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The polar bear has become the flagship species in the climate-
changediscussion. However, little is knownabout howpast climate
impacted its evolution and persistence, given an extremely poor
fossil record. Although it is undisputed from analyses of mitochon-
drial (mt) DNA that polar bears constitute a lineage within the
genetic diversity of brown bears, timing estimates of their diver-
gence have differed considerably. Using next-generation sequenc-
ing technology, we have generated a complete, high-quality mt
genome from a stratigraphically validated 130,000- to 110,000-
year-old polar bear jawbone. In addition, six mt genomes were
generated of extant polar bears fromAlaska and brown bears from
the Admiralty and Baranof islands of the Alexander Archipelago of
southeastern Alaska and Kodiak Island. We show that the phylo-
genetic position of the ancient polar bear lies almost directly at the
branching point between polar bears and brown bears, elucidating
a unique morphologically and molecularly documented fossil link
between living mammal species. Molecular dating and stable iso-
tope analyses also show that by very early in their evolutionary
history, polar bears were already inhabitants of the Artic sea ice
and had adapted very rapidly to their current and unique ecology
at the top of the Arctic marine food chain. As such, polar bears
provide an excellent example of evolutionary opportunismwithin
a widespread mammalian lineage.
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Rapid morphological evolution has long been recognized in
mammals. For example, it is widely accepted that anatomi-

cally modern humans evolved in Africa around 200–160 thousand
years ago (kya), expanded into most habitable parts of the Old
World between 90 and 40 kya (1), and swiftly radiated in phe-
notypic traits readily recognized in modern populations. Ursine
bears have themselves diverged recently into a number of differ-
ent species (2, 3). The polar bear (Ursus maritimus Phipps 1774),
which is the largest of the six extant ursine bear species, currently
has a circumpolar distribution, their range determined by the
extent of Arctic sea ice. The polar bear is closely related to the
brown bear (Ursus arctos). Kurtén (4) suggested that polar bears
branched off from brown bears that became isolated on Siberian
coastal enclaves some time during the Mid to Late Pleistocene,
perhaps as recently as 100–70 kya, with time becoming increas-
ingly specialized carnivores that hunt solely on sea ice. Recent
genetic studies have shown that polar bears evolved from within
brown bears, and that a genetically unique clade of brown bear
populations that live exclusively on the Admiralty, Baranof, and
Chichagof (ABC) islands of southeastern Alaska’s Alexander
Archipelago are more closely related to polar bears than to other
brown bears (5, 6). Although fertile hybrids between the two
species are well-known in captivity (7), wild hybrids are extremely
rare and both species are well-adapted to their different, allo-
patric habitat requirements. With their distinctly different mor-

phology, metabolism, and social and feeding behaviors, the polar
and brown bears are classified as separate species (8).
Timing estimates for the divergence of polar bears from brown

bears have differed considerably. In addition to the hypothesis of
a very recent split, a divergence time of 250–200 kya has also been
proposed (6), whereas based on comparisons of complete mito-
chondrial (mt) genomes the cladogenesis has been estimated to be
as distant as 1,320 kya (9). Recently, using an extended dataset of
10 mt genomes, the split of brown and polar bears was estimated
to be 1,170–660 kya (2). Sources of these inconsistent estimates
may have included inappropriate, deep fossil calibrations as well
as limited sampling, and in particular lack of data on brown bears
from the ABC islands. Recognizing these shortcomings, internally
calibrated substitution rates have been calculated from a dataset
of short stretches of mt control-region sequences, including sev-
eral radiocarbon-dated individuals, with the result that the
divergence time between polar and ABC island bears was esti-
mated to be as recent as 72–48 kya (10). However, the limited
polymorphic characters within these very short stretches may
contribute to erroneous dating in this case.
Fossil remains of the polar bear are very rare (4, 11–13),

