one
possibility this data suggests is that systems with neauiisks perform many more disk-copy

operations (Non-FS Read), thus increasing the percentaigledt request type.

Observation 3.32 RAID reconstruction encounters a non-negligible numbeclwcksum mis-

matches.

Despite the use of data scrubbing to avoid double failuresfimd that RAID reconstruction dis-
covers about 8% of the checksum mismatches in nearline.diskssome models more than 20%
of checksum mismatches were detected during RAID recartstru This observation implies
that (a) data scrubbing should be performed more aggrégsared (b) systems should consider
protection against double disk failures [3, 22, 35, 57, &), 9

3.4.6 Block-Specific Corruption

We find that specific block numbers could be much more likelgxperience corruption than
other block numbers. This behavior is observed for the disikleh E-1. Figure 3.19 presents
for each block number, the number of disk drives of disk mdgtdl that developed a checksum
mismatch at that block number. We see in the figure that masksdievelop corruption for a
specific set of block numbers. We also verified that (i) othsk dhodels did not develop multiple
checksum mismatches for the same set of block numbersé€iigks that developed mismatches
at the same block numbers belong to different storage systend (iii) the software stack of the

storage system has no specific data structure that is platiee block numbers of interest.

84

120 b

100 b

80

o
1

60 b

40 | -

Number of disks with CM at block X

20

USSR e T
Block Number Space

Figure 3.19Distribution of errors across block numbers. For each disk block number, the number
of disks of disk model E-1 that develop checksum mismatthleatdolock number is shown. The units on
the x-axis have been omitted in order to anonymize the diskodidisk model E-1.

85

These observations indicate that hardware or firmware theysaffect specific sets of block
numbers might exist. Therefore, RAID-system designers ownsider usingstaggeredstripes
such that the blocks that form a stripe (providing the regghliedundancy) are placed at different
block numbers on different disks.

We also observed a number of block-specific errors on othee dnodels. In at least one of
these instances, the block contained a heavily read anttwfite system metadata structure — a
structure akin to the superblock. This suggests the impoea®f replicating important metadata

structures [104, 126].

3.4.7 Identity Discrepancies

These corruptions were detected in a total of 365 disks owh®f1.53 million disks. Fig-
ure 3.20 presents the fraction of disks of each disk modeldbeeloped identity discrepancies
in 17 months. We see that the fraction is more than an orderagfnitude lower than that for
checksum mismatches for both nearline and enterprise.disks

Since the fraction of disks that develop identity discrepes is very low, the system recom-
mends replacement of the disk once the first identity disorep is detected. It is important to
note, that even though the number of identity discreparariesmall, silent data corruption would
have occurred if not for the validation of the stored contekfile system information (the use of

this em logical-identity information will be analyzed in@&®on 4.3.5).

3.4.8 Parity Inconsistencies

These corruptions are detected by data scrubbing. In thenabsof a second parity disk,
one cannot identify which disk is at fault. Therefore, in @rdo prevent potential data loss on
disk failure, the system fixes the inconsistency by rewgitiarity. This scenario provides further

motivation for double-parity protection schemes.

86

(a) Nearline
0.0008

0.0007 b

0.0006 - b

0.0005 b

0.0004 b

0.0003 - b

0.0002 b

0.0001 4

Fraction of total disks with at least 1 ID

N
h

<
o) o)
Disk Model

A-1
C-1r
E-1
E-2
NL

(b) Enterprise
0.0008

0.0007 | b
0.0006 - b
0.0005 b
0.0004 - b
0.0003 ~ b

0.0002 4

Figure 3.20 Identity discrepancies. The figures show the fraction of disks with at least one itenti
discrepancy within 17 months of shipping to the field for (@mine disk models, and (b) enterprise disk
models.

Fraction of total disks with at least 1 ID

T

.

N ™

o O

-3 B8

m-2

| I I N ...
@ g
c X X

Disk

-2 B
-1
n-1
n-2 r
n-3 &
o-1+t
0-2

ES &

N
-

h-2

1
i
“—

z k3 &

odel

87

(a) Nearline
0.007

0.006 b

0.005 - b

0.004 b

0.003 b

0.002 i

Fraction of total disks with at least 1 PI

0.001 b

N

o)
Disk Model

A-1
C-1
D-1
E-1
E-2

NL

(b) Enterprise

0.002
0.0018 b
0.0016 | b
0.0014 b
0.0012 b

0.001 - b
0.0008 | b
0.0006 [b

0.0004 b

Fraction of total disks with at least 1 Pl

0.0002 [] b

FErEer

x 1 1 1
Disk Model

-
“—

N ™

o O

™
v U "

= X

2 [
h-2 B
k-2 B2
-1 §
-2 B
-3 B8
n-3 &
o-1 &

0-2 B8
ES B

1 1
I BN
— = £ © c

Figure 3.21 Parity inconsistencies. The figures show the fraction of disks with at least one parity
inconsistency within 17 months of shipping to the field fdm@arline disk models, and (b) enterprise disk
models.

88

Figure 3.21 presents the fraction of disks of each disk mtidetlcaused parity inconsistencies
within 17 months since ship date. The fraction is 4.4 timegelothan that for checksum mis-
matches in the case of nearline disks and about 3.5 times tbese that for checksum mismatches
for enterprise disks.

These results assume that the parity disk is at fault. We\elihat counting the number of
incorrect parity disks reflect the actual number of errokdisince: (i) entire shelves of disks are
typically of the same age and same model, (ii) the incidertkease inconsistencies is quite low;

hence, it is unlikely that multiple different disks in thensa RAID group would be at fault.

3.5 Discussion

In this section, we first compare the characteristics ohliasector errors and data corruption
identified by checksum mismatches. Next, we use results romanalysis of latent sector er-
rors and data corruption to develop lessons on how storagtersg can be designed to deal with

corruption.

3.5.1 Latent Sector Errors vs. Checksum Mismatches

Table 3.1 compares the characteristics of latent sectorseeand checksum mismatches. Some

of the interesting similarities and differences are asfef.

Frequency: The fraction of disks that develop checksum mismatches aaitan order

of magnitude smaller than that for latent sector errors. El®v, given that the enterprise
storage world uses millions of disk drives, it is importamhiandle both kinds of partial disk
failures. Also, latent sector errors are more likely to béedeed by system software, since
an actual error is reported by the disk drive; since dataugtions are silent, they may pose

a bigger threat to data, especially on systems without cheukning infrastructure.

Disk model: The fraction of disks affected by both kinds of partial digkldres varies

greatly by disk model. Interestingly, in comparing disk retsdacross the two partial disk

89

Characteristic Latent sector errors Checksum mismatches
Nearline Enterprise | Nearline | Enterprise

% disks affected per year (avg) 9.5% 1.4% 0.466% 0.042%
Disk agef, P(1st error) 1 & Varies Varies
Disk sizef, P(1st error) 0 0 Varies Varies
No. of errors per disk with errors Low Low Low Low
Are errors independent ? No No No No
Spatial locality vV vV vV Vv
Temporal locality Vv vV vV Vv
Correlations with not-ready conditions + No + —
Correlations with recovered errors No + No Unknown
Correlations with system resets Unknown Unknown + +
Activity that detects most errors Media scrub| Media scrub|| Data scrub Data scrub

Table 3.1 Comparison of latent sector errors and checksum mismatchesThis table compares
our findings for latent sector errors and checksum mismatétieboth nearline and enterprise disk models.
We look at factors that affect error rates, characteristié®rrors, how the error is detected, and correla-
tions with other errors. In addition to these correlationatent sector errors and checksum mismatches
share a positive correlation for both nearline and entesgrdisks. The symbols used are as follogvior

increasess« for remaining constant,/ to confirm existencey; for positive correlation, and- for negative
correlation.

90

failures we find that the nearline disk model E-2 has the hagpercentage of disks develop-
ing latent sector errors, but the lowest percentage of diskeloping checksum mismatches
within the set of nearline disk models, despite latent sesrt@rs and checksum mismatches

having a positive correlation (Section 3.4.4).

Impact of disk class: For both latent sector errors and checksum mismatches;peise
disks are less likely to develop an error than nearline digksprisingly, however, in both
cases, once an error has developed, enterprise disks geveigher number of errors than

nearline disks.

Spatial locality: Both latent sector errors and checksum mismatches showsipignal 1o-
cality. Interestingly, the difference in the locality rathat capture a large fraction of errors
— about 10 MB for latent sector errors versus consecutivelsidor checksum mismatches
— provides an insight into how the two errors could be causey differently. Latent sector
errors may be caused by media scratches that could go acacks as opposed to consec-
utive sectors (hence a larger locality radius) while consiee blocks may have checksum
mismatches simply because the corruption(s) occurred \ilinwere written together or

around the same time.

3.5.2 Lessons Learned

We present some of the lessons learned from the analysise 8bthese lessons are specific

to RAID systems, while others can be applied to file systenveadis

e Latent sector errors affect a significant percentage of diskes. They affect up to 20%
of the drives of one of the SATA disk models. Such a high peags implies a need for
maintaining redundant information to protect against di@sa. Single-disk systems should
strive for intra-disk redundancy, perhaps in the form oficgied file-system metadata, while

RAID systems should consider protecting against doublefditures [3, 22, 35, 57, 59, 98]

e Albeit not as common as latent sector errors, data corrnpdimes happen; we observed

more than 400,000 cases of checksum mismatches. For soveawmivdels as many as 4%

91

of drives develop checksum mismatches during the 17 monthii@ed. Similarly, even
though they are rare, identity discrepancies and paritgnsistencies do occur. Protection
offered by checksums and block identity information is #fere well-worth the extra space

needed to store them.

A significant number (8% on average) of corruptions are deteduring RAID reconstruc-
tion, creating the possibility of data loss. In this caset@ction against double disk fail-
ures [3, 22, 35, 57, 59, 98] is necessary to prevent datalMsee aggressive scrubbing can

speed the detection of errors, reducing the likelihood ofmar during a reconstruction.

Although, the fraction of disks that develop corruptionasver for enterprise drives, once
they develop one corruption, many more are likely to foll@werefore, replacing an enter-
prise drive on the first detection of a corruption might makase (drive replacement cost

may not be a huge factor since the probability of first coriupts low).

Some block numbers are much more likely to be affected byuption than others, poten-
tially due to hardware or firmware bugs that affect specifis £ block numbers. RAID
system designers might consider usstgggeredstripes such that the blocks that form the

stripe are not stored at the same or nearby block number.

Strong spatial locality for both latent sector errors andaksum mismatches suggests that

redundant data structures should be stored distant fromather.

The high degree of spatial and temporal locality for cheoksuismatches also begs the
guestion of whether many corruptions occur at the exact seange perhaps when all blocks
are written as part of the same disk request. This hypotlsegjgests that important or
redundant data structures that are used for recoveringaatarruption should be written

as part of different write requests spaced over time.

Strong spatial and temporal locality (over long time pesipdlso suggests that it might be
worth investigating how the locality can be leveraged foager scrubbing; for example,

one can trigger a scrub before it's next scheduled time, wirebability of latent sector

92

errors or corruption is high or perforselectivescrubbing of an area of the drive that’s likely

to be affected.

e Failure prediction algorithms in systems should take irdooaint the correlation of latent
sector errors and corruption with other errors such as eatly-condition errors and with

each other, increasing the probability of one error whemataince of the other is found.
3.6 Conclusion

Our large-scale study of partial disk failures shows thatigledisk failures do occur. In fact,
latent sector errors affect an alarming number of disk driee some disk drive models. Likewise,
data corruption affects around 3% of disk drives within pugear and a half for many nearline disk
models, which are the kind used in commodity systems likedegktops and laptops. Further, the
use of more expensive enterprise drives does not elimirzgecdrruption. Therefore, itis essential
that the storage stack be able to detect and recover fronalpdigk failures.

The analysis of the characteristics of partial disk faitupeovides us with insights that can be
used to build and evaluate reliable storage systems. Iicpkat, data protection techniques should
factor in the spatial and temporal locality of partial disidires. The analysis also shows that disk
scrubbing techniques could play a vital role in proactividyecting partial disk failures.

There is a rich space for future work on characterizing phdisk failures. Specifically, future
studies could focus on the impact of factors such as enviemiand workload. These avenues for

future studies are discussed in Section 9.3.1.

93

Chapter 4

Impact on RAID Systems

RAID (Redundant Array of Independent Disks) stores data aitipte disks in a redundant
fashion in order to survive the failure of one or more of thekdi[101]. Since it was originally
proposed, it has been employed in nearly every enterprasaget system [43, 65, 68, 94].

RAID is specifically targeted towards handling disk failsiréherefore, one would expect a
thorough and verifiable failure-handling scheme. With dengisk failures €.g, an entire disk
failing in a fail-stop fashion), designing such protectsmhemes to cope with disk failures is not
overly challenging. For example, early systems succdgsfigndle the failure of a single disk
through the use of mirroring or parity-based redundancesds [21, 81, 101]. Although getting
an implementation to work correctly may be difficult (oftewvolving hundreds of thousands of
lines of code [146]), one could feel confident that the depr@perly handles the expected failures.

Unfortunately, as the data in Chapter 3 shows, storage ragsteday are confronted with a
much richer landscape of disk failures involving latentteeerrors and silent data corruptions.
These partial disk failures, especially silent data cdions, considerably complicate the con-
struction of correctly-designed protection strategies.

A number of techniques have been developed and used in BsgéeRAID systems to cope
with silent data corruptions. For example, various formglécksumming can be used to de-
tect corruption [18, 129]; combined with redundaneygy, mirrors or parity), checksumming en-
ables both the detection of and recovery from certain ctas$eorruptions. However, given the
broad range of techniques used (including sector checkfl®n87, 65], block checksums [131],
parental checksums [130], write-verify operations [13dgntity information [107, 131], and disk

94

scrubbing [37, 119, 130, 131], to list a few), exactly whiekhniques protect against which fail-
ures is sometimes unclear; worse, combining different @ggres in a single system may lead to
unexpected gaps in data protection.

We propose an approach based on model checking [73] to an#ligzdesign of protection
schemes in current-day storage systems. We develop angdapphplemodel checkeiro examine
different data protection schemes. We first implement a riggical version of the protection
scheme under test; the model checker then applies diffesegntences of read, write, and failure
events to exhaustively explore the state space of the systdrar producing a chain of events that
lead to data loss or a “proof” that the scheme works as desired

We use the model checker to evaluate a number of differenoappes found in real RAID
systems, focusing on schemes that use one parity block pHd Btipe. We analyze how they
detect and recover from a single partial disk failure and fintes in all of the schemes examined,
where systems potentially exposes data to loss or returngatalata to the user. We find that many
of these systems suffer from a general problem that wepeaity pollution wherein corruption to
a disk block on a data disk can spread to the parity disk, byerendering the data unrecoverable.
We use our analysis to construct a protection scheme to sslditissues we discover including
parity pollution; this scheme uses several techniquesidhicy block checksums, both logical and
physical identity information, and version mirroring.

With analyses of each scheme in hand, we also show how a systgigner can combine real
data of failure probability (from our study of the charaddécs of partial disk failures in Chapter 3)
with our model checker’s results to arrive upon a final estiomeof data-loss probability. Doing
so enables one to compare different protection approacteesl@termine which is best given the
current environment.

The rest of the chapter is structured as follows. Sectionbdidfly discusses the evolution
of data protection in real systems. Section 4.2 describesapproach to model checking and
Section 4.3 presents the results of using the model check#®donstruct a variety of protection
schemes. Section 4.4 presents the results of our analydestafloss probability for each scheme

and Section 4.5 concludes the chapter.

95
4.1 Enterprise Data Protection

Protection techniques in real systems have evolved greadytime. Early multiple disk sys-
tems focused almost solely on recovery from entire diskufes; detection was performed by
the controller, and redundancg.§, mirrors or parity) was used to reconstruct data on the daile
disk [32].

As disk drives became bigger, faster, and cheaper, new darckgting failure modes began
to appear, and storage-system vendors added techniqueskte the new failures. For example,
NetApp™ recently added protection against lost writes [131]. Matheo systems do not (yet)
have such protections, and the importance of such protetidifficult to gauge. This anecdote
serves to illustrate the organic nature of data protecthile it would be optimal to simply write
down a set of assumptions about the fault model and thenmassgstem to handle the expected
failures, in practice such an approach is not practicalk®{and other storage subsystem compo-
nents) provide an ever-moving target; tomorrow’s diskufiess may not be present today. Worse, as
new problems arise, they must be incorporated into existthgmes, rather than attacked from first
principles. This aspect of data protection motivates trezrfer a formal and rigorous approach to
help understand the exact protection offered by combinatad techniques.

Table 4.1 shows the protection schemes employed by a rangestefms. Although the table
may be incompleteg(g, a given system may use more than the protections we list,easnly
list what is readily made public via published papers, webssiand documentation), it hints at
the breadth of approaches employed as well as the on-gougdagenent of protection techniques.
We discuss each of these techniques in more detail in SetBomhere we use our model checker
to determine their efficacy in guarding against partial daékires.

Depending on the protection techniques in place, partgM fdiilures may have one or more of

the following outcomes:

Data recovery: The scenario where the protection scheme detects thelphstdailure and uses

parity to successfully recover data.

Elz|E] |.] |o
g13(2| |Elzs
-8 212128]S
£12151212/8 |3 |c
SHHEHHHEE:
System € |»|n|o|a |2 |a|3dl|> |0
Hardware RAID card Vv
(e.g, Adaptec™ 2200 S [1])
Linux software RAID [47, 97] NARYA
Pilot [107] i v
Tandem NonStop [18] V Vv Vv
Dell™ powervault™ [37] NARVARY] v
Hitachi Thunder 9500 [65, 66] | v/ v v
NetApp Data ONTAPY [94, 131] | / | / Vv NARVARY,
ZFS [130] with RAID-4 NARY: v

96

Table 4.1 Protection techniques in real systems.This table shows the known protection techniques
used in real-world systems. Some systems have additionigion techniques: Pilot uses a scavenger
routine to recover metadata, and Powervault uses a 1-bititevstamp” and a timestamp value to detect

data-parity mismatches. Systems may use further proteihniques whose details not made public.

97

Data loss: The scenario where the protection scheme detects thelghskeailure, but is unable

to successfully recover data. In this case, the storagemysports an error to the user.

Corrupt data: The scenario where the protection scheme does not detepattial disk failure

and therefore returns corrupt data to the user.

4.2 Model Checking

We have developed a simple model checker to analyze therdesigarious data protection
schemes. The goal of the model checker is to identify all etten sequences, consistinguder-
level operationsprotection operationsanda single partial disk failure that can lead to either
data loss or corrupt data being returned to the user. The hcbdeker exhaustively evaluates all
possible states of single RAID stripeby taking into account the effects of all possible operation
and partial disk failures for each state.

We have chosen to build our own model checker instead of usingxisting one since it is
easier to build a simple model checker that is highly spetfRAID data protection; for example,
the model checker assumes that the data disks are interdlaleg thereby reducing the number
of unique states. However, there is no fundamental reasgnowhanalysis cannot be performed
on a different model checker.

Models for the model checker are built on top of some basiipities. ARAID stripeconsists
of N disk blocks where the contents of each disk block is definethbymodel using primitive
components consisting of user data entries and protectiinse both the choice of components
and their on-disk layout affect the data reliability, thedebmust specify each block as a series of
entries (corresponding to sectors within a block). Eachyerdan be atomically read or written.

The model checker assumes that the desired unit of consyateane disk block. All protection

schemes are evaluated with this assumption as a basis.

4.2.1 Model-Checker Primitives

The model checker provides the following primitives for Uigethe protection scheme:

98

Disk operations: The conventional operations disk read and disk write argigeal. These
operations are atomic for each entry (sector) and not ovdtipfeientries that form a disk

block.

Data protection: The model checker and the model in conjunction implemenbuarpro-

tection techniques. The model checker uses model-spe&ifiedledge of the protections
to evaluate different states. For example, the result otksiem verification is part of the
system state that is maintained by the model checker. Riatedike parity and checksums
are modeled in such a way that “collisions” do not occur; wehwevaluate the spirit of the

protection, not the choice of hash function.

The model defines operations such as user read and user asiéel lon the model checker
primitives. For instance, a user write that writes a parthef RAID stripe will be implemented by
the model using disk read and disk write operations, paatgudation primitives, and protection

checks.

4.2.2 Modeling Partial Disk Failures

The model checker injects exactly one partial disk failunerty the analysis of the protection
scheme. The model checker supports different types ofgbaisk failures, including latent sector
errors and the different types of data corruption. We nowcdbs how the different failures are

modeled.

Latent sector errors: These failures are modeled as inaccessible data — an égtar is
returned when an attempt is made to read the disk block. Digksvalways succeed; it is

assumed that if a latent sector error occurs, the disk autoatlst remapsthe sectors.

Bit corruptions: These failures are modeled as a change in value of a diskrdbeto

produces a new value€., no collisions).

Lost writes: These failures are modeled by not updating any of the setttatgorm a disk

block when a subsequent disk write is issued.

99

Operation Description Notation

User read Read for any data disk R(X)

User write Write for any combination of disks in theW() is any write, Wpp() is write
stripe (the model performs any disk readwith additive parity,Wsyg() is sub-
needed for parity calculation) ractive; Parameters: X+ is “data

disk X plus others”, IX is “other
than diskX™, full is “full stripe”

Scrub Read all disks, verify protections, recoms

pute parity from data, and compare with

on-disk parity

Latent sector

Disk read to a disk returns failure

FLSE(X)a FLSE(P) for data diskX

error and parity disk respectively

Bit corrup-| A new value is assigned to a sector Fcorrupr(X), Fcorrupr(P) for

tion data diskX and parity disk respec-

tively

Lost write Disk write issued is not performed, butt' osr(X), FLosr(P) for data disk
success is reported X and parity disk respectively

Torn write Only the first sector of a disk write isFrorn(X), Frorn(P) for data disk
written, but success is reported X and parity disk respectively

Misdirected | A disk block is overwritten with data folt Fyuspir(X), Faispir(P) for data

write lowing the same layout as the block, budisk X and parity disk respectively

not meant for it

Table 4.2 Model operations. This table shows the different sources of state transiti¢amsoperations
that are performed on the model, and (b) the different padisk failures that are injected.

100

Torn writes: These failures are modeled by updating only a portion of doéass that form

a disk block when a subsequent disk write is issued.

Misdirected writes: In a real system, these failures manifest in two ways: (iy tugpear
as a lost write for the block the write was intended to (thgeg)y;, and (ii) they overwrite a
different disk location (the victim). We assume that theyétrand victim are on different
RAID stripes (otherwise, it would be a double failure), ahdrefore can be modeled sepa-
rately. Thus, we need to model only the victim, since theat$fef a lost write on the target
is a failure we already study. A further assumption we makbasthe data being written is
block-aligned with the victim. Thus, a misdirected writeni®deled by performing a write

to a disk block (with valid entries) without an actual requiesm the model.

4.2.3 Model-Checker States

A state according to the model checker is defined using thafoilg sub-states: (a) the validity
of each data item stored in the data disks as maintained byndukel checker, (b) the results of
performing each of the protection checks of the model, ahdv{ether valid data and metadata
items can be regenerated from parity for each of the datesdiSke data disks are considered
interchangeable; for example, data diBk with corrupt data is the same as data digk with
corrupt data as long as all other data and parity items ard waboth cases. As with any model
checker, the previously explored states are remembereagtd ee-exploration.

The output of the model checker is a state machine that stirtshe RAID stripe in the clean
state and contains state transitions to each of the unigesstliscovered by the model checker.

Table 4.2 contains a list of operations and errors that cthesstate transitions.

4.3 Analysis

We now analyze various protection schemes using the moéekelh We add protection tech-
niques — RAID, data scrubbing, checksums, write-verifgnitity, version mirroring — one by one,

and evaluate each setup.

101

4.3.1 Bare-bones RAID

The simplest of protection schemes is the use of parity touexcfrom failures. This type of
scheme is traditionally available through RAID hardwaredsg1]. In this scheme, failures are
typically detected based on error codes returned by thecdtigk.

Figure 4.1 presents the model of bare-bones RAID, speciietjuhe primitives provided by
the model checker. In this model, a user read command singtly & RAID-level read, which
in turn issues a disk read for all disks. The disk read primitieturns the “data” successfully
unless a latent sector error is encountered. On a laterdrsscor, the RAID read routine calls the
reconstruct routine, which reads the rest of the disks, andvers data through parity calculation.
At the end of a user read, in place of returning data to the, asalidity check primitive is called.
This model checker primitive verifies that the data is indesldd; if it is not valid, then the model
checker has found a hole in the protection scheme that etamupt data to the user.

When one or more data disks are written, parity is recaledlatUnless the entire stripe is
written, parity calculation requires disk reads. In ordeoptimize the number of disk reads, parity
calculation may be performed in an additive or subtractiarer. In additive parity calculation,
data disks other than the disks being written are read andetwveparity is calculated as the XOR
over the read blocks and the blocks being written. In subtragarity calculation, the old data
in the disks being written and the old parity are first read.ed,hthe new parity is the XOR of
old data, old parity, and new data. Since parity calculatises data on disk, it should verify the
data read from disk. We shall see in the subsections thatidhat the absence of this verification
could violate data protection.

When the model checker is used to evaluate this model andadypartial disk failure is
injected, we obtain the state machine shown in Figure 4.2e Mt the state machine shows only
those operations that result in state transitidres, (self-loops are omitted). The model starts in
the clean state and transitions to different states when failuresiodd/e now describe the state
transitions with an example. A latent sector error to dask di places the model in staba sk y
LSE. The model could then transition backdbean state on a disk read to disk. This disk read

could be initiated due to various reasons. First, a user teatisk X (i.e, R(X)) could cause

102

UserReadDisks[]) RaidReadDisks[])

{ {
data[] =RaidReadDisks][]); for(x = 0 to num(Disks][]))
if(raid read failed) {

Declare double failure and return;
else
CheckValid(Disks[], data[]);

data[x] =DiskReadDisks[X]);
if(disk read failed) // LSE
{

} data[x] =Reconstruc{Disks|[X]);
if(reconstruct failed) // another LSE
{
return FAILURE;
UserWrite (Disks[], data]]) }
{ }
if(Additive parity cost lower for num(Disks[])) }
{ return data[];
otherdisks[] =RaidReadAllDisks[] - Disks[]); }
if(raid read failed)
Declare double failure and return;
parity_data =Parity (data[]+ other disks[]);
} Reconstruc{BadDisk)
else// subtractive parity {
{ for(x = 0 to num(AlIDisks[]))
old_data[] =RaidReadDisks][] + ParityDisk); {
if(raid read failed) if(Disks[x] is not BadDisk)
Declare double failure and return; data[x] =DiskReadDisks[X]);
parity_data =Parity (data[]+ old_data[]); else
} data[x] =DiskReadParityDisk);
for(x = 0 to num(Disks[])) if(disk read fails) // LSE
{ return FAILURE;
DiskWrite (Disks[x], data[x]); }
} new_data =Parity (data[x]);

}

DiskWrite (ParityDisk, paritydata)
return SUCCESS;

DiskWrite (Disks[x], newdata);
return newdata;

}

Figure 4.1Model of bare-bones RAID.The figure shows the model of bare-bones RAID specified using
the primitivesDiskRead, DiskWrite , Parity, andCheckValid provided by the model check&heckValid
is called when returning data to the user and the model ctraahdies if the data is actually valid.

103

the corresponding disk read. Second, a user write to diskould initiate a disk read to it for
subtractive parity calculationYsyg(X+)). Third, a user write to some disk may result in additive
parity calculation, thereby causing didkto be read \Vapp()). We see from the example that the
model can recover from a latent sector error to data diske.st&ite machine shows that the model
can recover from a latent sector error to the parity disk al& we

Let us now consider the state transitions that lead to codata being returned to the user. We
retain the names of states involved in these transitionsttoer data protection schemes as well,
since the role they play is similar across schemes.

Any of the silent data corruptions, lost write, torn writejsairected write, or bit corruption
to data diskX when inclean state, places the model in statesky Error. In this state, disk
X contains wrong data and the (correct) parity on the stripleasefore inconsistent with the data
disks. A user read to disk' will now return corrupt data to the useCdrrupt Data), Simply
because there is no means of verifying that the data is @iiduser write to disks other than disk
X triggers additive parity calculatioWspp(!X)), the corrupt data in disK is used for parity
calculation, thereby corrupting the parity disk as wellthis scenario, both disK and the parity
disk P contain corrupt data, but they are consistent. We term ttoisgss of propagating incorrect
data to the parity disk during additive parity calculatiaparity pollutionand it corresponds to the
statePolluted Parity. Parity pollution does not impact the probability of datsd@r corruption
in this case since bare-bones RAID does not detect any forrorafiption. However, as we shall
see, parity pollution causes problems for many other ptateschemes.

When in statdiskyx Error, if a user write involving diskX leads to subtractive parity cal-
culation Wsyg(X+)), the corrupt data in disK is used for the parity calculation. Therefore, the
new parity generated is corrupt (and also inconsistent thighdata disks). However, since disk
is being written, diskX is no longer corrupt. This state is namedPagity Error in the state
machine. We see that the same state can be reached frgm state when a silent data corruption
occurs for the parity disk. This state does not lead to furtta¢a loss or corruption in the absence

of a second failure (if a second failure is detected on oné®fiata disks, the corruption will be

104

FLost(P) | Rwisoir (P) | Frorn(P) | Feorrupt(P)

Frost(®) | Fmispir (%) | Frorn(X) | FcorruptX)

R(X)
Error

Wapp (x+) Waoo (%) Polluted R
start @' W) Parity
R(X) | Wapp () | Wsyg(x+)
‘ Fise(®) @

w0

Figure 4.2 State machine for bare-bones RAID.The figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a bare-bones RAID-4 stripe and a
single partial disk failure is injected.

105

FLost(P) | Fwisbir (P) | Frorn(P) | Feorrupt(P)

S| Wapp () Parity
Error

FrLost(®) | Fvispir %) | Frorn() | Feorrupt(X) Wsup(x+)
Disk x R(X)

Error

| R(X
W app (X+) Weeh) S | Wapo () Polluted ¢
start @' Parity

S| RX) | Wapp) | Wsyg(x+)
Frse(®) @

S|W0

Figure 4.3 State machine for RAID with scrubbing. The figure shows the state machine obtained
from the model checker when different RAID operations aréopmed on a RAID-4 stripe, and a single
partial disk failure is injected. The protection techniqueed in addition to RAID is scrubbing.

propagated to that disk as well). Thus, we see that, baresoBAID protects against latent sector

errors, but not against silent data corruptions.

4.3.2 Data Scrubbing

In this scheme, we add data scrubbing to the bare-bones RAJ2qtion scheme. As we
discussed in Section 3.1.2.3, data scrubs read all disk®lbhat form the stripe and reconstruct
the data if a failure is detected. The scrub also recompiitegérity of the data blocks and
compares it with the parity stored on the parity disk, thgrdbtecting any inconsistencies. Thus,
the scrubbing mechanism can convert the RAID recovery nréshminto a corruption-detection
technique. Note that if an inconsistency is detected, barees RAID does not offer a method to
resolve it. The scrub should fix the inconsistency (by recotimg the contents of the parity disk)
because inconsistent data and parity lead to further datapton if a second failure occurs and
reconstruction is performed.

