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Abstract

We describe a Bayesian approach to estimate phylogeny and ancestral genome arrangements on the basis of genome arrangement
data using a model in which gene inversion is the sole mechanism of change. While we have described a similar method to estimate
phylogenetic relationships in the statistics literature, the novel contribution of the present work is the description of a method to
compute probability distributions of ancestral genome arrangements. We assess the robustness of posterior distributions to different
specifications of prior distributions and provide an empirical means to selecting a prior distribution. We note that parsimony
approaches to ancestral reconstruction in the literature focus on the development of computationally efficient algorithms for search-
ing for optimal ancestral genome arrangements, but, unlike Bayesian approaches, do not include assessment of uncertainty in these
estimates. We compare and contrast a Bayesian approach with a parsimony approach to infer phylogenies and ancestral arrange-
ments from genome arrangement data by reanalyzing a number of previously published data sets.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Phylogenetic inference on the basis of molecular se-
quence data is an active area of research with a long his-
tory. Felsenstein (2004) is a recent book which includes
a description of the history of the field, describes most
common methods of phylogenetic inference, and con-
tains an extensive list of references for further explora-
tion on many related topics. Huelsenbeck et al. (2001)
contains a better description of the impact of Bayesian
methods in the field.

Methods for estimating phylogeny and ancestral gen-
ome arrangements from genome arrangement data are
much newer than methods for sequence data and the rel-
evant literature is much smaller. These methods are of
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increasing importance because of the rapidly growing
amount of complete genomic data available for analysis.
Furthermore, since processes that rearrange entire gen-
omes are thought to be much rarer than processes that
affect genetic data at the sequence level, genome
arrangements may be more informative about deep evo-
lutionary relationships than sequence data.

There are two fundamentally different approaches to
analyzing genome arrangement data. One point of view,
which we call the optimal phylogeny viewpoint, frames
phylogeny reconstruction in the following way. Each
tree may be scored for a given data set by counting some
measure of genomic rearrangement with trees requiring
the least amount of rearrangement seen as optimal. The
logic is that optimal trees are most likely (in some sense)
to be correct. With the optimal phylogeny viewpoint, a
phylogenetic tree reconstruction method is good if: (1)
it is computationally efficient, (2) it is accurate at search-
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ing tree space to find optimal trees, and (3) simulation
studies show that trees found by the method are likely
to be close to the correct tree.

The statistical phylogeny viewpoint emphasizes differ-
ent criteria. From the statistical point of view, a phylo-
genetic method is good if: (1) it is likely to produce
accurate estimates; (2) the estimates are associated with
measures of uncertainty for which there is a theoretical
basis of interpretation; (3) measures of uncertainty are
accurate; (4) the method is robust to erroneous assump-
tions; (5) and the method may be implemented effi-
ciently. The most important difference between the
optimal phylogeny viewpoint and the statistical phylog-
eny viewpoint is the emphasis in the latter on measures
of uncertainty. While we are motivated to produce good
statistical methods, we will show that the methods de-
scribed in this paper have good optimal phylogeny prop-
erties as well.

1.1. Genome arrangements

Genome arrangements are represented abstractly as
signed permutations, where each permutation element
represents either a gene or a block of genes. Elements
of the same sign correspond to genes located on the
same strand. Gene inversions are rearrangement events
that correspond to reversals of signed permutations,
where the reversal changes both the order and the signs
of the affected elements. Circular genomes with n + 1
gene blocks may be represented as signed permutations
of length n by choosing an arbitrary reference gene and
reading the remaining genes around the circle.

There are several possible ways tomeasure the distance
between two arrangements. (See Pevzner, 2000, for exam-
ple.) The breakpoint distance between two genome
arrangements counts the number of adjacent pairs of
genes in one arrangement that are not present in the other.
This distance is not directly a function of any presumed
mechanism for rearrangement. The reversal distance
counts the minimal number of gene inversions necessary
to transform one arrangement into another. Additional
distances are definedby allowing other types of rearrange-
ment, such as gene transposition. These distances can also
be extended to genome arrangements on multiple chro-
mosomes if we consider rearrangement events that affect
more than one chromosome. However, in the present
work we restrict consideration to unichromosomal gen-
ome arrangements and processes that rearrange genomes
on a single chromosome.

The most straightforward analysis attempts to recon-
struct the genome rearrangement events that separate
two genome arrangements. Hannenhalli and Pevzner
(1995) found the first (exceedingly clever) polynomial
time algorithm for computing the reversal distance be-
tween any two arrangements. Kaplan et al. (1999) and
Bader et al. (2001) simplified and improved the method.
More recent work seeks to estimate phylogeny and
ancestral genome arrangements among three or more
species. The most studied approach is based on the prin-
ciple of maximum parsimony: reconstructions that in-
volve the smallest possible number of genome
rearrangements are sought.

