
Fido: Fast Inter-Virtual-Machine Communication for Enterprise Appl iances

Anton Burtsev†, Kiran Srinivasan, Prashanth Radhakrishnan,
Lakshmi N. Bairavasundaram, Kaladhar Voruganti, Garth R. Goodson

†University of Utah NetApp, Inc.
aburtsev@flux.utah.edu,{skiran, shanth, lakshmib, kaladhar, goodson}@netapp.com

Abstract
Enterprise-class server appliances such as network-

attached storage systems or network routers can bene-
fit greatly from virtualization technologies. However,
current inter-VM communication techniques have sig-
nificant performance overheads when employed between
highly-collaborative appliance components, thereby lim-
iting the use of virtualization in such systems. We
presentFido, an inter-VM communication mechanism
that leverages the inherent relaxed trust model between
the software components in an appliance to achieve high
performance. We have also developed common device
abstractions - a network device (MMNet) and a block
device (MMBlk) on top of Fido.

We evaluate MMNet and MMBlk using microbench-
marks and find that they outperform existing alternative
mechanisms. As a case study, we have implemented
a virtualized architecture for a network-attached stor-
age system incorporating Fido, MMNet, and MMBlk.
We use both microbenchmarks and TPC-C to evaluate
our virtualized storage system architecture. In compari-
son to a monolithic architecture, the virtualized one ex-
hibits nearly no performance penalty in our benchmarks,
thus demonstrating the viability of virtualized enterprise
server architectures that use Fido.

1 Introduction
Enterprise-class appliances [4, 21] are specialized de-
vices providing services over the network to clients using
standardized protocols. Typically, these appliances are
built to deliver high-performance, scalable and highly-
available access to the exported services. Examples of
such appliances include storage systems (NetApp [21],
IBM [14], EMC [8]), network-router systems (Cisco [4],
Juniper [16]), etc. Placing the software components
of such appliances in separate virtual machines (VMs)
hosted on a hypervisor [1, 25] enables multiple ben-
efits —fault isolation, performance isolation, effective
resource utilization, load balancing via VM migration,

etc. However, when collaborating components are en-
capsulated in VMs, the performance overheads intro-
duced by current inter-VM communication mechanisms
[1, 17, 26, 28] is prohibitive.

We present a new inter-VM communication mecha-
nism calledFido specifically tailored towards the needs
of an enterprise-class appliance. Fido leverages the re-
laxed trust model among the software components in
an appliance architecture to achieve better performance.
Specifically, Fido facilitates communication using read-
only access between the address spaces of the compo-
nent VMs. Through this approach, Fido avoids page-
mapping and copy overheads while reducing expensive
hypervisor transitions in the critical path of communi-
cation. Fido also enables end-to-end zero-copy commu-
nication across multiple VMs utilizing our novel tech-
nique calledPseudo Global Virtual Address Space. Fido
presents a generic interface, amenable to the layering
of other higher-level abstractions. In order to facilitate
greater applicability of Fido, especially between compo-
nents developed by different collaborating organizations,
Fido is non-intrusive, transparent to applications and dy-
namically pluggable.

On top of Fido, we design two device abstractions,
MMNetandMMBlk, to enable higher layers to leverage
Fido. MMNet (Memory-MappedNetwork) is a net-
work device abstraction that enables high performance
IP-based communication. Similarly, MMBlk is a block
device abstraction. MMNet performs consistently bet-
ter on microbenchmarks in comparison to other alterna-
tive mechanisms (XenLoop [26], Netfront [1] etc) and
is very close in performance to a loopback network de-
vice interface. Likewise, MMBlk outperforms the equiv-
alent open-source Xen hypervisor abstraction across sev-
eral microbenchmarks.

As a case study, we design and implement a full-
fledged virtualized network-attached storage system ar-
chitecture that incorporates MMNet and MMBlk. Mi-
crobenchmark experiments reveal that our virtualized



system does not suffer any degradation in throughput or
latency in most test cases as compared to a monolithic
storage server architecture. TPC-C macrobenchmark re-
sults reveal that the difference in performance between
our architecture and the monolithic one is almost imper-
ceptible.

To summarize, our contributions are:

• A high-performance inter-VM communication
mechanism - Fido, geared towards software archi-
tectures of enterprise-class appliances.

• A technique to achieve end-to-end zero-copy com-
munication across VMs -Pseudo Global Virtual Ad-
dress Space.

• An efficient, scalable inter-VM infrastructure for
connection management.

• Two high-performance device abstractions (MMNet
and MMBlk) to facilitate higher level software to
leverage the benefits of Fido.

• A demonstration of the viability of a modular virtu-
alized storage system architecture utilizing Fido.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the background and the motivation for
our work. Section 3 discusses the design and implemen-
tation of Fido and the abstractions - MMNet and MMBlk.
Next, we evaluate Fido and the abstractions using stan-
dard storage benchmarks in Section 4. A case study of
a network attached storage system utilizing Fido is pre-
sented in Section 5. In Section 6, we discuss related
work. Finally, in Section 7 we present our conclusions.

2 Background and Motivation

In this section, we first provide an overview of appliance
architectures and the benefits of incorporating virtualiza-
tion in them. Next, we present the performance issues
in such virtualized architectures, followed by a descrip-
tion of existing inter-VM communication mechanisms
and their inadequacy in solving performance issues.

2.1 Enterprise-class Appliance Architectures

We are primarily concerned about the requirements and
applicability of virtualization technologies to enterprise-
class server appliances. Typically, these appliances pro-
vide a specialized service over the network using stan-
dardized protocols. High-performance access and high-
availability of the exported network services are critical
concerns.

Enterprise appliances have some unique features that
differentiate them from other realms in which virtual-
ization technologies have been adopted aggresively. In
particular, the software components in such an architec-
ture are extremely collaborative in nature with a large
amount of data motion between them. This data flow is
often organized in the form of a pipeline. An example

of an enterprise appliance is a network-attached storage
system [21, 27] providing storage services over standard-
ized protocols, such as NFS and CIFS. Such a storage
system consists of components such as a protocol server,
a local file system, software RAID, etc. that operate as a
pipeline for data.

2.2 Virtualization Benefits for Appliances

Virtualization technologies have been highly successful
in the commodity servers realm. The benefits that have
made virtualization technologies popular in the com-
modity server markets are applicable to enterprise-class
server appliances as well:

• High availability: Components in an enterprise ap-
pliance may experience faults that lead to expensive
disruption of service. Virtualization provides fault
isolation across components placed in separate VM
containers, thereby enabling options such as micro-
reboots [2] for fast restoration of service, leading to
higher availability.

• Performance isolation/Resource allocation:Virtu-
alization allows stricter partitioning of hardware re-
sources for performance isolation between VMs. In
addition, the ability to virtualize resources as well
as to migrate entire VMs enables the opportunity to
dynamically provide (or take away) additional re-
sources to overloaded (or underloaded) sections of
the component pipeline, thus improving the perfor-
mance of the appliance as a whole.

