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Abstract.—Several stochastic models of character change, when implemented in a maximum likelihood framework, are
known to give a correspondence between the maximum parsimony method and the method of maximum likelihood. One
such model has an independently estimated branch-length parameter for each site and each branch of the phylogenetic tree.
This model—the no-common-mechanism model—has many parameters, and, in fact, the number of parameters increases as
fast as the alignment is extended. We take a Bayesian approach to the no-common-mechanism model and place independent
gamma prior probability distributions on the branch-length parameters. We are able to analytically integrate over the
branch lengths, and this allowed us to implement an efficient Markov chain Monte Carlo method for exploring the space of
phylogenetic trees. We were able to reliably estimate the posterior probabilities of clades for phylogenetic trees of up to 500
sequences. However, the Bayesian approach to the problem, at least as implemented here with an independent prior on the
length of each branch, does not tame the behavior of the branch-length parameters. The integrated likelihood appears to
be a simple rescaling of the parsimony score for a tree, and the marginal posterior probability distribution of the length of
a branch is dependent upon how the maximum parsimony method reconstructs the characters at the interior nodes of the
tree. The method we describe, however, is of potential importance in the analysis of morphological character data and also
for improving the behavior of Markov chain Monte Carlo methods implemented for models in which sites share a common
branch-length parameter. [Bayesian phylogenetic inference; Markov chain Monte Carlo; maximum likelihood; parsimony
model.]

Two different approaches have been taken to justify the
parsimony method for inferring phylogenetic trees. The
first strategy relies on philosophical arguments. Over
the past three decades, various authors have argued that
the parsimony method fits the hypothetico-deductive
framework of scientific reasoning (Wiley, 1975; Gaffney,
1979; Eldredge and Cracraft, 1980; Wiley, 1981; Farris,
1983), Popper’s theory of corroboration (Popper, 1959;
Siddall and Kluge, 1997; Kluge, 1997, 1998), or is justified
on the basis of the parsimony principle alone (i.e., the log-
ical parsimony school for the justification of parsimony;
Beatty and Fink, 1979; Kluge and Wolf, 1993). The sec-
ond strategy for justifying the parsimony method relies
on the idea that good methods of phylogenetic inference
are statistical ones. The idea, then, is to find situations in
which the parsimony method corresponds to an existing
and well-justified method of statistical inference. Farris
(1973) was the first to find a stochastic model of evolu-
tion that, when implemented in a maximum likelihood
framework, corresponded to the parsimony method of
phylogenetic inference. In his result, Farris treats the an-
cestral configuration of states on the phylogenetic tree as
parameters and jointly estimates the tree and the ances-
tral states using maximum likelihood. Importantly, the
number of parameters to be estimated increases as fast as
new data are added to the problem; the extension of an
alignment by one site, for example, adds n − 2 additional
parameters to be estimated (where n is the number of taxa
in the analysis). Goldman (1990) derived a similar result,
once again relying on the idea that the ancestral states
are jointly estimated with the tree. He points out that
“. . . parsimony analyses rest on a maximum likelihoood
justification, but lay themselves open to the possibility of
statistical inconsistency by estimating random variables

as though they were (incidental) parameters” (Goldman,
1990–356).

Tuffley and Steel (1997) described another case
in which the methods of maximum likelihood and
parsimony correspond. Importantly, their result does not
depend upon estimating ancestral states. Instead, the an-
cestral states on a tree are considered random variables,
and the likelihood involves a sum over all possible as-
signments of states to the ancestral nodes on the tree.
Accounting for uncertainty in the ancestral states of a
phylogenetic tree by summing over all possibilities is
the standard procedure in the field and has the advantage
that inferences are not conditioned on any particular con-
figuration of character histories. Although Tuffley and
Steel (1997) integrate out the ancestral states on the tree,
their model has the property that the number of parame-
ters increases with the number of observations, just as is
the case with the Farris (1973) and Goldman (1990) mod-
els. Tuffley and Steel (1997) assume separate indepen-
dently estimated branch lengths for each site and each
branch. Hence, the extension of the alignment by one site
adds 2n − 3 parameters to estimate. The Tuffley and Steel
(1997) model has been referred to as the “no-common-
mechanism” model (Tuffley and Steel, 1997; Felsenstein,
2004). This is probably a better terminology than the al-
ternative, calling it “the parsimony model.” For one, the
Tuffley and Steel (1997) model is just one of several that
gives a correspondence between the parsimony and max-
imum likelihood methods. Moreover, the details of the
model reveal that its assumptions are anything but parsi-
monious. In fact, a more parsimonious model has a com-
mon branch-length parameter for all of the sites and is
the default option for many programs that implement the
maximum likelihood method of phylogenetic inference.
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As formulated by Tuffley and Steel (1997), the
no-common-mechanism model assumes a common
phylogenetic tree for all of the observations (i.e., the tree
relating the species is treated as a structural parameter)
but introduces 2n − 3 incidental parameters for each ob-
servation. Here, an observation is a single site (column)
in an alignment. Structural parameters are parameters
that appear in the probability distribution of all of the
observations, whereas an incidental parameter appears
in the probability of only a subset of the observations
(Neyman and Scott, 1948; Goldman, 1990). Typically, in
a phylogenetic analysis only the topology of the tree
is of interest to the biologist and the other parameters,
whether structural or incidental, are of only passing in-
terest and are considered nuisance parameters. The ap-
proach widely used in maximum likelihood inference
of phylogeny is to assume that the nuisance parameters
take their maximum likelihood values. Of course, if one
takes the approach of maximizing the likelihood with
respect to the nuisance parameters—producing what is
called the “profile likelihood”—one obtains the corre-
spondence between maximum likelihood implemented
with the no-common-mechanism model and the parsi-
mony method. An alternative approach is to integrate
the nuisance parameters over a suitable prior probabil-
ity distribution for the parameters. This is the integrated
likelihood approach and has a number of advantages
over the profile likelihood, at least when it can be imple-
mented (Berger et al., 1999). For example, the profile like-
lihood can be misleading when the likelihood surface has
a sharp ridge and inferences based on the integrated like-
lihood account for uncertainty in the nuisance parame-
ters. The integrated likelihood approach is often used in
maximum likelihood inference of phylogeny to model
rate variation across sites. The rate of substitution at a
site—an incidental nuisance parameter of the model—is
sometimes assumed to be a random variable drawn from
a mean-one gamma distribution (Yang, 1993). The rate of
substitution, then, is integrated over a gamma prior and
inferences do not depend upon the rate at a site taking
any particular value. The integrated likelihood approach
is also the standard one in a Bayesian analysis, where all
of the parameters of the statistical model are treated as
random variables with a prior probability distribution.