There are several genome arrangement publications
that take the optimal phylogeny viewpoint. Cosner
et al. (2000b) describes the Maximum Parsimony for
Rearranged Genomes Problem as the search for a tree
and genome arrangements at the internal nodes to min-
imize the sum of the pairwise distances over edges of the
tree. If the distance measure counts breakpoints, an
optimal tree is called a minimum-breakpoint tree. Sank-
off and Blanchette (1998) and Blanchette et al. (1999) de-
scribe a computational method to search for minimum-
breakpoint trees. Cosner et al. (2000b), Moret et al.
(2001, 2002a,b), and Tang and Moret (2003) (and fur-
ther references therein) describe subsequent improve-
ments to this approach which substantially increase
the speed of finding minimum-breakpoint trees, and also
allow searches for most parsimonious trees that mini-
mize the total number of gene inversions. The Multiple
Genome Rearrangement Problem (Bourque and Pevz-
ner, 2002) is the same problem in the special case where
gene inversions are the only rearrangement mechanism.
Solutions to this problem are most parsimonious in that
they require the smallest number of total changes, or the
smallest number of rearrangement events when the dis-
tance measure counts rearrangements.

There are now a few publications that describe the
statistical phylogeny viewpoint. In previous work, we
have approached the problem of phylogenetic inference
from genome arrangements this point of view. Simon
and Larget (2001) describe a Bayesian approach to the
problem that was limited to small simulated data sets.
Larget et al. (2002) solves the computational difficulties
that limited our previous approach and describes a
Bayesian method of inference that is computationally
tractable for genuine data sets. York et al. (2002) and
Miklós (2003) also use a Bayesian approach to recon-
structing genome rearrangement histories, but restrict
attention to two-taxon trees. More recently, we describe
computational advances that allow us to analyze the
complete mitochondrial genome arrangements of 87
metazoan taxa (Larget et al., 2005a) and we compare
our software BADGER (Simon and Larget, 2004) with
the program GRAPPA (Bader et al., 2002) as a tool for
finding most parsimonious reconstructions (Larget
et al., 2005b).

The remainder of this paper compares a Bayesian ap-
proach with maximum parsimony as applied to several
example data sets. The types of inference possible in a
Bayesian analysis are very different from those made
within the maximum parsimony framework. Specifi-
cally, our analyses include calculations of uncertainty
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in both the estimated ancestral sequences and the
phylogeny.
2. Methods

2.1. Model

We assume a very simple model with gene inversion
as the sole mechanism of genome rearrangement. We as-
sume that the evolutionary relationships among the taxa
in our analysis are described by a phylogeny in which
each speciation event results in two lineages. We do
not assume a molecular clock and assume that all un-
rooted tree topologies are equally likely. Edges of the
unrooted tree have independent lengths selected from
a Gamma distribution. Given an edge length, a Poisson
number of gene inversions with this mean are realized,
so that the unconditional distribution of the number
of events per edge is negative binomial. The event loca-
tions on each edge are independent and uniformly dis-
tributed. Given that a gene inversion occurs, we
assume that all possible gene inversions are equally
likely. The observed data are completely determined
by the tree topology, edge lengths, and inversion sce-
nario. We are able to integrate out analytically the spe-
cific dependence on the edge lengths and the absolute
locations of the gene inversions and so can evaluate
the joint posterior distribution of the tree topology
and the ordered sequence of specific gene inversion
events on each edge up to a normalizing constant. See
Larget et al. (2002) for further details.

2.2. Prior distribution

This model contains two hyperparameters, the shape
and scale parameters (a and k, respectively), of the Gam-
Fig. 1. Prior probability distributions for choices of hyperpar
ma distribution for edge lengths. The prior probability
of x inversions on an edge is

P ðx j a; kÞ ¼ Cðxþ aÞ
CðaÞx!

k
1þ k

� �a 1

1þ k

� �x

;

x ¼ 0; 1; 2; . . . ð1Þ

The reparameterization l = a/k and w = (1 + 1/k) is
easier to interpret. The prior distribution for the number
of inversions on an edge becomes

P ðx j l;wÞ ¼ Cððl=ðw� 1ÞÞ þ xÞ
x!Cðl=ðw� 1ÞÞ

� �
1

w

� �l=ðw�1Þ w� 1

w

� �x

;

x¼ 0;1;2; . . .

with mean and variance l and lw, respectively. Fig. 1
shows this prior distribution for two different choices
of the hyperparameters. The graphs in Fig. 1 show dis-
tributions for various values of the hyperparameters.

2.3. Markov chain Monte Carlo

The state space for our Markov chain consists of the
tree topology, the gene inversion counts on each edge,
and the relative order in which the specific inversions oc-
cur constrained to be consistent with the observed
arrangements. We refer to the sequence of gene inver-
sions on an edge as its history. Larget et al. (2002) de-
scribes a method to sample from this state space by
cycling through three different updates. In a single up-
date, a (possibly different) tree topology and set of histo-
ries are proposed. This proposal is either accepted or
rejected by Metropolis-Hastings. (See Gelman et al.,
1995, for example.) If rejected, the current state is sam-
pled again. The resulting (dependent) random sample of
trees and histories are distributed according to the Mar-
kov chain�s stationary distribution, which is the desired
Bayesian posterior distribution.
ameters used in the virus and Campanulaceae examples.



Table 1
Brief descriptions of update methods

Method Description

Update 1 Slide an internal node between the histories on the two edges connecting two of its three neighbors.
Update the history on the edge to the third neighbor

Update 2 Update the history on a single edge
Update 2x Update part of the history on a single edge
Update 3 Swap the locations of two edges each adjacent to a randomly selected internal edge. Update the histories on the moved edges
Update 4 Similar to tree-bisection–reconnection (TBR). Remove an internal edge,

reconnect the two unrooted subtrees at a random location, and create a new history on the new edge
Update 5 Similar to Update 3, except that only one of the two possible edges is moved

Updates 1, 2, and 2x do not affect the tree topology, but modify only the histories on one or more edges in the same proximity of the tree. Updates 3,
4, and 5 have the potential to change the tree topology as well as the histories on a set of proximate edges.