because the animals mostly live and die over vast areas of sea ice,
and when they die their remains are likely to be scavenged by
other animals and disappear into the ocean. In light of this paucity
of fossil finds, every new specimen is of interest. Recently, a lower
jawbone (left mandible) was excavated in situ at Poolepynten on
Prins Karls Forland, a narrow strip of land on the far western edge
of the Svalbard Archipelago, Norway (11). Diagnostic polar bear
traits and morphometric measurements of this well-preserved
mandible, comparing it to brown bear and other available sub-
fossil polar bear remains as well as a large collection of extant
polar bears from Svalbard, proved that it falls within the range of
modern polar bears and suggested that it belonged to an adult
male (11). Accelerator mass spectrometry 14C age determination
from a canine tooth attached to the jawbone dated it to older than
45 thousand years (ky) old (11). Based on long-term studies of the
stratigraphy and depositional history of the Poolepynten area and
infrared-stimulated luminescence of the sediments (14), the
specimen was estimated to be 130–110 ky old, which is sig-
nificantly older than any other known polar bear subfossils (i.e.,
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partly fossilized specimens), none of which are older than possibly
∼70 ky (and most younger than 10 ky) (11). The discovery of this
jawbone confirms that the polar bear was already a distinct species
at least 110 kya, and as such any findings from genetic research
based on this specimen could contribute to answering key ques-
tions on the evolutionary history of this species.
High-throughput sequencing-by-synthesis techniques (15) (a type

of shotgun sequencing) have recently been applied to ancient DNA
(16, 17). These methods have opened new possibilities with the vast
number of short sequence reads that can be generated, not only from
the mt genome but also the nuclear genome, using relatively small
amounts of degraded DNA. This method, essentially metagenomic
in that it samplesDNA that is expected to contain elements from the
environment in addition to the species at hand, circumvents ampli-
fication and cloning biases, because single DNA molecules are
compartmentalized in a lipid vesicle before amplification. Fur-
thermore, generation of high coverages of the mt genome makes it
possible to efficiently deal with single-base errors caused by post-
mortem miscoding lesion damage. Using this “next-generation” se-
quencing technology, we generated a complete, multifold-coverage
mt genome from the Poolepynten specimen, which is significantly
older than other stratigraphically validated mammal subfossils from
which mt genomes have been reported (18).

Results and Discussion
Initial diagnostic PCR amplifications of short stretches of the mt
D loop and cytochrome b gene using DNA isolated from the
attached canine tooth from the Poolepynten specimen confirmed
the jaw’s polar bear identity.Although themolecular behavior of this
subfossil specimen clearly matched what is expected from ancient
DNA (19), it also exhibited the signature of well-preserved DNA.
Consequently, using a Roche GS FLX sequencer (454 Life Scien-
ces), 77million base pairs (bp) were generated. A comparison of the
454 sequence reads against the dog genome suggested that∼40%of
the reads represent endogenous bear DNA (Fig. 1). Although 4.5%
and the remaining ∼55% represent human and bacterial con-
tamination, respectively, the read length and high percentage of
endogenous, mostly nuclear sequence demonstrate remarkable
DNA preservation. It is believed that due to their constant low
temperatures, glacial ice andpermafrost environments provide ideal
conditions for long-term survival of DNA molecules (20), and
indeed, some of the oldest authenticated ancient DNA results have
been reported from ice and permafrost cores (20, 21). The quality of
theDNAextracted from thePoolepynten specimen further suggests
that environments like Svalbard may show great promise for the
recovery of well-preserved ancient nucleic acids.
Of the total of 482,364 sequence reads recovered from the Poo-

lepynten specimen, 1290 mt-associated reads provided a 14× cov-

erage of the mt genome (Fig. S1). The organization and length of
the genome is comparable to that of extant bears, showing clear
sequence similarity to bothABCbears andmodernpolar bears (Fig.
2). To investigate the precise relationship of the ancient polar bear
specimen tomodern bears, we similarly used shotgun sequencing to
generate six high-quality mt genomes of extant bears: two polar
bears from the Little Diomede and St. Lawrence islands, Alaska,
three brown bears from the ABC islands, and a brown bear from
Kodiak Island,Alaska (Table S1andFig. S2).These seven complete
mt genomes from ancient and modern bears were aligned to pre-
viously publishedmt genomes, including twomt genomes each from
polar bear and brown bear (3, 22, 23). The fourmodern polar bears
included represent well the distinct genetic clusters of polar bear
populations identified from microsatellite analyses (24).
Comprehensive phylogenetic reconstruction analyses of this