• Non-disruptive upgrades: Often, one needs to up-
grade the hardware or software of enterprise systems
with little or no disruption in service. The differ-
ent software components of an appliance can be mi-
grated across physical machines through transparent
VM migration, thereby enabling non-disruptive hard-
ware upgrades. The mechanisms that enable higher
availability can be leveraged for non-disruptive soft-
ware upgrades.

Such benefits have prompted enterprise-appliance
makers to include virtualization technologies in their sys-
tems. The IBM DS8000 series storage system [7] is
an example of an appliance that incorporates a hypervi-
sor, albeit in a limited fashion, to host two virtual fault-
isolated and performance-isolated storage systems on the
same physical hardware. Separation of production and
test environments, and flexibility of resource allocation
are cited as reasons for incorporating virtualization [7].

2.3 Performance issues with virtualization

Encapsulating the software components of an appliance
in VMs introduces new performance issues. First, de-
vice access may be considerably slower in a virtual-
ized environment. Second, data transfer between compo-
nents that used to happen via inexpensive function calls

2



now crosses protected VM boundaries; since such data
transfer is critical to overall performance, it is important
that the inter-VM communication between the compo-
nent VMs be optimized. The first issue is often easily
solved in appliances, as devices can be dedicated to com-
ponents. We address the second performance issue in this
paper.

2.4 Inter-VM communication mechanisms

Current inter-VM communication mechanisms rely on
either copying (XenLoop [26], XenSocket [28]) or page
mapping/unmapping (Netfront [1]) techniques. Both of
these techniques incur performance overheads in the crit-
ical data path, making them unsuitable for data-traffic
intensive server appliances like storage systems. More-
over, the data throughput and latency results obtained
with these mechanisms do not satisfy the requirements
of an appliance. From another perspective, some of these
mechanisms [26, 28] are designed for a specific kind of
data traffic - network packets. In addition, they do not
offer the flexibility of layering other types of data traffic
on top of them. Thereby, restricting the applicability of
their solution between different kinds of components in
an appliance. All these reasons made us conclude that
we need a specialized high-performance inter-VM com-
munication mechanism. Moreover, since multiple com-
ponent VMs process data in a pipeline fashion, it is not
sufficient to have efficient pair wise inter-VM commu-
nication; we require efficient end-to-end transitive inter-
VM communication.

3 Design and Implementation
In this section, we first describe the design goals of Fido,
followed by the inherent trust model that forms the key
enabler of our communication mechanism. We then
present Fido, our fast inter-VM communication mech-
anism. Finally, we describe MMNet and MMBlk, the
networking and disk access interfaces that build on the
communication abstraction provided by Fido.

3.1 Design Goals

The following are the design goals of Fido to enable
greater applicability as well as ease of use:

• High Performance: Fido should enable high
throughput, low latency communication with accept-
able CPU consumption.

• Dynamically Pluggable: Introduction or removal of
Fido should not require a reboot of the system. This
enables component VMs to leverage Fido without en-
tailing an interruption in service.

• Non-intrusive: In order to limit the exposure of ker-
nel data structures Fido should be built in a non-
intrusive fashion. The fewer the dependencies with
other kernel data structures, the easier it is to port

across kernel versions.
• Application-level transparent: Leveraging Fido

should not require applications to change. This en-
sures that existing applications can start enjoying the
performance benefits of Fido without requiring code-
level changes.

• Flexible: Fido should enable different types of data
transfer mechanisms to be layered on top of it with
minimal dependencies and a clean interface.

Specifically, being non-intrusive, dynamically pluggable
and application transparent extends Fido’s applicability
in appliances where the components might be indepen-
dently developed by collaborating organizations.

3.2 Relaxed Trust Model

Enterprise-class server appliances consist of various soft-
ware components that are either mostly built by a single
organization or put together from pre-tested and quali-
fied components. As a result, the degree of trust between
components is significantly more than in typical applica-
tions of virtualization. In fact, the various components
collaborate extensively and readily exchange or release
resources for use by other components. At the same time,
in spite of best efforts, the various components may con-
tain bugs that create a need for isolating them from each
other.

In an enterprise server appliance, the following trust
assumptions apply. First, the different software compo-
nents in VMs are assumed to be non-malicious. There-
fore, read-only access to each other’s address spaces is
acceptable. Second, most bugs and corruptions are as-
sumed to lead to crashes sooner than later; enterprise ap-
pliances are typically designed to fail-fast; as well, it has
been shown that Linux systems often crash within 10 cy-
cles of fault manifestation [10]. Therefore, the likelihood
of corruptions propagating from a faulty VM to a com-
municating VM via read-only access of memory is low.
However, VMs are necessary to isolate components from
crashes in each other.

3.3 Fido

Fido is an inter-VM shared-memory-based communica-
tion mechanism that leverages the relaxed trust model
to improve data transfer speed. In particular, we de-
sign Fido with a goal of reducing the primary contrib-
utors to inter-VM communication overheads: hypervisor
transitions and data copies. In fact, Fido enables zero-
copy data transfer across multiple virtual machines on
the same physical system.

Like other inter-VM communication mechanisms that
leverage shared memory, Fido consists of the follow-
ing features: (i) a shared-memory mapping mechanism,
(ii) a signaling mechanism for cross-VM synchroniza-
tion, and (iii) a connection-handling mechanism that fa-

3



Figure 1: Fido Architecture. The figure shows the compo-
nents of Fido in a Linux VM over Xen. The two domUs contain
the collaborating software components. In this case, they use
MMNet and Fido to communicate. Fido consists of three pri-
mary components: a memory-mapping module (M), a connec-
tion module (C), and a signaling module (S). The connection
module uses XenStore (a centralized key-value store in dom0)
to discover other Fido-enabled VMs, maintain its own mem-
bership, and track VM failures. The memory-mapping module
uses Xen grant reference hypervisor calls to enable read-only
memory mapping across VMs. It also performs zero-copy data
transfer with a communicating VM using I/O rings. The sig-
naling module informs communicating VMs about availability
and use of data through the Xen signal infrastructure.

cilitates set-up, teardown, and maintenance of shared-
memory state. Implementation of these features requires
the use of specific para-virtualized hypervisor calls. As
outlined in the following subsections, the functionality
expected from these API calls is simple and is available
in most hypervisors (Xen, VMWare ESX, etc.).

Fido improves performance through simple changes
to the shared-memory mapping mechanism as compared
to traditional inter-VM communication systems. These
changes are complemented by corresponding changes to
connection handling, especially for dealing with virtual-
machine failures. Figure 1 shows the architecture of
Fido. We have implemented Fido for a Linux VM on
top of the Xen hypervisor. However, from a design per-
spective, we do not depend on any Xen-specific features;
Fido can be easily ported to other hypervisors. We now
describe the specific features of Fido.

