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MODELING SUBSTITUTION AND INDEL PROCESSES FOR AFLP
MARKER EVOLUTION AND PHYLOGENETIC INFERENCE

BY RUIYAN LUO1 AND BRET LARGET2

University of Wisconsin—Madison

The amplified fragment length polymorphism (AFLP) method produces
anonymous genetic markers from throughout a genome. We extend the nu-
cleotide substitution model of AFLP evolution to additionally include inser-
tion and deletion processes. The new Sub-ID model relaxes the common as-
sumption that markers are independent and homologous. We build a Markov
chain Monte Carlo methodology tailored for the Sub-ID model to implement
a Bayesian approach to infer AFLP marker evolution. The method allows
us to infer both the phylogenies and the subset of markers that are possibly
homologous. In addition, we can infer the genome-wide relative rate of in-
dels versus substitutions. In a case study with AFLP markers from sedges, a
grass-like plant common in North America, we find that accounting for inser-
tion and deletion makes a difference in phylogenetic inference. The inference
of topologies is not sensitive to the prior settings and the Jukes–Cantor as-
sumption for nucleotide substitution. The model for insertion and deletion
we introduce has potential value in other phylogenetic applications.

1. Introduction. The amplified fragment-length polymorphism (AFLP) tech-
nique, first developed by Vos et al. (1995), is a powerful tool to produce DNA
fingerprints of organismal genomes. The generation of AFLP markers begins by
breaking whole genomic DNA into fragments, typically with two restriction en-
zymes. Double-stranded adaptors specific to each restriction enzyme attach to the
end of each fragment, forming caps. A small fraction of the fragments, selected
by a specific primer pair, are amplified using a polymerase chain reaction and sep-
arated by size using gel electrophoresis. Bands exhibiting variability among the
separate individuals under study are the genetic markers. The resulting data are
usually recorded as a 0/1 matrix—allele absent or allele present. For example,
our case study of 14 sedges involves data at 126 AFLP markers [Supplementary
Table 1 in Luo and Larget (2009)].

Because of their high replicability [Jones et al. (1997); Powell et al. (1996)],
low cost, and ease of use, AFLP markers have emerged as an important genetic
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marker with broad applications. One increasingly common use of AFLP marker
data is as a source of genetic information for phylogenetic inference, the esti-
mation of evolutionary trees from genetic data. AFLP markers are less prone to
homology problems than other anonymous DNA fragment methods such as ran-
domly amplified polymorphic DNA fragments (RAPD) or inter-simple sequence
repeat (ISSR) polymorphisms [Wolfe and Liston (1998)]. Moreover, as a multilo-
cus method, AFLPs have the benefit of integrating phylogenetic signals from loci
distributed throughout the genome, reducing the degree to which lineage sorting
and reticulate evolution (hybridization) are expected to confound efforts to recon-
struct phylogenies among rapidly radiating taxa [Albertson et al. (1996)]. Because
of these qualities, AFLPs have come into increasingly frequent use in phylogenetic
studies among closely-related species.

Binary genetic data, such as AFLP, have been analyzed by a simple two-state
Markov model [Mau and Newton (1997)] as implemented in MrBayes [Huelsen-
beck and Ronquist (2001)]. A more accurate approach models nucleotide substitu-
tions within the AFLP marker itself [Luo, Hipp and Larget (2007)]. No procedures
are yet available that accomodate insertion or deletion (indel) events, which are
mutational processes that can affect AFLP markers. For example, indels can also
result in sequence changes that affect AFLP markers. For example, indel processes
could cause the loss of a marker by removing part of a restriction site or the neigh-
boring amplification sites. Indel events in the interior region (Figure 1) have the
potential to cause a single homologous locus to result in two or more markers of
different lengths in different species. We call such a situation a locus-splitting.
Furthermore, it is possible that markers with identical lengths could be produced
by different loci. We call a marker that is produced by multiple loci a superpo-
sition. With the introduction of indel processes, the common assumptions in the
substitution-only model of Luo, Hipp and Larget (2007) and the MrBayes method
that each marker is associated with a single genetic locus and that the loci in differ-
ent individuals corresponding to the same AFLP marker are homologous (derived
from a single locus in a common ancestor) are invalidated. The model introduced

FIG. 1. A typical fragment corresponding to an AFLP marker is partitioned into three parts. The
first and third parts, referred to as the “left end region” and “right end region,” respectively, must
match specific sequences exactly to be restricted and amplified. The first four bases of the left end
region are a restriction site and the bases B1B2B3 correspond to three bases in one of the primers.
The right end region has bases B4B5B6 that correspond to three bases in the other primer followed
by a six base restriction site. The sequence in the second part is called the “intermediate region.”
Throughout the paper, the number of bases in the left and right end regions are denoted as RL, and
RR , respectively. R = RL +RR is the total number of bases in the end regions. The number of bases
in the intermediate region is denoted as N or Nnode for a specific node.



224 R. LUO AND B. LARGET

here differs from several indel models previously described [Miklós, Lunter and
Holmes (2004); Redelings and Suchard (2005); Thorne, Kishino and Felsenstein
(1991, 1992)].

We describe a model that incorporates both substitution and indel processes, and
we present a Bayesian approach to infer phylogenies from AFLP marker data. We
call this model the Sub-ID model. We begin by briefly describing the substitution-
only model in Luo, Hipp and Larget (2007), upon which we will model the indel
processes (Section 2). Then we study how indel events affect AFLP markers by
examining the six complete genomes (Section 3). We describe the Sub-ID model
in Section 4 and illustrate the Bayesian structure for phylogenetic inference from
AFLP data in Section 5. In Section 6 we implement a novel Markov chain Monte
Carlo (MCMC) approach for phylogenetic inference. We study the sensitivity of
the model to prior settings with a simulated data set in Section 7 and apply the
methodology to analyze AFLPs from several taxa in Carex Section Ovales, a group
of sedges common in North America, in Section 8.

2. The substitution-only model. This section summarizes the substitution-
only model described in Luo, Hipp and Larget (2007) and introduces the notation
that will be used in the Sub-ID model. We partition a particular fragment corre-
sponding to an AFLP marker into three regions (Figure 1) according to the process
of AFLP data production. In the original protocol [Vos et al. (1995)], (1) the two
restriction enzymes used are EcoRI, which cleaves DNA whenever the sequence
“GAATTC” appears in the 5′ to 3′ direction, and MseI, which cleaves DNA at a
four-base recognition sequence “TTAA”; (2) only the EcoRI adaptors are fluores-
cently labeled, so fragments flanked by two MseI sites are invisible and do not
form markers; (3) the primer pair, one for each adaptor, matches a portion of the
corresponding adaptor and restriction site plus three additional bases. By design,
only fragments whose sequence includes the specific extra three bases in each end
region corresponding to the primers for each restriction site are amplified. In prac-
tice, a researcher can use multiple primer pairs in order to find additional AFLP
markers. A set of AFLP markers found with a single primer pair is called a plate.
Our model is based on this protocol, but it can be easily modified for other choices
of restriction enzymes or if primers of different lengths are used.

The first and third parts of the partition in Figure 1 include bases necessary for
each end of the fragment to be cut (restriction sites) plus three additional bases
necessary for amplification (amplification sites). We call these two parts the left
end region and right end region in our new model, and denote the number of bases
in them as RL and RR , respectively. Let R be the total length of the end regions.
Obviously, R = RL + RR . The second part is an intermediate region. If we denote
the number of bases in this region as N , then the corresponding measured marker
length is N + 39, where 39 counts the number of bases in each primer (19 + 19)
and an extra adenine (A) base appended to the 3′ end of Taq DNA polymerase.
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The substitution-only model of AFLP evolution rests on the following assump-
tions: (1) each AFLP marker is associated with a single genetic locus in each
individual; (2) the loci in different individuals corresponding to the same AFLP
marker are homologous; (3) loci associated with visible markers are mutually in-
dependent; (4) bands are appropriately scored as present or absent; (5) each lo-
cus is represented by a band that is flanked either by an MseI and an EcoRI site
(with prior probability 32/33) or by two EcoRI sites (with prior probability 1/33);
(6) a band is present for an MseI/EcoRI (or EcoRI/EcoRI) fragment if there are
zero mismatches among the 16 (or 18) necessary bases and no restriction sites
between the restriction sites corresponding to the fragment ends; and (7) all sites
evolve independently with the same rate according to a Jukes–Cantor model [Jukes
and Cantor (1969)]. The model assumes only nucleotide substitution as a muta-
tional process. Then marker loss is due either to mutation in the end regions or by
gain of a restriction site in the intermediate region. In particular, nucleotide sub-
stitution at the end regions causes either loss of one of the restriction sites at one
end of the fragment merging it with a neighboring fragment or causes a change
in the amplification sites causing the fragment not to be amplified. A nucleotide
substitution in the intermediate region usually has no effect, but can create a new
restriction site resulting in the marker fragment being broken into two smaller frag-
ments. At time t , let M(t) be the number of mismatches among the R bases in the
end regions, and let Z(t) be the presence/absence of cutters (or restriction sites)
among the N middle bases. Then M(t) itself is a continuous-time Markov process
on the state space 0,1,2, . . . ,R, and Z(t) can be approximated by a two-state
continuous-time Markov chain, with Z(t) = 1 indicating the presence of cutters in
the intermediate region, and Z(t) = 0 indicating the absence. We ignore the spe-
cific infrequent cases such as substitution that could change an AFLP band length
to some longer length if a pre-existing flanking restriction site of the same type
existed, or substitution in the intermediate region that introduces a new restric-
tion site and amplification site and changes an AFLP band length to some shorter
length.

For the process M(t), if there are R = r bases, the probability of changing
from i mismatches to j mismatches in time t is the sum of a product of two bino-
mial probabilities, summing over the number of matches that become mismatches
[as in Felsenstein (1992)]:

P
(r)
ij (t) =

min(i,r−j)∑
k=max(0,i−j)
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where p = 3
4(1 − e−4/3ut ), and u is the rate of substitutions per unit time per site.

Typically, we measure t in units of the expected number of substitutions per site
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and u = 1. The stationary probability of i mismatches among r independent sites
is π

(r)
i = (r

i

) 3i

4r . For the process Z(t), the stationary probability of no cutters in a
fragment with N = n bases in the intermediate region is

π
(Z)
0 = P
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Z(0) = 0

) ≈ (
1 − 1

44
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1 − 1

46

)n−6+1
.(2)

The infinitesimal rate of moving from zero to at least one cutter is

q
(Z)
01 ≈ 4(n − 4 + 1)u

44 − 1
+ 6(n − 6 + 1)u

46 − 1
.(3)

Equations (2) and (3) are sufficient to determine the approximate probability tran-
sition matrix for {Z(t)}:
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where η(t) = exp (−q
(Z)
01 ut/(1 − π

(Z)
0 )).

3. Indel processes and AFLP marker data. We first investigate the preva-
lence of superpositions in real data by examining several sequenced genomes in sil-
ico. The AFLP data to be analyzed in this paper are from sedges, a grass-like plant,
with genome size around 200 Mb. Among the fully sequenced and completely as-
sembled genomes of similar size, we obtained six genomes with sizes between
90 Mb and 500 Mb from the NCBI genomes database [NCBI (2007)] and from the
FlyBase database [FlyBase (2007)]. Arabidopsis thaliana (land plant), Caenorhab-
ditis elegans (roundworm), Drosophila melanogaster (fruit fly), D. pseudoobscura
(fruit fly), Oryza sativa (rice) and Populus trichocarpa (black cottonwood) have
sizes about 116 Mb, 97 Mb, 180 Mb, 125 Mb, 389 Mb and 485 Mb, respectively.
Using the same enzymes and primers pairs from Section 8, we found the frag-
ments that could be amplified and obtained their lengths. Examining these frag-
ment lengths, we determined the number of superpositions and observable AFLP
markers with distinct lengths. We list the results for four species in Table 1. On
average, 7.48%, 5.56%, 3.05% and 25.06% of markers are superpositions, respec-
tively. For the two species of Drosphilia, we find that 1.96% and 8.73% of markers
from D. melanogaster and D. pseudoobscura are superpositions, respectively. Un-
der the Jukes–Cantor model, for a genome with size G, we can calculate the ex-
pected number of fragments amplified in the third step of AFLP production with
length between 11 and 586 as

G × 17
46 × 33

289 × 1
46 × 0.864.(5)

The average fragment length is 46/17, so the product of the first two factors is the
expected number of fragments after digesting the whole genome. The third factor
33/289 is the proportion of fragments ending with MseI/EcoRI or EcoRI/EcoRI
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TABLE 1
The number of AFLP markers and superpositions for four genomes using nine pairs of primers.
“# fragments” counts the number of fragments that could be amplified in the third step of AFLP

production, and “# observed markers” counts the number of fragments with distinct lengths. When
a superposition involves markers produced by more than two loci, the sum of # observed markers
and # superpositions is less than # fragments. Values in parentheses give the genome sizes and the

expected number of fragments calculated by (5)

A. thaliana (116 Mb, 12) C. elegans (97 Mb, 10)

# fragments 9 18 5 14 18 8 25 12 16 9 9 1 3 6 8 11 5 9
# observed markers 8 15 5 14 16 8 14 12 14 9 8 1 3 6 8 8 5 9
# superpositions 1 3 0 0 1 0 3 0 1 0 1 0 0 0 0 3 0 0

O. sativa (389 Mb, 39) P. trichocarpa (485 M, 48)

# fragments 36 24 7 20 36 23 15 14 14 55 48 10 27 45 13 23 14 23
# observed markers 35 23 7 18 33 23 14 14 14 12 9 9 25 32 12 18 14 21
# superpositions 1 1 0 2 3 0 0 0 0 10 6 1 2 7 1 3 0 2

cutters. The fourth one 1/46 is the proportion of fragments that match the addi-
tional bases in the primers and will be amplified. The probability that the fragment
length is between 11 and 586 is 0.864 when approximating the length with a geo-
metric distribution with mean 17/4096. Here 11 and 586 are the lower and upper
bound of the lengths of the intermediate part for visible markers. The expected val-
ues are comparable with the observations for the genomes considered (Table 1).