In this paper, we consider a Bayesian treatment of
the no-common-mechanism model of Tuffley and Steel
(1997). Bayesian analysis is often useful in parameter-rich
models where the introduction of a well-chosen prior can
sometimes tame the behavior of the parameter estimates.
The no-common-mechanism model of Tuffley and Steel
(1997) illustrates the problem that parameter rich models
can have when applied to small data sets; the maximum
likelihood estimates of the branch lengths are either zero
or infinity. A Bayesian approach to the problem places
a prior probability distribution on the branch-length pa-
rameters and may result in more reliable inferences. We
explore this possibility for the parameter-rich model of
Tuffley and Steel (1997). We also examine the behavior
of the no-common-mechanism model for large trees and
ask how much information is contained in the data on

the length of a single branch at one site by comparing the
posterior probability of the branch lengths to the prior
probability distribution.

METHODS

Likelihood

We assume that an alignment of DNA sequences is
available. The alignment contains n sequences, each of
which is c nucleotides in length. For example, the fol-
lowing is an alignment of n = 5 sequences that are c = 10
sites in length:

Species 1 CACAGTTACC
Species 2 CGCAGTTACC
Species 3 CGCAGTTATC
Species 4 CGTGCTTATC
Species 5 CGCACTTATC

The nucleotide for the ith species and j th site is de-
noted xi j , where i ∈ (1, . . . , n) and j ∈ (1, . . . , c). The
information at the j th column (site) in the alignment is
denoted x j . For example, the information at the third site
in the example alignment above is x3 = (C, C, C, T, C)T .
The entire alignment is denoted X = (x1, x2, . . . , xc).

We assume that the sequences are related to one an-
other through an unrooted tree. The ith tree is denoted
τi , and trees are labeled τ1, τ2, . . . , τB(n), where B(n) is the
number of possible trees with n tips (B(n) = (2n − 5)!!
for unrooted trees). We label the tip nodes of the tree
1, 2, . . . , n and the interior nodes of the tree are labeled
n + 1, n + 2, . . . , 2n − 2. Node k has branch k and an-
cestor σ (k). Under the no-common-mechanism model
of Tuffley and Steel (1997), each site and each branch
has its own length parameter. The length of the branch
is in terms of expected number of substitutions per
site. Because there are 2n − 3 branches, there are a to-
tal of (2n − 3) × c branch-length parameters in the no-
common-mechanism model. Branch k and site j of the
tree has length vk j . Figure 1 shows an example tree for
n = 5 species. Note that the tree is drawn such that it is
rooted at node 2n − 2.

Tuffley and Steel (1997) assume that nucleotide substi-
tutions occur under the continuous-time Markov model
first described by Jukes and Cantor (1969). The Jukes and
Cantor (1969) model assumes that all substitution types
have equal rates of change. The instantaneous rates of
change for the model are contained in the rate matrix Q:

Q = {qab} =




−1 1/3 1/3 1/3
1/3 −1 1/3 1/3
1/3 1/3 −1 1/3
1/3 1/3 1/3 −1




where qab is the rate of change from nucleotide a to b.
The transition probabilities specify the probability of ob-
serving a change from nucleotide a to nucleotide b over
a branch of length v and can be calculated using matrix
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FIGURE 1. A tree of n = 5 species illustrating how nodes on the tree
are labeled. The tree can be rooted at any node. Here, we follow the
convention of rooting the tree at node 2n − 2.

exponentiation as P(v) = {pab(v)} = eQv . The stationary
frequencies of the four nucleotides are equal under the
Jukes and Cantor (1969) model.

The probability of observing the data at the j th site is a
sum over all combinations of states at the interior nodes
of the tree:

f (x j | τ, v1 j , v2 j , . . . , v2n−3, j )

=
∑

y j

1
4

(
n∏

k=1

pyσ (k) j xk j (vk j )

) (
2n−3∏

k=n+1

pyσ (k) j yk j (vk j )

)

where ykj is the unknown state at the kth interior node
for site j and the summation is over all 4n−2 possible
combinations of nucleotides at the interior nodes of the
tree. The unknown internal states of the tree at the j th
site are y j = (yn+1, j , yn+2, j , . . . y2n−2, j ).