When the model checker is used to examine this model, werotiei state machine shown
in Figure 4.3. We see that the state machine is very simildéinab of bare-bones RAID, except
that some edges include the scrub operaionOne such edge is the transition from the state

Disky Error, where data in diskX is wrong, toPolluted Parity, where both the data and

106

parity are wrong, but consistently so. This transition dgra scrub is easily explained —Drsk x
Error, the scrub detects a mismatch between data and parity armdegpithe parity to match the
data moving the model to staPelluted Parity. We see that the addition of the scrub has not
improved protection when only one failure occurs; scrulesiatended to lower the chances of
double failures, not of loss from single failures. In facte whall see later that the tendency of

scrubs to pollute parity increases the chances of data Ibes wnly one failure occurs.

4.3.3 Checksums

Checksumming techniques have been used in numerous system$e years to detect data
corruption. Some systems store the checksum along withateettat it protects [18, 37, 131],
while other systems store the checksum on the access pdi tiata [129, 130]. We will explore
both alternatives. We also distinguish between the schémgstore per sector checksums [18, 37]
and those that use per-block checksums [131].

Sector checksums:In the case of sector checksums, a separate checksum isatpzhéor
each sector and stored along with data in that sector. Figdreshows the state machine obtained
for sector-level checksum protection. The obvious changm the previous state machines is the
addition of two new stateBisky Corrupted andParity Corrupted. The model transitions
to these states from thelean state when a bit corruption occurs to digk or the parity disk
respectively. The use of sector checksums enables thetidetet these bit corruptions whenever
the corrupt block is read (including scrubs), thus initigtreconstruction and thereby returning
the model toclean state. However, the use of sector checksums does not pagastst torn
writes, lost writes, and misdirected writes. For exampden twrites update a single sector, but
not the rest of the block. The checksum for all sectors isefoee consistent with the data in that
sector. Therefore, sector checksums do not detect thesarsz®R (X) fromDisky Error leads
to Corrupt Data).

Block checksums:The goal of block checksums is to ensure that a disk blockesconsistent
unit, unlike with sector checksums. Therefore, a checksugenerated for each disk block (that

consists of multiple sectors) and it is stored along withdhaéa in the block. Figure 4.5 shows

107

FLosT(P) | Fuispir (P) | Frorn(P)
S| Wapp ()

Wgyg(X+)

R(X)
S [Wang (1) R(X Corrupt
IX
ADD Polluted Data
Parity

Fcorrupt(X) Disk x
S| RX) | Wapp 0 | Wsyp(x+) Corrupted
S WO Parity
Fcorrupt(P) Corrupted

LSE(x) Disk x
S| R(X) | Wapp () | Wsyg(x+) LSE

S|W(
LSE(P)

Figure 4.4 State machine for sector checksumsThe figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a RAID-4 stripe, and a single partial
disk failure is injected. The protection techniques usedsarubbing and sector-level checksums.

W app (X+)

Disk x
Error

FLost(®) | Fmispir ¥) | Frorn(X)

108

FLost(P) | Fvispir (P)

FLost(®) | Fuispir ()

Frorn(X)

S|RX) | Wapp () | Wsyg(x+)

Frorn(P)
S|W(Q

Fcorrupt(X)

S| R(X) [Wapp () | Wsug(x+)

Fcorrupt(P)

S|RX) | Wapp) | Wsyg(X+)
LSE(P)

Figure 4.5 State machine for block checksumsThe figure shows the state machine obtained from
the model checker when different RAID operations are paréat on a RAID-4 stripe, and a single partial
disk failure is injected. The protection techniques usedsarubbing and block-level checksums.

109

FLost(P) | Awisoir (P) | Frorn(P) | Feorrupt(P)

S | Wapp ()

Wsyg(x+)

Frost®) | Fmisbir (%) | Frorn() | FcorruptX)

S | Wapp (x)

R(X) | Wapp (x+)

Figure 4.6 State machine for parental checksumsThe figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a RAID-4 stripe and a single partial
disk failure is injected. The protection techniques useslsrubbing and checksums stored in a parent
block.

the state machine obtained for block-level checksum ptiotecAgain, the addition of new states
that do not lead t@orrupt Data signifies an improvement in the protection. The new states
added correspond to torn writes. Unlike sector-level prtove, block-level protection can detect
torn writes (detection denoted by transitions from st@tesky Torn Write andParity Torn
Write to clean) in exactly the same manner as detecting bit corruptionsvdver, we see that
corrupt data could still be returned to the user. A lost wotea misdirected write transitions the
model from theclean state tadDisky Error. When a lost write occurs, the disk block retains the
data and the corresponding checksum written on a previotessamn. The data and checksum are
therefore consistent. Hence, the model does not detectiibatata on disk is wrong. A read to
disk X now returns corrupt data to the user. The scenario is sifatanisdirected writes as well.

Parental checksums:A third option for checksumming is to store the checksum eféhtire
disk block in a parent block that is accessed first during tessals €.g, an inode of a file is read
before its data block). Parental checksums can thus be asedity data during all user reads, but
not for other operations such as data scrubs.

Figure 4.6 shows the state machine for this scheme. We notargy changes to the state

machine as compared to block checksums. First, we see thatadtes successfully handled by

110

block checksums (such &5orn (X)) do not exist. Instead, the transitions that led frehean to
those states now place the modebirsky Error. Second, none of the states return corrupt data
to the user. Instead, a new node calleda Loss has been added. This change signifies that the
model detects a double failure and reports data loss. Tthiedpnly transition tdata Loss is
due to a read of disk’ when in thePolluted Parity state. Thus, parity pollution now leads to
data loss. As before, the causes of parity pollution are settabs or additive parity calculations
(transitionsS or Wapp (!X) lead fromDisky Error toPolluted Parity). Figure 4.7 presents a
pictorial view of the transitions from clean state to paptilution and data loss. At the root of the
problem is the fact that parental checksums can be verifigdfonuser reads, not other sources
of disk reads such as data scrubs or parity calculations. pgkatection technique that does not
co-operate with RAID, allows parity recalculation to usel laata, causing irreversible data loss.
Of the three checksums techniques evaluated, we find thelt breecksumming has the fewest
number of transitions to data loss or corruption. Therefare use block checksums as the starting

point for adding further protection techniques.

4.3.4 Write-Verify

One primary problem with block checksums is that lost wréesnot detected. Lost writes are
particularly difficult to handle. If the checksum is storddray with the data and both are written
as part of the same disk request, they are both lost, lealimgld data and checksum intact and
valid. On later reads to disk block, checksum verificatiompares the old data and old checksum
which are consistent, thereby not detecting the lost write.

One simple method to fix this problem is to ensure that writesrat lost in the first place.
Some storage systems perform write-verify [65, 131] (alsited read-after-write verify) for this
purpose. This technique reads the disk block back aftemititten, and uses the data contents in
memory to verify that the write has indeed completed.

Figure 4.8 shows the state machine for write-verify withdd@hecksums. Comparing this
figure against Figure 4.5, we notice two differences: Filst states representing torn data or parity

do not exist anymore. Second, the transitiBhaggx (X), Frorn(P), FLost(X), andFosr(P) are

111

Disk dO Disk d1 Disk d2 Parity
e, (o [Jom (o o
Subtractlve Parlty
1) Disk reads: {a,b,c}
2) Disk writes: a’ ck(a’) {a’,b,c}
[Lost]

Write b’.c'>d1.d2: -ck a -ck b -
Additive Parity: @ (@ (

1) Disk reads:

2) Disk writes: ck(b’) ¢ ck(c) {ab’,c}
[Polluted]
- - 5
_ ck(®)!| ¢
Read d0:
1) Disk reads: a ck(@)
[Checksum mismatch; attempt reconstruct]
2) Disk reads: b’ c {a,b’,Cc’}

[Reconstructed data (a) does not match checksum; data
loss detected.]

Figure 4.7 Parity pollution sequence. This figure shows a sequence of operations, along with inter-
mediate RAID states, that lead to parity pollution and sujost data loss. Each horizontal set of disks
(Data disks dO, d1 and d2 and Parity disk) form the RAID striplee contents of the disk blocks are shown
inside the disksa, b, etc. are data values, anfdi, b} denotes the parity of valuesandb. The protection
scheme used is parental checksums. Checksums are showta tfextorresponding data disks. At each
RAID state, user read or write operations cause correspogdisk reads and writes, resulting in the next
state. The first write to disk dO is lost, while the checksuthgarity are successfully updated. Next, a user
write to disks d1 and d2 uses the bad data in disk dO to calewatity, thereby causing parity pollution.

A subsequent user read to disk dO detects a checksum mistmatebcovery is not possible since parity is
polluted.

112

Fmispir (P)

S| Wapp ()

Error

Wgyg(x+)
R(x) - .
“ orrup
S | Wapp (1X)
ADD Polluted Data
Parit
Fror Y

[[Fcorrupt(X)
@. Disk x
Start S| RO | Wapp O | Wsyg(x+) Corrupted
‘ SIW0
Parity
Corrupted
S|RX) | Wapp () | Wsyp(x+) @

S| W()
LSE(P)

Figure 4.8 State machine for write-verify. The figure shows the state machine obtained from the
model checker when different RAID operations are perforored RAID-4 stripe, and a single partial disk
failure is injected. The protection techniques used arelsbing, block-level checksums, and write-verify.

Fcorrupt(P)

LSE(Dx)

113

now fromclean to itself, instead of to other states (self-loops shown éadability). Write-verify
detects lost writes and torn writes as and when they occapikg the RAID stripe in clean state.
Unfortunately, write-verify has two negatives. First, heb not protect against misdirected
writes. When a misdirected write occurs, write-verify wduetect that the original target of
the write suffered a lost write, and therefore simply reessiie write. However, the victim of
the misdirected write is left consistent with consistenéaksums but wrong data. A later user
read to the victim thus returns corrupt data to the user. s@calthough write-verify improves
data protection, every disk write now incurs a disk read al, ywessibly leading to a loss in

performance.

4.3.5 Identity

A different approach that is used to solve the problem of doshisdirected writes without the
performance penalty of write-verify is the use of identityarmation.

Different forms of identifying data (also called self-debing data) can be stored along with
data blocks. An identity may be in one of two forms: (a) phgkidentity, which typically consists
of the disk number and the disk block (or sector) number tactvitine data is written [18], and (b)
logical identity, which is typically an inode number ands#t within the file [107, 131].

Physical identity: Physical identity consists of the disk number and the disklbhumber to
which the data is written. This identity is stored along wtle data in the disk block. Figure 4.9
shows the state machine obtained when physical identitynmdition is used in combination with
block checksums. Compared to previous state machines, ¢haethere are two new states
corresponding to misdirected writesjsky Misdir Write andParity Misdir Write. These
states are detected by the model when the disk block is raadnforeason (scrub, user read,
or parity calculation) since even non-user operationssikeib can verify physical identity. Thus,
physical identity is a step towards mitigating parity ptithm. However, parity pollution still occurs
in state transitions involving lost writes. If a lost writeaurs, the disk block contains the old data,
which would still have the correct physical block number. efiéfore, physical identity cannot

protect against lost writes, leading to corrupt data beatgrned to the user.

114

FLost(P)

S| Wapp 0

R(x)
S | Waor (1X) R(X Corrupt
IX
ADD Polluted DI
Parity

Disk x
Misdir
Write

FLost(X)

Fmispir (X)

S|RX) | Wapp O | Wsyg(x+)

Parity
Misdir
Write

start @ S |W0

/ Fumisoir (P)
\ Frorn(X) | Fcorrupt(X)
| S| RX) | Wapp () | Wsys(x+) Disk x

\ Corrupted
Frorn(P) | Feorrupt(P)

Corrupted
FLse(®)

S|RX) | Wapp O | Wsyg(x+)

FLse(P)

S|W() —_LSE

[Parity

Figure 4.9 State machine for physical identity. The figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a single RAID-4 stripe, and a single

partial disk failure is injected. The protection techniguesed are scrubbing, block checksums, and physical
identity.

115

FLost(P) | Fuispir(P)

S| Wapp ()
R(X) | Wapp (X+) ® Wsyp(x+) @
|
FLost®) | Fmispir (X) S| Wapp (*X) o R (O
Woe) Parity Loss

S|R(X) [Wapp () | Wsug(x+)

Frorn(P)
S|W(
S| RX) | Wapp) | Wsyg(X+)

start>{ cle

Fcorrupt(X)

Fcorrupt(P)

S|RX) | Wapp O | Wsyp (x+)

Figure 4.10 State machine for logical identity. The figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a single RAID-4 stripe, and a single
partial disk failure is injected. The protection techniguesed are scrubbing, block checksums, and logical
identity.

116

Logical identity: The logical identity is typically an inode number and offagthin the file.
It is stored along with the data in the disk block. The logickdntity of disk blocks is defined
by the block’s parent and can therefore be verified only durtser reads. Figure 4.10 shows
the state machine obtained when logical identity protectitoused in combination with block
checksums. Unlike physical identity, misdirected writ@s bt cause new states to be created
for logical identity. Both lost and misdirected writes pdathe model in th®iskyx Error state.
At this point, parity pollution due to scrubs and user writasves the system to tt1luted
Parity State since logical identity can be verified only on user se#tlis causing data loss. Thus,
logical identity works in similar fashion to parental cheakns: (i) in both cases, there is a check
that uses data from outside the block being protected, anoh (both cases, corrupt data is not

returned to the user and instead, data loss is detected.

4.3.6 \Version Mirroring

The use of identity information (both physical and logiadbes not protect data from exactly
one scenario — parity pollution after a lost write. We nowaliuce version mirroring to detect lost
writes during scrubs and parity calculation. Herein, eaafatlock that belongs to the RAID stripe
contains a version number. This version number is increatewith every write to the block. The
parity block contains a list of version numbers of all of ttealblocks that it protects. Whenever
a data block is read, its version number is compared to thesponding version number stored
in the parity block. If a mismatch occurs, the newer blocK Wéve a higher version number, and
can used to reconstruct the other data block.

Note that when this approach is employed during user reaas, @isk block read would now
incur an additional read of the parity block. To avoid thisfpemance penalty, version numbers
can be used in conjunction with logical identity. Thus, tdiidentity is verified during file system
reads, while version numbers are verified for parity re-gktton reads and disk scrubbing. This
approach incurs an extra disk read of the parity block onlymviadditive parity calculation is

performed.

117

Wapp (X+) | Wgyg(x+)

S | Wapp (%)

Fmisoir (%)

R(X) | Wapp (x+) | Wgyg(X+)

FlLost(®)

S|RX) [Wapp 0 | Wsyg(x+)

Frorn(®)

Fise()

STRX) [Wapp O | Wsyg(x+)

FLost(P)

S| Wapp ()

Frorn(P)

Famisoir(P)

Parity
Misdir
Write

Figure 4.11 State machine for version mirroring. The figure shows the state machine obtained from
the model checker when different RAID operations are peréat on a single RAID-4 stripe, and a single
partial disk failure is injected. The protection technigugsed are scrubbing, block checksums, logical

identity, and version mirroring.

118

A primitive form of version mirroring has been used in reatms: Dell Powervault storage
arrays [37] use a 1-bit version number called a “write stamigbwever, since the length of the
version number is restricted to 1-bit, it can only be usedetecta mismatch between data and
parity (which we already can achieve through parity recotaaund compare). It does not provide
the power to identify the wrong data (which would enable very). This example illustrates that
the bit-length of version numbers limits the failures tham de detected and recovered from.

Figure 4.11 shows the state machine obtained when versiwaring is added to logical iden-
tity protection. We find that there are now states correspui lost writesDiskyx Lost Write
andParity Lost Write)forwhich all transitions lead tolean. HoweverData Loss could still
occur, and in additionData Loss Declared could occur as well. The only failure that causes
state transitions to any of these nodes is a misdirecteé writ

A misdirected write to diskX places the model iDisky Misdir Write. Now, an additive
parity calculation that uses disk will compare the version number in disk against the one in
the parity disk. The misdirected write could have writteriskdblock with a higher version number
than the victim. Thus, the model trusts the wrong diSland pollutes parity. A subsequent read to
disk X uses logical identity to detect the corruption, but thetydras already been polluted.

A misdirected write to the parity disk causes problems ag.vielerestingly, none of the pro-
tection schemes so far face this problem. The sequenceteftsdasitions leading tData Loss
Declared occurs in following fashion. A misdirected write to the pwrdisk places new version
numbers in the entire list of version numbers on the disk. gy data disk’s version number is
compared against its corresponding version number onighigluring a write or scrub), if the par-
ity’'s (wrong) versions numbers are higher, reconstructeomitiated. Reconstruction will detect
that none of the version numbers of the data disks match ttsgovenumbers stored on the parity
disk. In this scenario, a multi-disk failure is detected #mel model declares data loss. This state
is different fromData Loss, since this scenario is a false positive while the other loasah data
loss.

The occurrence of theata Loss Declared state indicates that the policy used when multiple

version numbers mismatch during reconstruction is falilig.indeed possible to have a policy that

119

FLosT®) | Fmispir (X)

S|R(X) | Wapp O | Wsyp(x+)

S| Wapp 0

FLosT(P) | Rwispir(P)

Frorn(X)

S|R(X) | Wapp) | Wsyp(x+)
S [WO0

Frorn(P)

Fcorrupt(X)

S|R(X) | Wapp O | Wsyg(x+)

Disk x
Corrupteg
S|W()
Fcorrupt(P) Parity
Corrupteg
FLse(X)

S|R(X) | Wapp O | Wsyg(X+)

Figure 4.12 State machine for complete data protection. The figure shows the state machine
obtained from the model checker when different RAID openatare performed on a single RAID-4 stripe,

and a single partial disk failure is injected. The protecti@chniques used are scrubbing, block checksums,
both physical and logical identity, and version mirroring.

120

fixes parity instead of data on a multiple version number natsim. The use of a model checker
thus enables identification of policy faults as well.

We know from the previous subsection that physical idenpitytects against misdirected
writes. Therefore, if physical identity is added to versmanroring and logical identity, we could
potentially eliminate all problem nodes. Figure 4.12 shoiesstate machine generated for this
protection scheme. We see that none of the state translgadsto data loss or data corruption.
The advantage of using physical identity is that the physdentity can be verified (detecting
any misdirected write) before comparing version numbelaisT we have identified a scheme that
eliminates data loss or corruption due to a realistic rarfghsk failures.

We now review the techniques used in the scheme that pratgatest all failures:

RAID: RAID stores a parity block for each set of data blocks and firosides the ability

to recover from single failures.

Block checksums: This technique stores a checksum for each disk block alorig the
block. It provides the ability to detect bit corruptions wieeer the disk block is read. Note
that the checksum protects both the data in the block as weltteer protection elements

such as identity information.

Physical identity: This form of identity is typically a combination of the diskimber and
the disk block number; it is stored along with the disk bloitks used to detect misdirected

writes whenever the disk block is read.

Version mirroring: In this technique, a version number is stored in each datkldad a
copy of it is stored in the parity block. This version numbgincremented for each disk
write. The version numbers on the data and parity blocks anepared whenever parity is

updated. This technique detects lost writes during pastgudations.

Logical identity: This form of identity is typically a combination of the inoadember of
the file to which the disk block belongs and the offset withiattfile. The logical identity

of a disk block is stored in the disk block. This techniquegedito detect lost writes during

121

user read of the disk block. While version mirroring is suéfid for this purpose, logical

identity does so without an extra disk read and is therefeeful.

4.3.7 Discussion
The analysis of multiple schemes has helped identify tHeviehg key data protection issues.

Parity pollution: We believe that any parity-based system that re-uses mxidtta to com-
pute parity is potentially susceptible to data loss due s& €ailures, in particular lost and
misdirected writes. In the absence of techniques to pdyfeerify the integrity of exist-
ing disk blocks used for recomputing the parity, disk scinglkand partial-stripe writes can

cause parity pollution, where the parity no longer reflectsdvdata.

In this context, it would be interesting to apply model chiagkto understand schemes with
double parity [22, 35]. Another interesting scheme thaldte analyzed is one with RAID-
Z [24] protection (instead of RAID-4 or RAID-5), where onlylF-stripe writes are per-

formed and data is protected with parental checksums.

Parental protection: Verifying the contents of a disk block against any value heiiden-
tity or checksum, written using a separate request anddiara different disk location —
is an excellent method to detect failures that are more diffto handle such as lost writes.
However, in the absence of techniques such as version migraachemes that protect data
by placing checksum or identity protections on the acce#is glaould use the same access
path for data scrubbing, parity calculation, and recorsiing data; this approach ensures
that parental protection is used to verify block contentswery read. Note that this ap-
proach could slow down these processes significantly, edpjewhen the RAID is close to

full space utilization.

Mirroring: Mirroring of any piece of data provides a distinct advantagee can verify
the correctness of data through comparison without intenige from other data items (as
in the case of parity). Version mirroring utilizes this adt@ge in conjunction with crucial

knowledge about the items that are mirrored — the highereveunore recent.

122

Physical identity: Physical identity, like block checksums, is extremely usefnce it is
knowledge available at the RAID-level. We see that this Kedge is important for perfect

data protection.

Recovery-integrity co-design:Finally, it is vital to integrate data integrity with RAID fe
covery, and do so by exhaustively exploring all possible@ades that could occur when the

protection techniques are composed.

Thus, a model-checking approach is very useful in decocisitigithe exact protection offered
by a protection scheme, thereby also identifying importita-protection issues. We believe that
such an exhaustive approach would prove even more impartavaluating protections against

double failures.

4.4 Probability of Loss or Corruption

One benefit of using a model checker is that we can assign Ipifiiies to various state tran-
sitions in the state machine produced, and thus easily genapproximate probabilities for data
loss or corruption. These probabilities help compare tfferdint schemes quantitatively.

We use the data for nearline disks (since they are beingasorgly used in enterprise storage
systems) in Chapter 3 to derive per-year probabilities @ ¢ccurrence of the different partial
disk failures. For instance, the probability of occurren€é’; si (a latent sector error) for one disk
is 0.1 (derived from 0.2 for 2 years). The data does not disiish between corruption and torn
writes; therefore, we assume an equal probability of oenae oft'corrupT @aNdFrorn (0.0022).
We derive the probabilities far st andFyspir based on the assumptions in Section 4.2.2 as
0.0003 and 1.88e-5 respectively.

We also compute the probability for each operation to be tisetth encounter the stripe with
an existing failure. For this purpose, we utilize the daition of how often different requests
detect corruption in Section 3.4.5. The distribution is@tofvs. P(User read): 0.2, P(User write):
0.2, P(Scrub): 0.6. We assume that partial stripe writesaofig width are equally likely.

123

Note that while we attempt to use as realistic probabilitynbers as possible, the goal is not
to provide precise data loss probabilities, but to illustride advantage of using a model checker,
and discuss potential trade-offs between different ptmeschemes.

Table 4.3 provides approximate probabilities of data lcmsv/éd from the state machines pro-
duced by the model checker. We consider a 4-data-disk, ifygisk RAID configuration for all of
the protection schemes for calculating probabilities.sTthble enables simple comparisons of the
different protection schemes. We can see that generalplirg protections causes an expected
decrease in the chance of data loss. The use of version mgmeith logical and physical identity,
block checksums and RAID produces a scheme with a thedrebliaace of data loss or corruption

as 0. The data in the table illustrates the following traffsdmetween protection schemes:

Scrub vs. No scrub: Systems employ scrubbing to detect and fix errors and instersiies
in order to reduce the chances of double failures. Howewuar,analysis in the previous
section shows that scrubs could potentially cause datallosso parity pollution. The data
in the table shows that it is indeed the case. In fact, sinaéschave a higher probability
of encountering failures, the probability of data loss gndiicantly higher with scrubs than
without. For example, using parental checksums with scoaloses data loss with a prob-
ability 0.00486, while using parental checksums withoutiss causes data loss with a 3

times lesser probability 0.00153.

Data loss vs. Corrupt data: Comparing the different protection schemes, we see that
some schemes cause data loss whereas others return catapb dhe user. Interestingly,
we also see that the probability of data loss is higher thamptiobability of corrupt data.
For example, using parental checksums (with RAID and sdénghlrauses data loss with a
probability 0.00486, while using block checksums causesipbdata to be returned with a
an order of magnitude lesser probability 0.00041. Thus|enhigeneral it is better to detect
corruption and incur data loss than to return corrupt ddte,answer may not be obvious

when the probability of loss is much higher.

124

2 lo|g
> |2 2| > £
<12 1% c |E |5 | Chance
] c =
0 |9 |0 |&|c |lo |.E
S |25 S |=Z |5 |S of
61568522
05|28 |5 | é .g 2 | Data
s o — = o’
1318 3|82 IEIS|€| Loss
V 0.602%
VARV, 0.602%
NARVARY 0.322%
VARV, V 0.041%
VARV, V *0.486%
V V *0.153%
VARV, V V 0.002%
JIv] v N 0.038%
JIv v v/ |*0.033%
N N v | |*0.010%
JIvl v vIv| [*0.031%
J/ V/ JI1v | |*0.010%
JIive v v | v | *0.004%
N N v | v | *0.0029%
VARV v vV |V |V | 0.000%

Table 4.3Probability of loss or corruption. The table provides an approximate probability of at least
1 data loss event and of corrupt data being returned to the askeast once, when each of the protection

schemes is used for storing data. It is assumed that thegd@gstem uses 4 data disks, and 1 parity disk.
A (*) indicates that the data loss is detectable given thdipalar scheme (and hence can be turned into

unavailability, depending on system implementation).

125

If the precise probability distributions of the underlyifeglures, and read, write, and scrub
relative frequencies are known, techniques like MonteldCsimulation can be used to generate

actual probability estimates that take multiple failunet®iconsideration [39].

45 Conclusion

In this chapter, we have presented a formal approach to zinglyhe design of data protection
strategies. Whereas earlier designs were simple to veyifpdpection €.g, a parity disk success-
fully adds protection against full-disk failure), todaygstems employ a host of techniques, and
their interactions are subtle and often non-obvious.

With our approach, we have shown that a variety of approaétwesd in past and current
systems are successful at detecting a variety of problerhghati some interesting corner-case
scenarios can lead to data loss or corruption. In particwarfound that the problem of parity
pollution can propagate errors from a single (bad) blockttweo (previously good) blocks, and
thus lead to a gap in protection in many schemes. The addifimersion mirroring and proper
identity information, in addition to standard checksumesjty, and scrubbing, leads to a solution
where no single error should (by design) lead to data loss.

In the future, as protection evolves further to cope withrib&t generation of disk problems,
we believe approaches such as ours will be critical. Althoogpdel checking implementations is
clearly important [150], the first step in building any sueskil storage system should begin with

a correctly-specified design.

126

Chapter 5

Impact on Virtual-Memory Systems

This chapter explores the impact of partial disk failuressstual-memory systems. A virtual-
memory system is an integral part of most operating systam|ike file systems, is a significant
user of disk storage.

The virtual-memory system uses disk space to store memaygspthat are not expected to
be of immediate use, thereby freeing-up physical memorpfoer memory pages. When a page
stored on disk is accessed again, itis brought back intoiphlysemory. Thus, the virtual-memory
system is responsible for handling disk failures that affeese memory pages.

Since the virtual-memory system is an integral element efsiorage stack, it is important to
understand how a virtual-memory system responds to palisil failures. We extend the type-
aware fault-injection techniques presented in Sectiorl2didentify the failure-handling policies
of the virtual-memory systems of two operating systemsuki2.6.13 and FreeBSD 6.0. We
also perform a preliminary study of the Windows XP virtuagémory system. We characterize the
policies of these systems based on the IRON taxonomy pesenBection 2.4.

From our experiments, we find that these virtual-memoryesystare not well-equipped to deal
with partial disk failures. Like the file systems studied gc8on 2.5.2, the virtual-memory systems
use policies that are illogically inconsistent and theiluf@-handling routines have bugs. In most
cases, the failure-handling policy is simplistic, and im&ocases, even absent. This disregard for
partial disk failures leads to many problems, ranging faslof physical memory abstraction, to
data corruption, and even to system-security violations.

The rest of the chapter is organized as follows. Section &tiges a background on virtual-

memory systems. Section 5.2 describes our fault-inje@imhanalysis methodology. Section 5.3

127

presents experimental results, Section 5.4 analyzesitbesfdnandling approaches of the systems,

and Section 5.5 concludes the chapter.

5.1 Virtual-Memory Systems

A virtual-memory system uses disk storage to provide appbas with an address space larger
than available physical memory. This helps the system d&euultiple processes with large ad-
dress spaces simultaneously. The disk area used by thalvinemory system is calleswap
space The virtual-memory system uses swap space to store menagegspthat are not expected
to be of immediate use. Typically, systems tend to removepdgat have not been accessed re-
cently or that are not accessed frequently from memory aor@ shem on disk (calledage-ouy.
When a page stored on disk is accessed again, it is broughiriaghysical memory (callegage-
in). The page-out/page-in process is transparent to apiplsafexcept for performance effects).
Thus, the virtual-memory system is responsible for hamgdiartial disk failures and maintaining
the illusion that the page is actually in physical memory.

Virtual-memory systems make use of file systems in two seéesafirst, instead of directly
using on-disk space, swap space can also be maintained asradifile system. Second, virtual-
memory systems allow applications to memory-map file datg. §sing themmapsystem call).
When a file (or a portion of a file) is memory-mapped, applmadi can operate on file data as if
they were memory locations. User code pages are also memapped from the executable file
when a program is executed. In such scenarios involving aygéem, the virtual-memory system
depends on the file system to recover from or report partgh thilures.

The following subsections outline the features of two \@ltmemory systems, Linux 2.6.13
and FreeBSD 6.0 whose failure-handling policies have baaties] in this chapter. The features

of the Windows XP virtual-memory system will be discussethiitis evaluation in Section 5.3.4.

5.1.1 Linux2.6.13

The Linux 2.6.13 virtual-memory system has largely beeivddrfrom the previous Linux ver-

sions. It performs swapping only for user-mode pages [25krunode pages are the data, stack,

128

and code pages that form the user process. In order to keeprthal-memory system simple,
pages that belong to the kernel are not paged out. This diogpion is not highly restrictive as
kernel pages occupy only a small portion of main memory. Tdgepreplacement algorithm used
is similar to the “2Q” algorithm [71]. When paged-out pages accessed, space is created for
the pages and they are read from disk. The system also issa@s in advance.€., read-aheagl
based on application accesses to improve performance . Wdpearea can either be a separate disk
partition or a file in a file system. It containsssvap headethat has information about the swap

area like number of blocks, a list of faulty blocks and so on.

5.1.2 FreeBSD6.0

The design of the virtual-memory system in FreeBSD is basgti®@Mach 2.0 virtual-memory
system, with considerable updates over the years. The B2dB0 virtual-memory system allo-
cates pages when requested from a free list of pages anditaime sufficient free pages by paging
out less frequently used (inactive) pages [89]. The FreeBi&Dal-memory system also provides
for paging out entire processes. This implies that in additdo user-mode pages, the kernel thread
stacks of processes can be paged out and page tables caedbavfren the system is under ex-
treme memory pressure [89]. Unlike Linux, the FreeBSD aHmemory system does not perform
extra read-ahead; that is, it does not issue separate lackaommands, although it tries to read
as many as 8 blocks as part of one read command for a blockstimaeided. Like in Linux, the
FreeBSD swap area can either be a disk partition or a file. TeeBSD swap area does not have

any data structures like the Linux swap header.

5.2 Methodology

In this section, we describe our fault injection and analysethodology. As in the file-system
study in the previous chapter, the methodology is primatégived from type-aware fault injection
described in Section 2.5.1. In this section, we first desctite failure model used, then describe

our fault-injection framework, and finally discuss typearaness for a virtual-memory system.