dataset resulted in trees of similar topology (Fig. 3A and Figs. S3
and S4) comparable to recently reported phylogenies based on
complete mt genomes and nuclear sequences (2, 3, 25). The
phylogenetic results clearly demonstrate, with high support, the
close relationship of the subfossil specimen to modern polar bear
(Fig. 3A). Intriguingly, however, this ancient polar bear, which
exhibits a very short branch length, lies almost directly at the
branching point between polar bear and the genetically unique
clade of ABC brown bears (Fig. 3B). Thus, both cladistically and
anagenetically, this ancient specimen existed very close to the
most recent common ancestor of polar bears and brown bears.
The robustphylogeny and the closepositionof the subfossil polar

bear specimen to the polar/brown bear split offer an ideal oppor-
tunity to ultimately settle a time of origin for the polar bear. Our
Bayesian analyses with different datasets returned a divergence
date for the entire brown bear/polar bear lineage to a mean of less
than 500 ky (Fig. 3A; see also Table S2), which is consistent with
recent estimates using deeper fossil calibration in the Ursidae (3).
Within this clade, we estimated the mean age of the split between
the ABC bears and the polar bears to be 152 ky, and the mean age
for all polar bears as 134 ky, near the beginning of the Eemian
interglacial period and completely in line with the stratigraphically
determined age of the Poolepynten subfossil (11). Analyses of an
extended dataset of 39mtDNAcontrol-region sequence fragments
fromanumberof carbon-datedbrownbears (26) andmodernpolar
bears, importantly including four from Svalbard, provided com-
parable, although slightly older (190 ky for the ABC/polar bear
split), divergence time estimates (Fig. S5). Although mtDNA
capture cannot be excluded to have happened between ABC bears
and polar bears, these estimates nevertheless affirm with strong
support a very recent divergence of polar bears from brown bears.
Even more surprising, the age of the modern polar bear crown
group (the clade containing the last common ancestor of all extant
members) is estimated to be less than 45 ky, slightly older than the
age of the ABC bears (Fig. 3A), a date that is also found with the
expanded dataset of control-region sequence fragments (Fig. S5).
These estimates suggest a very recent and rapid expansion of
modern polar bear populations throughout the Arctic since the
Late Pleistocene, perhaps following a climate-related population
bottleneck, although data from more modern and Holocene polar
bear specimens will be required to establish this.
Stable isotope analyses of carbon and nitrogen have been used

as a tool to evaluate trophic relationships, both in past and
present environments (26, 27). Modern polar bears prey mainly
on ringed seals and bearded seals (28), and stable isotopes have
confirmed that they are marine predators that make little use of
terrestrial food sources (29–31). To investigate the trophic
relationships of the ancient Poolepynten specimen as compared
with present-day polar bears from Svalbard, we analyzed the
stable isotope content in the canine tooth. The stable isotope
values for the ancient tooth (δ13C = −13.9‰ and δ15n = 19.4‰)
were within the range found from extant polar bear teeth and
other tissues and were reflective of marine feeding (26, 29–31).

Fig. 1. Metagenomic composition of the 454 sequence reads from the
Poolepynten polar bear tooth. The pie chart shows the percentages of
sequence reads assigned to the categories bacteria, bear endogenous,
human, Archaea, and other sources. A comparison of the 454 sequence reads
against the dog genome suggested that ∼40% of the reads represent
endogenous bear DNA, whereas 4.5% and the remaining ∼55% represent
human and bacterial contamination, respectively.
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Importantly, these isotope values are distinct from those found in
Late Pleistocene brown bears, including from the ABC brown
bear lineage (26), as well as present-day coastal Alaskan brown
bears (32). Thus, our results clearly demonstrate that the jaw is
from an individual that had a feeding ecology similar to present-
day polar bears, at the top of the Arctic marine food chain.
Furthermore, analyses of the stratum containing the subfossil

jawbone uncovered a bivalve and foraminifera fauna reflecting
an arctic, open marine environment influenced by glacier input
and advection of warm North Atlantic water as today (11, 14).
The stable isotope data, phylogenetic analysis, and the geo-

logical and molecular age estimates of the Poolepynten specimen
indicate that ancient polar bears adapted extremely rapidly both
morphologically and physiologically to their current and unique