Table 2
Numbers of sorting sequences

Permutation Distance Number of sorting sequences

4 5 6 7

p1 4 1 8 791 9,918
p2 5 0 200 2,668 147,282

For the signed permutations in Eq. (2), the second column lists the
minimal number of reversals to sort, and the remaining columns
contain the number of distinct sorting sequences by length.
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The present paper uses Updates 1, 2, 2x, 3, 4, and 5
from Simon and Larget (2004) summarized briefly in
Table 1 and described more completely in Larget et al.
(2005a). The additional update methods improve the
mixing properties of the Markov chains. Updating a his-
tory on a single edge consists of selecting at random a
sequence of inversions that rearrange a known arrange-
ment at one end of an edge to a known arrangement on
the other end. At each step of generating this sequence,
the set of all possible inversions are divided into three
classes (good, not-so-good, and bad). A single inversion
is selected with uniform probability within each class
where these class probabilities decrease from good to
bad. The definitions of the classes are slightly different
in this paper than what we used in Larget et al.
(2002). We now include inversions on two breakpoints
in the same cycle of a hurdle to be good rather than
not-so-good. (See Larget et al., 2002, for definitions of
these terms.) Update 2x is similar to the update method
in York et al. (2002).
3. Results

We first show that arrangements that are closer in
reversal distance are not necessarily more likely. Assume
that we have a small artificial genome with nine genes ar-
ranged in a circle, so the arrangements are represented by
signed permutations of size eight. Consider these two
examples:

p1 ¼ ð8; 3; 7; 1;�5;�4;�6; 2Þ and

p2 ¼ ð2; 3; 4; 5; 6; 8; 1; 7Þ.
ð2Þ

The first permutation requires four reversals to sort, the
second five. While it might be supposed that the first per-
mutation would be more likely than the second if a ran-
dom number of random reversals with mean equal to
the actual distance of the first permutation from the iden-
tity (i.e., four) were applied to the identity permutation,
this turns out not to be the case. Applying a Poisson(4)
distributed number of random reversals to the identity
permutation with all possible reversals being equally
likely, the second arrangement ismore than twice as likely
as the first. The reason is that there is but a single sequence
of four reversals that sorts the first permutation while
there are 200 sequences of reversals of length five that sort
the second. Table 2 contains counts of the number of short
sorting sequences for the two permutations.

There are a total of 36 possible reversals for permuta-
tions of length eight. The probability of achieving these
permutations after applying a Poisson(4) distributed
number of random reversals to the identity permutation
may be calculated by conditioning on the realized num-
ber of reversals.

P ðidentity to pÞ

¼
X1
k¼0

fP ðexactly k reversalsÞ

� ð# of sorting sequences of p of length kÞg=
ðtotal # of sequences of length kÞ: ð3Þ

Truncating this sum at k = 7, the probability of p1 is
approximately 2.8 · exp(�4 · 44/(36)4) while the proba-
bility of p2 is approximately 6.5 · exp(�4 · 44/(36)4),
more than twice as large. This indicates that the most
parsimonious reconstructions may not be the most
likely, even if the mean of the prior probability distribu-
tion is selected to maximize the posterior probability of
that reconstruction.

3.1. Real data examples

We analyze three sets of data that have appeared pre-
viously in the literature in order to compare our results
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with those from previous analyses. Our strategy is the
same for each set of data. In order to assess the robust-
ness of the results to prior specification, for each data set
we made calculations for five different sets of hyperpa-
rameter values. Four of the sets consist of all combina-
tions of a high and low value for l and w. In the fifth set,
we use an empirical Bayes approach and estimate values
for l and w from the edge lengths of the neighbor-join-
ing tree formed from the observed pairwise reversal dis-
tances. We estimate l as the mean of the neighbor-
joining edge lengths and w as the maximum of 1.1 and
the ratio of the variance to the mean of the neighbor-
joining edge lengths. (The parameter w cannot be one
or less.)

We replicated each set of runs four times using differ-
ent initial states and sequences of pseudo-random num-
bers. In all cases we find that differences in calculations
made with the same set of hyperparameters are consis-
tent with Monte Carlo sampling error and there is no
indication of potential convergence problems. We com-
bine the four samples in each case prior to analysis.

The first two real data examples have only three taxa.
For these two examples we consider the posterior distri-
butions of the genome arrangement of the internal node
and of the total number of inversions on the tree. To ob-
tain results in each of these analyses, we cycle through
four separate MCMC update methods that modify the
inversion history only to sample the possible rearrange-
ment scenarios.

The third data example is a set of chloroplast
arrangements from 13 taxa. For this analysis we exam-
ine the posterior distributions of clades as well as the to-
tal tree length.
Table 3
Viral genome arrangements

Virus Arrangement

HSV ð1–16Þð19–17Þð20–23Þð25–24Þ
EBV ð1–16Þð20–17Þð21–25Þ
CMV ð1–11Þð13–12Þð16–14Þð25–24Þð17–23Þ

The notation (20–23) stands for the sequence 20, 21, 22, and 23 while
the notation ð19–17Þ represents the sequence �19, �18, �17, and so
on.

Table 4
Posterior probabilities of ancestral arrangements for various priors

Arrangement l = 1 l = 1
w = 2 w = 5

(1–25) 0.660 0.601
ð1–23Þð25–24Þ 0.287 0.262
ð1–16Þð20–17Þð21–25Þ 0.017 0.061
ð1–16Þð19–17Þð20–23Þð25–24Þ 0.015 0.055
ð1–16Þð19–17Þð20–25Þ 0.006 0.007
ð1–16Þð20–17Þð21–23Þð25–24Þ 0.004 0.006
All others 0.011 0.008
3.2. Herpes virus example

Bourque and Pevzner (2002) reanalyzes a small virus
data set studied in Hannenhalli et al. (1995) with Herpes
simplex virus (HSV), Epstein–Barr virus (EBV), and
Cytomegalovirus (CMV). The viral genome arrange-
ments are displayed in Table 3. The unrooted tree relat-
ing these viruses contains a single internal ancestral node
with edges to each of the three leaves. Hannenhalli et al.
(1995) reduce the gene arrangements to signed permuta-
tions of seven gene blocks and find two most parsimoni-
ous rearrangement scenarios that each require seven
total rearrangements. Bourque and Pevzner (2002) do
not block the genes with common arrangements in the
three viruses, and analyze three signed permutations of
length 25, reporting a single rearrangement scenario
with seven total rearrangements.

Our results are based on simulation runs of one mil-
lion cycles of Updates 1, 2, and 2x, subsampled every
100 cycles. For this very small data set, our initial tree
is not distinguishable from the other trees we sample.
Burn-in is essentially immediate and we do not discard
any sample points. Each set of runs results in a com-
bined sample of 40,000 trees and histories. The first four
sets of runs use all combinations of the hyperparameter
values l = 1, 3 and w = 2, 5. Fig. 1 shows the induced
prior distributions on the number of inversions per edge.
The fifth set of runs used the estimates from the neigh-
bor-joining tree of l = 2.167 and w = 1.1.

All five sets of hyperparameters put most of the pos-
terior probability on the same set of six ancestral
arrangements, shown in Table 4. The results are quite
consistent for these various prior distributions—calcu-
lated probabilities differ by a few percentage points
over the different priors. The two most probable ances-
tral arrangements are the only two consistent with a
most parsimonious reconstruction. Notice, however,
that one of these two arrangements is about three times
as probable as the other consistently for different
priors.

Table 5 shows the posterior distribution of the total
number of inversions. It is quite probable under a range
of priors that there are only seven total gene inversions
on the tree. However, even the empirical prior indicates
l = 3 l = 3 l = 2.167
w = 2 w = 5 w = 1.1

0.654 0.640 0.668
0.285 0.277 0.285
0.013 0.030 0.006
0.011 0.026 0.005
0.007 0.008 0.005
0.007 0.006 0.004
0.023 0.013 0.027



Table 5
Distribution of total number of gene inversions in the virus example

Total l = 1 l = 1 l = 3 l = 3 l = 2.167
w = 2 w = 5 w = 2 w = 5 w = 1.1

7 0.923 0.826 0.891 0.870 0.925
8 0.060 0.140 0.070 0.090 0.053
9 0.015 0.027 0.035 0.034 0.021
10 0.002 0.006 0.003 0.005 0.001
11+ 0.000 0.001 0.000 0.001 0.000

Table 7
Human, fruit fly, and sea urchin ancestral arrangement credible region
sizes

Probability l = 5 l = 5 l = 8 l = 8 l = 12.5
w = 2 w = 5 w = 2 w = 5 w = 2.293

0.50 500 92 2,034 327 7,610
0.75 9,703 2,925 24,692 8,457 44,819
0.90 42,593 20,663 72,293 37,382 103,387
0.95 62,593 39,218 92,293 57,382 123,387

Each count indicates the size of the smallest set of arrangements as
calculated by MCMC that are necessary to achieve a posterior prob-
ability of a given probability for each of several prior distributions.
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a probability of 7.5% that the actual inversion history is
not one of the most parsimonious reconstructions.

In this example, the optimal phylogeny point of view
analysis provides no means to estimate the uncertainty
in a most parsimonious reconstruction. Our analysis
quantifies the uncertainty in a fashion that is somewhat
robust to prior assumptions.

3.3. Human, fruit fly, and sea urchin mitochondrial

arrangements

Sankoff et al. (1996) and Bourque and Pevzner (2002)
analyze the mitochondrial genome arrangements of hu-
man, sea urchin, and fruit fly. These authors blocked
some genes to find shorter permutations of length 33.
Bourque and Pevzner (2002) report a single best recon-
struction that requires a total of 39 reversals. However,
these analyses do not address the question of uncer-
tainty in the reconstructions.

We use the full mitochondrial arrangements with 37
genes in a circular genome, displayed in Table 6. Our re-
sults are based on simulation runs of one hundred mil-
lion cycles of Updates 1, 2, and 2x, subsampled every
1000 cycles. The greater distances between taxa in this
example require longer simulations for accurate calcula-
tion than the previous example. Burn-in is essentially
immediate and we do not discard any sample points.
Each set of runs results in a combined sample of
400,000 trees and histories. The first four sets of runs
use all combinations of the hyperparameter values
l = 5, 8 and w = 2, 5, reflecting that we expect greater
distances among these distantly related taxa. The fifth
set of runs used the estimates from the neighbor-joining
tree of l = 12.5 and w = 2.293.
Table 6
Mitochondrial genome arrangements

Taxon

Human
Fruit fly

Sea urchin

Human, fruit fly, and sea urchin mitochondrial genome arrangements express
with cox1 as the reference gene. �S2 = 1, D = 2, cox2 = 3, K = 4, atp8 = 5,
H = 13, S1 = 14, L1 = 15, nad5 = 16, �nad6 = 17, �E = 18, cob = 19, T =
I = 28, �Q = 29, M = 30, nad2 = 31, W = 32, �A = 33, �N = 34, �C = 35
There is far greater uncertainty in the ancestral
arrangement in this example as compared to the pre-
vious example where most of the posterior probabil-
ity was on a handful of arrangements. Also, in
contrast to the previous example where the results
were quite robust to differences in the values of the
hyperparameters, the sizes of credible regions are
quite different depending on the choice of prior.
(See Table 7.) Prior distributions with means much
smaller than the observed tend to concentrate poster-
ior probability more heavily on arrangements consis-
tent with the observed minimum of 39 total gene
inversions. But the estimates based on the neighbor-
joining hyperparameter estimates are spread the most
(as expected since the mean is so much higher in this
run as compared to the others). With this empirically
determined prior, over 100,000 arrangements are nec-
essary to create a 90% credible region for the ances-
tral arrangement.

With such a diffuse posterior distribution, a list of
arrangements and their probabilities is an insufficient
summary. We can, however, partially summarize the
distribution in a manner similar to that used for sum-
marizing large sets of trees with a majority rule consen-
sus tree. Instead of searching for clades, we can
summarize a distribution on arrangements by listing
the maximal subsequences that have posterior proba-
bility greater than 0.5. Table 8 displays these common
subsequences.

For each of the priors we examined, the probability
that the total number of inversions on the tree exceeds
Arrangement

(1–36)
ð26Þð3–4Þð2Þð5–9Þð�33Þð10Þð�34Þð14Þð18Þð22Þð16Þð13–11Þð20–21Þ
ð17Þð19Þð1Þð27Þð15Þð25–23Þð28–32Þð35–36Þ
ð10–11Þð3–7Þð1Þð9Þð12–14Þð16–17Þð19Þð22–23Þð18Þð20Þð21Þð29Þð34Þ
ð15Þð33Þð32Þð35Þð24Þð30Þð2Þð36Þð8Þð26–28Þð31Þð25Þ

ed as signed permutations of size 36 relative to the human arrangement
atp6 = 6, cox3 = 7, G = 8, nad3 = 9, R = 10, nad4L = 11, nad4 = 12,
20, �P = 21, F = 22, rns = 23, V = 24, rnl = 25, L2 = 26, nad1 = 27,
, and �Y = 36.



Table 8
Common partial arrangements from the human, fruit fly, and sea
urchin example

Partial arrangement Posterior probability

(35–36) (0–2) 0.955
(3–9) 0.924
(10–15) 0.558
(16–17) 0.972
(19–21) 0.519
(22–32) 0.650

Each displayed arrangement has posterior probability greater than 0.5.
All subarrangements of the displayed partial arrangements are also
seen in a majority of sampled histories.
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the minimum observed value of 39 ranges from about
93% (l = 5, w = 2) to over 99% (l = 5, w = 5). An anal-
ysis that focuses on arrangements consistent with a most
parsimonious reconstruction is an inadequate summary
of the inherent uncertainty in the ancestral arrangement,
especially if a single arrangement is reported. For exam-
ple, in our combined samples from different priors, we
found 127 unique arrangements consistent with most
parsimonious reconstructions and have no reason to be-
lieve that we have found them all. Even so, the com-
bined posterior probability for the entire collection of
most parsimonious reconstructions is small under each
prior we have considered including the empirically
determined one.
Table 9
Campanulaceae arrangements

Label Genera Arra

1 Trachelium ð1–1
ð77–

2 Campanula ð1–1
ð90–

3 Adenophora ð1–1
ð25–

4 Symphyandra ð1–1
ð90–

5 Legousia ð1–4
ð91–

6 Asyneuma ð1–1
ð77–

7 Triodanus ð1–1
ð55–

8 Wahlenbergia ð1–1
ð36Þð

9 Merciera ð1–1
ð36Þð

10 Codonopsis ð1–8
ð61–

11 Cyananthus ð1–8
ð55–

12 Platycodon ð1Þð8
ð16–

13 Tobacco (1–1

Chloroplast genome arrangements of 12 genera of Campanulaceae and the o
outgroup tobacco. These data are at http://www.cs.utexas.edu/users/stacia/i
3.4. Campanulaceae chloroplast genome arrangements

Cosner et al. (2000a,b), Moret et al. (2001, 2002b),
and Bourque and Pevzner (2002) analyze a data set of
chloroplast genome arrangements with 105 markers
from 12 Campanulaceae genera plus the outgroup to-
bacco. These arrangements are in Table 9. (Cosner et
al. (2000a) and Cosner et al. (2000b) contain several
typographical errors in reporting these genome arrange-
ments. The arrangements in Table 9 are consistent with
the data set available on the Web site of one of the
authors of these papers.)