3.3.1 Memory Mapping

In the context of enterprise-class appliance component
VMs, Fido can exploit the following key trends: (i) the
virtual machines are not malicious to each other and
hence each VM can be allowed read-only access to the
entire address space of the communicating VM and (ii)
most systems today use 64-bit addressing, but individ-
ual virtual machines have little need for as big an ad-
dress space due to limitations on physical memory size.
Therefore, with Fido, the entire address space of asource

virtual machine is mapped read-only into thedestina-
tion virtual machine, where source and destination re-
fer to the direction of data transfer. This mapping is es-
tablisheda priori, before any data transfer is initiated.
As a result, the data transfer is limited only by the total
physical memory allocated to the source virtual machine,
thus avoiding limits to throughput scaling due to small
shared-memory segments. Other systems [9, 26] suffer
from these limits, thereby causing either expensive hy-
pervisor calls and page table updates [20] or data copies
to and from the shared segment when the data is not pro-
duced in the shared-memory segment [17, 28].

In order to implement this memory mapping tech-
nique, we have used the grant reference functionality
provided by the Xen hypervisor. In VMWare ESX, the
functional equivalent would be the hypervisor calls lever-
aged by the VMCI (Virtual Machine Communication In-
terface [24]) module. To provide memory mapping, we
have not modified any guest VM (Linux) kernel data
structures. Thus, we achieve one of our design goals of
being non-intrusive to the guest kernel.

3.3.2 Signaling Mechanism

Like other shared-memory based implementations, Fido
needs a mechanism to send signals between commu-
nicating entities to notify data availability. Typically,
hypervisors (Xen, VMWare, etc.) support hypervi-
sor calls that enable asynchronous notification between
VMs. Fido adopts the Xen signaling mechanism [9] for
this purpose. This mechanism amortizes the cost of sig-
naling by collecting several data transfer operations and
then issuing one signaling call for all operations. Again,
this bunching together of several operations is easier with
Fido since the shared memory segment is not limited.
Moreover, after adding a bunch of data transfer opera-
tions, the source VM signals the destination VM only
when it has picked up the previous signal from the source
VM. In case the destination VM has not picked up the
previous signal, it is assumed that it would pick up the
newly queued operations while processing the previously
enqueued ones.

3.3.3 Connection Handling

Connection handling includes connection establishment,
connection monitoring and connection error handling be-
tween peer VMs.

Connection State: A Fido connection between a pair
of VMs consists of a shared memory segment (meta-
data segment) and a Xen event channel for signaling be-
tween the VMs. The metadata segment contains shared
data structures to implement producer-consumer rings
(I/O rings) to facilitate exchanging of data between VMs
(similar to Xen I/O rings [1]).

Connection Establishment: In order to establish an

4



inter-VM connection between two VMs, the Fido mod-
ule in each VM is initially given the identity (Virtual Ma-
chine ID -vmid) of the peer VM. One of the communicat-
ing VMs (for example, the one with the lower vmid) initi-
ates the connection establishment process. This involves
creating and sharing a metadata segment with the peer.
Fido requires a centralized key-value DB that facilitates
proper synchronization between the VMs during the con-
nection setup phase. Operations on the DB are not per-
formance critical, they are performed only during setup
time, over-the-network access to a generic transactional
DB would suffice. In Xen, we leverage XenStore—a
centralized hierarchical DB in Dom0—for transferring
information about metadata segment pages via an asyn-
chronous, non-blocking handshake mechanism. Since
Fido leverages a centralized DB to exchange metadata
segment information, it enables communicating VMs to
establish connections dynamically. Therefore, by design,
Fido is madedynamically pluggable.

From an implementation perspective, Fido is imple-
mented as a loadable kernel module, and the communi-
cation with XenStore happens at the time of loading the
kernel module. Once the metadata segment has been es-
tablished between the VMs using XenStore, we use the
I/O rings in the segment to bootstrap memory-mapping.
This technique avoids the more heavy-weight and cir-
cuitous XenStore path for mapping the rest of the mem-
ory read-only. The source VM’s memory is mapped into
the paged region of the destination VM in order to facil-
itate zero-copy data transfer to devices (since devices do
not interact with data in non-paged memory). To create
such a mapping in a paged region, the destination VM
needs correspondingpage structures. We therefore pass
the appropriate kernel argumentmem at boot time to al-
locate enoughpage structures for the mappings to be
introduced later. Note that Linux’s memory-hotplug fea-
ture allows dynamic creation ofpage structures, thus
avoiding the need for a boot-time argument; however,
this feature is not fully-functional in Xen para-virtualized
Linux kernels.

Connection Monitoring: The Fido module periodically
does a heartbeat check with all the VMs to which it is
connected. We again leverage XenStore for this heart-
beat functionality. If any of the connected VMs is miss-
ing, the connection failure handling process is triggered.

Connection Failure Handling: Fido reports errors de-
tected during the heartbeat check to higher-level layers.
Upon a VM’s failure, its memory pages that are mapped
by the communicating VMs cannot be deallocated until
all the communicating VMs have explicitly unmapped
those pages. This ensures that after a VM’s failure, the
immediate accesses done by a communicating VM will
not result in access violations. Fortunately, this is guar-

anteed by Xen’s inter-VM page sharing mechanism.

Data Transfer: This subsection describes how higher
layer subsystems can use Fido to achieve zero-copy data
transfer.

• Data Representation: Data transferred over the
Fido connection is represented as an array of point-
ers, referred to as the scatter-gather (SG) list. Each
I/O ring entry contains a pointer to an SG list in the
physical memory of the source VM and a count of en-
tries in the SG list. The SG list points to data buffers
allocated in the memory of the source VM.

• IO Path: In the send data path, every request orig-
inated from a higher layer subsystem (i.e., a client
of Fido) in the source guest OS is expected to be in
an SG list and sent to the Fido layer. The SG list is
sent to the destination guest OS over the I/O ring. In
the receive path, the SG list will be picked up by the
Fido layer and passed up to the appropriate higher
layer subsystem, which in turn will package it into
a request suitable for delivery to the destination OS.
Effectively, the SG list is the generic data structure
that enables different higher layer protocols to inter-
act with Fido without compromising the zero-copy
advantage.

• Pointer Swizzling: A source VM’s memory pages
are mapped at an arbitrary offset in the kernel ad-
dress space of the destination VM. As a result, the
pointer to the SG list and the data pointers in the SG
list provided by the source VM are incomprehensible
when used as-is by the destination VM. They need
to be translated relative to the offset where the VM
memory is mapped in. While the translation can be
done either by the sender or the receiver, we chose to
do it in the sender. Doing the translation in the sender
simplifies the design of transitive zero-copy (Section
3.3.4).

3.3.4 Transitive Zero-Copy

As explained in Section 2, data flows through
an enterprise-class software architecture successively
across the different components in a pipeline. To ensure
high performance we need true end-to-end zero-copy. In
Section 3.3.1, we discussed how to achieve zero-copy
between two VMs. In this section, we address the chal-
lenges involved in extending the zero-copy transitively
across multiple component VMs.

Translation problems with transitive zero-copy: In or-
der to achieve end-to-end zero-copy, data originating in
a source component VMmust be accessible and com-
prehensible in downstream component VMs. We en-
sure accessibility of data by mapping the memory of the
source component VM in every downstream component
VM with read permissions. For data to be comprehensi-

5



Figure 2: PGVAS technique between VMs X, Y and Z.

ble in a downstream component VM, all data references
that are resolvable in the source VM’s virtual address
space will have to be translated correctly in the destina-
tion VM’s address space. Doing this translation in each
downstream VM can prove expensive.