Fig. 2. Mitogenomic sequence variation and organization. Sequence differences found among 17 bear mitochondrial genomes with respect to a previously
published polar bear genome (GenBank accession no. NC_003428). Each vertical bar depicts a nucleotide difference from this reference sequence (shown at
the bottom illustrating the organization of the genome into the different regions). The ancient Poolepynten bear sequence is highlighted in red.
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Fig. 3. Phylogenetic and chronographic reconstruction of polar bear evolution. (A) Maximum clade probability tree inferred from a BEAST analysis of
complete mt genome sequences excluding the VNTR repeat in the D loop (Table S2). Numbers at selected nodes indicate mean ages in million years. The red
bars at nodes illustrate the age width of the 95% highest posterior density interval. The posterior probability values of each clade are indicated in orange. An
identical tree topology was obtained using maximum parsimony and maximum likelihood (bootstrap support values in green and yellow, respectively). For
details on voucher information for the mtDNA genome sequences included in this study, see Table S1 and Figs. S3 and S4. The 2009 Geologic Time Scale with
major relevant epochs is shown above the tree. (B) Phylogenetic network of complete mt genomes (excluding the VNTR repeat) of 11 polar and brown bears
based on Neighbor-Net analysis with LogDet distances (see scale bar).
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ecology within only 10–30 ky following their split from a brown
bear precursor and, subsequently, within the course of ∼100 ky,
spread to the full perimeter of the polar basin. As such, the polar
bear is an excellent example of evolutionary opportunism within a
widespread mammalian lineage (33). Moreover, the extreme
proximity of the Poolepynten specimen to the polar bear ancestor
provides a unique case of a morphologically and molecularly
validated fossil link between living mammal species.
With recent announcements of plans for sequencing the ge-

nome from present-day polar bear (34) offering a necessary ref-
erence, future sequencing of all or a substantial fraction of the
nuclear genome of this exceptionally well preserved Pleistocene
polar bear specimen may be feasible. This genome would not only
provide excellent markers to study extant polar bear populations
but could also provide clues as to how polar bears rapidly evolved
and subsequently survived through the last interglacial period.
Such information is important for an assessment of how polar
bears will be able to cope with the predicted changes of their main
habitat: the Arctic sea ice.

Methods
Initial PCR and Cloning and Ancient DNA Validation. We extracted and ampli-
fied DNA from the subfossil polar bear specimen at the Natural History
Museum, University ofOslo, Norway, using standard ancient-DNA approaches
and protocols (35); that is, all DNAextractions and setup of PCR reactionswere
performed in a building physically separated from molecular laboratory
facilities where subsequent amplification, cloning, and sequencing of the
products were performed. A Dremel tool was used at low speed to drill out
powder of the dentine of the canine tooth attached to the jawbone after the
toothwasfirst washedwith 10%chlorine to remove any contamination at the
surface. Approximately 0.1 g of bone powderwas subsequently transferred to
a 2.0-mL screw-capped centrifugation tube and DNA was extracted as pre-
viously published (35). Initial diagnostic genetic analyses targeted one short
mtDNA segment in the cytochrome b gene and two overlapping segments in
the D loop. Primer design, PCR amplifications, cloning, and sequencing were
performed using standard procedures (35). Successful amplification and
sequencing of these short stretches indicated with some certainty that the
DNA fragments amplified came from the fossil polar bear remains, because
characteristic C→T (deamination of cytosine) mutations were uncovered, and
the positions of these mutations differed in separately bacterially cloned
pieces of PCR-amplified DNA. Furthermore, experiments with different
amplification conditions and fragment lengths strongly suggested a molec-
ular behavior expected fromancientDNA (19), but also that theDNAwaswell-
preserved. For example, amplification of products up to ∼300 bp was suc-
cessful, whereas amplification over 600 bp yielded no products.