129

5.2.1 Failure Model

The different types of partial disk failures injected araderrors, write errors, and bit corrup-
tions. In the case of read and write errors (latent sectaremxperienced during read and write
respectively), an error cod€lQ) is returned to the virtual-memory system. We also zeanbtbe
page in memory (ensuring that valid data is not placed in migpiithe read is failed with an error
code. This zeroing-out is needed because the virtual-meaystem may ignore an error code re-
turned; in such a case, if valid data is placed in the respgeatiemory page, the system may seem
to work just fine. For bit corruption, the block contents alter@d; we zero-out the block in our
experiments and in case the corruption is detected, wenpedonore detailed analysis, corrupting
each field of the data structure with field-specific valueseipagate experiments. All partial disk

failures are permanent; no amount of retrying of the diskrapen will yield correct data.

5.2.2 Fault-Injection Framework

Our fault-injection framework consists of two componenie harnessand theinjector. The
harness sets the system up for exposure to disk faults. @y tonsists of three types of user
processes: aoordinatorfor managing the benchmarking and fault injectigittimsthat allocate
a large memory region, sleep for a while and then read the menegion, andaggressorghat
allocate large memory regions to force out the victims’ gatgethe swap area or to the file system.
Partial disk failures are injected either when the victipages are paged out to disk or when they
are read back by the victims.

The fault injection is performed by the injector, which irgeses between the virtual-memory
system and the hard disk. Specifically, the injector has Ibedhas a pseudo-device driver for
Linux 2.6.13, as a geom layer [89] for FreeBSD 6.0, and as geidter driver for Windows XP.

The failure-handling policy of the system is identified by amual observation of the results

of fault injection. Specifically, we use the following soascof information:

e The injector logs all I/O operations in detail, enabling asletermine some failure-handling

policies; for instance, the logs show whether the virtuaihmory system is performing retries

130

(read or write is repeated with the same disk block numbemeorapping (disk write is

repeated for a different disk block, but with the same menpaye).

e The harness records all return values and signals receNasl helps in determining whether
an error is reported. The harness also checks (and repoetsatidity of data read back. This

helps in checking whether there is data corruption.

e We manually examine the system message log for any erroragessecorded by the

virtual-memory system.

We characterize the different failure-handling policiessng the IRON taxonomy described in
Section 2.4. The techniques described in this subsecte@pranarily used to determine detection

and reaction policies. We discuss experiments to deterprieention policies in Section 5.3.3.

5.2.3 Type Awareness

We performtypeaware andccontextaware fault injection by injecting partial disk failuresrf
specific disk blocks at specific times. An example of a blogletin a virtual-memory system is a
user-level private data segmensér data. Therefore, a fault injected for a disk block that holds a
private user data page is type-aware. A contextis a basatitmperformed by the virtual-memory
system or an interface offered by the virtual-memory systerapplications. An example of a
context is theswapoff system call. Therefore, a fault injected for a disk block wkeapoff is
in progress is context-aware. Table 5.1 presents variackli/pes for which failures are injected
and indicates which virtual-memory systems use them, aldeTa2 presents different contexts
when fault injection can be performed. The different typed aontexts that can be explored are
dependent on the particular system under study.

As discussed in Section 2.5.1, in order to perform type-aviault injection, the injector should
be able to detect the type of blocks being read or written.s Tatection is accomplished in a
variety of ways. The harness communicates type informaggarding data pages to the injector.
For example, the harness allocates user data pages amdizegithose pages to contain specific

values and conveys the values to the injector. Thus, in sases; the injector uses bloc&ntent

131

Block Type | Description Detection System
swap header Describes the swap space Disk location Linux
user data Page from private user data segmeontent Linux, FreeBSD
user stack | Page from user stack segment Content Linux, FreeBSD
shared Shared memory page used by man@ontent Linux, FreeBSD
processes
mmapped | Memory-mapped file data Content Linux, FreeBSD
user code | Page from user code segment Disk location Linux, FreeBSD
kernel stack | Page from kernel thread stack of| &ernel information| FreeBSD
user process

Table 5.1 Block types. The table describes the different types of blocks that dledfand gives the
detection method and applicable virtual-memory systeneémh type. In order to detect kernel thread
stack pages, we made a simple modification to the FreeBSRIkerabtain the memory addresses of these
pages.

132

Context Workload Virtual-memory system actions
swapon Makes swap space available foRead swap header if any, initialize in-
swapping core structures
swapoff Removes swap space from use | Page-in valid blocks and free the swap
space
pagetouch | Page is accessed by the victim | Read page from disk
readahead | Workload induces readahead byerform read-ahead by reading blocks
reading nearby pages from disk
madvise Victim issues madvise May or may not page-in the blocks
(MADV WILLNEED) to hint | specified in hint
possible future reads
pageout Aggressors create memory presWrite inactive memory pages to disk
sure causing page-out
umount The file system is unmounted May have to write of “dirty” mmaped
file data
complete | Process scheduled again affdPage-in essential data structures of

complete page-out

process

Table 5.2 Contexts. The table shows the workload for the different contextsdnaused in the experi-
ments and the actions performed by the virtual-memory gsy&ieeach context.

133

to determine the block type. Another method employed tordetes the type is to use thaisk
locationof the block. For example, the Lintswap headeis always located at block 0 in the disk
partition. Table 5.1 also provides the detection methoeéah block type.

Thus, we use fault injection to determine the failure-harglipolicies adopted by virtual-

memory systems for different combinations of block typejteat, and type of partial disk failure.

5.3 Experimental Results

In this section, we present the results of our type-awar#-fajection experiments on three
virtual-memory systems, Linux 2.6.13, FreeBSD 6.0, anddbims XP. We have performed a de-
tailed analysis of the Linux 2.6.13 and FreeBSD 6.0 virtma&mory systems, and a preliminary
analysis of the Windows XP virtual-memory system. We firstu® on IRON detection and re-
action techniques of Linux and FreeBSD, then discuss pteretechniques of those systems,
and finally evaluate Windows XP. The different levels of tlRR®ON taxonomy are described in
Section 2.4.

We present about 30 different scenarios (combinationsaxfiaype, context, and type of par-
tial disk failure) for Linux and FreeBSD. All experimentsvisiving swap space are performed
using a separate disk partition as swap space (except fatdwis XP), while experiments involv-
ing memory-mapped files or user code pages use the ext3 filensy$41] in Linux 2.6.13 and the
Unix File System (UFS2) [89] in FreeBSD 6.0. The observetlifathandling policy for experi-
ments involving a file system is a combination of the poli@éshe virtual-memory system and

the file system.

5.3.1 Linux2.6.13

Tables 5.3 and 5.4 present the results of fault injectionh@nltinux 2.6.13 virtual-memory
system.

Detection: We find that most read errors are detected usihg,.-c.q4., Which is checking
of return codes. The exceptions occur duriwgpoff (when the virtual-memory system pages

valid blocks into memory); the error is not detectdd,(,.,) and the application to which the data

134

swapon
swapoff
readahead
madvise
pageout
umount

user data —

user stack | —

N N N

shared —

m m m m
|
|
|

mmapped | — | —

m m m m m| pagetouch

user code — | —

Read Errors

swap header E | —

user data — == |—|—
userstack | —|—|— | — | —
shared — == |—|—
mmapped | — | — | —|— | —

user code —_ === —| —

Write Errors

swap headef — | — | — | — | — | — | —

user data — | Z
userstack | — | Z
shared — | Z

mmapped | — | —

N N N N N

user code — | —

Corruption

swap header Y! | — | — | — | — | — | —

Symbols: ZZero E Errorcode Y Sanity — Not applicable

Comments (1) Sanity checks for swap space signature, version nunzkbad block count

Table 5.3Linux 2.6.13 detection techniquesThis table presents the Linux 2.6.13 detection techniques
for read errors, write errors, and corruptions for combii@ts of block type (rows) and context (columns).
Comments, if any, are provided below the tables.

135

swapon
swapoff
pagetouch
readahead
madvise
pageout
umount

5

9
@)
|
|
|

user data

user stack —

N N N
g
@)

[}
|
|
|

shared — pLé | Db | — | — | —
mmapped — |—|R2PID? | D | — | —

user code — | —RRPL | — | — | — | —

Read Errors

swap header tR3* | — | — | — | —|—| —

user data — | = — | ==
user stack — | = — | ==
shared — | = — | ==
mmapped — | = — |—|—

user code — —| — —_ | — | =] —

Write Errors

swap headet — |—| — |—|—|—|—

user data — Z
user stack — Z
shared — Z

mmapped — | —

N N N N N

user code — —

Corruption

swap header P — = | == —|—

Symbols: ZZero P Propagate R Retry D Record — Not applicable

Comments (1) SIGBUS signal (2) One separate retry for every block needed in thygnal request

(3) Retry is not actually used (4) Operation fails but susdeseturned (error is not reported) (5) This
operation is remembered when page is actually touched (6} Brreported to all processes that touch the
page after the read error occurs

Table 5.4 Linux 2.6.13 reaction techniques.This table presents the techniques used by Linux 2.6.13
to react to read errors, write errors and corruptions for cbimations of block type (rows) and context
(columns). 1 indicates a possible bug in the implementation. Commehés)yi, are provided below the
tables.

136

belongs is given junk data on a future memory access. Thikldead to application crashes or
data corruption.

None of the write errors are detecte4.,.,). A read of the page after an ignored write error
causes the virtual-memory system to page-in the disk blatk g previous contents. Missing
these errors can lead to application crashes or applica@ba corruption (because of bad data)
or even system security problems since the applicationdcpaksibly read data that belongs to
another process.

Almost all corruptions are not detected and the corrupted dareturned to the application.
One exception is the use dlg,,;, for the swap header duringrapon. The checks are for (a)
the correct swap space signature.(a type check) (b) the correct version number, and (c) the
number of bad blocks being less than the maximum allowableeWWve used a zeroed-out block
as corrupted data, the check for the swap space signatweredcwe then modified specific fields
in the swap header without modifying the signature to idgrikie other sanity checks.

Reaction: For cases where the partial disk failure is detected, Linsesibasic reaction mech-
anisms. On a read error for an application-accessed pag@leBUS signal is used to inform the
application of an errorRg.,.+). In the case of a shared memory page, all processes thii tioeic
pageafter the read error occurs receive tREGBUS signal — in other words, the virtual-memory
system does not retry the read when each process accesgesgthe Another use aRgcport IS
when the swap header is corrupted, in which case an errotusel for theswapon call.

In the experiments with memory-mapped file data and user,@detry is observedHxz..,,)
for the specific disk block that the system actually needsnei/the original operation involved
many disk blocks, the retry is performed for only one blockisIretry may have been initiated by
the file system and not the virtual-memory system. When a tedde swap header fails during
swapon, a retry is performedRr..,,), but perhaps due to implementation bugs, the results of the
retry are not actually used. Alsewapon returns success during read errors even though the call
fails internally {.e., it does not report the error).

Rrecorq 1S Used to handle read errors fioradahead andmadvise. By USINGR zecord, the System

records the failure of the read for future reference. In hgihdahead andmadvise, the data is

137

not required immediately — read-ahead is only an optinozaliy the virtual-memory system and
madvise is only a hint that the block will likely be accessidthe readahead case, the error is
reported when the page is actually touched andhdrise, a retry is performed when the page is

touched — both actions use the fact that the first read wascoassful.

5.3.2 FreeBSD6.0

Tables 5.5 and 5.6 present the results of fault injectionhenRreeBSD 6.0 virtual-memory
system.

Detection: Dg..orcode 1S USed in every single case for detecting both read and ertas —
the FreeBSD 6.0 virtual-memory system always checks tlug eode returned. FreeBSD does not
detect block corruption?..,). While this leads to application crash or data corruptiomiost
cases, it leads to a kernel crash when corruption of kermehthstack blocks is not detected; in
this case serious errors like system becoming unbootablalso possible.

Reaction: Various reaction mechanisms are used in FreeBSD 6.0 to ddatietected errors.
Rpetry is used when memory-mapped data is written during a file systemount. In fact, the
system retries as many as 6 times for eaabunt call. We believe that these retries are performed
by the file system and not the virtual-memory system (wedtilument the behavior here since it
is the behavior observed by an application using memorypedfile data, a feature supported by
the virtual-memory system).

Read errors during page accesses cause the virtual-megsteynsto deliver 8IGSEGV (seg-
mentation fault) to the application, an instance®f, ... Experiments showed that in the case of
shared memory, unlike in Linux, processes sharing the mgmnegion operate independently; that
is, even if the error has been reported to one of the procéisaeaccessed the page, the disk access
is retried when a second process accesses the pagg,: is also used when all write retries are
failed duringumount; an 1/O error is returned to the application.

Rsu0p 1s used for read errors durinrgrapoff and for read errors during a page-in of the kernel
thread stack. In both cases, the result is a kepaelic, a conservative action. Duringageout,

the virtual-memory system attempts to free memory pagesrlijnggthem to swap space. If write

138

S
O ()]
4 =)) I} P
=] Ul o n [0} 3 P
[} o | |H | H o o
o | |l o | & o, | o 3
© © eY0]] = b0 le]
= = o © o © g
w|lw | |8 |0 |a|3
userdata |— | E|E|—|—|— | —
userstack | — | E| E|— | — | — | —
shared — | E|E|—|—|—| —

2

S mmapped | —|—|E|—|—|—| —

L

S usercode | — | — | E|—| — | — | —

(O]

x kernelstack —| E | —|—|E | —| —
userdata | —|—|—|—|— | E | —
userstack | — | — | —|— | — | E | —
shared — | —|—=|—=|—=|E | —

2

S mmapped | —|—|—|—|— | E|E

LU

@ usercode | —|—|—|—|—|—|—

= kernelstack — | — | — | — | — | E | —
userdata | — | Z | Z | —| — | — | —
userstack | — | Z | Z |— | — | — | —
shared — |z Z | —|—|—]|—

S mmapped | — | — | Z |—|—|—| —

o

2 usercode |— | — | Z | —| — | — | —

(@]

O kernelstack — | Z | —|—| Z | — | —

Symbols: ZZero E Errorcode — Not applicable

Table 5.5 FreeBSD 6.0 detection techniquesThis table presents the FreeBSD 6.0 detection tech-
niques for read errors, write errors, and corruptions forrabinations of block type (rows) and context
(columns). FreeBSD does not read any block dugngpon and does not read pages in fatdvise (—in

the table).

139

S o
4 3 0] TE)
=} L o n (0] 3 fa]
o] o L s — o =}
[oH Q o = [oW Q 3
o] o) a0 ol g [e10] o
= =] © o)] g
n)] (oW g V) o, 3
userdata | — | S | P2 | — | — | — | —
userstack | — | S |P? | —| —| —| —

o shared — s |P2|—|—| —| —

© mmapped | —| — |P?| — | —| —| —

L

T user code |— | —|P? | — | — | —| —

(O]

@ kernelstack — | S | —|— | S | —| —
userdata | —| —|—|—|— | D*| —
userstack | —| — | — | —|— | D*| —
shared == =Dt —

2

© mmapped | —| —|—|—|— | D! | R%PS

L

@ usercode | — | —|—|—|—|—| —

= kernelstackK — | — | — | — | — | D*| —
userdata |—| Z | Z | — | — | — | —
userstack | — | Z2 | Z | — | — | — _
shared —Zz | Z|—|—]| —| —

‘5 mmapped | — | — | Z |—|— | — | —

I<%

S5 usercode |— | — | Z|—|—|—| —

o)

O kernelstack — |Z2' | — | —|Z2' | — | —

Symbols: ZZero P Propagate R Retry D Record SStop — Not applicable

Comments: (1) Kernel crash when the stack is usedg2ESEGV signal (3) Kernel panic (4) Memory
page not freed; alternate victim chosen for page-out (5pBpeetries of the disk write (for all blocks)
(6) 1/O error returned

Table 5.6 FreeBSD 6.0 reaction techniquesThis table presents the techniques used by FreeBSD 6.0
to react to read errors, write errors, and corruptions forrabinations of block type (rows) and context
(columns). Comments, if any, are provided below the tableeeBSD does not read any block during
swapon and does not read pages in faedvise (— in the table).

140

errors occur during this page-out process, the FreeBSDaltrhemory system reaction i8z...,4.
In this case, the virtual-memory system remembers that thie aperation has not been performed
successfully, so that the memory page is not freed. Sinceittual-memory system is not able to

successfully free the memory page, it proceeds to seledtemate victim for page-out.

5.3.3 Prevention Techniques

Determining prevention policies is more difficult than detening detection and reaction poli-
cies since the prevention policy may not be triggered by &iqudar disk fault. Therefore, our
methodology for uncovering the prevention policy is to usspacific test for each prevention
technique.

Prememper 1S the only prevention technique that may be triggered bijtdavVe test for use of
Premember DY iNjecting a “sticky” error repeatedly for the same diskdkt and checking whether
the virtual-memory system stops using the disk block. Thekiwad performs 10 iterations of a
page-out/page-in of victim pagesser datd. For both Linux 2.6.13 and FreeBSD 6.0 we find that
the “bad” disk block is used repeatedly, in spite of retug@m error each time. The same results
are obtained for both read and write errors. This indicates Linux and FreeBSD likely do not
keep track of bad blocks.€., Prenemper 1S NOt USed).

We test for Prouapaance DY causing the virtual-memory system to page-out many uatx d
pages numerous times and checking whether all blocks invilap srea are used fairly evenly.
This workload performs 10 iterations of a page-out/pagefimictim pages. In both Linux and
FreeBSD, the same disk blocks are reused repeatedly, ewegliimany other blocks in the swap
area have not been written to even once. This indicates lieasystems likely do not perform
wear-leveling (.., ProadBatance 1S NOt USEd).

Finally, to detectPr...;: and Ps.., we simply observe whether these activities occur over an
interval of using the virtual-memory system. Given that vitribt observe any instance 6%.y00t
or Ps..,, during any of our experiments, we infer that it is likely timaither Linux nor FreeBSD use
these techniques. In summary, our experiments indicate#ither Linux 2.6.13 nor FreeBSD 6.0

appear to use any of the prevention techniques.

141

5.3.4 Windows XP

This subsection first outlines particular features of theddws XP virtual-memory system,
then discusses its failure-handling policies. Windows XBaua file in an NTFS patrtition to store
memory pages that get paged-out. Therefore, the failunelirey policy we extract is a combina-
tion of policies of NTFS and the virtual-memory system. Wang XP allows for paging out of
both user and kernel memory. We inject faults only deer data pagesRead errors and corrup-
tion are injected duringagetouch and write errors are injected duripggeout. We use the error
COdeSTATUS DEVICE DATA _ERRORfor read and write errors.

Detection: Windows XP uses the error code returned by the disk to detgbtiead and write
errors D e, rorcode)- COrruptions are not detectedy,.,.).

Reaction: Reaction to read errors is terminating the user applicatieporting the erroin-
PageError(Rr.yor:). The reaction to write errors is more involved. It primgnisesR z...q: the
memory pages for which the error occurs are written elsea/mdren they are selected for pag-
ing out again. As for the disk block with the error, it is firgad back. If this read succeeds, a
half-block write is performed. If the read fails, a half-bloread is performed. Irrespective of the
success or failure of the half-block operations, the bleaksed for future writes, usingz..orq to
deal with any errors to these writes. We have not been abttettify the purpose of the half-block
operations. Also, after a transient write error, althoulgg disk blocks are subsequently success-
fully written, they are not read back even when the applicaticcesses the data, thereby leading to
the application receiving junk data. This indicates a gaeddug in handling write errors. Further
investigation is required to ascertain this behavior.

Prevention: Fault-injection experiments demonstrated that a givek disck is not re-used
after about 6 errors for the block%.,.......-). The block is added tolaad cluster fileand is never
used again unless the disk is re-formatted. We did not obsbhewuse of any of the other prevention

techniques.

142

5.4 Discussion

In this section, we first discuss the failure-handling apptoof the virtual-memory systems,

and then discuss our experience with the fault injectiohnegues used.

5.4.1 Failure-Handling Approaches

In this section, we discuss the approaches that currentalirhemory systems adopt to han-
dle disk failures, contrasting the techniques used andifgerg the deficiencies of the systems.
We also compare the approach of virtual-memory systemsabdhfile systems (discussed in

Section 2.5.2). We start by summarizing the different appheas of the virtual-memory systems:

Linux: Linux fails to detect many partial disk failures (even ondseve error codes are
returned) and follows simple reaction schemes to deal wateated errors. With respect to

corruption, onlyswap headecorruption is detected.

FreeBSD: FreeBSD correctly detects all disk errors with error codmsg, ignores corrup-
tions. It uses simple reaction schemes to deal with err¢ttsoigh it is more conservative
than Linux for some cases — the kernel caltsiic to stop the entire system when a read

fails duringswapoff, even if the read affects only a single application.

Windows XP: Windows XP detects disk errors with error codes but igno@suptions.

It uses simple reaction schemes. It is the only system fockvhie observed a prevention

technique Premember)-
In general, the systems suffer from the following deficiesci

Simple reaction techniques:The virtual-memory systems studied use only simple reactio
techniques to deal with partial disk failures. There is nerapt to use techniques like

redundancy to completely recover from partial disk faiture

Ignore data corruption: Of all our data corruption experiments, only one case (Liswap
headej is detected. Virtual-memory systems assume that diske slata reliably, which

may not be true for commodity hardware.

143

Under-developed mechanisms:A prime example of an under-developed mechanism is
remembering bad blocks. The Linux swap header has a provisistore a list of bad
blocks. This list can be used effectively to prevent data (0%:.,.c.mver). HOWever, the list

is initialized duringmkswap and not updated afterward when new errors occur (on the other
hand, Windows XP actively uses and updates a bad clusteoféwdid using error-prone
blocks).

Memory abstraction mismatch: Applications expect all their pages to behave as if they are
always in memory. The virtual-memory system should mamthis memory abstraction
even when partial disk failures occur. An important part dimtaining the abstraction is
error reporting. If an failure cannot be handled by the systa should be reported in a
manner that fits the memory abstraction. For example, LineesutheSIGBUS signal to
report page read errors (by definition, hardware failures@ausesIGBUS to be generated).
However, FreeBSD uses tl8&GSEGV signal (which almost always is intended to indicate a

programming error) to report read errors, which is not appiede.

Very few retries: There were very few instances of retrying an operation wherraor
occurs. Retrying can solve the problem in the case of a gahsirror and systems would

benefit greatly by employing retries [53].

lllogical inconsistency: The reaction techniques employed are inconsistent foiscabech
are not very different. For example, in FreeBSD, a read dooa user data page may result

in a report in one case§getouch), while it results in kernel panic in anotheswapoff).

Buggy implementation: It is observed in Linux that failure-handling code is bugdnor
example, the result of a retry is ignored, making it usel®és.suspect that failure-handling

code is rarely tested and is thus likely to have bugs, as deewleere [93].

Security issues:A system that is fairly secure during normal operation cduddome in-
secure when there is a partial failure. In Linux, when date#&l back after a failed write,

the disk block’s previous contents are returned to the apfpbin, possibly delivering data

144

that the application is not authorized to read. Such fadureed to be dealt with given that
there is an increasing awareness towards exploiting eaasignt hardware errors to attack

systems [50].

Kernel exposure: Systems should take special care when kernel-mode datareddsbn
disk. In FreeBSD, corruption of the kernel thread stack isdedected. This may result in

undesirable crashes or severe data corruption.
5.5 Conclusion

The virtual-memory system is an important component of tioeage stack in nearly every
operating system. Therefore, virtual-memory systems lshbe designed to handle partial disk
failures. From our fault-injection experiments, we findttlearrent virtual-memory systems do
not employ consistent failure policies that provide congplecovery from partial disk failures.
Improving the failure-awareness of these systems woultdlerthem to truly virtualize memory,

providing applications with a robust memory abstraction.

145

Chapter 6

Impact on File Systems

A file system is a crucial component of the storage stack; moglications use file systems to
store data. In commodity systems, such as desktops ang#afile systems are also tasked with
the responsibility of ensuring that the data is stored bdfiaSince partial disk failures could have
a huge adverse impact on data reliability, it is extremelpamtant to understand how current file
systems react to partial disk failures.

In previous work [104] (described in Section 2.5), we exagdihow various file systems han-
dle latent sector errors and completely-corrupt disk béockn this chapter, we develop a more
thorough understanding of how file systems react to coromptin particular, we perform targeted
non-random corruption of on-disk pointers of file systems.

File systems today use a variety of techniques to proteehsgeorruption. ReiserFS, JFS, and
Windows NTFS perform lightweight corruption checks likgé&ychecking [104]; that is, ensuring
that the disk block being read contains the expected dae tyjhese file systems also employ
sanity checking (verifying that particular values in dataistures follow certain constraints) to
detect corruption [104]. ZFS checksums both data and migtdodiecks to protect against corrup-
tion [130]. The techniques above are useful for detectimgugion. In order to recover from cor-
ruption, most systems rely on replicated data structuresekample, JFS and NTFS replicate key
data structures, giving them the potential to recover fremuption of these structures [20, 128].

We seek to evaluate how a set of corruption-handling teclesigvork in reality. While con-
ceptually simple, there may be design or implementatioail$ethat preclude a file system from
reaping the full reliability benefit of these techniques. &aluate file systems using software fault

injection.

146

One difficulty with a pointer-corruption study is the potafiy huge exploration space for
corruption experiments. To deal with this problem, we deped fault-injection technique called
type-aware pointer corruptignan extension of type-aware fault injection. Type-awareigo
corruption (TAPC) reduces the search space by systemgtiotelnging the values of only one disk
pointer of each type in the file system, then exercising tleesfjistem and observing its behavior.
We further narrow the large search space by corrupting thlebinters to refer to each type of data
structure, instead of to random disk blocks. The technigusuccessful because different block
types are used differently by the file system, thereby inmgythat the blocks and the pointers that
point to them might be protected in different ways. An impottadvantage of TAPC is that it
helps understand the underlying causes for observed sysbavior. TAPC works outside the file
system, obviating the need for source code.

We use TAPC to evaluate two widely-used file systems, Wind8W&S [128] and Linux
ext3 [141]. We examine their use of type checking, sanityckhmgy, and replication to deal with
corrupt pointers. We ask the simple questidn:these techniques work well in reality¥e focus
on NTFS in this study; NTFS is a closed-source system for whitle information is available
about exact failure policies, thus making its study vergiiasting. Our analysis of ext3 is less-
detailed, primarily aimed at demonstrating the generdityisf our approach.

From our pointer-corruption experiments, we find that bold $iystems fail to recover from
many pointer corruptions despite the availability of redant information. This failure to recover
is due to poor use of techniques like type checking and ragdin. Our observations help us
identify several lessons and pitfalls for building coriioptproof file systems.

The rest of this chapter is organized as follows. Sectiord&dusses why we explore pointer
corruption. Section 6.2 describes type-aware pointerugtion. Section 6.3 presents a brief
overview of NTFS and how we have applied TAPC to study NTF$tiSe 6.4 presents the results
of our analysis of both NTFS and ext3, and Section 6.5 cordudle chapter.

147

6.1 Why Pointer Corruption?

Although any block on disk may become corrupt, some coramstiare more damaging than
others. If a data block of a file is corrupt, then only the aggtiion that reads the file is impacted.
However, if a disk block belonging to file-system metadateasupt, then the entire file system
can be affected; for example, if the boot sector is corrup,file system may not be mountable.
In other cases, a corrupt on-disk pointer incorrectly néferto data belonging to a different data
structure can cause the data to be overwritten and corrupteztefore, an integral part of ensuring
the long-term availability of data is ensuring the religgibnd availability of pointers, thaccess
pathsto data.

Pointers are fundamental to the construction of nearly ah étructures. This observation is
especially true for file systems, which rely on pointers tedan on-disk metadata to access data.
This reliance necessitates that pointers should be maneitiedare. File systems researchers have
long recognized the salience of metadata and especiallginfgys in metadata with a view tm-
disk consistency managemerior example, many early \UX file systems [88, 111] carefully
order writes to prevent the creation of bad on-disk point8tgsequent work on soft updates [46]
and journaling file systems [60, 120] also treat pointerfiwére to maintain metadata consistency
in the presence of crashes.

On-disk pointers could become corrupt due to the any of tleatsdata corruptions we study.
Since pointers are fundamental to data access, it is impddainderstand how file systems behave
when their on-disk pointers are corrupt. Therefore, in ghapter, we explore this facet of file-

system behavior.

6.2 Type-Aware Pointer Corruption

To identify the behavior of file systems when disk pointers eorrupted, we develop and
applytype-aware pointer corruptiofiTAPC). TAPC is an extension of type-aware fault injection
described in Section 2.5.1. We observe how the file systeporels after we modify different

types of on-disk pointers to refer to disk blocks contaimgiiferent types of data.

148

A pointer-corruption study is especially difficult becaiigs nearly impossible to corrupt every
pointer on disk to every possible value in a reasonable ataiutime. Often, the solution has
been to use random values [123]. This approach suffers fiamptoblems: (a) a large number of
corruption experiments might be needed to trigger the @stiang scenarios, and (b) use of random
values makes it more difficult to understand underlying eaus observed behavior.

We use type-awareness to address both problems. Typeragareeduces the exploration
space for corruption experiments by assuming that systdravier depends only on two types:
(i) the type of pointer that has been corrupted, and (ii) gEetof block that it points to after
corruption. Examples are (i) corrupting File A's data peinis the same as corrupting File B’s data
pointer, and (ii) corrupting a pointer to refer to inode-H#d? is the same as corrupting it to refer
to inode-block Q (if all inodes in P and Q are for user files).isT&pproach is motivated by the
fact that code paths within the file system that exercise dmeestypes of pointers are the same,
and disk blocks of the same type of data structure contaifaicontents. Thus, TAPC greatly
reduces the experimental space while still covering alrabbstf the interesting cases. Also, by its
very design, this approach attaches file system semantéEctoexperiment, which can be used to

understand the results.

6.2.1 Terminology

The following terms are used to describe methodology ancdsresults.

Container: disk block in which the disk pointer is present. Corruptihg pointer involves mod-

ifying the contents of theontainer.

Targetorigina: disk block that the disk pointer should point to, that is, biheck pointed to on no

corruption.

Target.orup: disk block being pointed to by a corrupt disk pointer.

149

6.2.2 Corruption Model

Any of the sources of corruption discussed in Section 2.@ulccproduce a corrupt file system
image on disk. Our corruption model reflects the state of asfilgem on functioning hardware

that experienced a corruption event in the past:

e Exactly one pointer is corrupted for each experiment. Tis¢ 0éthe data is not corrupted.

Also, other faults like crashes or sector errors are notieg.

e We emulate pointer corruptions that gpersistent The corruption is persistent because

simply re-reading the pointer from disk will not recover tt@rect value.

e The pointer corruption isot sticky Future writes to the pointer by the file system can
potentially correct the corruption. Reads performed adtarrite will be returned the newly

written data and not the corrupt data.

6.2.3 Corruption Framework

Our TAPC framework has been designed to work without fileesyssource code. It consists
of acorrupterlayer that injects pointer corruption andest harnesghat controls the experiments.
The corrupter resides between the file system and the digé&rdrithe layer has been implemented
as a Windows filter driver for NTFS and as a pseudo-device *t8.eThis layer corrupts disk
pointers and observes disk traffic. Thus, the corrupter Inasviedge of the file system’s on disk
data structures [127]. The test harness is a user-levetgmothat executes file system operations

and controls the corrupter. The experiments involve thiefdhg steps:

e The test harness creates a file system on disk with a few fikkdiagctories. It then instructs
the corrupter to corrupt a specific pointer to a specific vale performs file operations.@,
mount,CreateFile, etc. for NTFS and mountreat, etc. for ext3) to exercise the pointer
under consideration. We execute the file operations fromea wgh limited permissions

(non-administrator).

150

e The corrupter intercepts the disk accesses performed Wyelsystem and scans the requests
for the container (the disk block containing the pointer). When that disk klég read,

exactly one pointer in the data structure is modified to aifipe@lue.

e The corrupter continues to monitor disk accesses. The sameption is performed on
future reads to theontainer. Disk writes to thecontainer may overwrite any corruption

and therefore further reads to the disk block are returnedéwly-written data.

e All disk accesses, system call return values, and the systemt log are examined in or-
der to identify the behavior of the file system. This holistiew of system behavior in
co-ordination with type-awareness is essential to undedhg the underlying design or

implementation flaws that lead to any system failures.

Our experiments are performed on an installation of Windg®RgProfessional Edition without
Service Pack 2) for NTFS and Linux 2.6.12 for ext3. We run theoth on top of VMWare
Workstation for ease of experimentation. The experimensesaiseparate 2GB IDE virtual disk.
We believe that the use of VMWare does not change the resuits the corrupter layer is between
the file system and the virtual disk, we observe all disk retpiand responses, and we did not

detect any anomaly. In addition, we have verified our ext8ltedy reading through source code.

6.3 NTFS Details

Although TAPC can be applied to any file system, the specifiatpes to be corrupted and
the interesting corruption values depend upon the file aysteder test. As an example, we now
describe how we have applied TAPC to NTFS.

6.3.1 NTFS Data Structures

We provide a brief introduction to NTFS. A detailed desdaptcan be found elsewhere [128].
NTFS, the Windows NT File System, is the standard file sysmwWindows NT, 2000, XP and
Vista. It is a journaling file system that guarantees thegnitg of its metadata structures on a

crash. All user data and metadata structures in an NTFS \@hna contained in files, allowing

151

Term Description

Cluster The fundamental unit of disk storage; it consists of a fixenhber of sectors, similar
to a UNIX disk block.

LCN A Logical Cluster Number (LCN) is assigned to each disk @dusthis is the same
as a physical block number inNUx -based systems. On-disk pointers contain the
LCN of the cluster they point to.

VCN A Virtual Cluster Number is the same as a file offset (in nundfddocks) in UNIX.

Data run The format of NTFS on-disk pointers, consisting of a base L4 length, and a

series of<offset,length- fields. E.g., if base LCN isX, length isa, and the first
<offset,length- combination is< b, ¢ >, the data is located at LCN¥ to X + a
and then fromX + b to X + b + ¢. In our experiments we corrupt the base LCN.

Boot sector

The boot sector is the sector read first by NTFS when the fileesyss mounted. It
is the starting point for discovering the LCNs of all othetalatructures. The last
cluster of the file system contains a copy of the boot sector.

MFT Master File Table contains an entry for each file (both usersystem). First 24
entries are reserved for system files.

MFT entry Equivalent of a Wiix inode. Most pointers that are corrupted are located in diffe
MFT entries in form of data runs.

MFTVCNO This is the first cluster of the MFT. Its LCN is present in theobeector. The first
entry of this cluster is a file that contains LCNSs of itself @hd rest of the MFT.

MFT mirror This is a replica of MFT VCN 0. Its LCN is also present in the bsector.

Index buffer An index buffer consists of a series of index entries thatjgl® information for
indexing into any data structure.

Directory A directory in NTFS consists of index buffers. The entrieshiase buffers point to
MFT entries of the directory’s files.

MFT bitmap This is a bitmap that tracks whether MFT entries are allatatenot.

Volume bitmap

This is a bitmap that tracks whether disk clusters are atéxtar not.

Log file

NTFS implements ordered journaling: when a user writes datdisk, the data

cluster is flushed first, followed by log updates, and finatlg metadata clusters.
The log file is organized as a restart area, a copy of the tewt@a, and a “logging

area”, which consists of log records that each denote a diska

$Secure

NTFS stores information about the owner of the file and thensions granted to
other users by the owner (in form of ACLS) in a security dgstori. Each unique
descriptor is stored in $Secure along with its hash and gaseacurity id This
security id is stored in the MFT entry of the file for looking tige correct descriptor
from $Secure. The descriptors in $Secure are indexed onable of the security
descriptor and the security id.

Upcase table

This is an upper case - lower case character conversioneabkntial for directory
path name traversal.

Table 6.1 NTFS terminology. This table provides brief descriptions of NTFS terminolegy data
structures. The descriptions offer a simplified view of NTélninating details that are not essential for
understanding the experiments.

152

NTFS to flexibly allocate disk space for its metadata. Tabledgfines important NTFS terms and
data structures that we use in our descriptions and restdteexample, &lusteris the NTFS term
for a disk block. We recommend a quick pass through the taioledsier understanding of the rest

of the chapter.

6.3.2 NTFS Pointer Corruption

We corrupt 14 of the 15 different pointer types that NTFS usesdlisk. Table 6.2 summarizes
these pointers. We give each pointer a unique name based dariyet,,iginq, and resolving
name conflicts by prefixing those names withdtatainer. Note that NTFS replicates important
data structures like Boot and MFT VCN 0. Thus, the poinbexst-MFTO, Boot-MFTM, MFTO-MFT,
MFTBitmap, MFTO-MFTM, andLogFile are replicated. Security descriptors are also replicated a
their indexes can be rebuilt; thus, some form of redundanestefor the pointersDS, SDH, and
SII. Also note that the security descriptor indes®d andsSII, and directories use the same index
data structure format.

The pointers are corrupted to 27 different types of valuesaddition to using disk locations
that belong to all the different NTFS data typesy, directory index buffer and MFT cluster), we
also include clusters of a certain type that serve a spegralgse €.9g, MFT VCN 0, MFT mirror),
unallocated clusters, and out-of-range values. Tablei§&Sthe different types of values used as
Targetcorupe- 1N MOSt cases, the data structure used’asget..,., IS at a specific location,
while for FileData, we create a file and use the location ofi#ta block as the numerical value for
corruption. Thus, we perform 360 experiments on NTFS, qumg 14 different pointers with 27
different values.

In each experiment, we run a specialized workload to exertie corrupt pointer. Table 6.4
indicates the workload used for each of the pointers. Moskleads involves modifications to
Target,rigina, POtentially creating the worst case scenario in case theigtion is not detected.
We now describe the disk accesses that take place duringabetrworkload, as this is our work-
load for exercising most of the disk pointers. When an NTFBIwe is mounted, first the boot
sector is read. The boot sector is used by NTFS to discoverikaisk location of MFT VCN 0

153

Pointer Container Targetoriginal

Boot-MFTO Boot MFT VCN 0

Boot-MFTM Boot MFT mirror

MFTO-MFT MFT VCN O The MFT clusters (to itself)

MFTBitmap MFT VCN O MFT bitmap

MFTO-MFTM MFT VCN O MFT mirror

LogFile MFT VCN O Log file

RootSecDesc | MFT VCN 1 Root directory
security descriptor

RootIndxBuf | MFT VCN 1 Root directory index buffers

SDS MFT VCN 2 $Secure security descriptors

SDH MFT VCN 2 Index of security
descriptors’ hash

SII MFT VCN 2 Index of security
descriptors’ ids

UpCase MFT VCN 2 Upcase table

DirIndxBuf | MFT any VCN | A directory’s index buffer

FileData MFT any VCN | Afile’s data cluster

Table 6.2 NTFS disk pointers. This table presents the different on-disk pointers usedtyS\

154

Value Description

Boot The boot sector (LCN 0)
LogRes Log restart area

LogResDup Copy of Log restart area
LogData Log data cluster

MFTBitmap The MFT bitmap

MFTO MFT VCN 0

MFT1 MFT VCN 1

MFT2 MFT VCN 2

MFTRes Contains unused, reserved MFT entries
MFTFree Unallocated MFT entries

MFT6 MFT VCN 6

MFTOthers Contains user file MFT entries
SDS Security descriptors

AttrDef File with definitions of file attributes
SDH Index of security descriptor hash
Sl Index of security descriptor ids
MFTMirror The MFT mirror

RootIndxBuf | Root directory index buffer
RootSecDesc | Root dir security descriptor
VolBitmap \Volume bitmap

UpCase Upcase table

DirlndxBuf Any directory index buffer
FileData Any user file data cluster
Unalloc Unallocated clusters
Last-Size+1 | Data Run ends at last cluster
LastCluster Boot sector copy

Out-of-Bounds| Data Run exceeds disk partition

Table 6.3NTFS pointer corruption values. This table presents the different values used for corrigptin
disk pointers used by NTFS, sorted in the order of typicat tisation. In total, 27 different values are
used. Note that the value Last-Size+1 is applicable onlyp@nters that point to data runs of length 1.

155

Workload Pointer

Boot-MFTO, Boot-MFTM, MFTO-MFT,
mount MFTO-MFTM, LogFile, RootSecDesc
SDS, SII

mount then | MFTBitmap, RootIndxBuf, SDH,
CreateFile | DirIndxBuf

mount then | UpCase

ReadFile
mount then | FileData
WriteFile

Table 6.4 NTFS workloads. This table presents the workloads that exercise the diskt@. mount
enables the file system volume for use; it consistsieha ceIoControl system call with the control code
FSCTLUNLOCK VOLUME performed on a previously “locked” volum&reateFile creates a new file of
size 0,ReadF7 le reads the first cluster of a file, andr< teFs L e writes the first cluster of afile.

156

and its replica, MFT Mirror, and both clusters are read. M&VCN O is itself acontainer for
four more pointers, including ones to the MFT bitm&fp{Bitmap) and the logfile LogFile).
The logfile pointer is then used to perform a series of log afi@ns. MFT’s VCN 0 also contains
its self pointer UFTO-MFT). The cluster indicated by this self pointer is read. In theemce of
corruption, this leads to MFT VCN 0 being read again. Thisi®ived by reads to the rest of the
system file records in the MFT. NTFS now has the locations nbua system data structures. The
$UpCase table is read in next, followed by other data strasfunamely, the volume bitmap, MFT
bitmap, root directory’s security descriptor, root dir@gts index allocation structure and clusters

of the $Secure file. Finally, a series of log operations mhektermination of a successful mount.

6.4 Results

This section discusses the results of our analysis. Firstd@scribe some terminology, then
our visual representation of the results. Then, we discuBBNbehavior as observed by the
experimenter. Our discussion focuses on how NTFS dealspaitiiter corruption, whether NTFS
misses opportunities to improve fault tolerance, and wiatgh principles are useful with respect
to dealing with pointer corruption. Next, we discuss therwsgible results of NTFS pointer
corruption. This view is important since the primary concef end users is the observed data and
system reliability. Finally, we present results for ext3e \@Wfganize our results intobservations
(facets of system behavior uncovered by TAPI€3sondor corruption-handling techniques, and

potential desigmpitfalls.

6.4.1 Terminology for System Behavior

We use a subset of the detection and reaction policies of IRGNnomy described in Sec-

tion 2.5 to characterize system behavior. Specifically, sethe following terms:

Detection: The file system identifies that either the pointer or the diskkpointed to is corrupt.

The IRON detection level is typicall{ 5.1, (that includes sanity checks and type checks).

157

Recovery: The file system is able to regenerate the data lost due togyaintruption using re-
dundant information, thereby continuing execution withewors. The corresponding IRON

reaction level iSR requndancy-

Report: The file system informs the application or user that it hasoantered an error (IRON

reaction levelR geport).

Retry: The file system repeats the set of disk accesses needed forainet operation (IRON

reaction levelR .,).

Repair: The file system modifies corrupt data structures in order tatinae execution. The

modification does not necessarily lead to error-free exen{tRON reaction leveR gepqir).

Detection is essential for the rest of the actions to occecdvery is the ideal action the file
system can perform. If recovery is not possible, repair iek@rnative approach for continuing

execution. If a file operation fails due to corruption, the Blystem is expected to report an error.

6.4.2 Visualization of Results

Presenting the data from our experiments is a difficult taskthe data represents the results
of hundreds of experimental runs, and the outputs are ndtlyeguantified. We divide the obser-
vations into two: the behavior of NTFS as observed by the exynter (Figure 6.1, Tables 6.5
and 6.6), and the user-visible results (Figure 6.2).

We now describe the visualization in Figures 6.1 and 6.2héntwvo figures, each row presents
the results of corrupting one pointex.¢, Boot-MFT0). Every row is divided into 27 columns, each
corresponding to differerif'arget....,x values used to corrupt the pointerg, LogData). Each
cell is marked with a symbol representing our observatiomemthe pointer for its row is corrupted
with the column value. A dot before pointer name indicates$ s$ome form of redundancy exists for
the pointer or fofl'arget,.igina- 1N the ideal case, NTFS would be able to recover from coroupt
to these pointers.

We provide an example from Figure 6.1 to illustrate the iptetation of the figures. The results

of corruptingBoot-MFTO is presented in the first row. The first cell corresponds tdoibat sector

158

[%2]

[=3 Q. %) 5 § | -g

—_ — Y =

o3|l E 218 |&| |. HE M EPIREEE

2128 |a|lo|-|~|E|L|o]|O @ S|Slnl=|3|8|8|8|P|G|56

5155 elt|C|o|z||t|c|E|3|2|E]=(E|3|B|S|2 5|2 5|2 2|5

a|3|S(2s|Z |2 s|E|2 5|20 |E|alns|g|le|2|5|a|E|5|8|8|0

1121341516 (7 |8 |9 [10|11]12(13|14|15(16|17]|18(19|20|21|22|23|24|25|26|27

e Boot-MFT0 [e][eJe[eJe] [e[e[e[e[e[e[e[e[e[e[O[e[e[e[e[e]e[e] [O[O]
e Boot-MFTM [e]eJe[eJe[O[e[e[e[e[e[e[e[e[e[e] [e[e[e[e[e]e[e] [O[O]
® NFTO- MFT Ol T I T [Toolololclol T T T T T el T T T 11 [e]e]
o vraitrap L N RN]
e NFTO- MFTM | | [O]e
e LogFile [o] | [oJoJo]o]o]o[o]o]o]o]o]o]o]o]o]o[o]o]o]o]o]o]e]e]
Root SecDesc
Root | ndxBuf [OJoJolo]o[o]o[o[o]olo[o[o[olll[o]_[olo[ollolo] Jolo]
SDS O I TTITTITITIT T T T P T T T T T Jolo]
SDH [o]o[ololo[o[olo[o]ololo]o]o] Mo ol[o[clMolol [o[o]

® S| [o]o]o[o[o]o[o]o]o[o]o]o[o]o]o] [oJoloo]o]o]o]o] [o]o]

UpCase O[O € EEE B | EEE

birindxeuf [OJoJoJoloJoJoloololololo[o ool [ollolo] [o[o]

Fi | eDat a

Legend

Detects and recovers
Detects, but no recovery
Detects, but corrupts

No detection, no recovery
Not applicable

O[O [

Figure 6.1 NTFS behavior. Ths figure shows how NTFS responds to corruption Each ronechearrizes
the behavior for the given pointer. Each cell in a row is matkégth the behavior observed for the given
pointer when it is corrupted with the value of that column ti@f values, Last-Size+1 denotes Last Cluster
- Size of data run + 1 and is applicable only for data runs ofgénmore than 1. A dot next to a pointer
name for any row implies that some form of redundancy eisthie ideal case NTFS would recover from
corruption to these pointers. Note that for unallocatedstbus, further corruption just implies that the
cluster is overwritten since, by definition, the clustermaibe “corrupted”.

Pointer

159

NTFS Behavior Details

Boot-MFTO

Reports error andretries mount for values MFTMirror, LastCluster and Out-
of-boundsyecoversusing replica for others.

Boot-MFTM

Reports error andretries mount for values MFTO, LastCluster and Out-of-
boundsyecoversusing replica for others.

MFTO-MFT

Recoversusing MFT mirror for values RootSecDesc, LastCluster and- Ou
of-bounds; reports error and retries mount for others — however, both
Target.oupr @and the replica (MFT Mirror) are corrupted if the valuenet
an MFT entry or Boot.

MFTBitmap

Recoversonly for an out-of-bounds valuegports error for the value Boot
(however, NTFS corrupts Boot); does not detect all otheesarrupting
Targetcorrupe and possibly an MFT entry.

MFTO-MFTM

Recoversfor an out-of-bounds valuggports error for LastCluster; does not
detect all other cases and corrufisrget ... Interestingly, this corruption

of T'arget orrup 1S reversed for LogRes and LogResDup due to the order of
disk operations.

LogFile

Recoversfor an out-of-bounds value or LastCluster; attenmgisair but cor-
rupts clusters for LogResDup; reports error and retriesotbers but corrupts
the replica of the pointer in MFT mirror.

RootSecDesc

Reports error andretries mount for values LastCluster and Out-of-bounds;
other cases are undetected.

RootIndxBuf

Reports error andretries mount for all values except for other index buffers
(SDH, SlI or DirlndxBuf) which go undetected thus corrugtifiar get oprupt-

SDS

Reports error andretries for Boot, LastCluster Last-Size+1 and out-of-
bounds (For Last-Size+1, report and retry occur after qumygj it); attempts to
repair data structure for other cases, resulting in corruptiof'@fget .oy upt-

SDH

Reports andretries during mount for an out-of-bounds valuesports error
duringCreateFile for other values except for index buffers (SlI, RootIndxBuf
and DirlndxBuf) which go undetected thus corruptifigrget coprupt-

SII

Reports andretries mount for all values.

UpCase

Reports error andretries mount for the 10 detected cases (refer Figure 6.1);
undetected cases do not cause further corruption.

DirIndxBuf

Reports an error for all values except for other index buffers (thgeaunde-
tected, thus corrupting'arget corrupt)-

FileData

Reports an error for values Last Cluster and out-of-bounds; othersat de-
tected leading to corruption dfarget ... The corruption is reversed for
LogRes, LogResDup, MFTO, and MFTMirror due to the order akdipera-
tions.

Table 6.5 NTFS behavior details. The table presents the details of NTFS behavior when itsqsin

are corrupted.

160

(Boot). The symbol in the cell corresponds to “Detects amdvers.” This indicates that when the
pointerBoot-MFTO is corrupted to the value Boot, NTFS detects the corruptrahfally recovers
from it, thus continuing normal operation. The same behagiobserved for most of the cells in
this row. When thel'arget orrup 1S MEFTMirror (column number 17), the symbol indicates that
NTFS “detects, but does not recover” from the corruption.e Bame behavior is observed for
values LastCluster and Out-of-bounds at the end of row. BheMFTO (column 6) is the correct
value for the pointer and hence the “Not applicable” symbalsed. Note that there is no similar
correct value for pointers likeileData since we can use data locations afifierentfile to corrupt
the pointer. Finally, the value “Last-Size+1” is not applide for pointers with a data-run length

of 1.

6.4.3 NTFS Behavior

We discuss the behavior of NTFS when each of its pointers@reted. The detailed results
are presented in Figure 6.1 and Table 6.5. Table 6.6 sumesatiese results. This subsection
distills the results into higher-level observations ontegs behavior and lessons to be learned.
The goal is to analyze whether NTFS effectively uses its tgfmation and redundancy, and to
understand why NTFS is or is not able to detect and recover pointer corruption.

Out of 360 corruption experiments, NTFS detects corrupitiod38 cases (66%) and recovers
in only 51 cases (14%). Despite the availability of reduridaformation for recovery for most
cases, NTFS either simply reports an error to the user aeggine mount operation. Also, despite

detecting the corruption, NTFS itself causes further qatinn in 42 cases (12%).

6.4.3.1 Detection

From our experiments, we find that NTFS uses type checkingsandy checking to detect
pointer corruption. Both techniques belong to fhe,,;., level of detection in the IRON taxonomy

(Section 2.4). We review each of these techniques below.

161

Type checkingverifies that a disk cluster conforms to the requirementsafdata type. Typi-
cally, type information for a cluster is encoded in the forradmagic” number and stored in the
cluster. In order to perform type checking, the cluster peirto should be read.

Sanity checkingverifies that certain values in data structures follow caists. A pointer can
be compared with well-known values, such as locations ofidwdh like the boot sector or disk
partition size, to ensure that the pointer is not corruptisTachnique enables the system to detect
corruption before the cluster pointed to is read. Sanityckbare especially important when type
information cannot be stored along with the cluster (likeffie data clusters).

We determine whether type checking or sanity checking basedhether the detection occurs

before or after th@ arget ...y (Cluster pointed to) is read.
Observation 6.1 NTFS detects corruption errors primarily through type dkiag.

We observe that NTFS detects corruption errafter readingT’arget .., fOr many pointers,
includingBoot-MFTO, MFTO-MFT, LogFile, RootIndxBuf, SII, andDirIndxBuf. An examina-
tion of the corresponding data structures shows that theyago “magic” numbers (“FILE” for
MFT clusters, “RSTR” for log restart area, “INDX” for indexulfers) that identify the clusters as

a certain data type.

Lesson 6.1 Type checking is useful for detecting pointer corruptiorowdver, systems that use

type checking should not overload the data types.

NTFS does not detect corruption when one index buffer poi(feotIndxBuf, SDH, SII, or
DirIndxBuf) points to a wrong index buffer. In this case, the type “IND"overloaded it

is used to represent different data structures used faereéfft purposes. Not detecting corruption
in these cases leads to further corruption by NTFS. Thusnvehdata type is used for different
purposes in different places, it must be assigned a diftdyge identifier to prevent corruption

across uses.

Pitfall 6.1 Inadequate or inconsistent use of sanity checks.

162

We observe that NTFS detects corruption to any pointer witbw-of-bounds value without read-
ing T'argetqorrupe. Similarly, the corruption is detected immediately wirot-MFTM is assigned
the value MFTO (Row 2, column 6 in Figure 6.1). These immeddsdtections indicate the use
of sanity checks. However, while NTFS detects the aboveuption scenario where pointers
Boot-MFTM andBoot-MFTO are equal, it allow$/FTO-MFTM andMFTO-MFT to be equal (Row 5,
column 6 in Figure 6.1), although th€arget,,; .. for each pointer is the same as before. This
difference in behavior points to the lack of a consistentrapph to sanity checking. There are
more examples of inconsistencies — pointers for which sarneiptions are recovered from, while

others are not even detected.

Lesson 6.2 Type checks do not work for all pointers. Therefore, detislanity checks should be

performed.

Type checking is not useful for pointers lika1leData since a type identifier cannot be stored in
a user data cluster. In these cases, sanity checking asgueater significance. However, NTFS
does not perform many simple sanity checks that can determiether a pointer is corrupt. For
example, NTFS does not check whether a pointer is pointitiggdoot sector (Boot). Another ex-
ample sanity check that NTFS could but does not perform iskihg the “in-use” flag of an MFT
entry before allocating it. The absence of such a check ptsWTFS from detecting corruption
to MFTBitmap, causing further corruption.

We note that not all NTFS behavior can be explained basedruty sa type checking. NTFS
detects corruption dfpCase after readingl’arget. ..., for some experiments but does not detect

for others. It is not clear what kind of check is used for thasrper.

6.4.3.2 Reactions

NTFS reacts in various ways on detecting corruption. Itegitlecovers from corruption, or
reports an error to the application, or retries the mountaipen, or attempts to repair a seemingly

corrupt data structure.

Observation 6.2 NTFS typically uses replication to recover from corruption

163

gl..252 | &) | -
s|g2o(gLi22| oS |E£2ag
Pointer & 8& 88 88 g T 8 &%
Boot-MFTO Vi 22| 3
Boot-MFTM Vi 22| 3
MFTO-MFT JI 31| 7 | 16 16 | 16
MFTBitmap Vi1l 1 | 23 || 24| 24
MFTO-MFTM \/ 1 1 23 20
LogFile Vi o2 23 1 1 24
RootSecDesc 2 25
RootIndxBuf 22 3 3
SDS V 3 24 24
SDH V 22 3 3
SII V 25
UpCase 10 17
DirIndxBuf 22 4 4
FileData 2 24 | 20
Total 51 | 145 | 42 | 122| 115 | 64
Total recoverable V|| 51 | 87 | 42 | 49 || 88 | 64

Table 6.6 NTFS behavior summary. The table summarizes observed NTFS behavior on corruption
for the different pointers. The first column indicates wieegome form of redundancy exists for either the
pointer or T'arget origina- Columns 2 to 5 summarize the number of cases for which NTR&/bs in a
certain manner (from Figure 6.1). The last two columns iatiahe total number of cases for which further
corruption occurs and for which the replica of the pointedisstroyed. The penultimate row is the sum of
all rows and the last row is the sum of rows that havg &or the “Redundancy?” column.

164

We observe that NTFS uses replication of MFT VCN 0 to recov@mfcorruption to the pointer
Boot-MFTO. In this case, it uses the MFT mirror to obtain the requirddnmation. Similarly,
NTFS uses redundant information in MFT VCN 0 to recover framraption toBoot-MFTM. Inter-
estingly, for both pointers, this recoverytemporary that is, NTFS does not overwrite the corrupt
pointer with the correct value. Thus, the same recovery bi&e tperformed for each mount. This
approach could lead to unrecoverable data loss in the e¥argerond failure (loss or corruption).
When an out-of-bounds value is used for the poin##80-MFT, MFTBitmap, MFTO-MFTM, and
LogFile, NTFS performgpermanentecovery; that is, the pointer value is overwritten with the

correct value, thus completely healing the file system image

Observation 6.3 NTFS uses error reporting and retries in response to colinipivhen it is unable

to recover.

As described in Table 6.5, typically, NTFS reports an ermthe application when corruption

is detected. For a subset of cases, NTFS also retries thetroperation, perhaps hoping that
the corruption is transient and mount will succeed the séd¢one. These retries do not succeed
since the corruption is persistent. Examples of pointerg/fuch this behavior is observed include

MFTO-MFT andLogFile, andRootIndxBuf.
Observation 6.4 NTFS attempts to repair certain data structures that it &edis to be corrupt.

When the pointegDS is corrupted, NTFS assumes that the security descriptondqubto bysSDS
are corrupt and attempts to reinitialize the data structimes corruptingl’arget coprupe. Similar
behavior occurs whehogFile points to LogResDup instead of LogRes (the log restart alea)

this case, the first cluster of the data region of the log isugpied.
Pitfall 6.2 Detecting that a pointer target is corrupt instead of deitegthat the pointer is corrupt.

The instances under Observation 6.4 above show that NTE tihe pointer to be correct, while
not trusting the cluster pointed to. Thus, attempting tcanep seemingly corrupt target causes

more harm than good if the corruption is actually to the parint

165

In general, we observe that there are multiple instanceseMN&FS does not detect the cor-
ruption or detects the corruption but does not recover frodespite possessing type information
to detect corruption and redundancy to recover from coroumptTable 6.6 shows that despite pos-
sessing redundant information, NTFS detects an error beg dot recover from itin 87 cases, and
in fact, causes further corruption in 88 cases. From thekeda, we derive more potential pitfalls

when handling pointer corruption.

Pitfall 6.3 Ineffective replica management: (a) not using replicas naeailable, (b) destroying
secondary replicas without verifying the primary, and (Ot maintaining independent access

paths for replicas.

(a) When pointers in MFT VCN 0 are corrupted, NTFS does notlhee&opy of pointers available
in the MFT mirror for most scenarios. For some pointers, NTBSld but does not use the replica
for comparing and detecting that the pointer is possiblywqatt An example i$FTBitmap. For
other pointers, NTFS detects corruption through differaetans (type or sanity checking). How-
ever, NTFS does not use the replica for recovering from threuption. Example pointers are
MFTO-MFT andLogFile. Thus, the advantage of replication is completely lost f@se pointers.
(b) There are 64 instances where the replica of the pointaraswritten by NTFS with the corrupt
value (the last column of Table 6.6). In particular, in theesawhere the primary MFT (MFT
VCN 0) is corrupt, but the MFT mirror is correct, NTFS erromsty synchronizes the two copies
by overwriting the MFT mirror with data in the corrupt MFT.)(Eor some of the data structures in
NTFS, the replica is placed at a fixed virtual offset from tegular copy, thus often using a single
pointer value to access both. The security descriptorsmexample. Corruption to the pointer
SDS will thus make both the regular copy and the replica inadbésgFigure 6.1 shows that NTFS

does not recover whesDs is corrupted).

Pitfall 6.4 Not realizing that most indexes are simply performance awgments and that their

unavailability should not cause complete failure.

166

NTFS uses two indexes SDH and SlI for its security descriptofsSecure. The security descrip-
tors contain all information necessary to rebuild both tgeixes. However, when eithebH or
SII is corrupted, NTFS does not recover despite detecting thremibon.

Thus, using type-aware corruption to characterize NTF&wbeln yields many lessons for han-
dling corruption in addition to providing an insight intoghnner workings of NTFS. If NTFS
follows the lessons discussed herein, it can completelgveacfrom corruption in 229 scenarios
(that is, for pointer8oot-MFT0, Boot-MFTM, MFTO-MFT, MFTBitmap, MFTO-MFTM, LogFile, SDS,
SDH, andSII).

6.4.4 User-Visible NTFS Results

The previous subsection detailed NTFS behavior in resptmpeinter corruption. However,
understanding these actions does not imply an understquodlimow they manifest to users or ap-
plications. The primary concern for users is data and sysédiability. Hence, in this subsection,

we discuss user-visible results of NTFS behavior. FiguPepBesents the user-visible results.
Observation 6.5 The system works correctly when NTFS recovers from coomnpti

The system works without problems in 61 scenarios (17%manily because NTFS detects and
recovers from corruption. For example, corruption of ang @ointer field (MFT, MFTMirror) in
the boot sector does not affect normal operation. In 10 athses, even though NTFS does not
recover, pointer corruption does not cause problems dueet@tder of disk operations or due to

non-use ofl’arget corrupt-
Observation 6.6 The most frequent user-visible result is an unmountableyiteem.

The file system becomes unmountable when NTFS detects tiomup a pointer used during
mount, but is unable to recover. This situation applies toynpointers across the range of
Target.orupe Values used. An example of such a pointetdgFile. The file system could also
become unmountable when undetected pointer corrupéan or FileData) causes key data

structures to be corrupted. The file system is rendered untable in 133 scenarios (37%).

167

- 2 g

ﬁ@g 8§§ - gg%@ési%é

R R R R R R R E E R R EE HE
mla|alalZ|IZ[Z|Z|1Z[Z|Z|Z|n|<|n|n|Z2|x||> Dl |D|[ala]|0

11213141516 |7 [8 [9 |10]|11)|12|13|14(15(16|17]18]19|20|21(22(23|24]|25|26|27

e Boot - MFTO [e[e]e[e[e] [e[e[e[e[e[e[e[e[e[ell[e[e[e]e]e[e]e] I
e Boot-MFTM [e]e[e[e[e]l[e[e[e[e[e[e[e[e]e[e] [e[e[e[e[e]e]e] I
o vero-ver [T W o ¢
e MTBi t map . RRRERRRRENRRNENRRERENRREREEERD
o METO-NETM
o LogFile
RootSecDesc LI I T T T T T T T T TTTITTITTITTTITTTT N
root | naxeut NI A
e SDS olo[o[o[o[o[o[o[o[o[o[olo]o[o[o[o[o[o[o[o[o[o Il
® SDH [o]o]o]o]o]o]o[o]o]o]o[o[o]o] lolololo[olololo] ol
Sl SRS EENEEENEEE NN RN
UpCase i SEEEE B SEEEEEEN BN |
DirindxBuf LLLLLT LTI TTTTTTT T TTTITTITTITI I
Fi | eDat a ol lle[ell H ol [ofo] Ho[T 1|

Legend

System works without problems
Operations fall

User data corruption

Data or metadata loss, operations fail
Unmountable file system

System crash

Implications are data dependent

Not applicable

[Sl [B [[T [©] [e]

Figure 6.2 User-visible results for NTFS.These figures presents the user-visible results of comgpti
NTFS pointers. Each row characterizes the results obseimethe given pointer. Each cell in a row is
marked with the result observed for the given pointer whendorrupted with the value of that column. Of
the values, Last-Size+1 denotes Last Cluster - Size of data rl and is applicable only for data runs of
length more than 1. A dot next to a pointer name for any rowigspghat some form of redundancy exists;
in the ideal case, normal operation would occur when thegetprs are corrupted.