In this paper, we wish to integrate out branch lengths
by considering all possible combinations of branch
lengths, with each such combination weighted by its
probability under some prior model. We assume that the
branch lengths are independent gamma-distributed ran-
dom variables. The gamma distribution has probability
density

g(x | α, λ) = λα

�(α)
xα−1e−λx, x > 0

where α and λ are the shape and scale parameters, re-
spectively. The gamma probability distribution has mean
E(x) = α/λ and variance Var(x) = α/λ2. The probability
of observing the data at the j th site is then a multidimen-
sional integral over all possible combinations of branch
lengths, as well as a summation over all possible combi-
nations of nucleotide assignments to the interior nodes
of the tree:

f (x j | τ, α, λ) =

∫ ∞

0
· · ·

∫ ∞

0




∑
y j

1
4

[
n∏

k=1

pyσ (k) j xk j (vk j )g(vk j | α, λ)

]

×
[

2n−3∏
k=n+1

pyσ (k) j yk j (vk j )g(vk j | α, λ)

]}
dv1 j . . . dv2n−3, j

There are a number of simplifications that make calcu-
lating the likelihood for a site a practical endeavor. First,
we use the Felsenstein (1981) pruning algorithm to per-
form the summation over ancestral states. Second, we are
able to take advantage of the fact that there are indepen-
dent branch-length parameters for each site and branch
under the Tuffley and Steel (1997) model and integrate
over the branch lengths analytically. If the branch length,
v, has a gamma-distribution prior, then the probability
transition matrix satisfies the integral equation

P(Q, α, λ) =
∫ ∞

0
eQvg(v | α, λ) dv.

For a diagonalizable matrix A = UDU−1, where D is
a diagonal matrix, we define matrix exponentiation as
Aβ = UDβU−1. Powers of the diagonal matrix are de-
fined by raising the diagonal elements to the power β.
With this definition in hand, the integrated transition
probabilities have analytical solution

P(Q, α, λ) =
(

I − 1
λ

Q
)−α

where I is the identity matrix. For the substitution model
described by Jukes and Cantor (1969), the integrated
transition probabilities are

P(α, λ) = {pab(α, λ)} =




1
4

+ 3
4

(
λ

4/3 + λ

)α

: a = b

1
4

− 1
4

(
λ

4/3 + λ

)α

: a �= b

Note that Bayesian inference under the Jukes and Cantor
(1969) model is equivalent to calculating the likelihood
under a model in which a common branch length is ap-
plied to all of the sites. Note also that integrating out
branch lengths is not original to this paper: Suchard et al.
(2002, 2003) and Sinsheimer et al. (2003) first developed
the idea in the course of investigating models that al-
low the phylogeny to change along the sequence accord-
ing to a multiple change-point model. Similarly, Goloboff
(2003) explored the use of maximum likelihood estima-
tion of phylogeny while integrating branch lengths over
a uniform prior probability distribution.

We assume that substitutions are independent across
sites. The probability of observing the entire alignment,
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then, is a product of the site likelihoods:

f (X | τ, α, λ) =
c∏

j=1

f (x j | τ, α, λ)

Bayesian Analysis of Phylogeny

In a Bayesian statistical analysis of phylogeny, in-
ferences are based upon the posterior probability
distribution of trees. For our implementation of the no-
common-mechanism model of Tuffley and Steel (1997),
the posterior probability of the ith tree is

f (τi | X, α, λ) =
f (X | τi , α, λ) 1

B(n)∑B(n)
j=1 f (X | τ j , α, λ) 1

B(n)

We assume that the trees have equal prior probability;
because there are B(n) possible unrooted trees, the prior
probability of any tree is 1

B(n) .

Markov Chain Monte Carlo

Most phylogenetic models used in likelihood-based
phylogenetic analysis involve many fewer free parame-
ters than the Tuffley and Steel (1997) parsimony model.
However, analysis under these simpler models is dif-
ficult. For example, typically the branch-length param-
eters are shared among sites in the alignment. In a
Bayesian analysis of phylogeny, this means that an im-
plementation of the Markov chain Monte Carlo (MCMC)
algorithm for approximating posterior probabilities of
trees must change branch lengths as well as topology
when exploring the space of phylogenetic trees; one
cannot integrate over branch lengths when the branch
lengths are shared among sites, and one must instead re-
sort to a numerical method, such as MCMC, to perform
the integration. Interestingly, even though the parsimony
model involves many more parameters, the fact that this
model has independent branch-length parameters for
each site and branch means that the branch lengths can
be analytically integrated (see above). This means that
any MCMC implementation that approximates the pos-
terior probability of trees does not need to change branch
lengths. The MCMC implementation can work directly
on the topology of the phylogenetic tree, significantly
simplifying the MCMC.