Pseudo Global Virtual Address Space:The advent of
64-bit processor architecture makes it feasible to have
a global virtual address space [3, 11] across all compo-
nent VMs. As a result, all data references generated by
a source VM will be comprehensible in all downstream
VMs; thus eliminating all address translations.

The global address space systems (like Opal[3]) have
a single shared page table across all protected address
spaces. Modifying the traditional guest OS kernels to
use such a single shared page table is a gargantuan un-
dertaking. We observe that we can achieve the effect of a
global virtual address space if each VM’s virtual address
space ranges are distinct and disjoint from each other.
Incorporating such a scheme may also require intrusive
changes to the guest OS kernel. For example, Linux will
have to be modified to map its kernel at arbitrary virtual
address offsets, rather than from a known fixed offset.

We develop a hybrid approach calledPseudo Global
Virtual Address Space(PGVAS) that enables us to lever-
age the benefits of a global virtual address space without
the need for intrusive changes to the guest OS kernel. We
assume that the virtual address spaces in the participat-
ing VMs are 64-bit virtual address spaces; thus the kernel
virtual address space should have sufficient space to map
the physical memory of a large number of co-located
VMs. Figure 2 illustrates the PGVAS technique. With
PGVAS, there are two kinds of virtual address mappings
in a VM, sayX. Local mappingrefers to the traditional
way of mapping the physical pages ofX by its guest OS,
starting from virtual address zero. In addition, there is
a global mappingof the physical pages ofX at a virtual

offset derived fromX ’s id, sayf(X). An identical global
mapping exists at the same offset in the virtual address
spaces of all communicating VMs. In our design, we as-
sume VM ids are monotonically increasing, leading to
f(X) = M*X + base, whereM is the maximum size
of a VM’s memory,X is X ’s id andbase is the fixed
starting offset in the virtual address spaces.

To illustrate the benefits, consider a transitive data
transfer scenario starting from VMX, leading to VM
Y and eventually to VMZ. Let us assume that the trans-
ferred data contains a pointer to a data item located at
physical addressp in X. This pointer will typically be a
virtual reference, sayVx(p), in the local mapping ofX,
and thus, incomprehensible inY andZ. Before transfer-
ring the data toY , X will encodep to a virtual reference,
f(X)+p, in the global mapping. Since global mappings
are identical in all VMs,Y andZ can dereference the
pointer directly, saving the cost of multiple translations
and avoiding the loss of transparency of data access inY

andZ. As a result, all data references have to be trans-
lated once by the source VM based on the single unique
offset where its memory will be mapped in the virtual ad-
dress space of every other VM. This is also the rationale
for having the sender VM do the translations of refer-
ences in Fido as explained in Section 3.3.1.

3.4 MMNet

MMNet connects two VMs at the network link layer. It
exports a standard network device interface to the guest
OS. In this respect, MMNet is very similar to Xen Net-
Back/NetFront drivers. However, it is layered over Fido
and has been designed with the key goal of preserving
the zero-copy advantage that Fido provides.

MMNet exports all of the key Fido design goals to
higher-layer software. Since MMNet is designed as a
network device driver, it uses clean and well-defined in-
terfaces provided by the kernel, ensuring that MMNet is
totally non-intrusiveto the rest of the kernel. MMNet is
implemented as a loadable kernel module. During load-
ing of the module, after the MMNet interface is created,
a route entry is added in the routing table to route pack-
ets destined to the communicating VM via the MMNet
interface. Packets originating from applications dynami-
cally start using MMNet/Fido to communicate with their
peers in other VMs, satisfying thedynamic pluggabil-
ity requirement. This seamless transition is completely
transparent to the applicationsrequiring no application-
level restarts or modifications.

MMNet has to package the Linux network packet data
structureskb into the OS-agnostic data-structures of
Fido and vice-versa, in a zero-copy fashion. Theskb
structure allows for data to be represented in a linear
data buffer and in the form of a non-linear scatter-gather
list of buffers. Starting with this data, we create a Fido-

6



compatible SG list (Section 3.3.3) containing pointers to
theskb data. Fido ensures that this data is transmitted to
the communicating VM via the producer-consumer I/O
rings in the metadata segment.

On the receive path, an asynchronous signal triggers
Fido to pull the SG list and pass it to the correspond-
ing MMNet module. The MMNet module in turn allo-
cates a newskb structure with a custom destructor func-
tion and adds the packet data from the SG onto the non-
linear part of theskb without requiring a copy. Once the
data is copied from kernel buffers onto the user-space,
the destructor function on the skb is triggered. Theskb
destructor function removes the data pointers from the
non-linear list of theskb and requests Fido to notify the
source VM regarding completion of packet data usage.

Though MMNet appears as a network device, it is not
constrained by certain hardware limitations like the MTU
of traditional network devices and can perform optimiza-
tions in this regard. MMNet presents an MTU of 64KB
(maximum TCP segment size) to enable high perfor-
mance network communication. In addition, since MM-
Net is used exclusively within a physical machine, MM-
Net can optionally disable checksumming by higher pro-
tocol layers, thereby reducing network processing costs.

3.5 MMBlk

MMBlk implements block level connection between vir-
tual machines. Conceptually MMBlk is similar to Xen’s
BlkBack/BlkFront block device driver [1]. However, like
MMNet, it is layered on top of the Fido

We implement MMBlk as a split block device driver
for the Linux kernel. In accordance to a block device
interface, MMBlk receives read and write requests from
the kernel in thebio structure.bio provides a descrip-
tion of read/write operations to be done by the device
along with an array of pages containing data.

MMBlk write path can be trivially implemented with
no modifications to the Linux code. Communicating
VMs share their memory in a read-only manner. Thus,
a writer VM only needs to send pointers to thebio
pages containing write data. Then, the communicating
VM on the other end can either access written data or in
the case of a device driver VM, it can perform a DMA
straight from the writer’s pages. Note, that in order to
perform DMA, thebio page has to be accessible by
the DMA engine. This comes with no additional data
copy on a hardware providing an IOMMU. An IOMMU
enables secure access to devices by enabling use of vir-
tual addresses by VMs. Without an IOMMU, we rely on
the swiotlb Xen mechanism implementing IOMMU
translation in software.swiotlb keeps a pool of low
memory pages, which are used for DMA. When transla-
tion is needed,swiotlb copies data into this pool.

Unfortunately, implementation of a zero-copy read

path is not possible without intrusive changes to the
Linux storage subsystem. The problem arises from the
fact that on the read path, pages into which data has to be
read are allocated by the reader, i.e., by an upper layer,
which creates thebio structure before passing it to the
block device driver. These pages are available read-only
to the block device driver domain and hence cannot be
written into directly. There are at least three ways to
handle this problem without violating fault-isolation be-
tween the domains. First, the driver VM can allocate a
new set of pages to do the read from the disk and later
pass it to the reader domain as part of the response to
the read request. The reader then has to copy the data
from these pages to the original destination, incurring
copy costs in the critical path. The second option is to
make an intrusive change to the Linux storage subsys-
tem whereby thebio structure used for the read contains
an extra level of indirection, i.e., pointers to pointers of
the original buffers. Once the read data is received in
freshly allocated pages from the driver VM, the appro-
priate pointers can be fixed to ensure that data is trans-
ferred in a zero-copy fashion. The third option is sim-
ilar to the first one, instead of copying we can perform
page-flipping to achieve the same goal. We performed a
microbenchmark to compare the performance of copying
versus page-flipping and observed that page-flipping out-
performs copying for larger data transfers (greater than
4K bytes). We chose the first option for our implemen-
tation, experimenting with page-flipping is part of future
work.

