Lecture Outline: Phylogeny Reconstruction using Distance Methods
1. Summary of Models of Molecular Evolution

(a) The standard form for the rate matrix of a time-reversible continuous-time Markov model of DNA substitution
is the following, where the base order is A, C, G, T and the dots on the main diagonal represent the negative
row-sum of the off-diagonal elements. The most general model is the general time-reversible model (GTR).

SACTC SAGTG SATTT
SACTA : ScaTG  ScTTT
SAGTA SCGTc : SGTTT
SATTA SCTTC SGTTG

QGTR =

(b) The six parameters s;; = s;; for each pair of bases appear symmetrically in the matrix across the main diagonal.

(c) The four parameters ™ = (74, ¢, T, 77 are the stationary distribution and represent both the long-run relative
frequency of the bases but also the probabilities of the bases at any given time.

(d) There are only nine free parameters as the stationary distribution satisfies the constraint ) . m; = 1.

(e) Some models also define m1p = w4 + 7 for the sum of purine probabilities and my = 7o + 7 for the sum of
pyrimidine probabilities.

(f) The expected number of substitutions per unit time is the weighted average of the negative main diagonal ele-
ments.

p = ma(sacme + sagna + sarmr) + no(sacTA + scama + ScTTT)
+ WG(SAgﬂ'A + scqmo + SGTWT) + 7TT(5AT7TA + scrmo + SGTﬂg)
= 2(7TA7TCsAC + TATGSAG + TATTSAT + ToTGSca + ToTrScT + TFGWTSGT)

(g) Often the matrix () is rescaled so that one unit of time represents one expected substitution (per site) by dividing
each element by p which reduces the number of free parameters by one.

(h) There are many standard models that are special cases of the GTR model. These are:

Jukes-Cantor (JC69) Kimura 2-parameter (K80) Felsenstein (F81)
1 1 1 -1 k1 Tc TG TT
_ 1 - 11 _ 1 - 1 &k _ TA - TG TT
Qe = 1 | . | Qkso= | . 1 Qesi=| B
1 1 1 1 sk 1 TA TC TG
Felsenstein (F84)
TC (1+/€/7FR)7TG T
Orss — TA . e (1+ k/my)mr
F (1+K/TR)TA Lte; . T
TA (1—|—/€/7Ty)7rc TG
HKY85 Tamura-Nei (TN93)
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Model  Stationary Distribution Rates

# Parameters

JC69 Uniform Equal 1
m=(0.25,0.25,0.25,0.25) sac = SAG = SAT = SCG = SCT = SGT

K80 Uniform Transitions # Transversions 2
m=(0.25,0.25,0.25,0.25) sag = SoT; SAC = SAT = SCG = SGT

F81 Flexible Equal 4
T = (TA, M0, TG, TT) SAC = SAG = SAT = 50G = SCT = SGT

HKYS85 Flexible Transitions ## Transversions 5

F84
= (T, T, TG, TT) SAG = SCT; SAC = SAT = SCG = SGT

TN93 Flexible Two Transition rates, Transversions 6
T = (7TA77TCa7TGa7TT) SAG; SCT; SAC = SAT = SCG = SGT

GTR Flexible Flexible 9
T = (7ma, T, TG, TT) SAC: SAG: SAT; SCG; SCT; SGT

(i) The probability transition matrix has the form P(t) = {p;;(t)} = e“" where p;;(t) equals the probability of

being in state j after ¢ time units given that the process begins in state <.
(j) The spectral decomposition of @ is Q = VAV ! where
i. Visa4 x 4 matrix whose columns are eigenvectors of ();
ii. Aisa4 x 4 diagonal matrix whose diagonal elements are eigenvalues of Q;
iii. V~!isthe 4 x 4 matrix such that VV =1 = V-1V = L.
(k) The probability transition matrix has the form P(t) = VeV 1,
(1) If the eigenvalues of () are A\ = 0, Ao, A3, Ag < 0, then

pij(t) = m; + cgij)e’\gt + cgij)e)‘a‘t + cz(fj)e)“*t

where
Gj) , G5) , (Gj) _ J 1—m; wheni=j
R R _{—wj when i # j
so that
1 wheni=j

pij(o):{ 0 wheni #j

(m) The probability transtion matrix of the GTR model does not have an algebraic form and must be computed

numerically.