This example is more complicated than the previous
examples because there is considerable uncertainty in
the true phylogeny as well as in the ancestral arrange-
ments. For 13 taxa, there are 13,749,310,575 possible
unrooted binary trees. Based on a heuristic search of
part of the tree space, Moret et al. (2001) finds 216 dif-
ferent trees that require only 67 total gene inversions.
Subsequent improvements in their algorithm reduced
the scores for some of these trees to 64 (Moret et al.,
2002b). Using a different heuristic search method, Bour-
que and Pevzner (2002) also reports a single tree with 65
total gene inversions.

We again made five sets of runs with different prior
distributions. The first four sets of runs use all combina-
tions of the hyperparameter values l = 1, 3 and w = 2,
5, reflecting that we expect greater distances among
ngement

5Þð76–56Þð53–49Þð37–40Þð35–26Þð44–41Þð45–48Þð36Þð25–16Þð90–84Þ
83Þð91–96Þð55–54Þð105–97Þ
5Þð76–56Þð53–49Þð39–37Þð40Þð35–26Þð44–41Þð45–48Þð36Þð25–16Þ
84Þð77–83Þð91–96Þð55–54Þð105–97Þ
5Þð76–56Þð53–49Þð39–37Þð28–35Þð40Þð26–27Þð44–41Þð45–48Þð36Þ
16Þð90–84Þð77–83Þð91–96Þð55–54Þð105–97Þ
5Þð76–56Þð39–37Þð49–53Þð40Þð35–26Þð44–41Þð45–48Þð36Þð25–16Þ
84Þð77–83Þð91–96Þð55–54Þð105–97Þ
Þð9–15Þð76–56Þð27–26Þð44–41Þð45–48Þð36–35Þð25–16Þð90–84Þð77–83Þ
96Þð5–8Þð55–53Þð105–98Þð28–34Þð40–37Þð49–52Þð97Þ
5Þð76–61Þð56–53Þð60–57Þð27–26Þð44–41Þð45–48Þð36–35Þð25–16Þð89–84Þ
83Þð90–96Þð105–98Þð28–34Þð40–37Þð49–52Þð97Þ
5Þð76–56Þð27–26Þð44–41Þð45–48Þð36–35Þð25–16Þð89–84Þð77–83Þð90–96Þ
53Þð105–98Þð28–34Þð40–37Þð49–52Þð97Þ
1Þð60–56Þð53–49Þð37–40Þð35–28Þð12–15Þð76–61Þð27–26Þð44–41Þð45–48Þ
54Þð25–16Þð90–84Þð77–83Þð91–96Þð55Þð105–97Þ
0Þð49–53Þð28–35Þð40–37Þð60–56Þð11–15Þð76–61Þð27–26Þð44–41Þð45–48Þ
54Þð25–16Þð90–85Þð77–84Þð91–96Þð55Þð105–97Þ
Þð36–18Þð15–9Þð40Þð56–60Þð37–39Þð44–41Þð45–53Þð16–17Þð54–55Þ
76Þð96–77Þð105–97Þ
Þð28Þð36–29Þð27–26Þð40Þð56–60Þð37–39Þð25–9Þð44–41Þð45–48Þ
49Þð61–96Þð105–97Þ
Þð2–5Þð29–36Þð56–50Þð28–26Þð9Þð49–45Þð41–44Þð37–40Þ
25Þð10–15Þð57–59Þð6–7Þð60–96Þð105–97Þ
05)

utgroup tobacco are displayed in maximal gene blocks relative to the
smb2000/.
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Fig. 2. Consensus tree of Bayesian posterior sample for the Campa-
nulaceae example.
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these distantly related taxa. The fifth set of runs used the
estimates from the neighbor-joining tree of l = 2.448
and w = 2.004. Each run was for 100,000,000 cycles,
subsampled every 100. We removed the initial 10% of
each run as burn-in.

Fig. 2 shows the majority rule consensus tree of the
trees sampled using the empirical prior distribution.
The number of different tree topologies in credible re-
gions of 50, 75, 90, and 95% are about 50, 105, 205,
and 305, respectively. The majority rule consensus tree
is the same for all of the priors we consider, except for
the resolution of the taxa Legousia, Asyneuma, and Tri-

odanus which differed from that shown in Fig. 2 using
the prior with l = 1 and w = 5. This prior placed the
smallest posterior probability on the set of trees consis-
tent with most parsimonious reconstructions among the
set of prior we considered. Probabilities of other com-
mon clades vary by a few percentage points for the alter-
native priors we considered. Using the empirical prior
distribution, the posterior probabilities for the total
number of gene inversions are, respectively, 64
(70.4%), 65 (24.0%), 66 (4.7%), 67 or more (0.9%). We
found a total of 180 trees that required only 64
inversions.
4. Discussion

Comparisons between different phylogenetic methods
are often controversial, perhaps in part because different
authors making the comparisons use different criteria to
evaluate the effectiveness of the methods. The compari-
sons we make in this paper between our method and the
methods of other authors will be made more clear by
making the criteria of the comparisons explicit.
One point of view, which we call the optimal phylog-

eny viewpoint, frames phylogeny reconstruction in the
following way. Each tree may be scored when evaluated
using a given data set. The scoring function is chosen
so that the tree that scores best is likely (in some sense)
to be the correct tree. With the optimal phylogeny
viewpoint, a phylogenetic tree reconstruction method
is good if it is computationally efficient and accurate
at searching tree space to find optimal trees. Further-
more, it is good if simulation studies show that trees
found by the method are likely to be close to the cor-
rect tree.