168

Observation 6.7 The second most frequent user-visible result is loss of alatser-visible meta-

data

Data or metadata loss occurs in 102 scenarios (28%). Datadered inaccessible when the point-
ersDirIndxBuf, RootSecDesc, SDS, andUpCase are corrupted. In the case birIndxBuf, the
pointer simply points elsewhere and therefore the dirgtdarontents are lost and inaccessible.
In the case oRootSecDesc andSDS, security descriptors (metadata) are lost due to corraptio
NTFS thereforeestricts acces# directories and files allowing access only to users withiags-
trator privileges; other users cannot access even theirfib@a From this experience, we also learn
that pointer corruption experiments should be performedgusser accounts with different access
privileges. Note that we are able to identify that corruptio RootSecDesc or SDS leads to inac-
cessible data because the file operations are performed seraccount with non-administrator

privileges.
Observation 6.8 File operations can be significantly affected by pointerraption.

For some corruption scenarios, file operations fail sincé&-8THoes not recover from the pointer
corruption. An example is corruption 8bH; attempts to create files fail while files already created
can be accessed. Note that operations also fail when datetadata is lost. In total, file operations
fail in 127 scenarios (35%). In some of the scenarios, ther @vde returned by NTFS correctly
identifies the corruption. In others, the error code retdrisemisleading; it has no relation to the

data structure that is corrupt. One example occurs Vilp€ase is corrupted to point to Boot.
Observation 6.9 In addition to data loss, users could also observe data qatioun.

User data corruption is said to occur when user file data isinitten with other data or metadata
thereby corrupting it. An instance of this situation occwieen a file data pointer points to another

file’s data clusters. User data is corrupted in 8 scenari®s.(2

Lesson 6.3Undetected pointer corruption can pose a significant seguisk.

169

One would expect that pointer corruption might affect datagarticular disk. However, it could
be worse; most experiments involving the poiMBTBitmap result in a system crash (22 cases),
thus affecting the entire system. By systematically sethitis contained iff arget .oy (the disk
block being pointed to after corruption), we observe thatslistem crash happens whenever the
allocation status bits corresponding to the system filesds&$Objld and $Reparse happen to be
zero (instead of one), resulting in their MFT entries gettie-used (and hence corrupted). Thus,
a particular series of operations (moutiteateFile) can be performed on specifically corrupted
file system images to cause crashes. Such malicious diskesr{ag9] could become a security
threat with the widespread use of portable flash drives asklidiage downloads.

In general, we observe that for many scenarios, the ustneisesults follow readily from the
reactions of NTFS (or lack thereof). However, it is not asigfintforward for some scenarios. An
interesting case in point occurs whEfileData is corrupted to the value SDS (Last row, column
13 in Figure 6.1). Figure 6.1 shows that the observed NTF&Wehis that of no detection and
the T'arget .orrupe Cluster is therefore corrupted. However, the result of gusiter corruption is
user data corruption and not metadata loss (as seen in tirewgsolumn 13 in Figure 6.2). This
result occurs because the clusters of the SDS file are régdicafter an unmount, on a subsequent
mount, NTFS detects that the SDS cluster is corrupt, reaglsehlica, and restores the corrupted
cluster. This action causes file data to be overwritten amd¢déeads to data corruption. Similar
behavior is observed for the pointéfTO-MFTM with T'arget .., @S SDS. Once again, although
SDS information is lost when MFT mirror updates occur, thi@imation is recovered from the
redundant copy of the SDS cluster and the system works fine.

In certain pointer corruption scenarios, the user-visibkilts depend on the actual data present
in various clusters. CorruptingFTBitmap with the location of a file data cluster (FileData) is an
example. In this case, user data is corrupted. In additiepedding on the exact values of bits in

the file data cluster, there may be a system crash, or data regbst.

170

gl,.282 18] -
Slaslaslael8|.8ls2
Pointer zldz|ldgd8| 2|28 |zd
Block bitmap vV 1 12| 12
Inode bitmap Vv 5 8 8
Inode table Vv 13
Journal superblock 13
Root directory 11 2 2
Directory data 11 3 3
File data 1 13| 13
Total 0 55| 0 |38| 38 | O
Total recoverable VI O 19 | 0 |20| 20 | O

Table 6.7 Ext3 behavior summary. The table summarizes observed ext3 behavior on corrupfibe.
columns are the same as in Table 6.6. The first column indiceitether some form of redundancy exists for
either the pointer ofl'arget,,iginai- Columns 2 to 5 summarize the number of cases for which thensys
behaves in a certain manner. The last two columns indicaedtal number of cases for which further
corruption occurs and for which the replica of the pointedisstroyed. The penultimate row is the sum of
all rows and the last row is the sum of rows that havg &or the “Redundancy?” column.

171

6.4.5 Ext3 Results

We corrupt 7 primary ext3 pointers with Tar get ..., Values each, chosen in similar fashion
to NTFS. Table 6.7 presents a summary of ext3 results. Werilesthe key ext3 observations

below, focusing on how it is similar to or different from NTFS

e Unlike NTFS, ext3 relies more on sanity checks than on tyek$. For example, it verifies
that bitmap and inode table pointers point within the bloosug. Also, when allocating
inodes ext3 verifies that the inode bitmap has marked “resrnodes as allocated, unlike
the NTFS mishandling dfFTBitmap. However, lack of type checks causes ext3 to use the

superblock as directory data.

e Like NTFS, ext3 typically assumes that the cluster pointedrather than the pointer) is

corrupt.

e Even though ext3 replicates the group descriptors, it nases these replicas even when a

pointer in the primary copy is detected as corrupt.

e The typical reaction on detecting corruption is to reporeaior and remount the file system

as read-only. Ext3 does not recover even in one corruptienaio.

In summary, our analysis of ext3 shows that it is no bettan ti&FS in pointer protection. Our
analysis also demonstrates that TAPC can be applied to vigeyaht file systems. One advantage

with ext3 is that we have verified our results by reading extdse code.

6.4.6 Discussion

Using TAPC to characterize system behavior yields manyles$or handling corruption, in
addition to providing an insight into pitfalls for real filyystem implementations. If NTFS and
ext3 follow these lessons, they can completely recover fooer 63% and 40% of the corruption
scenarios respectively. In this subsection, we discussrgéissues related to TAPC and corruption

handling.

172

First, TAPC does not consider the likelihood of differentues used for corruption. This
likelihood depends on the source of corruption. For examplee corruption values are arbitrary,
more than 99% of the values will be out-of-bounds, while gption due to bit flips will imply that
the corrupt value is “closer” to the correct value. While tikelihood-agnostic approach does not
provide probabilities for file system failures due to cotrap, it provides interesting insights into
how a file system handles corruption.

Second, a question that arises from the results is whetperdapnd sanity checks are the right
techniques to use, especially when there are many pitfalidved. While it is true that the use
of checksums (like in ZFS [130]) might significantly improgerruption handling, it does not
subsume the protection offered by type and sanity checkseX@mple, checksums cannot protect
against file-system bugs that place the wrong pointer valdechecksum it as well.

Third, it is non-trivial to add checksums and other protactio a file system without changing
the on-disk format. Type-aware pointer corruption helgniify potential sanity checks that can

be used without format changes.

6.5 Conclusion

Preserving data access paths is integral to any system igtaswo preserve data as illustrated

by the following anecdote:

One of the terms of the settlement of Control Data Corponatio IBM, the first
antitrust suit against IBM, was that the ‘CDC database’ &hdwe destroyed. This
database was prepared by Control Data legal staff as a méangamizing the eval-
uation of the enormous quantity of documents subpoenaed f&M. IBM could
not legally destroy the documents themselves, but throhighsettlement they could
destroy thendexto the documents, making the millions of documents virjualie-
less [62].

File systems rely on on-disk pointers to access data. As/ieems employ different and newer

techniques to protect against corrupt pointers, we needdenstand how these techniques perform

173

in reality. We have developed type-aware pointer corrupéis a way to rapidly and systematically
analyze the corruption-handling capability of file systeritée have applied type-aware pointer
corruption to NTFS and ext3, and find that despite their pidéto recover from many pointer-
corruption scenarios, they do not, causing data loss, untable file systems, and system crashes.
We use this study to learn important lessons on how to harmtet pointers.

We believe that future file systems should be more carefuimpléementing pointer protec-
tion techniques. A first step would be to develop a consisterruption-handling policy and the

corresponding machinery that can be used by all file systanpooents.

174

Chapter 7

N-Version File Systems

We learn from our study of partial disk failures that theskufas affect a high percentage
of inexpensive SATA disk drives. These drives are the kineédus our desktops and laptops.
Unfortunately, as the previous chapter shows, the commdtiitsystems that manage these drives
are not effective at handling partial disk failures. Theref we need to develop a solution for
tolerating partial disk failures in personal computers.

Typical approaches to solving this problem have been teefik one of the commodity file
systems, or develop a better file system, or ensure thatpdrsk failures are handled in some
layer just beneath the file system. Indeed, over the yeansy msearch efforts and real systems
have adopted one of these options [18, 55, 60, 104, 107, B29,1B1]. The main problem with
any of these approaches is the dependence on the file systdhtatmaintain the reliability and
integrity of data.

The file system is a complex piece of software that not onlydhepartial disk failures poorly
(despite the availability of techniques to tolerate thdmj,also contains bugs. The bugs and poor
use of failure-handling techniques exist despite the fitteays being widely-used and potentially
well-tested. Indeed, recent research efforts, includimg chave uncovered numerous bugs in file-
system code [104, 148, 149, 150]. File-system bugs couldecdata corruption that may not be

caught by technigues within or beneath the file system.

Techniques within the file system may be useful to a limiteigetx For instance, Hagmann [60] states “A bug in
the file system will often show up as an error in comparing thapguted label with the disk label.” while describing
the Cedar File System.

175

Our solution for handling partial disk failures is &tversion file systemAn N-version file
system is an instance of N-version software [6]. In such asfiktem, data is stored iN different
file systems. All file operations performed by the user areikez by a simple software layer that
issues the operation to ahild file systems. This layer then determines the majority refsoith
those returned by the child file systems and delivers it taies. Thus, we eliminate the reliance
on a single complex file system, and place it on a simpler soéwayer.

One major issue in building an N-version-software systetheshigh development costs asso-
ciated with formulating a common specification for the sgstand creatingV different versions
of the system. In order to reduce these costs, we hypothdstdor an N-version file system,
(i) we can use an existing specification, such as POSIX, asdimemon specification, and (ii) we
can use existing file systems, such as ext3, JFS, etc., as th#erent file-system versions. In
building an N-version file system using an unmodified speatifon and existing file systems, we
verify these hypotheses.

A second issue in using an N-version file system is the higfopeance and disk-space over-
heads introduced by storing and retrieving data frdnfile systems instead of one. Our solution
to this issue is to use a block-level single-instance stodetneath the file systems. A block-
level single-instance store uses content hashing to igetisk blocks with the same content; it
then stores a single copy of these blocks on disk. In an Nierefée system, user data stored in
the different file systems will have the same content andtivdlefore be coalesced into a single
block, while file-system metadata of different file systeml ave different contents and will
not be coalesced. Therefore, a single-instance storegisagainst partial disk failures that affect
metadata (thereby protecting the important access pattet&), but not against failures that affect
data blocks. A single-instance store is especially usefaases where file-system bugs are the
main contributors to partial disk failures.

We evaluate the reliability of a 3-version file system (theg¢siext3, JFS, and ReiserFS as child
file systems) through fault-injection experiments. We fimakthe 3-version file system can recover

from a partial disk failure or a file system with incorrect ¢tents in almost all scenarios; many of

176

these scenarios cause irreparable data loss or non-mdeifitalsystems in the child file systems
that the 3-version file system is composed of.

In addition to the reliability benefits of using an N-versida system, the detailed information
it maintains about the child file systems makes it attradibreuse as a diagnostic tool. As an
example, one of our reliability experiments triggered a lugxt3 that led to a system crash.
When ext3 was used as part of a 3-version file system, thes3ewefile system not only avoided
the bug, but also helped identify the location of the bug.

The rest of the chapter is organized as follows. Section &stiibes the N-version program-
ming approach and how it can be applied to file systems. Se€td presents the design of the
N-version file system and Section 7.3 discusses how the Blarefile system has been built to
use the existing POSIX specification and available file systeSection 7.4 describes the single-
instance store layer we have developed to address perfeerand disk-space overheads. Sec-

tion 7.5 evaluates the reliability of a 3-version file systana Section 7.6 concludes the chapter.

7.1 An N-Version Approach

This section provides a background on N-version progrargraimd then motivates why it is

particularly suitable for file systems.

7.1.1 N-Version Programming

N-version programming [6, 7, 31] has been used over the yearsild reliable systems that
can tolerate software bugs. A system based on N-versionrgmoging usesV different versions
of the same software and determines a majority result froenotires produced by the different
versions. These different versions of the software aretedehy NV different developers or devel-
opment teams for the same software specification. It is asdi{and encouraged using the speci-
fication) that different developers will design and implernghe specification differently, lowering
the chances that the versions will contain the same bugslidiawin similar fashion.

The benefits of N-version programming have been validatedabipus experiments [9, 10]. In

one such experiment, Avizienis and Kelly [9] study the fesof using three different specification

177

languages to develop 18 different versions of an airporedaler program. They perform 100
demanding transactions with different sets of 3-versioitstand determine that while at least one
version failed in 55.1% of the tests, a collective failurewted only in 19.9% of the cases.

The N-version approach has been used primarily in compma&eicontrol systems where safety
is critical, such as for train switching and flight controleyptions [144]. More recently, with
the increase in both the threat of bug-induced failures ardcbst of such failures, many recent
research efforts have explored the use of N-version softwawarious other systems, including
network file systems [112], database systems [142], ancefmurity [36].

N-version programming has three important aspects: (ajyming the initial specification
for the software, (b) developing th& different versions of the software, and (c) creating the
environment that supports the execution of the differemsieas and also contains algorithms to

determine a consensus result from the ones produced byftaeedt versions [6].

7.1.2 N-Version Programming in File Systems

The aim of our work is to explore the use of N-version prograngrin file systems for the
purpose of reliably storing and retrieving data. An N-versfile system receives user operations
and issues them to multipkehild file systems. It then determines the majority result from the
results produced by the different file systems, and delikeosthe user.

The advantages of an N-version file system can be broken dsvallaws.

Diversity: This advantage is the traditional advantage of an N-veisaftware system. File
systems that store data using different data structuresomanged to provide diversity. This

diversity would reduce the chances of common bugs.

Storage redundancy:Since data is stored in multiple file systems, an N-versi@sfjistem
provides the benefits of replication. Data lost due to a gladisk failure (including corrup-
tion due to a file-system bug) in one file system can still beessed through the other file

systems.

178

Operational Redundancy: Each file operation is performed multiple times, once in each
file system. Each of the file systems also issue disk opesattat cause the the rest of the

(possibly buggy) storage stack to perform multiple opersithat have the same purpose.
The redundancy in operations lowers the chances that a §leeoperation will fail in all

file systems.

In addition to these advantages, the use of N-version pnogiag in file systems is partic-
ularly attractive since the design and development effequired for the first two aspectsd,,
specification and version development) of creating N-wersioftware could be much lower than

the typical case:

Specification: Many existing file systems answer to a common interface; fieeopera-
tions use the POSIX interface, which internally translatethe Virtual File System (VFS)
interface for all Linux file systems. Thus, by using the POMSIKXS interface, the effort
needed in developing a common specification could be mimichiBy building an N-version
file system using the POSIX/VFS interface, we evaluate thtalsility of the interface for
N-versioning; we have addressed various issues in ordesecahis existing specification
(Section 7.3.1).

N file systems: There are many diverse file systems available today, suckxt8s &S,
and ReiserFS, that are built for the POSIX/VFES interfaceesedifferent file systems have
drastically different data structures, both on disk and enmry. This diversity reduces
the chances of common file-system bugs. In addition to a smellance of common bugs,
we find from our experiments that different file systems behdiferently when they en-
counter partial disk failures. Figure 7.1 shows the resfitimm our analysis of whether
commodity file systems detect corruption (from previouskydi04]). Each row in the fig-
ure corresponds to a file-system data structure, each catomesponds to a workload, and
the symbol in each cell denotes whether or not corruptioméodata structure for that row
is detected when the workload for that column is executedefMilae compare file-system

behavior on corruption to similar data structures, we seéttiere are cases where a subset

179

= path-traversal
rename

N SET-1

W SET-2

& read

9 readlink

@ getdirentries
~ creat

@ ink

© mkdir

2 symlink

K write

> truncate

= rmdir

% unlink

5 mount

= SET-3

% umount

to FS-recovery
S log-write

ext3:

[y
o

inode
dir
bmap
Imap
indirect
data
super
gdesc
jsuper
Jrevoke
Jdesc .
jcommit
Jdata

= path-traversal
N SET-1
@ SET-2
* read
@ getdirentries
~ creat
@ link
rename

© mkdir
to FS-recovery

91 readlink
2 symlink
X write
£ truncate
= rmdir
5 unlink
£ umount
D log-write

5 mount
= SET-3

JFS:

=
o

inode

dir

bmap
Imap
internal
data
super
jsuper
Jdata
imapdesc
aggr-inode-1
imapcntl

= path-traversal

N SET-1

-
— @ SET2
@ getdirentries

* read

91 readlink

£ umount

to FS-recovery
D log-write

ReiserFS:

inode
dir
bmap
indirect
data
super
jheader
jdesc .
jcommit
Jdata
root
internal

Figure 7.1 Comparison of corruption detection. The figures indicate whether or not the file systems
ext3, JFS, and ReiserFS detect corruptions to their datacttires when the data structures are read in
response to different workloads. Each row corresponds tata dtructure and each column corresponds
to a file operation. The symbf]] denotes that the corruption is detected 400] denotes that it is not. A
gray box indicates that the workload is not applicable foz tilock type.

180

(but not all) of the file systems detect the corruption. Faregle, consider directory data
blocks (row “dir”) and the workload getdirentries (colum®r'y: ReiserFS and JFS detect the
corruption while ext3 does not. The availability of suchatsity motivates the opportunistic

use of existing file systems as opposed to building new ones.

It is our hypothesis that we can leverage an existing spatific and file systems that have
already been developed to this specification to build an isiwa file system. Such opportunis-
tic approach of using an existing specification and an exgstet of systems has previously been
employed successfully by Rodriguesal. [112]; they have used the NFS specification to build
Byzantine-fault-tolerant NFS servers using differenttbi-shelf file systems. More recently, Van-
diver et al. [142] have developed a Byzantine-fault-tolerant trarisagbrocessing system using

heterogeneous replicas.

7.2 An N-Version File System

This section describes the design of an N-version file sysi&mfocus on the third aspect of
building N-version software, that is, the execution enmimeent. We first outline the goals that in-
fluence the design of this environment. Next, we presentaéiseclarchitecture of the environment,

and finally discuss various details of the design of this emrnent.

7.2.1 Assumptions and Goals

Overall, the design of the N-version file system is influenbgdhe following goals and as-

sumptions:

Simplicity: As systems have shown time and again, complexity is the safnmany bugs.
Therefore, the N-version file system should be as simple asilpie. This goal primarily
translates to avoiding persistent metadata for the N-wrréle system, thereby avoiding

issues such as disk-block allocation and protection of dataagainst partial disk failures.

Single disk: The N-version file system is intended for use in a commodisteay. There-

fore, it will replicate data across multiple local file sysigthat use the same disk drive. This

181

goal translates to a need for reducing disk-space overheaslevelop a single-instance

store to address this goal (Section 7.4).

Non-malicious file systems:The N-version file system should protect against partidt dis
failures and file-system bugs that lead to errors in the ptEsi state of file systems. The N-
version file system does not protect against malicious kiehhy file systems or file-system

bugs that corrupt the rest of the kernel.

No application modifications: Applications should not need modifications to use an N-

version file system instead of a single local file system.

7.2.2 Basic Architecture

An N-version file system receives application file operagiaasues the operations to multiple
child file systemscompares the results of the operation on all file systentstetarns the majority
result to the application. Each child file system storesata@dnd metadata in its own disk partition.

We have built the N-version file system for Linux. Figure 7tws the basic architecture.
The N-version file system consists of a software layer NVFR® tiperates underneath the virtual
file system (VFS) layer. NVFS operates underneath VFS becdbS provides core functionality
(like ordering of file operations) that is hard to replicatehout modifying applications. The VFS
layer has been heavily tested over the years and, henckelg to have fewer bugs that the file
systems themselves; in a study of file systems, Yetrad. [150] find 2 bugs in the VFS layer while
they find 2 bugs in ext2, 5 in ext3, 2 in ReiserFS and 21 in JFS.

The NVFS layer executes file operations that it receives oltipheichild file systems. We have
used ext3 [141], IBM’'s JFS [20], and ReiserFS [108] for thisgmse. We have chosen these file
systems due to their popularity, our experience in anaty#iese file systems, and the differences
in the handling of partial disk failures across these fildays (as shown in Figure 7.1).

Similar to stackable file systems [63], NVFS interposesdpamently on file operations; it acts
as a normal file system to the VFS layer and as the VFS layeretehiid file systems. It thus

presents file-system data structures and interfaces thaV®$ layer operates with and in turn

182

VFS

)
NV

-

Nz
/(n

ext3
ReiserFS
JFS

-
——

Disk driver

'

Figure 7.2 N-version file system in Linux. The figure presents the architecture of a 3-version file
system with ext3, ReiserFS and JFS as the 3 child file syst€hescore layer is the NVFS layer; it is
responsible for issuing file operations to all 3 file systedetermining a majority result from the ones
returned by the file systems, and returning it to the VFS laybe SIS layer beneath the file systems is a

single-instance store built to work in an N-version settibgoalesces user data stored by the different file
systems in order to reduce performance and space overheads.

183

manages the data structures of the child file systems; ittea®nin in-memory inodes, dentry
structures, etc., to interact with the VFS layer and in tuamages the allocation and deallocation
of such structures for child file systems. This managemedatd structures of child file systems
includes tracking the status of each data structure, thathether it matches with the majority
and whether it needs to be deallocated. In keeping with oaplstity goal, we have designed the
N-version file system so that it does not maintain any peststiata structures of its own. This
decision affects various parts of the design, from handtndgy file systems (Section 7.2.3.2), to
handling system crashes (Section 7.2.3.4), and to managemhi@ode numbers (Section 7.3.1).
We have implemented wrappers for file and directory openatioT hese wrappers first verify
the status of necessary objects in the child file system ea&suing the operation to it. For
example, NVFS verifies whether the status of both the file tsxdarent directory are valid in the
case of an unlink operation. Each operation is issued ies¢oi the child file systems. Issuing an
operation in parallel to all file systems will increase thengdexity of the NVFS layer and it is not
clear that such an approach will have much of a performancefli€onsidering that the child file
systems likely share the same disk drive. When the opesatomplete, the results are compared
to determine the majority result; this result is then reaatio the user. When no majority result
is obtained, NVFS returns an I/O error to the user; futurelengntations can consider using
the response of a “primary” file system in such cases. The six$ection describes the result

comparisons and actions taken when a file system does n@& agrethe majority in more detail.

7.2.3 Design Details

This subsection describes the details of various desigitehthat we made in building the N-
version file system, including the comparison of resultadiiag cases when file systems disagree,

ordering of file operations, and the implications of systeashes.

2Qur current implementation of NVFS does not includerthep operation.

184

7.2.3.1 Result Comparison

The NVFS layer compares the results of all operations adtesslifferent child file systems.
For example, for a file read operation, NVFS compares (a)itteecf data read (or the error code
returned), (b) the actual content read, and (c) the file j[posdt the end of the read. For all file
operations where inodes may be updated, NVFS compares (gnesdo the NVFS-level inode)
the contents of the individual inodes. We have developedewators for different file-system data
types like superblocks, inodes, and directories. For exepapm inode comparator checks whether
the fieldsi_nlink, i_mode,i_uid, etc. in the different inodes are the same.

In performing read operations, we would like to avoid thefpenance overhead of allocating
memory to store the results returned by all of the file systeiiserefore, the NVFS layer uses
the memory provided by the application as part of Head system call. This choice influences
two decisions: (i) NVFS calculates a checksum on the dateuretl and compares the checksums
for different file systems, since a more thorough byte-btelomparison would require memory
for all copies of data, and (ii) NVFS issues the read opemaitioseries to child file systems only
until a majority opinion is reached (the read is not issuetthoremaining child file systems); this
choice eliminates the problem of issuing reads again in taséatest file system to perform the
read returns incorrect data; in addition, in the common caben file systems agree, we save on
extra reads.

In choosing the checksum algorithm used to compare dataawe to remember that the cost
of checksumming can be significant for reads that hit in treedyistem buffer cache. We have
measured using microbenchmarks that this cost is espetigh for cryptographic checksums
such as MD-5 and SHA-1. Therefore, in keeping with our gogbmitecting against bugs, but
not potentially malicious behavior of child file systems, use a simple TCP-like checksum for

comparisons.

3We choose not to take the same issue-only-until-majoripr@gch with other VFS operations like lookup since
the limited performance gain for such operations is not fwtite complexity involved, say in tracking and issuing a
sequence of lookups for the entire path when a lookup reemasmeous results in one file system.

185

7.2.3.2 Handling Disagreement

An important part of an N-version file system is the handlihgases where a child file system
disagrees with the majority result. This part is specificathportant for local file systems since
the ability to perform successive operations may depentd@nesult of the current operatioe.g,

a file read cannot be issued when the open operation for aifé¢. fa

If the result produced by a child file system disagrees withrttajority result across all child
file systems, the N-version file system operateddgraded-mod#or the associated object; that is,
it does not perform future operations on the object for theedijistem with the error. The N-version
file system continues to perform operations on other objectthat file system. As an example,
if a child file system’s file inode is declared faulty, thendesperations for that file are not issued
to that file system. As another example, if a lookup operatmmpletes successfully for only one
file system, its corresponding in-mematgntrydata structure is deallocated, and any future file
create operation for that dentry is not issued to that filéesys

The validity information for objects is not maintained gstently. In the absence of an option
to repair the child file system, this choice maintains thepdicity goal. Note that permanent
errors will likely be detected again during future operaspwhile we allow the child file systems
to return to normal operation for transient errors as lonthaobject is not modified in the interim.

When an error is detected, in order to restore the N-versiensfistem to full replication,
the erroneous child file system should be repaired. Our Siwerfile system currently does not
repair child file systems. As an example of why logical filestgyn repair is difficult, consider the
following scenario. A file with two hard links to it may havecaorrect contents. If the N-version
file system detects the corruption through one of the lirtkeay create a new file in the file system
to replace the erroneous one. However, there is no simpleovaentify the directory where the
other link is located, so that it can be fixed as well (excemiugh an expensive scan of the entire

file system).

186

7.2.3.3 Operation Ordering

As in many replication-based fault tolerance schemesaétéeng an ordering of operations
is extremely important; in fact, recent work in managingenegeneous database replicas focuses
primarily on operation ordering [142]. In the context of @&fdystem, consider the scenario where
multiple file operations are issued for the same object. braering is not predetermined for these
operations, their execution may be interleaved such tleedifferent child file systems perform the
operations in a different order and therefore produce gifferesults even in the absence of bugs.

Unlike for databases, the dependence between operatiarsegaredetermined in the case of
file systems. In our NVFS implementation, we rely on the lagkprovided by the Linux VFS
layer to order metadata operations. As explained earhés,reliance cannot be avoided without
modifying applications (to issue operations to multiplpligas of VFS that execute an agreement
algorithm). In addition to the VFS-level locking, we penfofile locking at the NVFS layer for
reads and writes to the same file. This locking is necessacgdhe VFS layer does not (and has

no need to) order file reads and writes.

7.2.3.4 System Crashes

When a system crash occurs, file-system recovery in an Nevefide system consists of per-
forming file-system recovery for all child file systems befdhe N-version file system is mounted
again. This approach leads to consistent states for eable ohild file systems (assuming that they
use techniques like journaling to maintain consistencyrasltes). However, it is possible that the
different file systems recover to different states. Speatiffcwhen a crash occurs in the middle of
a file operation, NVFS could have issued (and completed) pieeadion for only a subset of the
file systems, thereby causing the file systems to recoveffereint states. In addition, file systems
like ext3 maintain their journal in memory, flushing the tedo disk periodically; in this case,
journaling provides consistency and not durability. Far Myversion file system, the state modi-
fications that occur durably for a majority of file systemsdrefthe crash are considered to have
completed. The differences in the minority set can be detewthen the corresponding objects

are read, either during user file operations or during a pgngaéile system scan. There are corner

187

cases where a majority result will not be obtained when aesystrash occurs. In these cases,
choosing the result of any one file system will not affect &jestem semantics; future N-version
file system implementations could choose to use the reguit & designated “primary” child file

system.

7.3 Achieving Opportunistic N-Versioning

We now discuss how well it works to opportunistically use ais&ng specification and avail-
able file systems for an N-version file system. We first focughenways in which the POSIX
specification is imprecise for use in an N-version setting laow we address the issues that arise,

and then discuss the implications of using a shared addpese $or all child file systems.

7.3.1 Imprecise Specification

One of the problems that we encounter in building an N-ver§ile system is the fact that file
systems do not use the same specification. While most filersgssupport the POSIX/VFS inter-
face (which serves as the interface exported by the N-veffdi® system), they differ in various
user-visible aspects that are not a part of the POSIX irterf&or example, the POSIX specifi-
cation does not specify the order in which directory entaes to be returned when a directory
is read. Thus, different child file systems return directengries in a different order. As another
example, the inode number of files is available to users apticapions through thetat system
call, and different file systems issue different inode nurabe the same file.

One approach to addressing this problem would be to makeptfication more precise and
change the file systems to adhere to the new specification filBh@roblem with this approach
is that it discourages diversity across the different filsteyns. For example, in the inode number
case, all file systems will be forced to use the same algorithaillocate inode numbers, perhaps
causing them to also use the same data structures, thengbggncommon bugs. The second
problem with the approach is the development effort needethdange each file system in order to
use it as a child file system. The third problem is that norewheinism and difference in operation

ordering could cause different behavior even if the samesfitgem is used as alN “versions.”

188

Our approach is to address the differences in specificatittimeaNVFS layer. In the directory
entry example, the NVFS layer reads all directory entriesnfrall file systems, and then returns
results that occur in a majority of file systems (as opposeckaaling exactly as many entries
as the user provides space for). This approach increasesvérbead for thegetdirentries
system call for very large directories. We handle the inadeiber issue by having the N-version
file system assign inode numbers as and when a new objectasiieced. In keeping with our
simplicity goal, inode numbers so assigned are not pergidteat is, an object has a specific inode
number only between mount and the corresponding unmouns ddtision impacts only a few
applications, such as NFS servers (pre-NFSv4) and rsyatdepend on the persistence of local

file system inode numbers.