4 Evaluation
In this section, we evaluate the performance of MM-
Net and MMBlk mechanisms with industry-standard mi-
crobenchmarks.

4.1 System Configuration

Our experiments are performed on a machine equipped
with two quad-core 2.1 GHz AMD Opteron processors,
16 GB of RAM, three NVidia SATA controllers and two
NVidia 1 Gbps NICs. The machine is configured with
three additional (besides the root disk) Hitachi Deskstar
E7K500 500GB SATA disks with a 16 MB buffer, 7200
RPM and a sustained data transfer rate of 64.8 MB/s. We
use a 64-bit Xen hypervisor (version 3.2) and a 64-bit
Linux kernel (version 2.6.18.8).

4.2 MMNet Evaluation

We use thenetperf benchmark (version 2.4.4) to eval-
uate MMNet.netperf is a simple client-server based
user-space application, which includes tests for measur-
ing uni-direction bandwidth (STREAM tests) and end-
to-end latency (RR tests) over TCP and UDP.

We compare MMNet with three other implementa-
tions: i) Loop: the loopback network driver in a sin-

7



Figure 3: MMNet and MMBlk Evaluation Configurations

 0

 5000

 10000

 15000

 20000

0.5 1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 4: TCP Throughput (TCPSTREAM test)

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.5 1 2 4 8 16 32 64

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 5: UDP Throughput (UDPSTREAM test)

gle VM for baseline; ii)Netfront: the default Xen net-
working mechanism that routes all traffic between two
co-located VMs (domUs) through a third management
VM (dom0), which includes a backend network driver;
iii) XenLoop [26]: an inter-VM communication mecha-
nism that, like MMNet, achieves direct communication
between two co-located domUs without going through
dom0. These configurations are shown in the Figure 3A.

Unlike MMNet, the other implementations have addi-
tional copy or page remapping overheads in the I/O path,
as described below:

• Netfront: In the path from the sender domU to
dom0, dom0 temporarily maps the sender domU’s
pages. In the path from dom0 to the receiver domU,
either a copy orpage-flipping[1] is performed. In
our tests we use page-flipping, which is the default
mode.

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16

R
ou

nd
-t

rip
 L

at
en

cy
 (

in
 u

s)

Message size (in KB)

Netfront
XenLoop

MMNet
Loop

Figure 6: TCP Latency (TCPRR test)

• XenLoop: A fixed region of memory is shared be-
tween the two communicating domUs. In the I/O
path, XenLoop copies data in and out of the shared
region.

All VMs are configured with one virtual CPU each.
The only exception is the VM in theloop experiment,
which is configured with two virtual CPUs. Virtual CPUs
were pinned to separate physical cores, all on the same
quad-core CPU socket. All reported numbers are aver-
ages from three trials.

Figure 4 presents TCP throughput results for varying
message sizes. The figure shows that MMNet performs
significantly better than XenLoop and the default Xen
drivers, reaching a peak throughput of 9558 Mb/s at a
message size of 64KB.

We see that performance with XenLoop is worse than
Netfront. Given that XenLoop was designed to be more
efficient than Netfront, this result seems contradictory.
We found that the results reported by the XenLoop au-
thors [26] were from tests performed on a single socket,
dual-core machine. The three VMs, namely the two
domUs and dom0, were sharing two processor cores
amongst themselves. In contrast, our tests had dedi-
cated cores for the VMs. This reduces the number of
VM switches and helps Netfront better pipeline activity
(such as copies and page-flips) over three VMs. In or-
der to verify this hypothesis, we repeated thenetperf
TCP STREAM experiment (with a 16KB message size)

8



by restricting all the three VMs to two CPU cores and
found that XenLoop (4000 Mbps) outperforms Netfront
(2500 Mbps).

UDP throughput results for varying message sizes are
shown in Figure 5. We see that the MMNet performance
is very similar to Loop and significantly better than Net-
front and XenLoop. Inter-core cache hits could be the
reason for this observation, since UDP protocol process-
ing times are shorter compared to TCP, it could lead to
better inter-core cache hits. This will benefit data copies
done across cores (for example, in XenLoop, the receiver
VM’s copy from the shared region to the kernel buffer
will be benefited). There will be no benefit for Netfront
because it does page remapping as explained earlier.

Figure 6 presents the TCP latency results for varying
request sizes. MMNet is almost four times better than
Netfront. Moreover, MMNet latencies are comparable
to XenLoop for smaller message sizes. However, as the
message sizes increase, the additional copies that Xen-
Loop incurs hurt latency and hence, MMNet outperforms
XenLoop. Netfront has the worst latency results because
of the additional dom0 hop in the network path.

4.3 MMBlk Evaluation

We compare the throughput and latency of MMBlk
driver with two other block driver implementations: i)
Loop: the monolithic block layer implementation where
the components share a single kernel space; ii)Xen-
Blk: a split architecture where the block layer spans two
VMs connected via the default Xen block device drivers.
These configurations are illustrated in Figure 3B.

To eliminate the disk bottleneck, we create a block de-
vice (usingloopdriver) on TMPFS. In the Loop setup, an
ext3 file system is directly created on this device. In the
other setups, the block device is created in one (backend)
VM and exported via the XenBlk/MMBlk mechanisms
to another (frontend) VM. The frontend VM creates an
ext3 file system on the exported block device. The back-
end and the frontend VMs were configured with 4 GB
and 1 GB of memory, respectively. The in-memory block
device is 3 GB in size and we use a 2.6 GB file in all tests.

Figure 7 presents the memory read and write through-
put results for different block sizes measured using the
IOZone [15] microbenchmark (version 3.303). For the
Loop tests, we observe that the IOZone workload per-
forms poorly. To investigate this issue, we profiled exe-
cutions of all three setups. Compared to the split cases,
execution of Loop has larger number of wait cycles.
From our profile traces, we believe that the two filesys-
tems (TMPFS and ext3) compete for memory – trying to
allocate new pages. TMPFS is blocked as most of the
memory is occupied by the buffer cache staging ext3’s
writes. To improve Loop’s performance, we configure
the monolithic system with 8GB of memory.

We consistently find that read throughput at a partic-
ular record size is better than the corresponding write
throughput. This is due to soft page faults in TMPFS
for new writes (writes to previously unwritten blocks).