The statistical phylogeny viewpoint emphasizes differ-
ent criteria. From the statistical point of view, a phylo-
genetic method is good if: (1) it is likely to produce
accurate estimates; (2) the estimates are associated with
measures of uncertainty for which there is a theoretical
basis of interpretation; (3) the method is robust to erro-
neous assumptions; (4) the method uses available data
efficiently, in the sense that measures of uncertainty
are accurate; and (5) the method may be implemented
efficiently. The most important difference between the
optimal phylogeny viewpoint and the statistical phylog-
eny viewpoint is the emphasis in the latter on measures
of uncertainty.

From the optimal phylogeny point of view, the
method we present here is competitive with methods
that search for maximum parsimony reconstructions,
at least on the examples in the manuscript. We have
not yet made a thorough comparison of the computa-
tional efficiencies of the various approaches. From the
statistical phylogeny point of view our approach has
advantages because the other approaches do not ad-
dress the evaluation of the uncertainty in the estimates.
We think that the type of summaries of the posterior
distribution on trees and on ancestral arrangements
in the manuscript are a richer description of the infor-
mation in a data set than that available from a parsi-
mony analysis.

A most parsimonious reconstruction must always be
a lower bound on the actual number of genome rear-
rangement events. The best case for maximum parsi-
mony methods is in the case in which the most
parsimonious reconstruction is very likely to be correct.
Then a biologist interpreting the results has a good basis
from which to start. For example, in the herpes virus
example, one ancestral arrangement has a substantial
amount of posterior probability and is not too bad of
a summary by itself. But if individual most parsimoni-
ous reconstructions are very unlikely, there is a high de-
gree of uncertainty about which reconstruction is
correct. In the human, fruit fly, and sea urchin example,
there is considerable uncertainty in the ancestral
arrangement. To report a single ancestral arrangement
in this case is highly misleading. The real difficulty is
that maximum parsimony methods provide no warning
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when the single reconstruction selected has low proba-
bility of being correct.

By contrast, Bayesian methods report a full posterior
distribution on the space of possible trees and arrange-
ments. If one of those is very likely (whether it is most
parsimonious or not), that fact will be evident from the
distribution. If there are many, roughly equally likely
trees or ancestral arrangements, that also will be evident.

The Bayesian analyses have other virtues as well. Be-
cause the Markov chain Monte Carlo sampler typically
spends the bulk of its time on trees of high probability, it
coincidentally can find better maximum parsimony trees
than found by other computational approaches for
some data sets. For example, in the Campanulaceae
data set, we found 180 different trees with 64 inversions.
We expect that other researchers interested in finding
most parsimonious reconstructions may find stochastic
search based on MCMC to be more efficient than cur-
rent heuristic optimization methods, at least as part of
an initial search strategy to find a good starting point
for a heuristic search. Bourque and Pevzner (2002) de-
scribe the Campanulaceae data set with its 13 taxa as
‘‘one of the most challenging genome rearrangement
data sets.’’ Larget et al. (2002) successfully applies the
Bayesian approach used in this paper to a data set with
19 taxa, a problem in which the tree space is more than
460 million times as large.

A Bayesian approach has other benefits. First, it is
possible to incorporate gracefully other sources of infor-
mation. This information may come from previous stud-
ies on other data. Furthermore, it is straightforward in
principle to extend our current model by adding other
mechanisms of genome rearrangement or to use prior
information about inversion hot spots to remove the
assumption that all possible inversions are equally
likely. Extending the approach to the multichromoso-
mal data sets described in Bourque and Pevzner (2002)
should also be possible.

A common criticism of Bayesian methods is the
choice of prior distribution. Ideally, an individual re-
searcher will specify a prior that is an accurate descrip-
tion of his or her prior belief. In a field as new as
reconstructing evolutionary histories of genome rear-
rangement where there are minimal examples by which
to form prior opinion, we expect that some readers will
prefer an empirical means to specify a prior distribution.
This paper suggests one method for doing this by esti-
mating the values of the hyperparameters using the
neighbor-joining tree.
Acknowledgment

All three authors were supported in part by NIH
Grant R01 GM068950-01.
References

Bader, D.A., Moret, B.M., Warnow, T., Wyman, S.K., Yan, M.,
Tang, J., Siepel, A.C., Caprara, A., 2002. GRAPPA, version 1.6.
Available from: <http://www.cs.unm.edu/moret/GRAPPA/2b>.

Bader, D.A., Moret, B.M.E., Yan, M., 2001. A linear-time algorithm
for computing inversion distances between signed permutations
with an experimental study. Journal Computational Biology 8,
483–491.

Blanchette, M., Kunisawa, T., Sankoff, D., 1999. Gene order break-
point evidence in animal mitochondrial phylogeny. Journal of
Molecular Evolution 49, 193–203.