We took advantage of this simplification when im-
plementing MCMC proposal mechanisms to explore the
space of phylogenetic trees. MCMC is a method for ap-
proximating high-dimensional integrals and/or summa-
tions. One constructs a Markov chain that has as its state
space the parameters of interest and a stationary distribu-
tion that, for a Bayesian statistical analysis, is the poste-
rior probability distribution of the parameters. Samples
of the states of the Markov chain while at stationarity
are valid (though dependent) samples from the poste-
rior probability distribution of the parameters (Tierney,

1996). We implemented the Metropolis-Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970) using a
formalism described by Green (2003) to construct the pro-
posal mechanisms. In this study, the states of the Markov
chain are tree topologies, and the current state is desig-
nated τ . (Note that α and λ are considered fixed for any
particular MCMC analysis. The Markov chain was ini-
tialized with a randomly chosen tree.) The MCMC algo-
rithm works by repeatedly proposing a new state and
then either accepting or rejecting that state as the next
state of the Markov chain. The proposal mechanism in-
volves the generation of random numbers u drawn from
the probability distribution g(u). The proposed state is
a deterministic function of the random numbers and
the original state: τ ′ = h(τ, u). The reverse move from
τ ′ to τ is imagined through another set of random num-
bers u′ drawn from the probability distribution g′(u′).
The tree proposed in the reverse move is determined as
τ = h(τ ′, u′). Note that the reverse move is never made
in computer memory, but the probabilities calculated for
the imagined reverse move are required to calculate the
acceptance probability. The probability of accepting the
proposed tree τ ′ as the next state of the Markov chain is

R = min
(

1, Likelihood Ratio × Prior Ratio

× g′(u′)
g(u)

×
∣∣∣∣∂h(τ ′, u′)

∂(τ, u)

∣∣∣∣
)

.

The last factor is called the Jacobian of the transform to
τ ′ and u′ with respect to τ and u.

We developed three proposal mechanisms for chang-
ing trees: stochastic NNI, a Gibbs-like TBR move, and
a Gibbs-like move involving erasure of part of the
tree.

NNI.—We developed a simple nearest neighbor inter-
change (NNI) proposal mechanism. An internal branch
is chosen at random. This internal branch defines a four-
taxon tree ((S1, S2), S3, S4), with Si denoting the subtree
that extends from the ith branch incident to the randomly
chosen internal branch. With equal probability, either tree
((S1, S3), S2, S4) or ((S1, S4), S2, S3) will be chosen as the
proposed tree.

Gibbs TBR.—Taxon-bisection and reconnection (TBR)
is a tree perturbation that is traditionally used to explore
the space of trees for heuristic searches, where the goal is
to find the best tree(s) under some optimality criterion.
Here, we implemented a stochastic version of TBR that
works as follows: First, a branch is randomly chosen and
erased from the tree, dividing the tree into two uncon-
nected subtrees. One subtree has N1 branches and the
other subtree has N2 branches. Second, the subtrees are
reconnected in all possible ways by drawing a branch
from one of the N1 branches in the first subtree to one of
the N2 branches of the second subtree. There are a total
of N1 × N2 ways to reconnect the two subtrees to form a
tree that contains all n of the species. The reconnection
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possibilities can be restricted to all of those reconnection
placements that are within some distance of the branch
that was originally erased, an idea that has been imple-
mented in PAUP* for heuristic searches (Swofford, 1998).
The reconnection limit allows the search to progress
faster, by restricting changes to more local parts of the
tree. The likelihood is calculated for each of the possible
reconnection patterns. The likelihood for the ith possi-
ble way to reconnect the subtrees is denoted Li . Third,
the likelihoods are normalized, such that the sum of the
N1 × N2 likelihoods is one. For example, imagine that the
tree was bisected in such a way that there were 2 species
in one of the subtrees (with N1 = 1 branch) and 5 species
in the second subtree (with N2 = 7 branches). There are a
total of 7 possible ways to reconnect the two subtrees. If
the log likelihoods for each of the possible reconnection
possibilities are −101.6, −96.0, −111.9, −105.9, −102.3,
−102.1, and −108.8, then the normalized probabilities
are

i lnLi Li pi

1 −101.6 7.5107 × 10−45 3.6691 × 10−3

2 −96.0 2.0311 × 10−42 9.9223 × 10−1

3 −111.9 2.5261 × 10−49 1.2340 × 10−7

4 −105.9 1.0191 × 10−46 4.9785 × 10−5

5 −102.3 3.7297 × 10−45 1.8220 × 10−3

6 −102.1 4.5555 × 10−45 2.2254 × 10−3

7 −108.8 5.6074 × 10−48 2.7393 × 10−6

where pi is the normalized likelihood for reconnection
possibility i . Fourth, one of the possible reconnection
possibilities is chosen at random using the normalized
probabilities calculated in the third step. In the example
above, the second reconnection possibility is the most
likely to be chosen, because it has a probability of 0.992.
However, there is a small chance (in this example, at least)
that one of the other six reconnection possibilities will be
chosen.

Erased Area

FIGURE 2. An example of the Gibbs Eraser move in which an area of the tree is “erased,” leaving some number of unconnected subtrees.
The tree on the left represents the current state of the Markov chain. In this case, an area of contiguous branches is erased from the tree, leaving
eight subtrees. The likelihood is calculated for all B(8) = 10,395 possible trees, and a new subtree is chosen in proportion to the likelihood of that
subtree.

Gibbs eraser.—Our “eraser” move proposes a new tree
by erasing a portion of the tree, leaving m subtrees, and
is identical to the Symmetric Neighborhood Alteration
to Phylogenies (SNAP) tree perturbation described by
Whelan (2007). Figure 2 provides an example of a tree in
which a rather large portion of the tree is erased, leaving
a total of m = 8 subtrees. All B(m) possible resolutions of
the subtrees into fully resolved trees containing n species
are tried, with the likelihood (L) calculated for each pos-
sibility. As with the Gibbs TBR move, a resolution of the
erased tree into a fully resolved tree is chosen in propor-
tion to the normalized likelihoods. For the tree depicted
in Figure 2, there are a total of B(8) = 10,395 possible res-
olutions of the erased portion of the tree. The likelihood
is calculated for each of the 10,395 resolutions, and one
is chosen in proportion to its likelihood.

