Lecture Outline: Molecular Evolution (part 1)

1. Features of Molecular Evolution

(a) Possible multiple changes on edges
(b) Transition/transversion bias

(c) Non-uniform base composition

(d) Rate variation across sites

(e) Dependence among sites

(f) Codon position

(g) Protein structure
2. Continuous-time Markov Chains

(a) Probabilistic framework

° Essentially, all models are wrong, but some are useful.
George Box

A probabilistic framework provides a platform for formal statistical inference

e Examining goodness of fit can lead to model refinement and a better understanding of the actual biological
process

Model refinement is a continuing area of research
e Most common models of molecular evolution treat sites as independent
e These common models just need to describe the substitutions among four bases at a single site over time.

(b) Markov property
e Use the notation X (¢) to represent the base at time ¢.
e Formal statement:

P{X(s+t)=7|X(s)=1,X(u) =x(u)foru<s} =P{X(s+t)=j|X(s) =i}

¢ Informal understanding: given the present, the past is independent of the future
o If the expression does not depend on the time s, the Markov process is called homogeneous.

3. Rate Matrix

(a) Positive off-diagonal rates of transition
(b) Negative total on the diagonal
(c) Row sums are zero

(d) Example
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4. Alarm Clock Description

(a) Exponential distribution

Only continuous-time distribution with memoryless property needed for the Markov property.

Single parameter A is called the rate.
Density is f(t) = Ae™™, fort > 0.

[e.e]
Density satisﬁes/ f(t)dt = 1.
0
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e Cumulative distribution function is P {T' < t} = F(t) = / f(s)ds =1—e M,
0

e Tail probability (probability of no event in time ¢) is e~

e Meanis 1/,

(b) Exponential time to next event

At

o [f the current state is ¢, the time to the next event is exponentially distributed with rate —¢;; defined to be g;.

(c) Probability of the specific transition

e Given a transition occurs from state 4, the probability that the transition is to state j is proportional to g;;,
namely ¢ij/ >y ; Qik-

5. Transition Probabilities

(a) Matrix multiplication

e Compute AB where A is an m x n matrix and B is an n X p matrix. (Note that the number of columns in

A must match the number of rows in B.)

e The ij element of the matrix AB is the dot product of the ith row if A and the jth row of B.

e Example:

A=

-1 04 0.6
0.8 -2 12
0o 1 -1

(b) Matrix exponentiation

AByj = airbi

e For a square matrix A, the matrix exponential is defined to be

(c) Transition matrix

k=1
-1 0 1
B=| 1 -2 1 |AB=
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A
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e For a continuous time Markov chain, the transition matrix whose 75 element is the probability of being in
state j at time ¢ given the process begins in state 7 at time 0 is P(t) = et

e A probability transition matrix has non-negative values and each row sums to one.

e Each row contains the probabilities from a probability distribution on the possible states of the Markov

process.
e Examples:

6. Stationary Distribution

(a) Long-run average
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e Well behaved continuous-time Markov chains have a stationary distribution, often designated 7 (not the
constant close to 3.14 related to circles).

e When the time ¢ is large enough, the probability P;;(¢) will be close to 7; for each i. (See P(10) from
earlier.)

e The stationary distribution can be thought of as a long-run average— over a long time, the proportion of
time the state spends in state ¢ converges to ;.

(b) Multiplication property
e The stationary distribution is an eigenvector of Q”, the transpose of (), associated with the eigen value 0.
e This means that 77 Q = 07

e It also follows that 77 P(t) = 7T for any time ¢. (If you begin in the stationary distribution, you remain in
the stationary distribution.)

(c) Usual parameterization of rate matrix
e The matrix () = {¢;;} is typically parameterized as g;; = 7,/ for i # j which guarantees that 7 will be
the stationary distribution when r;; = r;;.

7. Scaling

(a) Expected number of substitutions per unit time

e The expected number of substitutions per unit time is the average rate of substitution which is a weighted
average of the rates for each state weighted by their stationary distribution.

n= quz'
i

e If the matrix () is reparameterized so that all elements are divided by pu, then the unit of measurement
becomes one substitution.

8. Time-reversibility

(a) Conceptual understanding

e A continuous-time Markov chain is time-reversible if the probability of a sequence of events is the same
going forward as it is going backwards.
e Look at example from earlier.
(b) Time-reversibility condition

e The matrix () is the matrix for a time-reversible Markov chain when 7;q;; = m;q;; for all 7 and j. That is
the overall rate of substitutions from ¢ to 7 equals the overall rate of substitutions from j to ¢ for every pair
of states ¢ and j.