Bourque, G., Pevzner, P., 2002. Genome-scale evolution: reconstruct-
ing gene orders in the ancestral species. Genome Research 12, 26–
36.

Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang,
L.-S., Warnow, T., Wyman, S., 2000a. An empirical comparison of
phylogenetic methods on chloroplast gene order data in Campa-
nulaceae. In: Comparative Genomics (DCAF-2000). Kluwer Aca-
demic Publishers, Montreal, Canada, pp. 99–121.

Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang,
L.-S., Warnow, T., Wyman, S., 2000b. A new fast heuristic for
computing the breakpoint phylogeny and experimental phyloge-
netic analyses of real and synthetic data. In: Proceedings of the
Eighth International Conference on Intelligent Systems for Molec-
ular Biology (ISMB-2000). AAAI Press, Menlo Park, CA, pp. 104–
115.

Felsenstein, J., 2004. Inferring Phylogenies. Sinauer Associates,
Sunderland, MA.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 1995. Bayesian
Data Analysis. Chapman & Hall/CRC, Boca Raton.

Hannenhalli, S., Chappey, C., Koonin, E., Pevzner, P., 1995. Genome
sequence comparison and scenarios for gene rearrangements: a test
case. Genomics 30, 299–311.

Hannenhalli, S., Pevzner, P., 1995. Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by rever-
sals). In: Proceedings of the Twenty-seventh Annual ACM-SIAM
Symposium on the Theory of Computing. ACM Press, New York,
pp. 178–189.

Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J., 2001.
Bayesian inference of phylogeny and its impact on evolutionary
biology. Science 294, 2310–2314.

Kaplan, H., Shamir, R., Tarjan, R., 1999. Faster and simpler
algorithm for sorting signed permutations by reversals. SIAM
Journal on Computing 29, 880–892.

Larget, B., Simon, D.L., Kadane, J.B., 2002. Bayesian phylogenetic
inference from animal mitochondrial genome arrangements (with
discussion). Journal of the Royal Statistical Society, Series B 64,
681–693.

Larget, B., Simon, D.L., Kadane, J.B., Sweet, D., 2005a. A Bayesian
analysis of metazoan mitochondrial genome arrangements. Molec-
ular Biology and Evolution 22, 486–495.

Larget, B., Simon, D.L., Sohn, S., 2005b. A comparison between
BADGER and GRAPPA. Bioinformatics. In press.

Miklós, I., 2003. MCMC genome rearrangement. Bioinformatics 19
(Suppl. 2), ii130–ii137.

Moret, B., Tang, J., Wang, L., Warnow, T., 2002a. Steps toward
accurate reconstruction of phylogenies from gene-order data. J.
Comput. Syst. Sci. 65, 508–525.

Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T., 2002b. Inversion
medians outperform breakpoint medians in phylogeny reconstruc-
tion from gene-order data. In: Proceedings of the Second Interna-
tional Workshop on Algorithms in Bioinformatics (WABI�02),
Rome, September 2002.

Moret, B.M.E., Wang, L., Warnow, T., Wyman, S., 2001. New
approaches for reconstructing phylogenies from gene order data.

http://www.cs.unm.edu/moret/GRAPPA/2b


B. Larget et al. / Molecular Phylogenetics and Evolution 36 (2005) 214–223 223
In: Proceedings of the International Conference on Intelligent
Systems for Molecular Biology (ISMB-2001), pp. 165–173.

Pevzner, P., 2000. Computational Molecular Biology—An Algorith-
mic Approach. The MIT Press, Cambridge, MA (Chapter 10).

Sankoff, D., Blanchette, M., 1998. Multiple genome rearrangement
and breakpoint phylogeny. Journal of Computational Biology 5,
555–570.

Sankoff, D., Sundaram, G., Kececioglu, J., 1996. Steiner points in the
space of genome rearrangements. International Journal of the
Foundation of Computer Science 7, 1–9.

Simon, D.L., Larget, B., 2001. Phylogenetic inference from mitochon-
drial genome arrangement data. In: Alexandrov, V., Dongarra, J.,
Juliano, B., Renner, R., Tan, C. (Eds.), Computational Science—
ICCS 2001, Lecture Notes in Computer Science, vol. 2074.
Springer-Verlag, Berlin, pp. 1022–1028.

Simon, D.L., Larget, B., 2004. BADGER, version 1.02b. Department
of Mathematics and Computer Science, Duquesne University.
Available from: <http://badger.duq.edu/>.

Tang, J., Moret, B., 2003. Phylogenetic reconstruction from gene
rearrangement data with unequal gene contents. In: Proceedings of
the 8th Workshop on Algorithms and Data Structures (WADS�03),
Lecture Notes in Computer Science, vol. 2748. Springer-Verlag,
Berlin, pp. 37–46.

York, T., Durrett, R., Nielsen, R., 2002. Bayesian estimation of the
number of inversions in the history of two chromosomes. Journal
of Computational Biology 9, 805–818.

http://badger.duq.edu/

	A Bayesian approach to the estimation of ancestral genome arrangements
	Introduction
	Genome arrangements

	Methods
	Model
	Prior distribution
	Markov chain Monte Carlo

	Results
	Real data examples
	Herpes virus example
	Human, fruit fly, and sea urchin mitochondrial arrangements
	Campanulaceae chloroplast genome arrangements

	Discussion
	Acknowledgment
	References