Data Analysis

We analyzed five data sets: (1) an alignment of the
β-globin gene for 17 vertebrates (s = 17, c = 432; Yang
et al., 2000); (2) an alignment of the ITS gene for 140
species of Astragalus (s = 140, c = 686; Sanderson and
Wojciechowski, 2000); (3) an alignment of the plastid
rbcL gene for 357 angiosperm species (s = 357, c = 1497;
Savolainen et al., 2000); (4) an alignment of the plas-
tid atpB gene for 357 angiosperm species (s = 357, c =
1428; Savolainen et al., 2000); and (5) an alignment
of rbcL genes for 500 plant species (s = 500, c = 759;
Chase et al., 1993; Stamatakis et al., 2005). The large
alignment of 500 rbcL gene sequences was obtained
from http://icwww.epfl.ch/∼stamatak/index-Dateien/
Page443.htm, which includes several large alignments.
The file we analyzed here is labeled 500_ZILLA in that
set of alignments. The alignment we analyzed differs
from the original Chase et al. (1993) paper in having only
c = 759 sites instead of c = 1428 sites (Stamatakis et al.,
2005).
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We approximated the posterior probability of trees us-
ing MCMC implemented with eight different proposal
strategies: stochastic NNI; Gibbs eraser, erasing a por-
tion of the tree and leaving four, five, or six subtrees to
reconnect; and Gibbs TBR implemented with a reconnec-
tion limit of 5, 10, 20, or ∞ (i.e., no reconnection limit).
All Markov chains were run for a total of one million
cycles. Chains were sampled every 100 cycles, and in-
ferences were based on samples taken after generation
200,000. Each analysis was repeated, and the samples
from the two chains compared to determine if they had
converged on the same probability distribution of trees.
We assumed that the (2n − 3) × c branch length parame-
ters followed independent exponential prior probability
distributions, with parameter 10 (i.e., α = 1, λ = 10). The
prior mean of the branch length was 0.1.

RESULTS AND DISCUSSION

The inferences of phylogeny made in independent
MCMC analyses were consistent for some, but not all,
of the proposal mechanisms we investigated. Figure 3
shows the correlation of the posterior probabilities of the
same clades approximated from two different MCMC
analyses, each of which started with a different random
starting tree. The analyses of the vertebrate β-globin
alignment were consistent regardless of the proposal
mechanism used; the posterior probability of a partic-
ular clade found in the two independent MCMC analy-
ses were very similar. However, this was not the case for
the larger alignments we investigated. For the stochastic
NNI and Gibbs-like eraser moves, we often obtained in-
consistent results in the MCMC analyses of the large data
sets. Often, a clade would be found with high probabil-
ity in one MCMC analysis but with low probability in
the other. This is unambiguous evidence that the MCMC
analysis has failed. Importantly, however, we were able
to achieve consistent results for the Gibbs-like TBR pro-
posal mechanism. When the reconnection limit was set
to 20 or greater, the MCMC analyses were consistent for
the larger data sets we examined. For some of the data
sets (e.g., the Angiosperm rbcL and atpB alignments and
the large green plant alignment), TBR failed when the
area of rearrangement was small, as was the case when
the reconnection limit was set to 5 or 10.

For the larger alignments, it is important that a pro-
posal mechanism makes potentially large changes in the
tree to ensure adequate mixing of the MCMC algorithm.
There is a clear relationship between how locally the pro-
posal mechanism acts to change the tree and the ability
of the MCMC algorithm to adequately explore the space
of trees. This is true regardless of the efficiency of the pro-
posal mechanism. For example, both the stochastic NNI
and Gibbs-like eraser (leaving four subtrees) moves are
equivalent in the size of changes they make to the tree.
Both act on a local area of the tree, defining four subtrees
from a particular interior branch, and both move to one of
the resolutions of the four subtrees into a fully resolved
tree containing all of the species. However, the eraser

move (leaving four subtrees) is a much more efficient
move, because it proposes trees in proportion to their
probability, and not blindly, as is the case for the stochas-
tic NNI move we implemented. Yet, neither the stochastic
NNI nor the Gibbs-like eraser move (leaving four sub-
trees) were particularly effective in exploring the space of
phylogenetic trees for the larger alignments. Moreover,
for the eraser move, increasing the area that was erased
did not appear to help the MCMC algorithm to reliably
converge on the probability distribution of trees.

We constructed majority-rule consensus trees that
summarize the samples taken during the MCMC anal-
ysis for each of the alignments. Figure 4 shows the
majority-rule consensus tree for the β-globin alignment.
(The interested reader can see the majority-rule consen-
sus trees for the analyses we performed of the other
alignments in the supplemental material to this arti-
cle, http://www.systematicbiology.org. These trees in-
cluded many taxa, and it was not sensible to show them
in their entirety here.) The majority rule consensus tree of
the β-globin analysis under the no-common-mechanism
model was similar to the results of the maximum parsi-
mony analysis for that data set, which resulted in two
equally parsimonious trees each of which required a
minimum of 757 character-state transformations (Fig. 4).
These analyses were also similar to the majority-rule
consensus tree that results from a Bayesian analysis
of the β-globin alignment under the Jukes and Cantor
(1969) model (assuming a common branch-length pa-
rameter for all sites, resulting in 2n − 3 free parame-
ters; Figure 4c). The maximum parsimony analysis and
the MCMC analyses under the no-common-mechanism
model and under the Jukes and Cantor (1969) model
with a common set of branch lengths for all sites re-
sult in a nonmonophyletic Mammalia. However, the
Bayesian analysis under the GTR+� model of DNA sub-
stitution (Tavaré, 1986; Yang, 1993) results in a mono-
phyletic Mammalia (this model assumes a common
branch-length parameter for all sites; Figure 4d). The
Bayesian tree under the GTR+� model is also the only
one that unites artiodactyles.

There is a linear relationship between the parsimony
score and the log likelihood. Figure 5 shows the rela-
tionship between the parsimony score and the log like-
lihood under the no-common-mechanism model for the
trees sampled using the stochastic NNI proposal mech-
anism. Each plot shows the relationship for the 20,000
trees sampled during the course of the two MCMC anal-
yses performed on each data set. (See Appendix for an
explanation of the near-linear relationship between the
parsimony score and the integrated likelihood.) Given
the linear relationship between the integrated likelihood
for a tree and the parsimony score, it is hardly surpris-
ing that the trees sampled by the MCMC algorithm are
similar to the maximum parsimony trees. However, one
should not consider the MCMC sampling methods we
describe in this paper as a substitute for maximum par-
simony. For large data sets, one may never sample the
most-parsimonious tree using MCMC. The strategy we
outline here is more similar to that described by Farris
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FIGURE 3. The correlation between the posterior probability of individual clades approximated from two Markov chains, each of which
started with a different random tree. The x- and y-axes show the posterior probability of the clade approximated by the first and second MCMC
run, respectively.
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FIGURE 4. The majority-rule consensus trees for analyses of the vertebrate β-globin alignment. (a) The majority-rule consensus tree generated
from the MCMC output under the no-common-mechanism model; (b) the maximum-parsimony tree (a majority-rule consensus tree of two most-
parsimonious trees, each requiring 757 character state transformations); (c) the majority-rule consensus tree generated from the MCMC output
under the model of Jukes and Cantor (1969); and (d) the majority-rule consensus tree generated from the MCMC output under the GTR+� model
of DNA substitution.

et al. (1996) in which a resampling method is coupled
with quick (stepwise addition) tree searches to generate a
sample of trees, none of which may be the most parsimo-
nious. The main difference between the MCMC imple-
mentation of the no-common-mechanism model and the
strategy outlined by Farris et al. (1996) is that the MCMC
method generates samples from the posterior probability
distribution of phylogenetic trees.

We examined the marginal posterior probability den-
sity for branch lengths for three sites in the β-globin

alignment: 1, 5, and 66. We calculated the branch-length
probability distributions on the tree shown in Figure 6,
which is one of the two most-parsimonious trees. The
sites differed in the pattern of nucleotides assigned to
the tips:

x1 = (C, C, C, C, C, C, C, C, T, C, C, C, T, T, T, T, T)T

x5 = (C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C, C)T

x66 = (T, T, T, T, T, T, T, T, T, T, T, C, T, A, G, C, C)T
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FIGURE 5. The relationship between the parsimony score and the log likelihood of a tree under the no-common-mechanism model of Tuffley
and Steel (1997) for (a) the vertebrate β-globin alignment (Yang et al., 2000); (b) the Astragalus ITS alignment (Sanderson and Wojciechowski,
2000); (c) the Angiosperm rbcL and (d) atpB alignments (Savolainen et al., 2000); and (e) the alignment of rbcL gene sequences for green plants
(Chase et al., 1993). Each plot contains the 20,000 trees sampled using the stochastic NNI tree proposal mechanism.

Note that site 1 has two states (C and T) and requires
two changes on the tree shown in Figure 6. Site 5 re-
quires no changes, and site 66 requires a minimum of four
changes. Moreover, the assignment of nucleotides to an-
cestral nodes of the tree is ambiguous for site 66. Figure 7
shows the marginal posterior probability density of the
branch lengths ( f (vk j | x j , τ, α, λ), where j = (1, 5, 66))
for the three sites. The main points to note are (1) the prob-
ability density of the branch lengths closely follows the
prior when no change is reconstructed along the branch
by the parsimony method; (2) that the probability den-
sity of the branch length has a well-defined mode, with
little probability density for small branch lengths, when a
change is unambiguously reconstructed along a branch;
and (3) that the probability density is intermediate in
shape when the changes are ambiguously reconstructed
along the branch.

The Bayesian implementation of the no-common-
mechanism model performs well when the assumptions
of the method are satisfied (i.e., the process generat-
ing the observations matches the assumptions of the
method). Figure 8 shows the relationship between the
posterior probability of a clade and the probability that
the clade is correct for simulated data. The simulations
were performed using the protocol described in Huelsen-
beck and Rannala (2004); parameters were picked from
the prior probability distribution, and then sequences
were simulated on the tree under the Jukes and Cantor

(1969) model of DNA substitution. In this case, a four-
taxon tree was first picked from the prior probability
distribution of trees (i.e., a tree was picked at random)
and a length was picked from the branch-length prior
for each branch and site. Here, branch lengths were
assumed to be exponentially distributed with parame-
ter 10. Once the tree and branch lengths were chosen,
sequences 25 sites in length were simulated along the
tree under the Jukes and Cantor (1969) model of sub-
stitution. The simulated alignment was then analyzed
under the no-common-mechanism model. The proce-
dure was repeated 10,000 times to produce the results
shown in Figure 8. Bayes’ theorem ensures that the rela-
tionship between the posterior probability of a tree and
the probability that the tree is correct is linear. In this
sense, the results shown in Figure 8 are reassuring in
that they suggest the our implementation of the MCMC
algorithm for the no-common-mechanism model is
correct.