From Figure 7A, we see that MMBlk writes perform
better than XenBlk writes by 39%. This is because Xen-
Blk incurs page remapping costs in the write path, while
MMBlk does not. Further, due to inefficiencies in Loop,
on average MMBlk is faster by 45%. In the case of reads,
as shown in Figure 7B, XenBlk is only 0.4% slower than
the monolithic Loop case. On smaller record sizes, Loop
outperforms XenBlk due to a cheaper local calls. On
larger record sizes, XenBlk becomes faster leveraging
the potential to batch requests and better pipeline execu-
tion. XenBlk outperforms MMBlk by 35%. In the read
path, MMBlk does an additional copy, whereas XenBlk
does page remapping. Eliminating the copy (or page flip)
in the MMBlk read path is part of future work.

5 Case Study: Virtualized Storage System
Architecture

Commercial storage systems [8, 14, 21] are an important
class of enterprise server appliances. In this case study,
we examine inter-VM communication overheads in a vir-
tualized storage-system architecture and explore the use
of Fido to alleviate these overheads. We first describe the
architecture of a typical network-attached storage sys-
tem, then we outline a proposal to virtualize its archi-
tecture and finally, evaluate the performance of the virtu-
alized architecture.

5.1 Storage System Architecture

The composition of the software stack of a storage sys-
tem is highly vendor-specific. For our analysis, we use
the NetApp software stack [27] as the reference system.
Since all storage systems need to satisfy certain common
customer requirements and have similar components and
interfaces, we believe our analysis and insights are also
applicable to other storage systems in the same class as
our reference system.

The data flow in a typical monolithic storage system
is structured as a pipeline of requests through a series of
components. Network packets are received by the net-
work component (e.g., network device driver). These
packets are passed up the network stack for protocol pro-
cessing (e.g., TCP/IP followed by NFS). The request is
then transformed into a file system operation. The file
system, in turn, translates the request into disk accesses
and issues them to a software-RAID component. RAID
converts the disk accesses it receives into one or more
disk accesses (data and parity) to be issued to a storage
component. The storage component, in turn, performs
the actual disk operations. Once the data has been re-
trieved from or written to the disks, an appropriate re-

9



 0

 200

 400

 600

 800

 1000

4 8 16 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Record size (in KB)

A) Sequential writes

Loop
MMBlk
XenBlk

 0

 200

 400

 600

 800

 1000

4 8 16 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Record size (in KB)

B) Sequential reads

Loop
MMBlk
XenBlk

Figure 7: MMBlk Throughput Results

sponse is sent via the same path in reverse.

5.2 Virtualized Architecture

We design and implement a modular architecture for an
enterprise-class storage system that leverages virtualiza-
tion technologies. Software components are partitioned
into separate VMs. For the purposes of understanding the
impact of inter-VM communication in such an architec-
ture as well as evaluating our mechanisms, we partition
components as shown in Figure 8. While this architec-
ture is a representative architecture, it might not neces-
sarily be the ideal one from a modularization perspec-
tive. Identifying the ideal modular architecture merits a
separate study and is outside the scope of our work.

Our architecture consists of four different component
VMs — Network VM, Protocols and File system VM,
RAID VM and Storage VM. Such an architecture can
leverage many benefits from virtualization (Section 2.2):

• Virtualization provides much-needed fault isolation
between components. In addition, the ability to re-
boot individual components independently greatly
enhances the availability of the appliance.

• Significant performance isolation across file system
volumes can be achieved by having multiple sets of
File system, RAID, and Storage VMs, each set serv-
ing a different volume. One can also migrate one
such set of VMs to a different physical machine for
balancing load.

• Component independence helps with faster develop-
ment and deployment of new features. For instance,
changes to device drivers in the Storage VM (say to
support new devices or fix bugs) can be deployed in-
dependently of other VMs. In fact, one might be able
to upgrade components in a running system.

The data flow in the virtualized architecture starts from
the Network VM, passes successively through the File
system and RAID VMs and ends in the Storage VM, re-
sembling a pipeline. This pipelined processing requires
data to traverse several VM boundaries entailing inter-
VM communication performance overheads. In order
to ensure high end-to-end performance of the system, it

Figure 8: Architecture with storage components in VMs

Figure 9: Full system with MMNet and MMBlk

is imperative that we address the inter-VM communica-
tion performance. As mentioned in Section 2, inter-VM
communication performance is just one of the perfor-
mance issues for this architecture; other issues like high-
performance device access are outside our scope.

5.3 System Implementation Overview

In Figure 9, we illustrate our full system implementa-
tion incorporating MMNet and MMBlk between the dif-
ferent components. Our prototype has four component
VMs:

• Network VM: The network VM has access to the
physical network interface. In addition, it has a MM-
Net network device to interface with the (Protocols
+ FS) VM. The two network interfaces are linked to-
gether by means of a Layer 2 software bridge.

• Protocols + FS VM: This VM is connected to the
Network VM via the MMNet network device. We
run an in-kernel NFSv3 server exporting an ext3 file
system to network clients via the MMNet interface.
The file system is laid out on a RAID device exported
by the RAID VM via an MMBlk block device. This

10



VM is referred to as FS VM subsequently.
• RAID VM: This VM exports a RAID device to the

FS VM using the MMBlk block device interface. We
use the MD software RAID5 implementation avail-
able in Linux. The constituting data and parity disks
are actually virtual disk devices exported again via
MMBlk devices from the neighboring storage VM.

• Storage VM: The storage VM accesses physical
disks, which are exported to the RAID VM via sepa-
rate MMBlk block device interfaces.

The goal of our prototype is to evaluate the perfor-
mance overheads in a virtualized storage system ar-
chitecture. Therefore, we did not attempt to improve
the performance of the base storage system components
themselves by making intrusive changes. For example,
the Linux implementation of the NFS server incurs two
data copies in the critical path. The first copy is from
the network buffers to the NFS buffers. This is fol-
lowed by another copy from the NFS buffer to the Linux
buffer cache. The implication of these data copies is that
we cannot illustrate true end-to-end transitive zero-copy.
Nevertheless, for a subset of communicating component
VMs, i.e., from the FS VM onto the RAID and Stor-
age VMs, transitive zero-copy is achieved by incorpo-
rating our PGVAS enhancements (Section 3.3.4). This
improves our end-to-end performance significantly.

5.4 Case Study Evaluation

To evaluate the performance of the virtualized storage
system architecture, we run a set of experiments on the
following three systems:

• Monolithic-Linux : Traditional Linux running on
hardware, with all storage components located in the
same kernel address space.

• Native-Xen: Virtualized storage architecture with
four VMs (Section 5.3) connected using the na-
tive Xen inter-VM communication mechanisms—
Netfront/NetBack and Blkfront/Blkback.

• MM-Xen : Virtualized storage architecture with
MMNet and MMBlk as shown in Figure 9.

Rephrasing the evaluation goals in the context of these
systems, we expect that for the MMNet and MMBlk
mechanisms to beeffective, performance of MM-Xen
should be significantly better than Native-Xen and for the
virtualized architecture to beviable, the performance dif-
ference between Monolithic-Linux and MM-Xen should
be minimal.

5.4.1 System Configuration

We now present the configuration details of the system.
The physical machine described in Section 4.1 is used
as the storage server. The client machine, running Linux
(kernel version 2.6.18), has similar configuration as the

server, except for the following differences: two dual-
core 2.1 GHz AMD Opteron processors, 8 GB of mem-
ory and a single internal disk. The two machines are
connected via a Gigabit Ethernet switch.