DNA Library Construction and 454 Sequencing. High-throughput sequencing-
by-synthesis techniques (15) have recently been applied to ancient DNA (16,
17, 36). After confirming that DNA was well-preserved in the canine tooth
attached to the jawbone, library construction and shotgun sequencing were
performed using the 454 Life Sciences standard GS FLX protocol and a Roche
GS FLX sequencer (454 Life Sciences) at the Center for Comparative
Genomics and Bioinformatics, Pennsylvania State University. Two 454 GS FLX
fragment runs were performed for the ancient polar bear sample, alto-
gether producing 77 million bp of DNA sequence data. One was a full-panel
454 GS FLX fragment run, which produced 347,660 reads with an average
length of 156 bp. The other was a quarter-panel 454 GS FLX fragment run,
which produced 134,704 reads with an average length of 168 bp.

To exclude the possibility of contamination in the analysis of the ancient
sample,DNA library constructionsofmodern sampleswereperformedafter all
analysesoftheancientsample.DNAextractionsofthemodernpolarandbrown
beartissuesamplesweredoneattheUniversityatBuffalo,usingaDNeasytissue
kit (Qiagen). Themodern polar bear samples were obtained from theU.S. Fish
andWildlife Marine Region 7 Mammal Management Office and harvested in
1998, 2001, and 2002 (Table S1), that is, before listing of the species in the
Endangered SpeciesAct. Themodernbear sampleswere sequenced inone454
GS FLX fragment run with multiplex identifiers (MIDs) according to the 454
Life SciencesMIDGS FLX protocol. For each sample, a unique 10-bp nucleotide
identifierwas attached to eachDNA fragment to distinguish them in the same
fragment run. A total of 10 modern bear samples were sequenced, labeled
fromMID1 toMID10, 6 ofwhich generated sufficientmt reads for assembly of
mtDNAgenomes. A total of 624,921 reads,with amean lengthof 186bp,were

produced in this MID fragment run. The total 116million bp of sequence data
are unevenly distributed among the 10 samples (Table S1).

Composition Analysis of Sequenced Reads. The reads produced for the ancient
polar bear sample were analyzed to determine their composition. Only reads
longer than100bpwere considered, tominimizeerroneoushits commonly seen
when using short reads as queries. These reads were first searched against the
National Center for Biotechnology Information (NCBI) nonredundant peptide
sequence (NR) database (April 22, 2009 version) using BLASTx (37), with the
thresholdEvalue=e−4. The samesetof readswasthensearchedagainst theNCBI
nucleotide sequence (NT) database (April 22, 2009 version) using BLASTn (37),
with the threshold E value = e−10. For each query, the top 10 best hits were
recoded. Both results were analyzed and compared in MEGAN v. 3.3.5 (38).

Fraction of the Reads That Are from the Bear. Wefirst determinedwhich reads
represent human contamination, by aligning reads to the human genome
sequence, scoring matches 1 andmismatches –3. This step estimated that about
4.5%of the sequencesarehuman.Toestimate the fractionof sequencedatathat
comesfromthepolarbeargenome,wealignedtheremainingreadswith thedog
genome, scoring matches 1 and mismatches –2, noting that about 15% of the
reads aligned. This underestimates the fraction that are from the bear genome
because it misses sequences in the following categories: (i) inserted in the bear
genomesince thebear-dog split (e.g., recent families of interspersed repeats), (ii)
deleted in the dog lineage since the bear-dog split, (iii) missing from the current
doggenomeassembly,or (iv)notalignable todogbecauseancientDNAisbroken
into small pieces. We estimated the combined effect of these factors by taking
reads from a carefully prepared modern bear sample, which we assume consists
entirely of bear DNA, artificially shortening those reads to make the length dis-
tribution match that of the ancient polar bear sample, and aligning to the dog
genome sequence using the same thresholds. This led to the estimation that the
true amount of bear nuclearDNA is over 2.5 times asmuch aswhat aligns to dog
under these conditions, which in turn led to the estimation that around 40% of
the sequences in our sample are from the polar bear genome.