The results depicted in Figure 8 should not be taken
as evidence that a Bayesian implementation of the no-
common-mechanism model ensures that the estimated
tree is accurate. The Bayesian implementation of the
no-common-mechanism model is susceptible to long-
branch attraction, just as is the maximum parsimony
method (Felsenstein, 1978). Figure 9 shows the probabil-
ity of a correct estimate of phylogeny for the four-taxon
case. Sequences were simulated assuming a common
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FIGURE 6. One of the two maximum parsimony trees for the β-globin alignment, with the branches labeled according to the scheme outlined
in Methods.

branch-length parameter for all of the sites in the align-
ment. Two of the opposing branches (those marked y
in Figure 9) were potentially longer than the remaining
three branches (marked x). Data were simulated such
that the tree length (sum of the five branch lengths) was
1/2. The tree with the maximum posterior probability
(the MAP tree) was taken as the best estimate of phy-
logeny. Note that when the branches marked y were
10 or 20 times longer than the other branches on the
phylogeny, the probability of correctly inferring phy-
logeny decreased toward zero. We did not formally check
that the Bayesian implementation of the no-common-
mechanism model was inconsistent for these two cases
by substituting expected site pattern frequencies of all
256 site patterns for the data, but the results suggest that,
at least for the case in which y = 20x, the method is sta-
tistically inconsistent.

We performed an additional analysis to compare the
region of statistical consistency/inconsistency for the
maximum likelihood and Bayesian implementations of
the no-common-mechanism model. The parameter space
is the same as that explored by Felsenstein (1978) and
later by Huelsenbeck and Hillis (1993). Branches on the
four-species tree were constrained such that the inte-
rior branch and two opposing peripheral branches were
the same taking one length, whereas the remaining two

opposing peripheral branches of the tree took a po-
tentially different length (i.e., the same constraint on
branch lengths imposed in Fig. 9 was used). The pat-
tern probabilities were calculated under the Jukes and
Cantor (1969) model, and all of the sites were assumed
to share a common set of branch lengths. Figure 10 shows
the results of the analysis. The zone of consistency was
largest for the maximum likelihood implementation of
the no-common-mechanism model. The four Bayesian
implementations of the no-common-mechanism model
were slightly smaller; the zone of consistency was
largest when the prior mean of the branch length was
small.

The no-common-mechanism model is very peculiar,
and the authors have mixed feelings about having im-
plemented the method in a Bayesian framework. (That
said, the authors are willing to act as enablers to biol-
ogists interested in performing Bayesian analysis un-
der the no-common-mechanism model by providing the
computer code used in this study. The interested reader
should contact the lead author to obtain the code.) The
introduction of a prior probability distribution on the
many branch-length parameters contained in the model
clearly did not tame the behavior of the method. The
method inherits the disturbing statistical behavior of the
maximum parsimony method (Felsenstein, 1978), and,
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FIGURE 7. The marginal posterior probability distribution for the branch length at sites 1, 5, and 66. The calculations were performed on the
tree of Figure 6, and the numbering of the branches from that figure is used here. The prior probability density of branch length is shown with
a dotted line. For site 1, parsimony reconstructs changes along branches 8 and 28. The marginal posterior probability distribution of the branch
length either has low density for small branch lengths (a) or closely follows the prior (b). The parsimony reconstruction has no changes for site
5, and every branch has the same posterior probability distribution, closely following the prior (c). Site 66 has a more complicated pattern, with
the parsimony reconstruction having one change along branches 12 and 31 (d), being ambiguously reconstructed along branches 14, 15, and 29
(f), or requiring no changes along the remaining branches (e).

in fact, the integrated likelihood for a tree appears to
be a simple rescaling of the parsimony score. Other
probability distributions might act as better priors for the
branch-length parameters. A probability model allowing
some degree of covariation in the lengths of branches
might better capture the fact that different sites in an
alignment of DNA sequences share a common history,
with a common set of branching times, and at least simi-

lar rates of substitution; this results in different sites hav-
ing correlated branch lengths. Many of the models com-
monly implemented in maximum likelihood, Bayesian,
and distance-based phylogenetic analyses already al-
low for quite a bit of heterogeneity in the substitution
process across sites and yet add only a moderate
number of additional parameters to the phylogenetic
model.
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FIGURE 8. The relationship between the posterior probability of a
tree and the probability that the tree is correct under the no-common-
mechanism model. Branch-length parameters were drawn from the
gamma prior probability distribution of branch lengths, with α = 1 and
λ = 10. DNA sequences c = 25 in length were then simulated along a
four-taxon tree under the model of Jukes and Cantor (1969). Note that
all of the assumptions of the Bayesian analysis under the no-common-
mechanism model are satisfied in this simulation.

