Lecture Outline: Molecular Evolution (part 2)

1. Standard Models of Molecular Evolution

Model	Stationary Distribution	Rates	# Parameters
JC69 (Jukes and Cantor 1969)	Uniform	Equal	1
	$\pi = (0.25, 0.25, 0.25, 0.25)$		
K80 (Kimura 1980)	Uniform	Transitions \neq Transversions	2
	$\pi = (0.25, 0.25, 0.25, 0.25)$		
F81 (Felsenstein 1981)	Flexible	Equal	4
	$\pi = (\pi_A, \pi_C, \pi_G, \pi_T)$		
HKY85 (Hasegawa et al. 1984, 1985)	Flexible	Transitions \neq Transversions	5
F84 (Felsenstein 1984)		5	
	$\pi = (\pi_A, \pi_C, \pi_G, \pi_T)$		
TN93 (Tamura and Nei 1993)	Flexible	Two Transition rates, Transversions	6
	$\pi = (\pi_A, \pi_C, \pi_G, \pi_T)$		
GTR (General Time Reversible)	Flexible	Flexible	9
	$\pi = (\pi_A, \pi_C, \pi_G, \pi_T)$		

The matrix $Q = \{q_{ij}\}$ is typically parameterized as $q_{ij} = r_{ij}\pi_j/\mu$ for $i \neq j$. (If matrices are scaled, number of free parameters is one less.)

2. Model Extensions

- (a) Partitioning sites:
- (b) Gamma distributed rates among sites:
- (c) Invariant sites: