Distance Methods

- 1. Be able to apply the UPGMA algorithm to find a tree from a distance matrix. (You do not need to memorize the algorithm.)
- 2. Be able to find the last three edge lengths when combining the final three nodes using the neighbor-joining algorithm.
- 3. Know what types of trees UPGMA and neighbor-joining produce.
- 4. Know in principle why distance methods are often less accurate than parsimony and likelihood methods.
- 5. Know the primary advantage of distance methods.

6. UPGMA algorithm:

- (a) Find the i and j with the smallest distance D_{ij} .
- (b) Create a new group (ij) which has $n_{(ij)} = n_i + n_j$ members.
- (c) Connect i and j on the tree to a new node (ij).
- (d) The depth of group (ij) from its leaves is $D_{ij}/2$; set the new edge lengths accordingly.
- (e) Compute the distance between the new group and all other groups except i and j by using

$$D_{(ij),k} = \left(\frac{n_i}{n_i + n_j}\right) D_{ik} + \left(\frac{n_j}{n_i + n_j}\right) D_{jk}$$

(f) Delete columns and rows corresponding to i and j and add one for (ij). If there are two or more groups left, go back to the first step.

7. Neighbor-Joining algorithm:

- (a) Let n be the number of groups remaining.
- (b) If n > 3, for each group, compute $u_i = \sum_{i \neq i} D_{ij}/(n-2)$.
- (c) Choose the i and j for which $D_{ij} u_i u_j$ is smallest. (This is a negative number.)
- (d) Join i and j to a new node with lengths $(D_{ij} + u_i u_j)/2$ to node i and $(D_{ij} + u_j u_i)/2$ to node j.
- (e) Compute the distance to the new node (ij) and the other groups as

$$D_{(ij),k} = \frac{D_{ik} + D_{jk} - D_{ij}}{2}$$

(f) Delete columns and rows corresponding to i and j and add one for (ij). If there are four or more groups left, go back to the first step. Otherwise, connect the three remaining nodes to a single new node using the equation from step (e) to determine the final three edge lengths from the remaining groups to a last internal node.

Maximum Likelihood

- 1. Know the differences among distance methods, maximum parsimony, and maximum likelihood in terms of the computational effort needed to evaluate trees and to search for trees.
- 2. Know how to apply AIC to select the best model (among those examined) for maximum likelihood.

Bootstrap

- 1. Be able to describe how the bootstrap would be applied (conceptually) for parsimony, likelihood, and distance methods.
- 2. Understand what a bootstrap proportion of, say, 0.90 means.

Bayesian Inference

- 1. Be able to calculate a Bayesian posterior distribution for a problem similar to the homework.
- 2. Know in principle how Bayesian inference differs from maximum likelihood.