(n) The TN93 model has the following spectral decomposition, Q@ = VAV 1, with
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(0) The probability transition matrix is Prng3 = VMV —1 which equals

TATY. fure] _ TGTY , TG _
mTA + p e + €3 TC — TCe2 TG+ R €2 763 T — TTe2
_ TCTR T _ TR, _ 7T
TA — TAC o + Yy €2 + Ty €4 TG — TGeE2 T+ Ty €2 5, ¢4
TTATY TA TGy TA
TA+ 5. €2~ 7563 TC — TCe2 TG+ T 62t rres T — TTe
TA— TAC To + T ey — TCey TG — TGE? Tr+ T ey + 10ey

where eg = e_t, e3 = e_(’ﬂ'R“‘ﬂ'Y)t, and eq = e—(lﬂTy—‘,—TrR)t.
2. Distance Estimation

(a) Consider estimating pairwise distances under the TN93 model.
Assume that we have estimates of all parameters, 7, kg, and Ky .
Then we would want to find the time ¢ that would maximize the probability of the observed data.
If we observed a site AC, the probability of this would be

maPac(t)

as a function of ¢.
(b) The likelihood of the data would be
L(t) = [T]] Py ()™
v g

where n;; is the number of times that pattern 77 is observed.

(c) In practice, it is easier to work with the natural logarithm of this expression.

b(t) = Z Z n;; (log m; + log P;;(t))

? J

(d) For a pair of sequences, you can summarize the number of observed site patterns in a 4 x 4 matrix.



(e

10 20 30 40

+ + + +
swan GTG ACC TTC ATC AAC CGA TGA CTA TTT TCC ACT AAC CAT AAA GAT ATC GG
osprey ATG ACA TTC ATC AAC CGA TGA CTA TTC TCA ACC AAC CAC AAA GAC ATT GG

Above are the first 50 bases of the cytochrome oxidase I mitochondrial gene from swan and osprey.
Here is a summary of the count data.

Osprey
A CG
16 O
39
I O 0| 7
0 4 10| 14
Total | 20 13 6 11| 50

If we assume the TN93 model, how can we estimate all of the parameters?

Total
16
13
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Here is one approach: Estimate the stationary distribution by the observed frequencies. With 50 bases per species,
there are 100 observed bases. The estimate is 7 = (0.36,0.26,0.13,0.25).

The two parameters kK and xy can be estimated by considering the expected proportions of transitions in purines
and pyrimidines and the expected proportion of transversions.

The probability of a transition in a purine after ¢ time units is

0% 1
TAPAG(t) + g Paa(t) = 2mamg(1 + ESQ — %63)

The probability of a transition in a pyrimidine after ¢ time units is

TR 1
woPor(t) + mpPro(t) = 2nomp(1 + EBQ _ 564)

The probability of a transversion after ¢ time units is
TAPac(t) + maPar(t) + mcPoa(t) + moPoa(t) + naPac(t) + naPar(t) + mrPra(t) + mrPra(t)

which simplifies to
2(1 — ex)(mame + maTr + TOTG + TGTT)

The observed proportions of these three types of site patterns are Sp = 1/50 = 0.02, Sy = 5/50 = 0.10, and
V =3/50 = 0.06.

Equating these observed frequencies with the expected proportions gives three linear equations in three un-
knowns, which can be solved for e, e3, and e4.

When these expressions are plugged in, we can solve for kg, Ky, and .

Finally, the distance is found by multiplying this time ¢ by the expected number of substitutions per unit time, .
The equations are:

aR—ﬂ'yb

kKp = ———
Trb

ay — mRrb

Ky = ———
Ty b



where

3. UPGMA

TrSR |4
arp = —log(1-— - —
2maTg  27TR
Ty Sy |4
ay = —log|(1-— —
2o 2Ty

(a) UPGMA is an algorithm that will produce a rooted ultrametric tree from pairwise distance data.

(b) If the data matches such a tree exactly, the algorithm will recover the tree.

(c) Here is the algorithm:

i. Find the 7 and j with the smallest distance D;;.

ii. Create a new group (ij) which has n(;;) = n; + n; members.

iii. Connect ¢ and j on the tree to a new node (ij). Give the edges connecting i to (i) and j to (ij) each length
so that the depth of group (ij) is D;;/2.
iv. Compute the distance between the new group and all other groups except ¢ and j by using

_ (M ]
Pk = <nz + nj) Dkt <m + nj) Dk

v. Delete columns and rows corresponding to ¢ and j and add one for (i7). If there are two or more groups left,

go back to the first step.

4. Neighbor-Joining

(a) Neighbor-joining produces an unrooted tree from pairwise distance data.

(b) If the data matches such a tree exactly, the algorithm will recover the tree.

(c) Here is the algorithm:

i. For each leaf, compute u;

=2z Dis/(n—2).

ii. Choose the 7 and j for which D;; — u; — u; is smallest.

iii. Join ¢ and j to a new node with lengths (D;; + u; — u;)/2 to node i and (D;; + u; — u;)/2 to node j.

iv. Compute the distance to the new node (ij) and the other groups as

Diy + Dji — Dy;
2

Dijye =

v. Delete columns and rows corresponding to 7 and j and add one for (ij). If there are three or more groups
left, go back to the first step. Otherwise, connect the two remaining nodes with their distance.