7.3.1.1 Shared Environment

One problem with using multiple local file systems for regtion is that the different file
systems execute within the same address space, thus explsii-version file system to two
problems: (a) kernel panics called or caused by any file syséad (b) memory bugs in the file
systems that corrupt the rest of the kernel. A solution tdhlbblems would be to completely
isolate the child file systems using a technique such as N[A@&}. However, due to the numer-
ous interactions between the VFS layer and the file systemae, isolation comes at a very high
performance cost. Therefore, we explore a more limitedtgmiuo this problem.

We find the current practice of file systems issuing a cafldnic when they encounter errors
to be too drastit[104]. This scenario is one instance where using existimgdjistems for N-
versioning causes problems. In the case of ext3 and JFS, atroptionerrors can be used to
specify the action to be taken when a problem is encounteved;ould specifyerrors=continue
to ensure that panic is not called by the file systems. Howéisroption is not available on all

file systems. Therefore, our solution is to replace callpanic, BUG, andBUG_ON by child file

4File system developers seem to agree, as evidenced by lbwifad comment in ext3 code: “Give ourselves just
enough room to cope with inodes in whiclliocks is corrupt: we've seen disk corruptions in the pastivinesulted
in random data in an inode which looked enough like a regukafdi ext3 to try to delete it. Things will go a bit crazy
if that happens, but at least we should try not to panic thelevkernel.”

189

systems with a call to avfs_child panic routine in NVFS layer. This simple replacement is
performed in file-system source code. Thefs_child _panic routine disables issuing of further
file operations to the failed file system. However, since titerit of the child file system is to cause
the system to crash, one cannot guarantee that crash-tsgeeps can be made in all cases when

execution is allowed to continue.

7.4 Single-Instance Store

Two issues that arise in using an N-version file system araisiespace and performance
overheads. Since data is storedNifile systems, there is aN-fold increase (approximately) in
disk space used. Since each file operation is performed diteadlystems (except for file reads),
the likely disk traffic isV times that for a single file system.

Our solution is to these problems is to apply single-instastorage technology [23, 42, 105].
Our block-level single-instance store trades-off some aatiability for disk space and perfor-
mance, while still maintaining metadata reliability foretkifferent child file systems. We have
designed this single-instance store specifically for usiil-version file system setting.

In our system, the disk operations of the multiple child fiystems pass through a block-level
single-instance store layer. This layer computes a comtast (SHA-2) for all disk blocks being
written and uses the content hash to detect duplicate deajrigle-instance store writes out only
unique disk blocks.

The single-instance store layer ensures that only one cioggai user data block will be stored
since data blocks produced by different file systems wittlijkhave the same conténfThus, disk-
space usage is reduced. However, any disk failure thattaffedata block in one file system will
also affect the data block in the other file systems. The queshat arises now iswhy use a

single-instance store underneath an N-version file systaihfile systems will be affected?

5Using SHA-1 does not impact performance greatly when uselisinoperations.
SWe only require that each of the file systems use a minimunkdae of 4 KB

190

There are two reasons why a single-instance store is appdicdirst, the reliability of file-
system metadata is not affected by the use of a single-icstaiore; since the format of file-
system metadata is different across different file systemesadata blocks of different file systems
will have different hash values and will therefore be stoseg@arately. Thus, the single-instance
store layer can distinguish between data and metadatasttioutany knowledge of file-system
data structures. Since metadata form the access path tiplauinits of data, their reliability may
be considered more important than that of a data block. Skdde-system bugs that cause in-
memory corruption of data blocks will result in the data stbby different file systems having
different content hashes, thus maintaining the isolatetwben different file systems’ data. There-
fore, while disk failures will affect multiple file systentfey are still protected against each other’s
file-data corruptions. Thus, the single-instance storspgeially applicable when file-system bugs
are the primary contributors to partial disk failures.

The design of a single-instance store specifically for anelsion file system should satisfy
slightly different requirements than a conventional singistance store. At the same time, these
requirements provide new opportunities for optimizatiombe new requirements and opportuni-

ties are as follows.

e The ability of child file systems to recover from failures teir metadata blocks should be
retained. This ability may depend on the availability ofliegs for these disk blocks. For
example, JFS replicates its superblock and uses the rdplieover from a latent sector
error to the primary. Thus, our single-instance store dagsoalesce disk blocks with the
same content if they belong to the same file system. Thisredias the additional benefit

of maintaining any file-system remapping of disk blocks whetsk error occurs.

¢ In order to use unmodified file systems (that have no knowledigentent addressing), the
single-instance store also virtualizes the disk addressespt exports a virtual disk to the file
system, and maintains a mapping from each file system’salidisk address to the corre-

sponding physical disk address, as well as the referenagséar each physical disk block.

191

The single-instance store uses file-system virtual addseas hints for assigning physical

disk blocks in order to maintain as much sequentiality aratiaplocality as possible.

e Since the goal of the single-instance store is to coalesoermmmn data from different file
systems, we can take advantage of the fact that in an N-vefigosystem, this common
data is always written around the same time. Therefore, msmgle-instance store, the
content hash information for each disk block is not storeigtently; the content hashes
are maintained in memory and deleted after some time haseslgjor afterV file systems
have written the same content). This ephemeral nature denbhashes also reduces the

probability of data loss or corruption due hash collisio®4][

¢ In an N-version file system, reads of the same data blocksoadlr around the same time
as well. Thus, the single-instance store layer servicedsréam different file systems by
maintaining a very small read cache, thus reducing the numbdisk reads. This read
cache holds only those disk blocks whose reference countifeuof file systems that use
the block) is more than 1. It also tracks the number of file @yst that have read a block
and removes a block from cache as soon as this number redehesfdérence count for the
block.

Thus, the single-instance store data structures includlezir(ual-to-physical mappings, (ii)
allocation information for each physical disk block in trerh of reference count maps, (iii) a
content-hash cache of recent writes and the identitieseofilih systems that performed the write,
and (iv) a small read cache.

We have built the single-instance store as a pseudo-devikger ¢h Linux. It exports virtual
disks that are used by the file systems. Our current implesientof the single-instance store
does not store virtual-to-physical mappings and referameet maps persistently; future imple-

mentation efforts could focus on a reliable persistentestor these data structures.

192

7.5 Reliability Evaluation

We evaluate the reliability improvements of a 3-version $jstem that uses ext3, JFS, and
ReiserFS (version 3) as the child file systems. All our experits use the versions of these file
systems that are available as part of the Linux 2.6.12 kernel

We evaluate the reliability of the 3-version file system itways: First, we examine whether
the 3-version file system recovers from scenarios wheresjitgem content is different in one out
of the three child file systems. Second, we examine whethbanitecover from partial disk failures

that affect one of the child file systems.

7.5.1 Non-Matching File System Content

The first set of experiments is intended to mimic the scenatiere one of the file systems
has a consistent but incorrect disk image. Such a scenagbtraccur either when (i) a system
crash occurs and one the child file systems has written eitloge or less to disk than the other
file systems, and (ii) a bug causes one of the file systems toptdile data, say by performing a
misdirected write of data belonging to one file to another file

We experiment by modifying the contents of one child file egstand executing a set of file
operations on the 3-version file system. We have exploradusfile-system content differences,
including extra or missing files or directories, and diffeces in file or directory content. The
different file operations performed include all possible filperations for the object. Our file
operations include those that are expected to succeed bastbbse that are expected to fail with
a specific error code. Note that the ability to perform some diberations depends on whether
the object exists. For example, a file read can be attemptigdoora file that exists, while a file
open can be attempted for both existing and absent files.elggeriments are intended to verify
whether the 3-version file system detects differences ctiyreand responds to requests with the
majority opinion.

Table 7.1 presents the results of the file-system conterrarpnts. We find that the 3-version

file system correctly detects (and reports to the systemdbglifferences. In addition, it returns

193

Difference in content Number of | Correct | Correct

experiments | success| error code

None 28 17117 11/11
Different directory contents in one file system 13 6/6 717
Directory is present in only two file systems 13 6/6 717
Directory is present in only one file system 9 414 5/5
Different file contents in one file system 15 11/11 414
Different file metadata in one file system 45 33/33 12/12
File is present in only two file systems 15 11/11 414
File is present in only one file system 9 3/3 6/6
Total 147 91/91 56 /56

Table 7.1 File-system content experimentsThis table presents the results of issuing file operations
to 3-version file system objects that differ in data or metadantent across the different child file systems.
The first column describes the difference in file-systemeconthe second column presents the total number
of experiments performed for this content difference;ih@mply the number of applicable file operations
for the file or directory object. The third column is the friact of operations that return correct data and/or
successfully complete. The fourth column is the fractioopefrations that correctly return an error code
(anditis the expected error code) (e.g., -ENOENT when ankinperation is performed for a non-existent
file). We see that the 3-version file system successfullythusesajority result in all 147 experiments.

194

the majority result to the user in all cases, either retugriime expected data or returning the
expected error code. The N-version file system can also beessfully mounted and unmounted
in all cases. We find that the results are the same irresgeatiwhich file system (ext3, JFS, or

ReiserFS) has incorrect contents.

7.5.2 Partial Disk Failures

The second set of experiments is intended to analyze whatBerersion file system recovers
when a child file system is affected by a partial disk failliée experiment by injecting partial disk
failures for JFS and ext3. We use type-aware fault injectoorour experiments (Section 2.5.1).
In each experiment, we inject a fault when a specific fileaystlata structure is read by the child
file system in response to a specific file operation. Tablea@d27.3 briefly describe the JFS and
ext3 data structures for which faults are injected. Theetsllso provide the approximate fraction
of disk blocks of each type in a typical file system on a 40-G&kgliartition. We inject two types
of partial disk failures: read errors and corruption. Fadeerrors, the error code EIO is returned
to the file system. In addition, the read buffer is zeroed’oEtr corruption, the entire buffer is
zeroed out, but no error code is returned. We first presentiagbiey comparison of JFS and 3-
VFS, then a comparison of ext3 and 3-VFS. Next, we derive@pprate probabilities for different
user-visible results such as data loss, and finally discuse &ey observations that arise from our

evaluation.

7.5.2.1 Partial Disk Failures in JFS

Figures 7.3 and 7.4 compare the user-visible results ottimg read errors and corruptions
respectively for JFS data structures. Each figure compheegesults between (a) JFS used stand-
alone and (b) JFS used as one of the child file systems in asBwdile system that uses ext3 and

ReiserFS as the other child file systems.

"We find that it is important to not have correct data in the dugince JFS often ignores error codes and uses the
data in the buffer.

195

Data structure | Description Fraction

INODE Inode block containing 8 inodes 0.01
DIR Directory data block 1.5e-03
BMAP Block-allocation bitmap block; these blocks 1.2e-04

are organized as a tree

IMAP Inode map block that contains pointers to |n- 2e-05
ode blocks

INTERNAL Indirect block of a file, containing pointersto 1e-04
data blocks

DATA File data block 0.5

SUPER Superblock of the file system le-07

JSUPER Superblock of the journal le-07

JDATA Journal data block 1.2e-03

AGGR-INODE-1 | First block of the aggregate inode table le-07

IMAPDESC Third block of the aggregate inode table; can- 1e-07

tains pointers to imap blocks
le-07

IMAPCNTL Inode map control block with summary infoy

mation about the inode map

Table 7.2 JFS data structures. The table describes the different JFS data structures aadr#ction of
disk blocks of that type in a typical file system.

196

Data structure | Description Fraction

INODE Inode block 0.01
DIR Directory data block 1.5e-03
BMAP Block-allocation bitmap block 3e-05
IMAP Inode-allocation bitmap block 3e-05
INDIRECT Indirect block of a file, containing pointersto 5e-04

data blocks

DATA File data block 0.5
SUPER Superblock of the file system le-07
JSUPER Superblock of the journal le-07
GDESC Group descriptor block 3e-07

Table 7.3 Ext3 data structures. The table describes the different ext3 data structures hadraction
of disk blocks of that type in a typical file system.

(a) JFS RESULTS (b) 3-VFS RESULTS

7 g g g

g = g 2

Elolol_IE|E].] |<|BE]LI8l]x|2|w|E Elolol_EIE].] |<|BIElLI8]c]2|2 |5

11213 la |5 |6 17 I8 lo |10]11]12]13|14]15]16]27]18 11213 la Is |6 |7 I8 lo |10l11]12]13|14|15|16]17]18
31 nooe O[O[0] O] WMoY LM [O[O[oHH [nooe I I N W N [
or B T T T ool T ol T 11 Lor HTTT T N
Clewep abMoRTalOMl W T 1] [lewe EEEEEE _______©§ HEE
" [RYS O TTTTIo[Tol o[TToloFH 11 [liwwe _ENEEE B B BN BN
B NTERNAL I I) A) I R I TN =2 NN EEEEEEE = EEER
B oata [TTIoI TTTITTITIeITTITITIT] [loata NN EEEEEEE EEEEEE
[super EEEEEEEEEEEEEEE EEEREETH COTTTITTTITITTITTI T
[Josuper [(TITTITTITITTTITTITH M iswer EEEEEEEEEEEEEEE B
[Jopata (TTITTITTTITTTITT T T] Cdopata EEEEEEEEEEEEEEE BN
Lacerinooer [ITTTTTTTITITTITTITI6MT] Hagsrinooe-r CITTTTTTITTTTTITTIe[T]
11 maPDESC CIITITTTITTITITTITHT] [iwvaeoesc EEEEEEEEEEEEEEE NN
1 maponTL COTTTTTITTITITITTTHEETI O mapent COTTTITTTITITTITTI T

LEGEND

B Normal operation B Non-mountable file system

B Data or metadata loss [@ System crash

[*] Data corrupted or corrupt data returned O Read-only file system (ROFS)

[Operation fails [@ Data loss <or> operation fails and ROFS

A Later operations fail O Not applicable

Figure 7.3 Read error experiments for JFS.The figures show the results of injecting read errors for Jag&dtructures when (a)
JFS is used stand-alone and (b) when JFS is one of the chilgyieems in a 3-version file system. Each row in the figuregespands
to the data structure for which the fault is injected; eachuoon corresponds to a file operation; each symbol represthetsiser-visible
result of the fault injection. Note that (i) the column SEdehotes file operations access, chdir, chroot, stat, stistst, and open; SET-2
denotes chmod, chown, and utimes; SET-3 denotes fsyncrandigysome symbols are a combination of two symbols, oméimh is the

light-gray square for “read-only file system,’ (iii)d4] denotes cases where one of two possibilities could occpenéing on disk state.

(a) JFS RESULTS (b) 3-VFS RESULTS

7 g g g

g = g 2

Elolol_IE|E].] |<|BE]LI8l]x|2|w|E Elolol_EIE].] |<|BIElLI8]c]2|2 |5

11213 la |5 |6 17 I8 lo |10]11]12]13|14]15]16]27]18 11213 la Is |6 |7 I8 lo |10l11]12]13|14|15|16]17]18
31 nooe O[O[0] O] WMoY LM [O[O[oHH [nooe I I N W N [
or B T T T ool T ol T 11 Lor HTTT T N
Clewep abMoRTalOMl W T 1] [lewe EEEEEE _______©§ HEE
" [RYS O TTTTIo[Tol o[TToloFH 11 [liwwe _ENEEE B B BN BN
B NTERNAL I I) A) I R I TN =2 NN EEEEEEE = EEER
[oaTa [TTTe[TTTITTIIITTITITIT] [loata NN EEEEEEE EEEEEE
[super CTTITTTITITTITTITITITITHT] Osueer COTTTITTTITITTITTI T
[Josuper [(TITTITTITITTTITTITH M iswer EEEEEEEEEEEEEEE B
[Jopata (TTITTITTTITTTITT T T] Cdopata EEEEEEEEEEEEEEE BN
Lacerinooer [ITTTTTTTITITTITTITI6MT] Hagsrinooe-r CITTTTTTITTTTTITTIe[T]
11 maPDESC CIITITTTITTITITTITHT] [iwvaeoesc EEEEEEEEEEEEEEE NN
1 maponTL COTTTTTITTITITITTTHEETI O mapent COTTTITTTITITTITTI T

LEGEND

B Normal operation B Non-mountable file system

B Data or metadata loss [@ System crash

[*] Data corrupted or corrupt data returned O Read-only file system (ROFS)

[Operation fails [@ Data loss <or> operation fails and ROFS

A Later operations fail O Not applicable

Figure 7.4 Corruption experiments for JFS. The figures show the results of injecting corruption into &% structures when (a)
JFS is used stand-alone and (b) when JFS is one of the chilgyiems in a 3-version file system. Each row in the figuregespands
to the data structure for which the fault is injected; eacluoon corresponds to a file operation; each symbol represthetsiser-visible
result of the fault injection. Note that (i) the column SEdehotes file operations access, chdir, chroot, stat, stistst, and open; SET-2
denotes chmod, chown, and utimes; SET-3 denotes fsyncrandigysome symbols are a combination of two symbols, oméhimh is the

light-gray square for “read-only file system,’ (iii)d] denotes cases where one of two possibilities could occpenéing on disk state.

199

Each row in the figures corresponds to the data structure fochwthe fault is injected. Each
column in the figures corresponds to different file operatiorhe exact instance of the data struc-
ture might be different for the different columns in a row.rfexample, while the first row is for
inode blocks, in some cases it is a file inoéeg(unlink), while in some others it is a directory
inode .9, path traversal) and so on. The different symbols repretbentiser-visible results of
the fault; examples of user-visible results include dass l@and a non-mountable file system. For
example, in Figure 7.3a, when an inode block has an errongyrath traversal (column 1), the
symbol indicates that (i) the operation fails, and (i) the $iystem is remounted in read-only mode.

In most cases, there is only one user-visible result thaldcoccur. Sometimes, there could
be more than one possible result depending on disk stateeximple, the symbok] denotes
that eitherdata lossor a combination obperation failureandread-only file systermccurs. In
addition to the symbols for each column, the symbol next eodhata structure name for all the
rows indicates whether or not the loss of the disk block cairseparable data or metadata loss.

As shown in Figure 7.3a, JFS is able to recover from the remt and continue normal opera-
tion in very few of the cases; it uses a copy of the superblodottinue normal operation when a
read to the superblock fails; it can continue normal operatvhen the read to the block-allocation
bitmap fails during truncate and unlink (although disk li®that should have been freed are now
no longer available for allocation).

In most cases, partial disk failures result in undesiragseits. Data loss is indicated for many
of the rows; the loss of these data structures cannot be eestfrom (there is no redundancy).
Often, the operation fails and JFS remounts the file systeread-only mode. The loss of some
data structures also results in a file system that cannot hented. In one interesting case, JFS
detects the read error to an internal (indirect) block of@dihd remounts the file system in read-
only mode, but still returns corrupt data to the user.

In comparison to stand-alone JFS, the 3-version file systemwvers from all except one of the
read errors (Figure 7.3b). The 3-version file system detsttss reported by JFS and also detects

corrupt data returned by JFS when the internal block failsngdyufile read. In all these cases, the

200

3-version file system uses the two other file systems to coatimormal operation. Therefore, no
data loss occurs when any of the data structures is failed.

In one fault-injection experiment, a system crash occuth lwchen using JFS stand-alone
and when using it in a 3-version file system. In this experitntre first aggregate inode block
(AGGR-INODE-1) is failed, and the actions of JFS lead to a kernel panic dyseging. Since this
call topanic is notin JFS code, it cannot been replaced as described ilm8&c3.1.1. Therefore,
the kernel panic occurs both when using JFS stand-alone bad using a 3-version file system.

The results for corruption (Figure 7.4) are nearly-ideaitito the results for read errors. This
similarity arises because JFS uses sanity checks (androotedes) to detect both kinds of errors.
Interestingly, JFS does not use the superblock copy to ezdoem corruption to the superblock
while it uses the copy when a read error occurs. As in the chsead errors, the 3-version file

system recovers and continues normal operation for allgbions but one.

7.5.2.2 Partial Disk Failures in Ext3

Figures 7.5 and 7.6 show the results of injecting read emdscorruption respectively for ext3
data structures. As in the case of JFS, each figure compafeagainst a 3-version file system.

We first examine the results of injecting read errors (Figl&). Since ext3 does not utilize
the available redundancy in data structures, none of thigifgaction scenarios lead to normal
operation. In most cases, there is unrecoverable datadss$efioted by the symbol next to each
data structure name in the figures), and either the oper#aits (ext3 reports an error) or the
file system is remounted in read-only mode or both. In the reim@ cases, the file system cannot
even be mounted. We see from Figure 7.5b that the 3-versesyfiitem is able to continue normal
operation in every single case.

We now examine the results of injecting corruption (Figui@) 7Ext3 detects the corruption in
various cases but cannot restore normal operation (thegféeation fails and data loss occurs). In
other cases, ext3 fails to detect corruptierg(IMAP, INDIRECT), thereby either causing data loss
(IMAP) or returning corrupt data to the usaWpIRECT). Finally, in one scenario (corrudiNODE

duringunlink), the failure to handle corruption leads to a system crasenathe file system is

(a) EXT3 RESULTS (b) 3-VFS RESULTS

g 9 E: g
: £ g £
Elalw|_|E|2 C(BIE]L IR |x|2|e|E Elala|_|E|2 CBIE] IR |«|z]o|E
HHEEE S HEHEEEHE HArEEEHEEHEHEEHECE
11213 |a |5 |6 |7 I8 |9 |10]11]12]13|14]15]16]27]18 11213 la |5 |6 |7 I8 lo |10l11]1213|14|15|16]17]18
B nooe [CIoIo] 1ol Tololol Tof TololoRd 11 [nooe I I DN W N [
Mor O ITTToEEEll T ol T 11 [or 1T T N 1
Clewep [(TI 11T IoloRoRRREIT 111 Hewe HEEEEE HEE
Cliwae [TITTTIOI oI el TTIT T 1] Chiwe ENEEEE B B BN _EEE
B o RECT OITIOITTITITTIoRT I T 1] [inoirect [I EEEEEEE ©H EEE
" [NV [(TTTI TTTITTIITITTIT] Ooata (TT T TTTTTTITITTIT]
[suPer [(TTTTITTITTITITTITTITHT] Osurer CITITTTITTITITTITITTT Tl
[1ssuPer CITTTTITTIITTITTITHEITIT [Cisueer COTTTITTTITTITTITTI T
[eoesc [(TTTTTITTTITITTITITTHT] eoesc CITITTTITTITITTITITTT Tl
LEGEND
B Normal operation HH Non-mountable file system
¥ Data or metadata loss O Read-only file system (ROFS)
[0l Operation fails] Not applicable

Figure 7.5 Read error experiments for ext3. The figures show the results of injecting read errors for e structures when (a)
ext3 is used stand-alone and (b) when ext3 is one of the claldyfstems in a 3-version file system. Each row in the figunessqmonds

to the data structure for which the fault is injected; eacluoon corresponds to a file operation; each symbol represthetsiser-visible

result of the fault injection. Note that (i) the column SEdehotes file operations access, chdir, chroot, stat, stistst, and open; SET-2
denotes chmod, chown, and utimes; SET-3 denotes fsyncrandigysome symbols are a combination of two symbols, oméhimh is the

light-gray square for “read-only file system.

T0Z

(a) EXT3 RESULTS

(b) 3-VFS RESULTS

g 3 k: g
¢ £ e =
Elala|_|E|2 CBIE]L IR |«|2|o|E Elala| |E|2 NEERENFREE
1121314 ls |6 |7 I8 lo |10l11]12]13|14]15]16/17]18 1121314 Is |6 |7 Is |9 |1011|12]13]14|15]16/17]18
B8 nooe OToTo] _Jol WMoR™ WM Io[o[oHH L1 nooe ___E BN __HE
or O TT T Mool TTolol TT11 [Llor 1T T T 7]
WYY [TTTT T leleleleleleMIT T 11 [Clewe EEEEEE __ HEE
Ol vep MITTTET BT R TITIT 111 Cliwe HNEEEE B B BN _EEE
B o RECT O TTeITTTITTTeRT I T 1] [inoirect [I EEEEEEE ©H EEE
Coata [(TTTeITTTTITTTIe[TTITITIT] oata (TT T TTTTTTITITTIT]
[suPer (TTITTITTTITTTITTTHT] [Cswer EEEEEEEEEEEEEEE BN
[ssuPer (TTTTTTITTITITTITTIEETI [isurer COTTTITTTITTITTITTI T
[eoesc (TTTTITTITITITTITTIHHT] [depesc EEEEEEEEEEEEEEE BN
LEGEND
H Non-mountable file system
B Normal operation [@ system crash
B Data or metadata loss O Read-only file system (ROFS)
[*] Data corrupted or corrupt data returned [e] Data loss <or> Data corruption
[0l Operation fails] Not applicable

Figure 7.6 Corruption experiments for ext3. The figures show the results of injecting corruption intBedata structures when (a)
ext3 is used stand-alone and (b) when ext3 is one of the claldyistems in a 3-version file system. Each row in the figunessqmonds

to the data structure for which the fault is injected; eachuoon corresponds to a file operation; each symbol represthetsiser-visible

result of the fault injection. Note that (i) the column SEdehotes file operations access, chdir, chroot, stat, stistst, and open; SET-2
denotes chmod, chown, and utimes; SET-3 denotes fsyncrandigysome symbols are a combination of two symbols, oméhimh is the

light-gray square for “read-only file system.

c0¢

203

unmounted. In comparison, Figure 7.6b shows that the Jearefide system can continue normal
operation in every single experiment, including in the egstcrash case. We discuss this case in

greater detail in Section 7.5.2.4.

7.5.2.3 Probability Estimates

We now derive approximate probabilities of (at least 1) oremce of each of the user-visible
results in one year due to a read error. These estimates asetdo quantify the reliability impact
of using a 3-version file system.

For this calculation, we use: (i) the probability of occune of read errors (latent sector errors)
on a single disk in one year (from Section 3.3.2.1), (ii) thpraximate fraction of disk blocks that
belong to each block type (from Tables 7.2 and 7.3), andtfig)results of injecting read errors
(Figures 7.3, and 7.5),

We assume that (i) each disk block has an equal probabilibhewfg affected by a partial disk
failure irrespective of the data structure it holds, (iigttifferent file operations in the columns
of fault-injection result figures will definitely occur atdet once in a year, thereby triggering the
corresponding user-visible result, (iii) multiple pattibsk failures will not affect more than one of
the replicas of the 3-version file system (less likely sifereplicas do not have spatial locality),
and (iv) the 3-version file system has JFS as one child filesysind ext3 as two child file systems
(since we have not characterized behavior with ReiserFS).

Table 7.4 presents the probability that each user-visgsealt will occur at least once in a year,
comparing JFS, ext3, and a 3-version file system. We seeltba@-version file system is more
reliable than either JFS or ext3, with a zero data-loss goitibaunder one read error. The only

non-zero probability for the 3-version file system is thatdystem crash (1e-08).

7.5.2.4 Discussion

In this subsection, we discuss some key observations frarfaali-injection experiments.
Bug localization: We find that corruption to an ext3 inode block read duringink results in

a system crash when the file system is subsequently unmourttedsystem crash does not occur

204

User-visible result JES Ext3 | 3-VFS
Data loss 0.0512| 0.0512| O
Data corruption 0.050 0 0
Operation failure 0.0512| 0.0512 0
Non-mountable file systern 0.001 | 0.001 0
Read-only file system 0.0012| 0.0012| O
System crash le-08 0 le-08

Table 7.4 Probability of undesirable results. This table presents the probability of each user-visible
result occurring at least once in a given year due to read exfor: JFS, ext3, and a 3-version file system.

205

Linux 2.6.12

static struct dentry *
ext3_lookup(struct inode * dir, struct dentry *dentry, struct nameidata *nd)

{
struct inode * inode;
if (bh) {
inode = iget(dir->i_sb, ino);
if (!inode)
return ERR_PTR(-EACCES) ;
}
if (inode)
return d_splice_alias(inode, dentry);
d_add(dentry, inode);
return NULL;
}

Linux 2.6.23

static struct dentry *
ext3_lookup(struct inode * dir, struct dentry *dentry, struct nameidata *nd)

{
struct inode * inode;
if (bh) {
inode = iget(dir->i_sb, ino);
if (!inode)
return ERR_PTR(-EACCES);
if (is_bad_inode(inode)) {
iput (inode) ;
return ERR_PTR(-ENOENT) ;
}
}
return d_splice_alias(inode, dentry);
}

Figure 7.7Bug in ext3_lookup. The figure compares the code fatt3_1ookup in Linux kernel versions
2.6.12 and 2.6.23. The cheifis_badinode(inode))jn 2.6.23 is missing in 2.6.12 and its absence causes a
system crash when a corrupt inode is unlinked.

206

in the case of the 3-version file system, not because ext3 dfimd to callnvfs_child_panic, but
because the code paths that cause the panic are avoidedttibulpg the 3-version file system
detects that the inode returned by ext3 in response to a jpfikat is performed by VFS prior to
the actual unlink) is faulty. Therefore, it does not issue slibsequent unlink operation to ext3,
hence avoiding actions that cause the panic altogetherestingly, the bug that causes the crash
is actually in the lookup operation, the first point where3heersion file system detects a problem.
Note that in the absence of a 3-version file system, one wondbitfiat the system crashed on an
unmount, but will not have information linking the crash ketunlink system call or the bug in
ext3_lookup. Figure 7.7 shows the code fext3_lookup in Linux kernel versions 2.6.12 and
2.6.23. The checK(is_bad.inode(inode)rnd corresponding actions in 2.6.23 is missing in 2.6.12
and its absence causes the system crash. This experierdglnig the potential for using an
N-version file system to localize bugs in file systems.

Error codes: We find that different file systems use different error codeeport errors. The
error codes vary from “Input/output error” to “Permissioarded” to “Read-only file system” and
so on. However, the system log shows that in most of these tiaséile system detects a read error
or corruption. A consistent error code to represent thesaatos would enable the N-version file
system take further action than just the measures discuss®ection 7.2.3.2; for instance, any
repair of file systems could retain a (dummy) file whose davalbhas a latent sector error so that
the file system does not re-use this disk block for other filasaddition, if multiple file systems
are affected by disk errors, in the absence of consisteat eades, the NVFS layer only detects
the lack of a majority error code and reports an 1/O error,darnnot detect a more pervasive disk
problem. We find that this issue is one of the limitations ahgsexisting file systems, one that

cannot be solved by simple replacement of function calls dsndling kernel panic.

7.6 Conclusion

We have proposed the use of an N-version file system to telelapartial disk failures, in-
cluding file system bugs. Our approach includes technig@senable the use of existing file

systems, thereby significantly reducing the cost of develmt. We have also proposed the use

207

of a single-instance store to reduce the performance akesgiace overheads of an N-version file
system. The single-instance store is especially appkcabtases where file-system bugs are the
primary contributors to partial disk failures. We have baih N-version file system for Linux file
systems and show that it is significantly more reliable thiensfystems that it is composed of. We
also show that the N-version file system can be used to l&chligs in file systems.

Modern file systems are becoming more complex by the day; amsins to achieve data
structure consistency [140], scalability and flexible edlbon of disk blocks [20, 132], and the
capability to snapshot the file system [67, 130] significamitrease the amount of code and com-
plexity in a file system. Such complexity could lead to bugthmfile system that render any data
protection further down the storage stack useless. Thasjgh of an N-version file system would

prove to be particularly relevant as file systems evolve.

208

Chapter 8

Related Work

This chapter discusses various research efforts and retdrag that are related to this disser-
tation. We first discuss literature on characterizationystem and disk failures, then summarize
research on analyzing the failure behavior of systems. Nextutline techniques that have been

used to handle disk failures, and finally we discuss reseataked to N-version programming.

8.1 Failure Characteristics

This section discusses research efforts that have analgaédiorld data on failures. Such data
often provides great insights into failure handling, bathérms of identifying techniques that can
be used to tackle failures and in terms of fine-tuning theguesdi that trigger the use of different
techniques. We first summarize research on the charaatsrigtsystem failures and then discuss

research specifically targeted towards disk and storageystdim failures.

8.1.1 System Failures

Various research efforts have studied real-world systalarés. We focus on research on the
root causes of failures in our discussion, in order to chebktiver disk failures play a major role
in causing system failures.

One of the very first and very influential studies of systentufai was by Gray [51]. Gray
analyzes the cause of system failures reported to Tandemaokenonth period for a sample set
that covered more than 2000 systems. A total of 166 failureeweported, of which 42% of the

failures were due to system administration. Software bagsed 25% of the failures and hardware

209

problems caused 18% of the failures (disk drives 7%). Theselts spurred further research on
system failures, especially with a view to verifying the iagp of system administration on other
systems. Murphy and Gent [91] analyze failures that ocdumeVAX systems and find that
from 1985 to 1993, the primary cause of failure shifted fronft\ware to system administration.
Oppenheimeet al.[96] study internet systems and find that, again, operator erthe main cause
of failure in two out of three services. All of these findings/e sparked research in examining the
effect of operator errors, as well as into techniques thatd=al with the consequences [27, 79,
126, 143].

Other studies of system failure have laid the blame on sofiwin following up on his first
study of failures, Gray [52] finds that from 1985 to 1989 thienary cause of failures shifted from
system administration to software bugs (the cause of 62¥%eofdilures in 1989); he surmises that
as other components of the system become more reliableyasefbecame the primary cause of
failure. More recently, Murphy and Levidow [92] analyze tteuses of Windows NT 4 failures
and find that the core of NT caused failures 43% of the time)endhiivers and hardware caused
failures 32% and 13% of the time respectively.

Finally, hardware has been the main root cause of failureaimous systems. Schroeder and
Gibson [117] study failures in high-performance compusiygtems and find that hardware is the
main contributor to system failure, causing about 60% offallures and about 60% of system
downtime. In a subsequent study focusing on disk failurebr&der and Gibson [118] find that
disk drives were the hardware components to be replacedfregsiently in two out of three of the
data sets that they examined. They also find that disk driegs the third-most frequent hardware
cause of node outages, while the most frequent was the CPU.

Most of the above studies do not identify disk drive or steragbsystem failures as the primary
causes of system failure. However, the increasing trendiofdarge numbers of inexpensive hard
disks [48] are expected make disk failures larger contakaito system failure. From the point of

view of data loss, disk and storage failures are certairgypitimary threats.

210

8.1.2 Disk and Storage Failures

This subsection discusses research that analyzes disk@aade subsystem failures. Unfortu-
nately, very little data has been published on real-worstk dnd storage subsystem failures; there
have been no large-scale studies of partial disk failures py our work.

In one of the first studies to focus on disk failures, Talagald Patterson [137] analyze failures
and errors that occurred in a 3.2 TB storage system and findijtdisk drives are more reliable
than other storage subsystem components, (ii) IDE diskieaseeliable than SCSI disks, and (iii)
medium errors (latent sector errors) occur, albeit muck [&en than network errors. A more
recent study of storage subsystem failures by Jeral. [70], which uses the same error database
as we do, agrees with Talagala and Patterson’s observatabdisk drives fail less often than other
storage subsystem components. However, one must rememabatthough disk drives experience
failures less often, these failures may lead to actual ams, While other subsystem components
typically lead to data unavailability.

Elerath and Shah have studied various aspects of disk-gefiability in detail [40, 41, 121,
122]. These studies often do not provide actual numberssiifdilures, but use relative numbers
to highlightimportant trends. For instance, Shah and Eheshow that the reliability of disk drives
changes with theivintage that is, the batches in which they are produced [121]. Talslior is
explained by the maturing of manufacturing processes aadgds to firmware code over time. In
another study, Shah and Elerath show that the cause of diskefahanges with disk age [122].
Indeed, the observation in our study that nearline disk® leagreater probability of developing
latent sector errors as they age may contribute to this gépbenomenon.

Recently, two large-scale studies of disk failure were fshigld [102, 118]. Both studies focus
on “complete” disk failures, wherein it is known that the ldigiled or was replaced, but the
exact cause of failure is not known or not presented. Sclemoadd Gibson [118] study the disk
replacement logs of systems that use a total of around 10@,8& drives. They find that (i) disks
fail more often than manufacturer-reported MTTF (Mean Titmd-ailure) numbers suggest, (ii)
rather than have a significant infant-mortality effect kdisplacement rates grow with age, and

(iii) there is little difference between the SCSI and SATAlecement rates if the rejection of a

211

particularly bad batch of SATA disks is ignored. Pinhea@bal. [102] present numbers from a
study of disk failures that occurred at Google in a poputatsd more than 100,000 disks. They
find that (i) there is very little correlation between diskdiges and temperature, or activity levels,
and (ii)) some SMART [2] parameters like scan errors and oealion counts have a large impact
on failure probability.

In the study most related to ours, Gray and van Ingen [53]gmiea small-scale analysis of
partial disk failures. They moved 2 PB of data through abotdisk drives over a period of
6 months, and detected 4 read error events. This number & lovcomparison to manufacturer-
reported bit-error rates. As we have observed in studyintgalisk failures, they found a case

where the likely culprit was the disk controller and not thekdrive.

8.2 Analysis of Failure Behavior

This section presents research efforts that analyze hawregsespond to failures, with a focus
on file systems and storage systems. We first discussessdffiattuse software fault injection to
evaluate systems, and then discuss efforts that use otteriggies such as model checking and

static analysis to examine systems.

8.2.1 Software Fault Injection

A multitude of software fault-injection techniques andnfraworks have been developed over
the years [26, 33, 19, 29, 61, 74, 75, 90, 123, 139]. Thesedinarks differ in various ways:
the types of faults they can inject, the ease of use of thedvasrk, the monitoring capability
they provide to track the propagation of faults, and so onm&eof the types of faults that can
be injected using these frameworks include processor, memod bus faults [19, 29, 61, 74, 75,
139], disk faults [26, 139], communication faults [19, 64],%software faults [33, 75], and faulty
user input [90].

The FTAPE [139] framework is closely related to our work. dbhsists of a workload generator
and a device-driver-level disk-fault injector (which infe disk errors, but not corruption). Unlike

our approach, the FTAPE fault injector does not inject tgpeare faults. The framework was

212

implemented for studying the Tandem Integrity S2 fauletaht computer. It performs stress-
based injection, in which faults are injected at times armtions of greatest workload activity.
The authors show that this approach leads to higher errdeatts ratio, an indication that fault-

tolerant mechanisms are being well-exercised.

A second related fault-injection study is an analysis byvi&iesk et al. [123] of how a file
system reacts when various fields of file pointers are corriynlike our approach to pointer
corruption, they do not corrupt pointers in other metadatactures. Also, unlike us, they perform
the corruption in memory once a file has been opened and dsedype-aware corruption values.
As a result of these differences, their approach does natigganformation about why the file
system is able or unable to handle the corruptions.

Also closely related to our work is the disk-fault injectoeveloped by Brown and Patter-
son [26]. More than the fault-injection technique, it isittgpal of unearthing thelesign philos-
ophyof the system, as opposed to simply reporting the fractioexperiments that the system
handled, that has inspired our own fault-injection methogp. For their experiments, they use a
PC as a SCSI “target”; code running on the PC emulates disksland their faults. Using the
framework, they measure the availability of software RAN3t®mSs in various operating systems,
and find that while the Linux version is paranoid about transierrors and values application
performance over reconstruction upon failure, the Windend Solaris versions tolerate transient
errors better and perform reconstruction more aggressivelis interesting to see that some of
these design-philosophy findings are applicable to fileesystas well; we find that Windows
NTFS performs many more retries of disk operations than Xiiile systems do, thereby helping

it tolerate transient errors better.

8.2.2 Other Approaches

In addition to fault injection, various other approachesehbeen used to examine the fault-
tolerance capability of systems.
Analytical modeling has primarily been used to examine #tiability of RAID systems. Gib-

son [49] developed a model for RAID systems that focused @olake disk failures. Over the

213

years, the analytical models have been refined to includiertbact of latent sector errors and data
corruption, and additional techniques such as disk scngbHi7, 39, 76, 119]. The results of our
analysis of the characteristics of partial disk failuresgts as the fact that these failures are not
independent, can be used to refine the different models.

Model checking is a formal technique that has been used begrdars to analyze a variety of
systems [73]. Recently, model checking has been adaptedriowell with real operating system
code [93], and subsequently employed to find bugs in file sys{@50]. Interestingly, our type-
aware fault-injection technique identifies a different gebugs than the ones triggered by model
checking [104].

Static analysis is another formal technique that has beed tesstudy file systems. Yarey
al. [149] use static analysis to analyze the disk mounting cddext2, ext3, and JFS and find
bugs in all of them. These bugs could potentially cause aekgranic or allow buffer overflow
attacks when a malicious disk image is mounted. We have wédarsimilar bug in NTFS, where
a corrupt on-disk pointer could cause a system crash (Ch@ptRecently, Gunawet al.[56] use
static analysis to investigate the propagation of erramsuth file system code and find that many
functions drop error codes that should have been propagated

Some research efforts have manually inspected and anatysteins as well. In recent work,
Hafneret al. [58] manually analyze the impact of various forms of datawgtion on RAID data
protection. They present an example of the parity pollugmyblem that we identified in Chapter 4
and show that such a problem could occur in a RAID system watlbte-disk parity protection as
well. Carrier [30] analyzes the importance of various figlisn-disk data structures in different
file systems from a forensic viewpoint. He also presents odslthat can be used to recover data

in cases where one cannot use the file system itself to oltaiddta €.g, from deleted files).

8.3 Handling Partial Disk Failures

This section describes research efforts that focus on manplartial disk failures. We focus on
systems and techniques not discussed previously as bagidy(8ection 2.4) or in our evaluation

of RAID data protection (Chapter 4).

214

Sivathanuet al. [124] develop a technique calldgpe-safe disksin which disk drives with
knowledge of file-system data structures prevent file systeam accessing data that it shouldn’t.
For example, if a file system does not read the inode contithi@ pointer to a data block prior
to accessing the data block itself, the disk drive returngmar. This approach is particularly
useful in handling pointer-related file-system bugs. Hosvethe approach relies on a disk drive’s
bug-free operation.

Gunawiet al. [55] present a technique calletD shepherdingusing which a variety of data
protection techniques for file systems can be easily conthddee 1/0 shepherd co-operates with
the file system for various purposes including identifyihg type €.g, inode) of disk blocks,
performing disk block allocating, and journaling repliazsed for fault-tolerance. While this ap-
proach provides more flexibility over previous data pratatapproaches [104, 129, 130], it does

not protect against file-system bugs.

8.4 N-Version Programming

Over the years, N-version programming has been used inusarigal systems and research
prototypes to reduce the impact of software bugs on systéabiigy. As noted by AviZienis [6],

N-version computing has very old roots:

“The most certain and effectual check upon errors whicheanghe process of com-
putation, is to cause the same computations to be made byaseaad independent
computers; and this check is rendered still more decisitteely make their computa-

tions by different methods.” — Dionysius Lardn&ginburgh Reviewl834 [6]

“When the formula to be computed is very complicated, it mayalgebraically ar-
ranged for computation in two or more totally distinct wagad two or more sets of
cards may be made. If the same constants are now employeéadgthset, and if un-
der these circumstances the results agree, we may thentlkesgaure of the accuracy
of them all.” — Charles Babbagenpublished ManuscriptL837 [6]

215

The concept was (re)introduced in computer systems byiéwi and Chen in 1977 [7]. Since
then, various other efforts, many from the same researchpgtwave explored the process as well
as the efficacy of N-version programming [8, 10, 9, 31, 80].

Avizienis and Kelly [9] study the results of using diffetespecification languages; they use 3
different specification languages to develop 18 differemsions of an airport scheduler program.
They perform 100 demanding transactions with differens #t3-version units and determined
that while at least one version failed in 55.1% of the testsoléective failure occurred only in
19.9% of the cases. This demonstrates that the N-versiaoagpreduces the chances of failure.
AviZienis et alalso determine the usefulness of developing the differeftivare versions in dif-
ferent languages like Pascal, C etc. [10]. As in the eartiga\s the different versions developed
had faults, but only very few of these faults were common dredsioburce of the common faults
were traced to ambiguities in the initial specification.

N-version computing has been employed in many systems. B&ogmears, such uses have
primarily been in mission- or safety-critical systems [1481]. More recently, with the increas-
ing cost of system failures and the rising impact of softwlamgs, many research efforts have
focused on solutions that use N-version programming forrawing system security and for han-
dling failures [36, 72, 112, 142]. Joukat al.[72] store data across different local file systems
with different options for storing the data redundantly.vwwéwer, unlike our approach, they do not
protect against file-system bugs, and inherently rely or eéadividual file system to report any
errors, so that data recovery may be initiated in RAID-ligeHion. Rodriguest al.[112] develop
a framework to allow the use heterogeneous network file systs replicas for Byzantine-fault
tolerance. Vandiveet al.[142] explore the use of heterogeneous database systef@gZantine-
fault tolerance. They specifically address the issue ofrorg®f operations usingommit barriers
In our N-version file system, this issue is made simpler dusvtoreasons: (i) in the absence of
transactions, file systems are not expected to provide attynaicross multiple operations on the
same file, and (ii) the VFS layer can easily identify confli¢cteough locking of file system data

structures.

216

Chapter 9

Conclusions and Future Work

“There is much to be said for failure. It is much more inteirggthan success.”

— Max BeerbohmMainly on the Air 1946.

Most disk-drive failures are partial failures, whereinyalfew blocks on disk are inaccessible
or a few blocks are silently corrupted. These partial dislkifas could lead to permanent data loss,
or worse, cause unwitting users and applications to usegbdata.

We have adopted a complete and detailed approach to aduyeksi threat posed by partial
disk failures; we have examined the characteristics ofeHasures, analyzed how the failures
impact various storage-stack components, and developadt#os for tolerating these failures.

In this chapter, we first summarize each of the three compsréour work, then discuss gen-

eral lessons learned over the course of this work, and fiaitine directions for future research.

9.1 Summary

To summarize our work, we review our study of the charadiessof latent sector errors
and data corruption, then discuss our analysis of how palisé failures impact RAID systems,

virtual-memory systems and file systems, and finally recapebdion file systems.

9.1.1 Characteristics

We have performed the first large-scale study of the chaiatits of partial disk failures; our

sample of 1.53 million disk drives far exceeds the sample sfzprevious disk-failure studies [53,

217

102, 118, 137]. The disk drives used in our study are alsasiehey were sourced from multiple
vendors; there were both nearline (SATA) and enterpriség (fgks; within each class, there were
different disk families, and within each family, there welierent capacities. Such diversity helps
derive better conclusions.

Our study was made possible because NefNpgtorage systems use various techniques to
detect and recover from various partial disk failures. QGasults show that partial disk failures
affect a large number of disks; therefore these techniqueesxaremely important and well-worth
the disk-space or performance overheads they impose.

We have studied two classes of partial disk failures, lasextor errors and data corruption,

both of which could lead to permanent data loss. Our impodbservations include:

Magnitude of threat: Latent sector errors affect a large percentage of disksy Eiffect
20% of the disks belonging to a specific nearline disk modé& yrears. While silent data
corruption affects fewer disks that latent sector errdrsytare not as rare as one would hope.

They affect more than 3% of disks of multiple nearline diskd®is in less than 1.5 years.

Factors: Disk classand disk modelare important factors that influence the development
of partial disk failures. The more expensive enterpris&slere more reliable than nearline
disks with respect to partial disk failures; a smaller patage of enterprise disks are affected
than the nearline ones, across all of the disk models in tidysOn average, nearly an order
of magnitude fewer enterprise disks are affected by paditl failures. Disk ageandsize
are factors as well. In the case of nearline disk drives, thbability that a disk will develop

a latent sector error within a given period of time increaasshe age of the disk drive
increases. Higher-capacity disk drives are more likelyaweadop latent sector errors than the

lower-capacity ones of the same disk family.

Independence and locality:Partial disk failures areot independentvithin the same disk
drive. They also show significaispatial and temporal locality Data corruptions are not

independent even across different disks in the same steyafem, indicating that the cause

218

of corruption is perhaps a common component in the storaggystem, such as a storage

adapter.

Correlations: Latent sector errors and silent data corruptions correlétie each other and

with various other disk errors, such as not-ready-condiégors.

Detection: A large percentage of partial disk failures are discovenedugh different forms
of disk scrubbing Also, a significant number of data corruptions are detedtethg RAID
reconstructionin the absence of protection against double disk failutesse cases would

lead to data loss.

We have used these observations to derive important le$spdata protection including the
importance of using disk scrubbing and studying its benigfiggeater detail, and the need to place

redundant copies of data far away from each other when storélde same disk.

9.1.2 Impact

We have examined the impact of partial disk failures on aetgrof important storage-stack
components: RAID systems, virtual-memory systems, andsfitgems. We first summarize the
analyses, then compare different systems and discuss perierce with the methodology used.

Of the different systems that use disk drives, RAID is speailly targeted towards handling
disk failures. Therefore, one would expect a thorough antiabkle failure-handling scheme. We
tested this premise by developing and using a simple moaelkeh to examine data protection in
single-parity RAID systems. We have analyzed a range of piatiction techniques used in real
systems, including disk scrubbing, various kinds of chaaoks, and two types of identity informa-
tion. We found that composing these techniques does notdadhe expected fault-tolerance; in
each scheme, there are one or more scenarios that resuttitoda or corrupt data being returned
to the user. Many schemes suffer from parity pollution, véharruption can propagate from a bad
data block to the parity block, thereby causing the data toime unrecoverable. We also showed

that the use of version mirroring along with block checksuphgsical identity and logical identity

219

provides an efficient way to tolerate all partial disk fadat In the future, as protection evolves
further to cope with the next generation of disk problems bekeve that a formal approach such
as ours will be extremely useful in verifying the protection

We have extended type-aware fault injection to analyze&irtnemory systems, a crucial com-
ponent of operating systems. We analyzed the virtual-mgrsgstems of Linux, FreeBSD, and
Windows XP, and found that (i) the virtual-memory systeme agsly simple techniques to deal
with partial disk failures; there is no attempt to use teges like redundancy to completely re-
cover from the failures, (ii) tolerance mechanisms are wo@®eloped; for example, the Linux
swap header has a provision to store a list of bad blocks,Hauligt is not updated as and when
errors are detected, and (iii) virtual-memory systems diodebect most corruptions; this neglect
may have severe consequences as demonstrated by the syasénhat occurs when FreeBSD
does not detect corruption of the kernel thread stack.

Our final analysis was motivated by the fact that any systetwtiishes to preserve data needs
to preserve access paths to the data. In the case of file sstieenpointers located in on-disk
data structures serve as the access paths. We have devétppesivare pointer corruption, an
extension of type-aware fault injection, to observe how $ystems respond to corrupt on-disk
pointers. We analyzed two widely-used file systems, NTFSext8, and found that while these
file systems use fault-tolerance techniques such as typ&icige sanity checking, and replication,
these techniques are poorly-designed and implemented sytems. As a result, the file systems
do not even detect some pointer corruptions that they coaNe btherwise recovered from.

Thanks to our analysis of both file systems and virtual-mgmsgstems we can now compare

the failure-handling policies of the two kinds of systems:

e Both kinds of systems share problems like illogical incetesicy and implementation bugs
in failure-handling code. This points to a general disrddar partial disk failures, thus ex-

posing commodity computer systems to data loss, data davrugnd inexplicable crashes.

ISpecifically, version mirroring is storing version numbers a data block and its corresponding parity block;
block checksum is a checksum of the block stored in the blpbksical identity is the disk number and disk block
number stored in the block; logical identity is the inode m@mand offset within a file for that block.

220

e The Linux virtual-memory system, like some file systems [[Lodisses a large number of

write errors.

e Both virtual-memory systems and file systems do not deal @otinuption errors in an ele-
gant manner. We see that file systems perform some type aitg shecking to deal with
corruption to file system data structures, but there is ntegtmn for user data (which is the
only data handled by virtual-memory systems for the mod) pRecent file systems such as
ZFS [130] are targeted at addressing this issue; it woulchtezesting to examine how they

well they work in practice.

e The FreeBSD and Windows XP virtual-memory systems leveeaganportant difference
between file systems and virtual-memory systems in thaeware required to succeed in
file systems, while virtual-memory systems have altereatitkke choosing an other page as

victim and writing it elsewhere on disk.

Experimenting with multiple systems not only helps us coraghese systems, but also pro-
vides an insight into the advantages and limitations of oethrmdology. Our experience is that the
techniques are simple to use and can be applied to manyatiffeystems. In the case of type-
aware fault injection, while the tool has to be rewritten éach environment, we found that the
task was not onerous.

We observed one patrticular limitation: there is no easy veaigéntify the source of disk ac-
cesses and the accesses may be attributed to error recobeyitimay be unrelated. An example
of this problem occurred when a read error was injected fosex data page in FreeBSD or Win-
dows XP. We observed what seemed to be a “retry” of the readn H\his “retry” succeeded, the
application was terminated, indicating a possible bug enrdtry code. Only closer examination
revealed that the second read was performed to create a gore dnd not to recover from the
error. It would therefore be interesting to explore teclig to identify the exact source of disk

accesses in future work.

221

9.1.3 Tolerance

Our solution to the problem of partial disk failures was naated by the lessons that we learned
from the above studies: partial disk failures affect a highcpntage of SATA disks, the kind used
in our personal computers; commodity file systems that ussetdrives are poor at handling partial
disk failures, despite years of development and testirgfith systems also have numerous bugs.
Therefore, we cannot rely on a single complex file system talleapartial disk failures.

We have developed an N-version file system, in which dataredtand retrieved fronV dif-
ferent file systems. We started with the hypothesis that tivemdion file system can be built to use
the existing POSIX specification and existing file systemmsteby reducing the high development
costs typically associated with building N-version softevaWe also made it a goal to keep the
software entity that replicates user operations acrossystems as simple as possible. From our
design and development effort, we found that it is indeedsidess to build a simple entity that can
use existing file systems.

We have addressed the disk-space and performance overbkeadsN-version file system
by developing a block-level single-instance store thatpisceically designed for an N-version
file system. This single-instance store uses content haslemmlesce disk blocks with the same
content. Due to differences in data structures acrossrdiftdile systems, the layer coalesces only
user data and not file-system metadata, thereby providirtgdata replication to protect against
file-system bugs and partial disk failures that affect matad

We have evaluated the reliability of the N-version file systgsing two types of experiments:
experiments where one of the file systems has wrong contemdstype-aware fault-injection ex-
periments where one of the file systems suffers a partialfditkre. We found that the N-version
file system recovers successfully from almost all of the ages, thus significantly reducing the
probability of data loss or file-system unavailability doeptartial disk failures.

Modern file systems are becoming more complex by the day. &sualty bugs in file systems
are becoming the norm rather than the exception. The usewveirdlon file systems could prove to

be even more relevant as file systems evolve.

222

9.2 Lessons Learned
In this section, we briefly discuss general lessons we |elaniele working on our thesis.

Information and control for failures: In current systems, applications receive little in-
formation about failures other than a single error code, laank little say in how failures
are handled. For example, disk errors could cause the l4nteanory system to deliver a
SIGBUS signal to the application; in the absence of more imfation about what memory
page(s) were lost, the application has no option but to teaitei Even worse, in some cases,
the error code delivered to applications does not even tdfiecfact that a partial disk fail-
ure was detectede(g, in many cases, JFS returns errors like “Permission deraad”“No
space left on device” instead of “Input/output error”). Welibve that future system inter-
faces should provide for much richer information and cantrechanisms for failurese(g,
applications could be allowed to register to receive a raatiion if an asynchronous write

fails).

Software bugs: One cannot expect that the complex software systems of wildye bug-
free. Software bugs and imperfections are the norm rathean the exception. While it
is important to focus on identifying and eliminating bugsisi equally important to build
systems that can tolerate these bugs. A few recent systemsaivated by this theme, such
as Nooks [133, 134] and our N-version file system. We belibat the design of future

systems will be strongly influenced by the need to handle .bugs

9.3 Future Work

In this section, we outline various avenues for future redea\Ve first discuss possible future
studies of failure characteristics, then outline potdatiealyses of failure-handling techniques, and

finally discuss extensions to N-version file systems.

223

9.3.1 Characteristics of Partial Disk Failures

Future efforts to characterize partial disk failures cofddus on various questions on latent
sector errors and data corruption that our current study s answer. We discuss some such
guestions below.

Our study looks at data corruption across different disk et®dwWe find that the numbers vary
significantly across disk models, suggesting that diskd ¢aeir adapters) may directly or indi-
rectly cause corruption most of the time. However, disksoaulg one of the storage-stack compo-
nents that could potentially cause corruption. A recentlstshows that other storage subsystem
components do have a significant impact on storage failui@s [Future studies could examine
corruption numbers across different models or versiondl dfeadware and software components.
Such a study may help pinpoint the exact sources of datatosru

In our study, we examine various factors that affect the graent of partial disk failures,
such as the age or capacity of the disk drive. Future studiekl@nalyze the impact of various
other factors, including operating conditions. One imanttoperating condition is the workload
that the disk is subject to. In the results we obtained, thgairhof workload on the development
of latent sector errors or data corruption is unclear, eisfigdue to the lack of fine-grained disk-
level workload information. Examples of such fine-graineidrmation include the number of disk
seeks that are performed and how “bursty” the workload iguieustudies could thus examine on
correlations between fine-grained workload informatiod gartial disk failures. In addition to
disk-level workload, a future study could analyze the impmddogical-level workload; for exam-
ple, one could study whether a data structure that is writguently is the one that is corrupted
frequently (we have seen indications that this may be sodti®e3.4.6). Thus, future studies may
focus on obtaining both logical- and disk-level workloatbimation along with recording latent
sector errors and silent data corruptions in order to explbe impact of workload. A second im-
portant operating condition is temperature. Although &nestudy of absolute disk failures found
that temperature does not affect failures significantly2]1@ future study could examine this trend

in the context of partial disk failures.

224

In addition to the above studies involving hard disks, fatuesearch could focus on partial

failures that affect emerging storage technologies sudokd-state drives [113, 114].

9.3.2 System Analysis

We have used two different techniques, model checking apetayvare fault injection, to ex-
plore how partial disk failures impact storage-stack congrds. We believe that both techniques
could be extended to study other systems.

We have used our RAID model checker to study a variety of datption techniques in RAID
systems, focusing on systems with a single parity disk ajgttimg only one failure. Avenues for
future work would include extending our model checker tadgtthe data protection offered by
storage systems that use two parity disks [35, 43]. Haéteal. [58] point out that there cases
where the problems we discovered in single-parity schenmsgsanrtend to double-parity schemes
as well. In the case of double-parity schemes, it would aksinteresting to explore the impact
of two partial failures. Finally, our analysis could be ended to analyze non-traditional RAID
schemes such as RAID-Z [24].

We have used type-aware fault injection to analyze numei@usystems and virtual-memory
systems. We found that the failure-handling in many of ttegstems was simplistic; for example,
none of the systems used checksums to detect corruptionwArrige system such as ZFS [130]
IS more corruption-aware; it uses parental checksums tectebrruption. An interesting future
project could look at how well checksumming works in pragetoy studying ZFS. Another avenue
for future work is to extend type-aware fault injection taidy other data management systems

such as database systems, which are often configured tolyluse disk drives.

9.3.3 N-Version File Systems

Future work on N-version file systems could focus on varionisamcements, including file-
system repair, proactive error detection, and singleaimst caching.
File-system repair: Our N-version file system currently does not repair child fiestems.

When the N-version file system detects that one of its chieddyistems is faultye(g, a file has

225

different contents in one file system), in order to restoeNversion file system to full replication,
the erroneous child file system should be repaired. Futumk woN-version file systems could
focus on different ways in which such repair can be accorptis

A simple approach would be to treat the “partial file-systaffufe” as an absolute file-system
failure — completely erase the faulty file system and reeréaising data from the other child file
systems. This approach has the benefit that any unknownptmms in the faulty file system will
be eliminated. However, recreating the entire file systemld/take time, and similar to RAID
reconstruction, reading the entire contents from the otwerfile systems may yield errors that
cannot be resolved.

A different approach would be to fix (create, replace, or glenly the object that has wrong
contents. However, consider the following scenario. A filghvtwo hard links to it may have
the wrong contents. If the N-version file system detects aor éinrough one of the links, it may
create a new file in the file system to replace the erroneousharighere is no way to identify
the directory where the other link is located (except thioagscan of the entire file system). The
issues and trade-offs across different approaches maksyStem repair an interesting problem
to address in future work. We believe that such “logical’-Blestem repair is applicable beyond
N-version file systems as well.

Proactive error detection: In an N-version file system that is capable of performing file-
system repair, system reliability could be further impro\®y detecting and fixing errors proac-
tively. We have seen from our study of partial disk failurkattdisk scrubbing is very useful for
detecting failures, thereby reducing the chances of dofatieres; “file-system scrubbing” that
scans file-system contents in the background may be equssfylin detecting partial file-system
failures.

Single-instance cachingin the current system, the block-level single-instanceestiderposes
on disk requests and coalesces disk blocks with the samertonthis helps reduce disk-space
overheads and to avoid performance overheads that arise disk accesses to the same data
by N file systems. However, in this system, for each file data hld¢lkcopies of the data are

maintained in the file-system cache, thereby wasting memsppage. Future work could focus on

226

eliminating this overhead by enhancing the block-leveygrinstance store such that it interposes
on file-system cache accesses as well; then, only one coacbfdata block will be cached, thus
reducing the memory space overhead of an N-version file syste
In addition to these specific enhancements, future work majoee the utility of N-version

file systems in locating bugs in file systems. An N-versiondilstem has a detailed view of both
file operations that are performed as well as the manner iciwbne file system disagrees with
other file systems. This information could potentially besleged to locate the bug in a file system
that causes its content or response to differ from the otleesystems. Section 7.5.2.4 details one
such instance where our N-version file system helped lochteyan ext3. This instance serves as

proof of the potential that an N-version file system holdsléaating bugs.

“Prediction is very difficult, especially about the futtire: Niels Bohr

227

LIST OF REFERENCES

[1] Adaptec, Inc. Adaptec SCSI RAID 2200S. http://www.attgpcom/en-US/support/raid/

[2]
[3]

[4]

[5]

scsiraid/ASR-2200S/, 2007.
Bruce Allen. Monitoring hard disks with S.M.A.R.Linux Journa) 2004(117):9, 2004.

Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Gtian. Tolerating Multiple Fail-
ures in RAID Architectures with Optimal Storage and UnifoDeclustering. InProceed-
ings of the 24th Annual International Symposium on CompAtehitecture (ISCA '97)
pages 62—72, Denver, Colorado, May 1997.

Guillermo A. Alvarez, Walter A. Burkhard, and Flaviu Gtian. Tolerating Multiple Fail-
ures in RAID Architectures with Optimal Storage and UnifoDeclustering. InProceed-
ings of the 24th Annual International Symposium on CompAtehitecture (ISCA '97)
pages 62—-72, Denver, Colorado, May 1997.