The parameters of the gamma prior play an inordi-
nately strong role in determining the probabilities of
trees. Note that the slope of the relationship between
the parsimony score and the integrated likelihood be-
comes more nearly zero as α increases (see Appendix).
Essentially, when α is large, a lot of prior probability is
placed on long branches. When branch lengths are long

FIGURE 9. The accuracy of the no-common-mechanism model when alignments are generated under the Jukes and Cantor (1969) model of
DNA substitution with a common length parameter for each branch. The tree length was constrained to be 0.5 expected substitutions per site
(which corresponds to the mean tree length under the prior probability distribution that was assumed for the no-common-mechanism model).
Two of the branch lengths, those marked y in the figure, were potentially longer than the remaining three branches, marked x in the figure. When
y = 10x or y = 20x, the Bayesian implementation of the no-common-mechanism model rarely estimates the correct tree. We took the tree with
the maximum posterior probability (i.e., the MAP tree) as the best estimate of phylogeny for each simulated replicate. Each point was based on
500 simulated replicates.

(say when the branch length v > 1), the transition prob-
abilities are near to the stationary values, and all trees
have similar likelihoods.

There are two areas where we feel that the no-common-
mechanism model may be useful. The first is to model
character change for morphological data. Lewis (2001)
described how one could infer phylogeny using mor-
phological characters using a k-state continuous-time
Markov chain. Morphological characters are treated just
like molecular characters in the analysis, except the prob-
ability of a morphological character is conditioned on
being variant. (Characters that are invariant are rarely
sampled by morphological systematists, and this sam-
pling scheme needs to be accounted for when calcu-
lating likelihoods.) The no-common-mechanism model
provides another way to include morphological charac-
ters in a likelihood-based phylogenetic analysis.

The no-common-mechanism model might also be
used to improve the exploration of tree space by MCMC
for models in which the branch-length parameters are
shared for many sites. One could argue that the Gibbs-
like eraser and TBR moves were implemented very ef-
ficiently in terms of how they choose proposed trees.
Because topology moves are accepted in proportion to
the probability of the data, a proposal mechanism, such
as the Gibbs-like TBR move, is able to quickly explore
areas of the tree space with high likelihood, effectively
ignoring topology moves that result in trees with low
likelihoods. This makes MCMC analysis under the no-
common-mechanism model very efficient, compared to
the proposal mechanisms implemented for models in
which branch-length parameters are shared across sites
in the alignment. It should be possible, however, to
implement the proposal mechanisms described here for
a model with a common set of branch length parameters.
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FIGURE 10. The zone of consistency and inconsistency of the Bayesian no-common-mechanism model for a four-species case. The branch
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branches), whereas the remaining two branches have another length, plotted along the y-axis, forming a parameter space that can be thoroughly
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4 ln(1 − 4
3 p). The left panel shows the zone of consistency/inconsistency for the no-common-

mechanism model when implemented using maximum likelihood (A) and four different parameterizations of the gamma prior on branch lengths
for the Bayesian method (B to E). The right panel shows an expanded view of part of the zone of consistency/inconsistency and allows one to
see that the zone of consistency is slightly larger for the maximum likelihood implementation.

For example, one could propose topology moves un-
der the no-common-mechanism model but accept or re-
ject the proposed topology under the (simpler) model of
interest. Hence, one may be able to achieve the benefits
of enhanced exploration of tree space afforded under the
no-common-mechanism model for a model with a more
reasonable number of free parameters.
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APPENDIX

Figure 5 shows an apparent near-linear relationship between the inte-
grated log likelihood and the parsimony score for trees sampled from
the posterior distribution for each of the five data sets. This is not sur-
prising as there is an exact linear relationship between the maximum
likelihood value and parsimony score for trees under the no-common-
mechanism model (Tuffley and Steel, 1997). We can explain the near
linear relationship for the Bayesian no-common-mechanism model. We
define a0 and a1 to be the natural logarithms of the integrated transition
probabilities, namely

exp(a0) = 1/4 + 3/4
(

λ

4/3 + λ

)α

and

exp(a1) = 1/4 − 1/4
(

λ

4/3 + λ

)α

.

The integrated likelihood of site j for a tree τ is a sum over all possible
internal node reconstructions y j where each term of the sum has the
form

exp{[2n − 3 − b(y j )]a0 + b(y j )a1}/4

= exp[(2n − 3)a0 + b(y j )(a1 − a0)]/4

where there are 2n − 3 total edges of which b(y j ) have changed bases
for reconstruction y j . The terms of the sum where b(y j ) achieves its
minimal value will be the largest since a1 − a0 < 0. When α/λ is small,
a1 will be much smaller than a0 and the integrated likelihood sum
will be dominated by the term with the most parsimonious reconstruc-
tions y j . The integrated log likelihood for the j th site will then be
equal to

(2n − 3)a0 + s j (τ )(a1 − a0) + ε j (τ ) − loge 4

where s j (τ ) is the parsimony score for the j th site for tree τ and ε j (τ ) >

0 is the error from approximating the logarithm of a sum with the
logarithm of its largest single term. Note that ε j (τ ) will be largest for
sites with multiple most parsimonious reconstructions y j . Summing
this expression over the c sites shows that the integrated log likelihood
of tree τ equals

(a1 − a0)S(τ ) + c[(2n − 3)a0 − loge 4] +
c∑

j=1

ε j (τ )

where S(τ ) is the parsimony score for tree τ . Provided that the sum in
this expression varies little with τ , there will be a nearly linear rela-
tionship between the integrated likelihood and the parsimony score.
In fact, the slope of the graph relating the parsimony score and the
integrated likelihood is a1 − a0, or about − loge (3λ/α). In each exam-
ple in this paper where α = 1 and λ = 10, the slope is approximately
−3.434.