In the Monolithic-Linux experiments, we run native
Linux with eight physical cores and 7 GB of memory.
In the Native-Xen and MM-Xen experiments, there are
four VMs on the server (the disk driver VM is basically
dom0). The FS VM is configured with two virtual CPUs,
each of the other VMs have one virtual CPU. Each virtual
CPU is assigned to a dedicated physical processor core.
The FS VM is configured with 4 GB of memory and the
other VMs are configured with 1 GB each. The RAID
VM includes a Linux MD [22] software RAID5 device
of 480 GB capacity, constructed with two data disks and
one parity disk. The RAID device is configured with a
1024 KB chunk size and a 64 KB stripe cache (write-
through cache of recently accessed stripes). The ext3 file
system created on the RAID5 device is exported by the
NFS server in “async” mode. The “async” export op-
tion mimics the behavior of enterprise-class networked
storage systems, which typically employ some form of
non-volatile memory to hold dirty write data [12] for im-
proved write performance. Finally, the client machine
uses the native Linux NFS client to mount the exported
file system. The NFS client uses TCP as the transport
protocol with a 32 KB block size for read and write.

5.4.2 Microbenchmarks

We use the IOZone [15] benchmark to compare the per-
formance of Monolithic-Linux, Native-Xen and MM-
Xen. We perform read and write tests, in both sequential
and random modes. In each of these tests, we vary the
IOZone record sizes, but keep the file size constant. The
file size is 8 GB for both sequential and random tests.

Figure 10 presents the throughput results. For se-
quential writes, as shown in Figure 10A, MM-Xen
achieves an average improvement of 88% over the
Native-Xen configuration. This shows that Fido per-
formance improvements help the throughput of data
transfer significantly. Moreover, MM-Xen outperforms
even Monolithic-Linux by 9.5% on average. From Fig-
ure 10C, we see that MM-Xen achieves similar relative
performance even with random writes. This could be
due to the benefits of increased parallelism and pipelin-
ing achieved by running VMs on isolated cores. In the
monolithic case, kernel locking and scheduling ineffi-
ciencies could limit such pipelining. Even with sequen-
tial reads, as shown in Figure 10B, MM-Xen outperforms
both Monolithic-Linux and Native-Xen by about 13%.
These results imply that our architecture has secondary
performance benefits when the kernels in individual VMs
exhibit SMP inefficiencies.

With random workloads, since the size of the test file

11



 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Record size (in KB)

C) Random Writes

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Record size (in KB)

A) Sequential Writes

Monolithic
MM-Xen

Native-Xen

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64 128 256 512 1024 2048 4096
T

hr
ou

gh
pu

t (
in

 M
B

/s
)

Record size (in KB)

D) Random Reads

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

pu
t (

in
 M

B
/s

)

Record size (in KB)

B) Sequential Reads

Monolithic
MM-Xen

Native-Xen

Figure 10: IOZone Throughput Results

remains constant, the number of seeks reduces as we in-
crease the record size. This explains why the random
read throughput (Figure 10D) increases with increasing
record sizes. However, random writes (Figure 10C) do
not exhibit similar throughput increase due to the miti-
gation of seeks by the coalescing of writes in the buffer
cache (recall that the NFS server exports the file system
in ”async” mode).

Finally, Figure 11 presents the IOZone latency results.
We observe that MM-Xen is always better than Native-
Xen. Moreover, MM-Xen latencies are comparable to
Monolithic-Linux in all cases.

5.4.3 Macrobenchmarks

TPCC-UVa [18] is an open source implementation of the
TPC-C benchmark version 5. TPC-C simulates read-
only and update intensive transactions, which are typi-
cal of complex OLTP (On-Line Transaction Processing)
systems. TPCC-UVa is configured to run a one hour test,
using 50 warehouses, a ramp-up period of 20 minutes
and no databasevacuum (garbage collection and analy-
sis) operations.

Table 1 provides a comparison of TPC-C perfor-
mance across three configurations: Monolithic-Linux,
Native-Xen, and MM-Xen. The main TPC-C metric is
tpmC, the cumulative number of transactions executed
per minute. Compared to Monolithic-Linux, Native-Xen
exhibits a 38% drop intpmC. In contrast, MM-Xen is
only 3.1% worse than Monolithic-Linux.

The response time numbers presented in Table 1 are
averages of the response times from five types of transac-

tpmC Avg. Response
(transactions/min) Time (sec)

Monolithic 293.833 26.5
Native-Xen 183.032 350.8
MM-Xen 284.832 30.4

Table 1: TPC-C Benchmark Results

tions that TPC-C reports. We see that MM-Xen is within
13% of the average response time of Monolithic-Linux.
These results demonstrate that our inter-VM communi-
cation improvements in the form of MMNet and MMBlk
translate to good performance with macrobenchmarks.

6 Related Work
In this section we first present a survey of the different
existing inter-VM communication approaches and artic-
ulate the trade-offs between them. Subsequently, since
we use a shared-memory communication method, we
articulate how our research leverages and complements
prior work in this area.

6.1 Inter-VM Communication Mechanisms

Numerous inter-VM communication mechanisms al-
ready exist. Xen VMM supports a restricted inter-VM
communication path in the form of Xen split drivers [9].
This mechanism incurs prohibitive overheads due to data
copies or page-flipping via hypervisor calls in the critical
path. XenSocket [28] provides a socket-like interface.
However, XenSocket approach is not transparent. That
is, the existing socket interface calls have to be changed.
XenLoop [26] achieves efficient inter-VM communica-

12



 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y 

(in
 m

s/
op

)

Record size (in KB)

C) Random Writes

Monolithic
MM-Xen

Native-Xen

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y 

(in
 m

s/
op

)

Record size (in KB)

A) Sequential Writes

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

4 8 16 32 64 128 256 512 1024 2048 4096
La

te
nc

y 
(in

 m
s/

op
)

Record size (in KB)

D) Random Reads

Monolithic
MM-Xen

Native-Xen

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128 256 512 1024 2048 4096

La
te

nc
y 

(in
 m

s/
op

)

Record size (in KB)

B) Sequential Reads

Monolithic
MM-Xen

Native-Xen

Figure 11: IOZone Latency Results

tion by snooping on every packet and short- circuiting
packets destined to co-located VMs. While this approach
is transparent, as well as non-intrusive, its performance
trails MMNet performance since it incurs copies due to
a bounded shared memory region between the commu-
nicating VMs. The XWay [17] communication mecha-
nism hooks in at the transport layer. Moreover, this in-
trusive approach is limited to applications that are TCP
oriented. In comparison to XWay and XenSocket, MM-
Net does not require any change in the application code,
and MMNet’s performance is better than XenLoop and
XenSocket. Finally, IVC [13] and VMWare VMCI [24]
provide library level solutions that are not system-wide.