Dave Anderson, Jim Dykes, and Erik Riedel. More Than aerface: SCSI vs. ATA. In
Proceedings of the 2nd USENIX Symposium on File and Stoed@dlogies (FAST '03)
San Francisco, California, April 2003.

[6] Algirdas A. Avizienis. The Methodology of N-Version &gramming. In Michael R. Lyu,

editor, Software Fault Toleranceehapter 2. John Wiley & Sons Ltd., 1995.

[7] Algirdas A. Avizienis and Liming Chen. On the Implematibn of N-Version Programming

for Software Fault Tolerance During Execution.Rroceedings of 1st Annual International
Computer Software and Applications Conference (COMPSACChicago, USA, 1977.

[8] Algirdas A. Avizienis, P. Gunningberg, John P. J. Kelly Strigini, P. J. Traverse, K. S. Tso,

and U. Voges. The UCLA DEDIX system: A Distributed TestbedNtultiple-version Soft-
ware. InDigest of 15th International Symposium on Fault-Toleraot@puting (FTCS’85)
pages 126-134, Ann Arbor, MI, June 1985.

[9] Algirdas A. Avizienis and John P. J. Kelly. Fault Tolaee by Design Diversity: Concepts

and ExperimentslEEE Computerl7(8), August 1984.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

228

Algirdas A. Avizienis, Michael R. Lyu, and Werner Sgiz. In Search of Effective Diversity:
A Six-Language Study of Fault-Tolerant Flight Control Sedte. InDigest of 18th Inter-
national Symposium on Fault-Tolerant Computing (FTCS, 88kyo, Japan, June 1988.

Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dussead Remzi H. Arpaci-Dusseau.
Dependability Analysis of Virtual Memory Systems. Rroceedings of the International
Conference on Dependable Systems and Networks (DSNPB#adelphia, Pennsylvania,
June 2006.

Lakshmi N. Bairavasundaram, Garth R. Goodson, ShaRkaupathy, and Jiri Schindler.
An Analysis of Latent Sector Errors in Disk Drives. Rroceedings of the 2007 ACM SIG-
METRICS Conference on Measurement and Modeling of ComBytgems (SIGMETRICS
'07), San Diego, CA, June 2007.

Lakshmi N. Bairavasundaram, Garth R. Goodson, Biandaréeder, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. An Analysis of Datau@gtion in the Storage
Stack. InProceedings of the 6th USENIX Symposium on File and Storagendlogies
(FAST '08) San Jose, California, February 2008.

Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin &gal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing thffects of Disk-Pointer

Corruption. InProceedings of the International Conference on Depend8gkems and

Networks (DSN’08)Anchorage, Alaska, June 2008.

Lakshmi N. Bairavasundaram, Meenali Rungta, AndrediQaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Limiting Trust in the Storage Stack. Time 2nd International Work-
shop on Storage Security and Survivability (StorageSS ®&xandria, Virginia, Novem-

ber 2006.

Lakshmi N. Bairavasundaram, Muthian Sivathanu, Aadi@. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusivadbing Mechanism for
RAIDs. In Proceedings of the 31st Annual International Symposium @mguiter Archi-
tecture (ISCA '04)pages 176-187, Munich, Germany, June 2004.

Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Ropsulos, Petros Maniatis,
TJ Giuli, and Prashanth Bungale. A Fresh Look at the Reltgiboff Long-term Digital
Storage. InProceedings of the 1st EuroSys Conference (Eurosys [@8)ven, Belgium,
April 2006.

Wendy Bartlett and Lisa Spainhower. Commercial Faalefance: A Tale of Two Systems.
IEEE Transactions on Dependable and Secure Compyiifig:87—96, January 2004.

J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewkord-ault Injection Experiments
Using FIAT. IEEE Transactions on Compute?9(4):1105-1118, April 1990.

229

[20] Steve Best. JFS Overview. http://jfs.sourceforgépreject/publ/jfs.pdf, 2000.

[21] Dina Bitton and Jim Gray. Disk shadowing. Rroceedings of the 14th International
Conference on Very Large Data Bases (VLDB, péges 331-338, Los Angeles, California,
August 1988.

[22] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai MenoviERODD: An optimal scheme
for tolerating double disk failures in RAID architecturda.Proceedings of the 21st Annual
International Symposium on Computer Architecture (ISCAH, ®ages 245-254, Chicago,
lllinois, April 1994.

[23] William J. Bolosky, Scott Corbin, David Goebel, and adR. Douceur. Single Instance
Storage in Windows 2000. Rroceedings of the 4th USENIX Windows Systems Symposium
Seattle, Washington, August 2000.

[24] Jeff Bonwick. RAID-Z. http://blogs.sun.com/bonwiektry/raidz, November 2005.

[25] Daniel P. Bovet and Marco CesatiUnderstanding the Linux Kernel (Second Edition)
O’Reilly, December 2002.

[26] Aaron B. Brown and David A. Patterson. Towards AvailapiBenchmarks: A Case Study
of Software RAID Systems. IRroceedings of the USENIX Annual Technical Conference
(USENIX '00) pages 263-276, San Diego, California, June 2000.

[27] Aaron B. Brown and David A. Patterson. Undo for OperatdBuilding an Undoable E-
mail Store. InProceedings of the USENIX Annual Technical Conference NUSED3),
San Antonio, Texas, June 2003.

[28] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Giegedman, and Armando Fox.
Microreboot — A Technique for Cheap Recovery.Rroceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI, 'pdyes 31-44, San Francisco,
California, December 2004.

[29] Joao Carreira, Henrique Madeira, and Joao GabriebSiKception: A Technique for the
Experimental Evaluation of Dependability in Modern Congst IEEE Transactions on
Software Engineerin®24(2):125-136, 1998.

[30] Brian Carrier.File System Forensic Analysiéddison Wesley Professional, March 2005.

[31] Liming Chen and Algirdas A. Avizienis. N-Version Pnagnming: A Fault-Tolerance Ap-
proach to Reliability of Software Operation. Digest of 8th International Symposium on
Fault-Tolerant Computing (FTCS’78Joulouse, France, 1978.

[32] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy HtzKand David A. Patter-
son. RAID: High-performance, Reliable Secondary Storad&M Computing Surveys
26(2):145-185, June 1994,

230

[33] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, tGphier Aycock, Gurushankar
Rajamani, and David Lowell. The rio file cache: Surviving gigng system crashes. In
Proceedings of the 7th International Conference on Architeal Support for Program-
ming Languages and Operating Systems (ASPLOS ®dinbridge, Massachusetts, Octo-
ber 1996.

[34] Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallamg Dawson Engler. An Em-
pirical Study of Operating System Errors. Rroceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ‘qdgges 73-88, Banff, Canada, October 2001.

[35] Peter Corbett, Bob English, Atul Goel, Tomislav Grcan&teven Kleiman, James Leong,
and Sunitha Sankar. Row-Diagonal Parity for Double DiskuUfaiCorrection. InProceed-
ings of the 3rd USENIX Symposium on File and Storage Techiss{FAST '04) pages
1-14, San Francisco, California, April 2004.

[36] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowaill, Wei Hu, Jack Davdison,
John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-Variaygt&ns - A Secretless
Framework for Security through Diversity. IRroceedings of the 15th USENIX Security
Symposium (Sec '0gYancouver, British Columbia, August 2006.

[37] Michael H. Darden. Data Integrity: The Dell—EMC Disttion. http://www.dell.com/
content/topics/global.aspx/power/en/ps2g@2den?c=us&cs=555&I=en&s=biz, May
2002.

[38] James Dykes. “A modern disk has roughly 400,000 linesoafe”. Personal Communica-
tion from James Dykes of Seagate, August 2005.

[39] Jon G. Elerath and Michael Pecht. Enhanced Reliabiiodeling of RAID Storage Sys-
tems. InProceedings of the International Conference on Dependaipsétems and Networks
(DSN-2007)Edinburgh, United Kingdom, June 2007.

[40] Jon G. Elerath and Sandeep Shah. Disk Drive Reliab@i#ge Study: Dependence upon
Head Fly-Height and Quantity of Heads. Pmoceedings of the IEEE Reliability and Main-
tainability Symposiunpages 608-612, 2003.

[41] Jon G. Elerath and Sandeep Shah. Server Class Disk Dridew Reliable Are They.
In Proceedings of the IEEE Reliability and Maintainabilityn§yosium pages 151-156,
January 2004.

[42] EMC. EMC Centera: Content Addressed Storage Systetp:/ftww.emc.com/, 2004.

[43] EMC Corporation. EMC Clarion RAID 6 Technology — A Dd&d Review.
http://mwww.emc.com/techlib/pdf/H28lariion raid_6.pdf, July 2007.

231

[44] Ralph Waldo Emerson. Essays and English Traits — IVi-Reliance. The Harvard clas-
sics, edited by Charles W. Eliot. New York: P.F. Collier ar@hS1909-14, Volume 5, 1841.
A foolish consistency is the hobgoblin of little minds, adbloy little statesmen and philoso-
phers and divines.

[45] Dawson Engler, David Yu Chen, Seth Hallem, Andy Choul &gnjamin Chelf. Bugs
as Deviant Behavior: A General Approach to Inferring ErrorsSSystems Code. |®ro-
ceedings of the 18th ACM Symposium on Operating Systemstes (SOSP '01)pages
57-72, Banff, Canada, October 2001.

[46] Gregory R. Ganger and Yale N. Patt. Metadata UpdateoRadnce in File Systems. In
Proceedings of the 1st Symposium on Operating Systemsasigmplementation (OSDI
'94), pages 49-60, Monterey, California, November 1994.

[47] Gentoo HOWTO. HOWTO Install on Software RAID. http#fggoo-wiki.com/
HOWTO_Gentoalnstall on_SoftwareRAID, September 2007.

[48] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leunpe Google File System. In
Proceedings of the 19th ACM Symposium on Operating Systemsphes (SOSP '03)
pages 29-43, Bolton Landing (Lake George), New York, Oat@be3.

[49] Garth A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary SjeraPhD
thesis, University of California at Berkeley, 1991.

[50] Sudhakar Govindavajhala and Andrew W. Appel. Using MeyrErrors to Attack a Virtual
Machine. InProceedings of the 2003 IEEE Symposium on Security anddripage 154,
Washington, DC, USA, 2003.

[51] Jim Gray. Why Do Computers Stop and What Can We Do Abdutlt 6th International
Conference on Reliability and Distributed Databaséase 1987.

[52] Jim Gray. A Census of Tandem System Availability Betwd®85 and 1990. Technical
Report 90.1, Tandem Computers, 1990.

[53] Jim Gray and Catharine van Ingen. Empirical Measurasenh Disk Failure Rates and
Error Rates. Technical Report MSR-TR-2005-166, Microf#tearch, December 2005.

[54] Roedy Green. EIDE Controller Flaws Version 24.
http://mindprod.com/jgloss/eideflaw.html, February 200

[55] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha KrshnAndrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Improving File System Rdiighiith /0 Shepherding.
In Proceedings of the 21st ACM Symposium on Operating Systentigies (SOSP '07)
pages 283296, Stevenson, Washington, October 2007.

232

[56] Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. &rmpDusseau, Remzi H. Arpaci-
Dusseau, and Ben Liblit. EIO: Error Handling is Occasionélbrrect. InProceedings of
the Sixth USENIX Conference on File and Storage Techn@dg&ST '08) San Jose, CA,
February 2008.

[57] James L. Hafner. WEAVER Codes: Highly Fault Toleranagtire Codes for Storage Sys-
tems. InProceedings of the 4th USENIX Symposium on File and Storagen®logies
(FAST '05) San Francisco, California, December 2005.

[58] James L. Hafner, Veera W. Deenadhayalan, Wendy Beliniprand Krishnakumar Rao.
Undetected Disk Errors in RAID Arrays.IBM Journal of Research and Development
52(4/5):413-425, 2008.

[59] James L. Hafner, Veera W. Deenadhayalan, Krishnakitaar and John A. Tomlin. Matrix
Methods for Lost Data Reconstruction in Erasure Code®&rérceedings of the 4th USENIX
Symposium on File and Storage Technologies (FAST, ®ah Francisco, California, De-
cember 2005.

[60] Robert Hagmann. Reimplementing the Cedar File SystesmdJ_ogging and Group Com-
mit. In Proceedings of the 11th ACM Symposium on Operating Systenggkes (SOSP
'87), Austin, Texas, November 1987.

[61] Seungjae Han, Kang G. Shin, and Harold A. Rosenberg. DOR: An Integrated Soft-
ware Fault Injection Environment for Distributed Real-Brystems. IrProceedings of
the International Computer Performance and Dependab8ynposium (IPDS’951995.

[62] David M. Hart. From “Ward of the State” to “Revolutionawithout a Movement”: The
Political Development of William C. Norris and Control Daarporation, 19571986, 2005.

[63] John S. Heidemann and Gerald J. Popek. File-systeniafewent with stackable layers.
ACM Transactions on Computer Systed®(1):58—-89, 1994.

[64] Val Henson. An Analysis of Compare-by-hash.Aroceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS’0Bhue, Hawaii, May 2003.

[65] Hitachi Data Systems. Hitachi Thunder 9500 V Seriehv@erial ATA: Revolutionizing
Low-cost Archival Storage. www.hds.com/assets/pdfA&7_sata.pdf, May 2004.

[66] Hitachi Data Systems. Data Security Solutions. hityputv.hds.com/solutions/storage-
strategies/data-security/solutions.html, Septemb@r 20

[67] Dave Hitz, James Lau, and Michael Malcolm. File SysteasiDn for an NFS File Server
Appliance. InProceedings of the USENIX Winter Technical Conference (URBVinter
'94), San Francisco, California, January 1994.

233

[68] IBM Corp. IBM System Storage DS8000 Turbo. http://wwbsn.com/systems/storage/
disk/ds8000/index.html, 2008.

[69] Hiroo Ishikawa, Tatsuo Nakajima, Shuichi Oikawa, ara$Hio Hirotsu. Proactive Operat-
ing System Recovery. IRoster Session of the 20th ACM Symposium on Operating System
Principles (SOSP '05Brighton, United Kingdom, October 2005.

[70] Weihang Jiang, Chongfeng Hu, Arkady Kanevsky, and Yuan Zhou. Is Disk the Domi-
nant Contributor for Storage Subsystem Failures? A Congrsire Study of Failure Char-
acteristics. IrProceedings of the 6th USENIX Symposium on File and Stoeedlogies
(FAST '08) San Jose, California, February 2008.

[71] Theodore Johnson and Dennis Shasha. 2Q: A Low-Overhiggll Performance Buffer
Management Replacement Algorithm.Rnoceedings of the 20th International Conference
on Very Large Databases (VLDB 2@ages 439-450, Santiago, Chile, September 1994.

[72] Nikolai Joukov, Abhishek Rai, and Erez Zadok. IncregsDistributed Storage Surviv-
ability with a Stackable RAID-like File System. IAroceedings of the 1st International
Workshop on Cluster Security (Cluster-Sec,@Bardiff, UK, 2005.

[73] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. PeMddel CheckingMIT Press,
1999.

[74] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abra. FERRARI: A Flexible
Software-Based Fault and Error Injection SystdEEE Transactions on Computing4(2),
1995.

[75] Wei-lun Kao, Ravishankar K. lyer, and Dong Tang. FINE-&ult Injection and Monitoring
Environment for Tracing the UNIX System Behavior Under Esulin IEEE Transactions
on Software Engineeringages 1105-1118, 1993.

[76] Hannu H. Kari. Latent Sector Faults and Reliability of Disk ArrayBhD thesis, Helsinki
University of Technology, September 1997.

[77] Hannu H. Kari, H. Saikkonen, and F. Lombardi. DetectodrDefective Media in Disks.
In The IEEE International Workshop on Defect and Fault Toleem VLSI Systempages
49-55, Venice, Italy, October 1993.

[78] Kimberly Keeton, Cipriano Santos, Dirk Beyer, Jeff@liase, and John Wilkes. Designing
for disasters. IProceedings of the 3rd USENIX Symposium on File and Storagjendlo-
gies (FAST '04)San Francisco, California, April 2004.

[79] Lorenzo Keller, Prasang Upadhyaya, and George Can@eafErr: A Tool for Assessing
Resilience to Human Configuration Errors. Rnoceedings of the International Conference
on Dependable Systems and Networks (DSN/AB¢horage, Alaska, June 2008.

234

[80] John P. J. Kelly and Algirdas A. Avizienis. A Specifimat-Oriented Multi-version Soft-
ware Experiment. IiDigest of 13th International Symposium on Fault-Toleraot@uting
(FTCS '83) Milano, Italy, June 1983.

[81] Michelle Y. Kim. Synchronized disk interleavindEEE Transactions on ComputerS-
35(11):978-988, November 1986.

[82] Steve R. Kleiman. Vnodes: An Architecture for Multigide System Types in Sun UNIX.
In Proceedings of the USENIX Summer Technical ConferenceNUS&umMmer '86)pages
238-247, Atlanta, Georgia, June 1986.

[83] Andrew Krioukov, Lakshmi N. Bairavasundaram, Garth ®odson, Kiran Srinivasan,
Randy Thelen, Andrea C. Arpaci-Dusseau, and Remzi H. Arpasiseau. Parity Lost
and Parity Regained. IRroceedings of the 6th USENIX Symposium on File and Storage
Technologies (FAST '08f%an Jose, California, February 2008.

[84] Larry Lancaster and Alan Rowe. Measuring Real World&@aAvailability. In Proceed-
ings of the LISA 2001 15th Systems Administration Confergrages 93-100, San Diego,
California, December 2001.

[85] Blake Lewis. Smart Filers and Dumb Disks. NSIC OSD WodkiGroup Meeting, April
1999.

[86] C. Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and [EdRi. Towards Higher Disk Head
Utilization: Extracting “Free” Bandwidth From Busy Disk bes. InProceedings of the 4th
Symposium on Operating Systems Design and Implement&®DI(’00), pages 87-102,
San Diego, California, October 2000.

[87] Peter Lyman and Hal R. Varian. How Much Information ? phfivww.sims.berkeley.edu/
how-much-info-2003, 2003.

[88] Marshall K. McKusick, William N. Joy, Sam J. Leffler, aitbbert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Syste(8):181-197, August 1984.

[89] Marshall K. McKusick and George V. Neville-Neil.he Design and Implementation of the
FreeBSD Operating SysterAddison-Wesley Professional, August 2004.

[90] Barton P. Miller, Lars Fredriksen, and Bryan So. An Enygal Study of the Reliability of
UNIX Utilities. Communications of the ACN83(12), 1990.

[91] Brendan Murphy and Ted Gent. Measuring System and Soé\WReliability using an Au-
tomated Data Collection Proces3uality and Reliability Engineering Internationd1(5),
1995.

[92] Brendan Murphy and Bjorn Levidow. Windows 2000 Depdnitity. In Proceedings of
the International Conference on Dependable Systems anddxlet (DSN '00) New York,
New York, June 2000.

235

[93] Madanlal Musuvathi, David Y.W. Park, Andy Chou, Daw$®nEngler, and David L. Dill.
CMC: A Pragmatic Approach to Model Checking Real Code.Pmceedings of the 5th
Symposium on Operating Systems Design and Implement&®DI(’'02), Boston, Mas-
sachusetts, December 2002.

[94] NetApp, Inc. Introduction to Data ONTAP 7G. Technicapdrt TR 3356, NetApp, Inc.,
October 2005.

[95] NetApp, Inc. NetApp Storage Systems. http://www.pgtaom/us/products/storage-
systems/, 2008.

[96] David Oppenheimer, Archana Ganapathi, and David AidPsdn. Why do Internet services
fail, and what can be done about it? Pnoceedings of the USENIX Symposium on Internet
Technologies and Systems (USITS,@8)03.

[97] Jakob Ostergaard and Emilio Bueso. The Software-RAIDWATO. http://tldp.org/
HOWTO/htmLsingle/Software-RAID-HOWTO/, June 2004.

[98] Chan-lk Park. Efficient Placement of Parity and Datadeiate Two Disk Failures in Disk
Array SystemslEEE Transactions on Parallel and Distributed Systef{41):1177-1184,
November 1995.

[99] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, arez Zadok. tFS: An In-kernel
Integrity Checker and Intrusion detection File SystemPtoceedings of the 18th Annual
Large Installation System Administration Conference ALI#4), Atlanta, Georgia, Novem-
ber 2004.

[100] David Patterson, Aaron Brown, Pete Broadwell, GedZgedea, Mike Chen, James Cut-
ler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthéerzbacher, David Oppen-
heimer, Naveen Sastry, William Tetzlaff, Jonathan Traupnaad Noah Treuhaft. Recovery
Oriented Computing (ROC): Motivation, Definition, Techuesg, and Case Studies. Tech-
nical Report CSD-02-1175, U.C. Berkeley, March 2002.

[101] David Patterson, Garth Gibson, and Randy Katz. A CaseéRbdundant Arrays of In-
expensive Disks (RAID). IfProceedings of the 1988 ACM SIGMOD Conference on the
Management of Data (SIGMOD '88)ages 109-116, Chicago, lllinois, June 1988.

[102] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz AedBarroso. Failure Trends in a Large
Disk Drive Population. IrProceedings of the 5th USENIX Symposium on File and Storage
Technologies (FAST '07pages 17-28, San Jose, California, February 2007.

[103] Florentina I. Popovici, Andrea C. Arpaci-Dusseau] &emzi H. Arpaci-Dusseau. Robust,
Portable I/O Scheduling with the Disk Mimic. Proceedings of the USENIX Annual Tech-
nical Conference (USENIX '03pages 297-310, San Antonio, Texas, June 2003.

236

[104] Vijayan Prabhakaran, Lakshmi N. BairavasundarantinNhgrawal, Haryadi S. Gunawi,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.NR@e Systems. IrPro-
ceedings of the 20th ACM Symposium on Operating Systemsgtes (SOSP '05)pages
206—220, Brighton, United Kingdom, October 2005.

[105] Sean Quinlan and Sean Dorward. Venti: A New Approadhrthival Storage. IrProceed-
ings of the 1st USENIX Symposium on File and Storage TeohiesI(FAST '02)Monterey,
California, January 2002.

[106] Red Hat, Inc. The Journalling Flash File System, wer4. http://sourceware.org/jffs2/.

[107] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, HU@. Lauer, William C. Lynch,
Paul R. McJones, Hal G. Murray, and Stephen C.Purcell. :PAntOperating System for a
Personal ComputeCommunications of the ACN3(2):81-92, February 1980.

[108] Hans Reiser. ReiserFS. www.namesys.com, 2004.
[109] Peter M. Ridge and Gary Fieldhe Book of SCSI 2/BNo Starch, June 2000.

[110] Martin Rinard, Christian Cadar, Daniel Dumitran, DelnM. Roy, Tudor Leu, and Jr.
William S. Beebe. Enhancing Server Availability and Setyufihrough Failure-Oblivious
Computing. InProceedings of the 6th Symposium on Operating SystemsrDesigmple-
mentation (OSDI '04)San Francisco, California, December 2004.

[111] Dennis M. Ritchie and Ken Thompson. Tbeix Time-Sharing SystemCommunications
of the ACM 17(7):365-375, July 1974.

[112] Rodrigo Rodrigues, Miguel Castro, and Barbara LiskBASE: Using Abstraction to Im-
prove Fault Tolerance. IRroceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01Banff, Canada, October 2001.

[113] Samsung Electronics Co., Ltd. Samsung Solid StateeSri http://www.samsungssd.com,
2008.

[114] SanDisk Corp. SanDisk SSD Solid State Drives. hitpuiv.sandisk.com/OEM/
ProductCatalod 274)-SanDiskSSD Solid_StateDrives.aspx, 2008.

[115] Steven W. Schlosser, Jiri Schindler, Stratos Papashatakis, Minglong Shao, Anastassia
Ailamaki, Christos Faloutsos, and Gregory R.Ganger. Ontidinhensional Data and Mod-
ern Disks. InProceedings of the 4th USENIX Symposium on File and Stoegedlogies
(FAST '05) pages 225-238, San Francisco, California, December 2005.

[116] Fred B. Schneider. Implementing Fault-Tolerant 8my Using The State Machine Ap-
proach: A Tutoria ACM Computing Survey22(4):299-319, December 1990.

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

237

Bianca Schroeder and Garth Gibson. A Large-Scaley&tigtailures in High-Performance
Computing Systems. IRroceedings of the International Conference on Depend8ke
tems and Networks (DSN 'Q@hiladelphia, Pennsylvania, June 2006.

Bianca Schroeder and Garth Gibson. Disk failures enrgral world: What does an MTTF
of 1,000,000 hours mean to you? Mroceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST 'Ogages 1-16, San Jose, California, February 2007.

Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller, DarrBlIE. Long, Andy Hospodor, and
Spencer Ng. Disk Scrubbing in Large Archival Storage SystemProceedings of the 12th
Annual Meeting of the IEEE International Symposium on MiodelAnalysis, and Simula-
tion of Computer and Telecommunication Systems (MASCO®B&ndam, Netherlands,
October 2004.

Margo |. Seltzer, Gregory R. Ganger, M. Kirk McKusidkeith A. Smith, Craig A. N.
Soules, and Christopher A. Stein. Journaling Versus Sodidtks: Asynchronous Meta-data
Protection in File Systems. IRroceedings of the USENIX Annual Technical Conference
(USENIX '00) pages 71-84, San Diego, California, June 2000.

Sandeep Shah and Jon G. Elerath. Disk Drive Vintagatariffect on Reliability. InPro-
ceedings of the IEEE Reliability and Maintainability Symjpon pages 163—-167, January
2004.

Sandeep Shah and Jon G. Elerath. Reliability AnalysBisk Drive Failure Mechanisms.
In Proceedings of the IEEE Reliability and Maintainabilityn§yosium pages 226—231,
January 2005.

D.P. Siewiorek, J.J. Hudak, B.H. Suh, and Z.Z. Segatvdlopment of a Benchmark to
Measure System RobustnessPimceedings of the 23rd International Symposium on Fault-
Tolerant Computing (FTCS-23)Joulouse, France, June 1993.

Gopalan Sivathanu, Swaminathan Sundararaman, aew Zadok. Type-Safe Disks. In
Proceedings of the 7th Symposium on Operating Systemsrasigmplementation (OSDI
'06), Seattle, Washington, November 2006.

Muthian Sivathanu, Lakshmi N. Bairavasundaram, AadrC. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Life or Death at Block Level. Aroceedings of the 6th Sym-
posium on Operating Systems Design and Implementation (@8] pages 379-394, San
Francisco, California, December 2004.

Muthian Sivathanu, Vijayan Prabhakaran, Andrea Cpa&i-Dusseau, and Remzi H.
Arpaci-Dusseau. Improving Storage System AvailabilityhaD-GRAID. In Proceedings
of the 3rd USENIX Symposium on File and Storage Technol@BfeST '04) pages 15-30,
San Francisco, California, April 2004.

238

[127] Muthian Sivathanu, Vijayan Prabhakaran, Florentifr@opovici, Timothy E. Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SarabyrSmart Disk Systems.
In Proceedings of the 2nd USENIX Symposium on File and Storagfendlogies (FAST
'03), pages 73-88, San Francisco, California, April 2003.

[128] David A. Solomon.Inside Windows N.TMicrosoft Programming Series. Microsoft Press,
2nd edition, May 1998.

[129] Christopher A. Stein, John H. Howard, and Margo |. 8&it Unifying File System Protec-
tion. In Proceedings of the USENIX Annual Technical Conference (USE1), Boston,
Massachusetts, June 2001.

[130] Sun Microsystems. ZFS: The last word in file systems.waun.com/2004-0914/feature/,
2006.

[131] Rajesh Sundaram. The Private Lives of Disk Drivesp:hitvww.netapp.com/go/techontap/
matl/sample/0206tatesiliency.html, February 2006.

[132] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderddike Nishimoto, and Geoff
Peck. Scalability in the XFS File System. Pmoceedings of the USENIX Annual Technical
Conference (USENIX '965an Diego, California, January 1996.

[133] Michael M. Swift, Brian N. Bershad, and Henry M. Levymproving the Reliability of
Commodity Operating Systems. Rroceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP 'Q08plton Landing (Lake George), New York, October 2003.

[134] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.e€bvering device drivers. In
Proceedings of the 6th Symposium on Operating SystemsrCgsigmplementation (OSDI
'04), pages 1-16, San Francisco, California, December 2004.

[135] T10 Technical Committee. Information Technology:3®rimary Commands (SPC-2).
Technical Report Project T10/1236-D Revision 5, Septeriibés.

[136] T13 Technical Committee. Information Technology —Affachment 8 — ATA/ATAPI Com-
mand Set (ATA-8/ACS). Technical Report T13/1699-D Rewvissh, December 2006.

[137] Nisha Talagala and David Patterson. An Analysis obEBehaviour in a Large Storage
System. InThe IEEE Workshop on Fault Tolerance in Parallel and Digiitdd Systems
San Juan, Puerto Rico, April 1999.

[138] The Data Clinic. Hard Disk Failure. http://www.daliatc.co.uk/hard-disk-failures.htm,
2004.

[139] T. K. Tsai and R. K. lyer. Measuring Fault Tolerancehwtite FTAPE Fault Injection Tool.
In The 8th International Conference On Modeling TechniqueksTools for Computer Per-
formance Evaluatiorpages 26—40, September 1995.

239

[140] Theodore Ts’o and Stephen Tweedie. Future Directionthe Ext2/3 Filesystem. IRro-
ceedings of the USENIX Annual Technical Conference (FREHNdcK) Monterey, Cali-
fornia, June 2002.

[141] Stephen C. Tweedie. Journaling the Linux ext2fs Filst8m. InThe Fourth Annual Linux
Expq Durham, North Carolina, May 1998.

[142] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, &aim Madden. Tolerating Byzantine
Faults in Transaction Processing Systems using CommiidBe8cheduling. IiProceed-
ings of the 21st ACM Symposium on Operating Systems PrsofIOSP '07)Stevenson,
Washington, October 2007.

[143] Marco Vieira and Henrique Madeira. Recovery and RerBnce Balance ofa COTS DBMS
in the Presence ofOperator Faults. Rroceedings of the International Conference on De-
pendable Systems and Networks (DSN, @2thesda, Maryland, June 2002.

[144] Udo Voges, editorSoftware Diversity in Computerized Control Syster§pringer, Wien,
New York, December 1988.

[145] John Wehman and Peter den Haan. The Enhanced IDEXFAStFAQ.
http://burks.brighton.ac.uk/burks/pcinfo/hardwatafaq/atafg.htm, 1998.

[146] John Wilkes, Richard Golding, Carl Staelin, and Timli8an. The HP AutoRAID Hierar-
chical Storage SystenACM Transactions on Computer Systetd(1):108—-136, February
1996.

[147] David Woodhouse. JFFS: The Journalling Flash File&ys InThe Ottawa Linux Sympo-
sium July 2001.

[148] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: ghtweight, General System
for Finding Serious Storage System Errors. Hroceedings of the 7th Symposium on Op-
erating Systems Design and Implementation (OSDI,’@®attle, Washington, November
2006.

[149] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadat,2awson Engler. Automatically
Generating Malicious Disks using Symbolic ExecutionIlEEE Security and Privacy (SP
'06), Berkeley, California, May 2006.

[150] Junfeng Yang, Paul Twohey, Dawson Engler, and Madavlssuvathi. Using Model
Checking to Find Serious File System Errors. Rroceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSD| '8dh Francisco, California, De-
cember 2004.

[151] Y. C. Yeh. Triple-Triple Redundant 777 Primary Flighomputer. InProceedings of the
1996 IEEE Aerospace Applications Confergnt@96.