Mitochondrial Genome Assembly. The short reads produced by 454 sequencing
runswerefirstfilteredby size ata threshold of100bp toensure the specificityof
assembledreads. Thefilteredreadswerethen screenedforthoseassociatedwith
bearmtDNAusingBLASTn(37)againstthepolarbearmtreferencegenomefrom
NCBI (accessionno.NC003428),withthe thresholdEvalue=e−20. Themtgenome
assembly was done using SeqMan 8.0 (DNASTAR), allowing minimal 80%
identity. The assemblywas thenmanually inspected to ensure the correctness of
the assembly, which eliminated all ambiguities in the consensus sequence.

The ursinemt genomes contain variable-number tandem repeats (VNTR) in
the control region. The average VNTR length is ∼500 bp, which exceeds the
maximum length of 454 fragment run reads. To resolve the correct number
of repeats for each assembled mt genome, PCR amplification of the regions
containing VNTR were done for each successfully assembled sample (pri-
mers: 5′-CGCCACTAAATCGAACGAAC-3′, 5′-GGGGGTTTGATTAAGCTAAGTT-
3′). PCR products were purified using a QIAquick PCR purification kit (Qia-
gen) and analyzed on an Agilent 2100 bioanalyzer with the DNA 7500 kit
(Agilent Technologies). The final VNTR repeat number of the mt genomes
was corrected based on the bioanalyzer data (Fig. S6).

Phylogenetic Reconstruction. Phylogenetic analyses were performed using a
comprehensivemaximumparsimony (MP) approachwith a variety of tree space
exploration techniques and bootstrap resampling as implemented in TNT (39)
and maximum likelihood (ML) with a rapid bootstrap algorithm as imple-
mented in RAxML (40), and network construction was analyzed using the
Neighbor-Net algorithm (41)with LogDetdistances (42) in SplitsTree v. 4.10 (43).

Estimations of Divergence Times. Dating of divergence events within the
brown bear/polar bear lineage were estimated using a Bayesian “relaxed
molecular clock” approach (44) in the software BEAST (45) v. 1.4.8 using
variable parameter sets and datasets (Table S2). Following suggestions to
use calibration points as close as possible to dates being estimated when
timing recent divergences (46), a mean age of 120 ky for the Poolepynten
subfossil polar bear was used in addition to data from carbon-dated speci-
mens (2, 3, 26). Results were assessed with Tracer (47) v. 1.4.1, and maximum
clade credibility trees were produced with TreeAnnotator v. 1.4.8.

Isotope Analyses. Stable isotope analyses of carbon and nitrogen have been
used as a tool for evaluating trophic relationships, both in past and present
environments (26, 27). Stable isotope analyses of the canine dentine material
were performed at the Institute for Energy Technology (IFE), Kjeller, Norway.
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From 3.1 to 3.6 mg were weighed into tin capsules. The samples were com-
busted in the presence of O2 and Cr2O3 at 1,700 °C in a Eurovector element
analyzer. Reduction of NOx to N2 was done in a Cu oven at 650 °C. H2O was
removed in a chemical trap of KMnO4 before separation of N2 and CO2 on a
packed 2-m PoraPLOT Q GC column (Varian). N2 and CO2 were directly
injected on-line to a Nu Horizon Stable Isotope Ratio Mass Spectrometer (Nu
Instruments) for determination of δ13C and δ15N. The C and N content were
quantified on the basis of the mass 44 and mass 28 peak areas, respectively,
and accuracy and precision of the analyses were measured by replicate
analysis using an internal standard (IFE trout) and international standards
(IAEA-N-1 and IAEA-N-2 calibrated against atmospheric N2 for

15N, and USGS-

24 calibrated against PeeDee Belemnite, Vienna, for 13C) (48). The stable
isotope compositions are reported using the standard δ notation.
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