6.2 Prior IPC Research

A lot of prior research has been conducted in the area
of inter-process communication. Message passing and
shared-memory abstractions are the two major forms of
IPC techniques. Mechanisms used in Fbufs [6], IO-
Lite [23], Beltway buffers [5] and Linux Splice [19] are
similar to the IPC mechanism presented in this paper.

Fbufs is an operating system facility for I/O buffer
management and efficient data transfer across protection
domains on shared memory machines. Fbufs combine
virtual page remapping and memory sharing. Fbufs tar-
get throughput of I/O intensive applications that require
significant amount of data to be transferred across protec-
tion boundaries. A buffer is allocated by the sender with
appropriate write permissions whereas the rest of the I/O
paths access it in read-only mode. Thus, buffers are im-
mutable. However, append operation is supported by ag-

gregating multiple data-buffers into a logical message.
Fbufs employ the following optimizations: a) mapping
of buffers into the same virtual address space (removes
lookup for a free virtual address) b) buffer reuse (buffer
stays mapped in all address spaces along the path) and
c) allows volatile buffers (sender doesn’t have to make
them read-only upon send). IO-Lite is similar in spirit
to Fbufs, it focuses on zero-copy transfers between ker-
nel modules by means of unified buffering. Some of the
design principles behind Fbufs and IO-Lite can be lever-
aged on top of PGVAS in a virtualized architecture.

Beltway buffers [5] trade protection for performance
implementing a zero-copy communication. Beltway al-
locates a system-wide communication buffer and trans-
lates pointers to them across address spaces. Beltway
does not describe how it handles buffer memory exhaus-
tion except for the networking case, in which it suggests
to drop packets. Beltway enforces protection per-buffer,
making a compromise between sharing entire address
spaces and full isolation. Compared to us, Beltway sim-
plifies pointer translation across address spaces – it trans-
lates only a pointer to buffer, inside the buffer linear ad-
dressing is used, so indexes inside the buffer remain valid
across address spaces.

splice [19] is a Linux system call providing a zero-
copy I/O path between processes (i.e. a process can
send data to another process without lifting them to user-
space). Essentially, Splice is an interface to access the
in-kernel buffer with data. This means that a process
can forward the data but cannot access it in a zero-
copy way. Buffer memory management is implemented

13



through reference counting. Splice ”copy” is essentially
a creation of a reference counted pointer. Splice appeared
in Linux since 2.6.17 onwards.

7 Conclusion
In this paper, we present Fido, a high-performance inter-
VM communication mechanism tailored to software ar-
chitectures of enterprise-class server appliances. On top
of Fido, we have built two device abstractions-MMNet
and MMBlk exporting the performance characteristics of
Fido to higher layers. We evaluated MMNet and MM-
Blk separately as well in the context of a virtualized
network-attached storage system architecture and we ob-
serve almost imperceptible performance penalty due to
these mechanisms. In all, employing Fido in appliance
architectures makes it viable for them to leverage virtu-
alization technologies.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. InSOSP ’03, New York, 2003.

[2] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot — A technique for cheap recov-
ery. In OSDI’04, pages 3–3, Berkeley, CA, USA, 2004.
USENIX Association.

[3] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. La-
zowska. Sharing and protection in a single-address-space
operating system.ACM Trans. Comput. Syst., 12(4):271–
307, 1994.

[4] Cisco Systems. Cisco Products. http://www.cisco.com/
products.

[5] W. de Bruijn and H. Bos. Beltway buffers: Avoiding the
os traffic jam. InProceedings of INFOCOM 2008, 2008.

[6] P. Druschel and L. L. Peterson. Fbufs: a high-bandwidth
cross-domain transfer facility. InSOSP ’93: Proceedings
of the fourteenth ACM symposium on Operating systems
principles, pages 189–202, New York, NY, USA, 1993.
ACM.

[7] B. Dufrasne, W. Gardt, J. Jamsek, P. Kimmel, J. Myyry-
lainen, M. Oscheka, G. Pieper, S. West, A. Westphal, and
R. Wolf. IBM System Storage DS8000 Series: Architec-
ture and Implementation, Apr. 2008.

[8] EMC. The EMC Celerra Family. http://www.emc.com/
products/family/celerra-family.htm.

[9] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. InOASIS, Oct 2004.

[10] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang. Char-
acterization of Linux Kernel Behavior under Errors. In
Proceedings of the International Conference on Depend-
able Systems and Networks (DSN’03), 2003.

[11] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and
J. Liedtke. The Mungi single-address-space operating
system.Softw. Pract. Exper., 28(9):901–928, 1998.

[12] D. Hitz, J. Lau, and M. Malcolm. File system design
for an NFS file server appliance. InWTEC’94: Proceed-
ings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, pages 19–
19, Berkeley, CA, USA, 1994. USENIX Association.

[13] W. Huang, M. J. Koop, Q. Gao, and D. K. Panda. Virtual
Machine Aware Communication Libraries for High Per-
formance Computing. InProceedings of the ACM/IEEE
Conference on High Performance Networking and Com-
puting, SC 2007, Reno, Nevada, USA, November 2007.

[14] IBM Corporation. IBM Storage Controllers. http://www-
03.ibm.com/systems/storage/network/index.html.

[15] IOZone. IOZone Filesystem Benchmark. http://www.
iozone.org.

[16] Juniper Networks. Juniper Networks Products.
http://www.juniper.com/products.

[17] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S.
Kim. Inter-domain socket communications support-
ing high performance and full binary compatibility on
Xen. In VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual exe-
cution environments, New York, NY, USA, 2008. ACM.

[18] D. R. Llanos. Tpcc-uva: an open-source tpc-c implemen-
tation for global performance measurement of computer
systems.SIGMOD Rec., 35(4):6–15, 2006.

[19] L. McVoy. The splice I/O model. http://ftp.tux.org/
pub/sites/ftp.bitmover.com/pub/splice.ps.

[20] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. InATEC ’06: Proceedings
of the annual conference on USENIX ’06 Annual Tech-
nical Conference, pages 2–2, Berkeley, CA, USA, 2006.
USENIX Association.

[21] NetApp, Inc. NetApp Storage Systems. http://www. ne-
tapp.com/products.

[22] OSDL. Overview - Linux-RAID. http://linux-
raid.osdl.org/index.php/Overview.

[23] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite:
A Unified I/O Buffering and Caching System. InACM
Transactions on Computer Systems, pages 15–28, 2000.

[24] VMWare. Virtual Machine Communication Interface.
http://pubs.vmware.com/ vmci-sdk/VMCIintro.html.

[25] VMWare. VMWare Inc. http://www.vmware.com.

[26] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: A
Transparent High Performance Inter-VM Network Loop-
back. InProc. of International Symposium on High Per-
formance Distributed Computing (HPDC), June 2008.

[27] A. Watson, P. Benn, A. G. Yoder, and H. Sun. Multi-
protocol Data Access: NFS, CIFS, and HTTP. Technical
Report 3014, NetApp, Inc., Sept. 2001.

[28] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Grif-
fin. XenSocket: A High-Throughput Interdomain
Transport for Virtual Machines. InMiddleware 2007:
ACM/IFIP/USENIX 8th International Middleware Con-
ference, Newport Beach, CA, USA, November 2007.

14