We also sought evidence for locus-splitting, which would tend to be more preva-
lent in closely related species and when the indel rate is high relative to the sub-
stitution rate. To date, only one pair (D. melanogaster and D. pseudoobscura) of
closely related species with genome sizes comparable to those in sedges have been
sequenced and fully assembled. Examining D. melanogaster and D. pseudoob-
scura, we do not find evidence of locus-splitting. Nor do we find such evidence
among some fully sequenced yeast genomes (Debaryomyces hansenii, Eremoth-
ecium gossypii and Saccharomyces cerevisiae), but this is not surprising given
their small size (about 20 Mb). The lack of evidence of locus-splitting among
completely sequenced genomes can be attributed to limitations in the available
data. Locus-splitting could be a component of AFLP marker evolution among
sedges and other closely related species. We have obtained evidence of superpo-
sitions. Phylogenetic inference based on a substitution-only model ignoring in-
sertion and deletions processes could be misleading since the assumption that
each marker is associated with a single genetic locus and that the loci in differ-
ent individuals corresponding to the same AFLP marker are homologous is invali-
dated. This motivates us to build a model incorporating both substitution and indel
processes.
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4. Sub-ID model. By incorporating indel processes, we relax the first two
assumptions in Luo, Hipp and Larget (2007) but retain assumptions (3)–(7). Fol-
lowing the word usage in Thorne, Kishino and Felsenstein (1991), we refer to
positions between sites as links. We assume that insertion and deletion happen at
any links between bases equally likely with different rates and any number of bases
could be inserted/deleted. We first describe the model in a single edge and then ex-
tend it to the whole tree. The substitution process in the Sub-ID model is the same
as that in the substitution-only model introduced by Luo, Hipp and Larget (2007)
and summarized in Section 2.

4.1. Sub-ID model in a single lineage. The model assumes a DNA sequence
of infinite length, and indel events happen at any positions equally likely. At any
link between two bases, insertion and deletion happen independently in accor-
dance with Poisson processes with rates λ and μ, respectively, and the length of
the inserted or deleted segment follows a geometric distribution on 1,2, . . . , with
mean 1/r . Although the positions of indels are equally likely along the whole se-
quence, for the fragment corresponding to a particular marker, only the insertions
within the fragment or deletions removing at least one base of the fragment can
affect the presence/absence of the marker. Table 2 lists the events in our model.
We call an indel event that destroys the end regions a killing event (including an
insertion/deletion starting within a restriction site or a neighboring amplification
site, and a deletion that removes one or more residues in the end regions). When a
killing event occurs, we say that the fragment is killed. In this modeling, we neglect
a few indel events that can affect AFLP marker data, as they are fairly improba-
ble. For example, a very small proportion of possible indels within the end regions
would leave the restriction site and amplification sequence intact. We ignore this
possibility and the possibility that subsequent indels or substitutions could cause
a killed restriction site to recover. Second, when an indel kills the restriction site
itself, a new fragment would be formed by extending the fragment to the next re-
striction site. It is, however, very unlikely that the amplification site of the adjacent

TABLE 2
Description of the insertion-deletion events in the Sub-ID model

w value Insertion and deletion events modeled

−1R Deletion starting within the end regions
−1P Deletion starting before the fragment and removing ≥ 1 base in the left end region
−1N Deletion starting within the intermediate region and removing ≥ 1 base in the right

end region
−1 Deletion starting within the intermediate region and not removing any bases in the

right end region
1R Insertion starting within the end regions
1 Insertion starting within the intermediate region



SUB-ID MODEL FOR AFLP EVOLUTION 229

restriction site would match the primer, so we ignore this possibility. In addition,
we ignore the possibility that indels within the intermediate region could add a
new restriction site.

Now consider a marker with N residues in the intermediate region, and
(RL,RR) bases at the left and right end regions, respectively. There are RL +
RR + N − 1 possible starting positions for insertions, and RL + RR + N possi-
ble starting positions in the fragment for deletions to affect the marker. In addition,
long deletions before the fragment removing part of the left end region will destroy
it and cause the marker to be absent. If we denote the link immediately before the
fragment as position 0, the link that is i bases after position 0 as position i, and
the link that is i bases before the fragment as position −i (i = 1,2, . . .), then the
deletions at position −i with length greater than i will remove part of the left end
region of the marker and hence kill it. The rate of all such long deletions before the
fragment that will kill the marker is the sum of rates over all negative positions3:

−∞∑
i=−1

∞∑
j=−i+1

r(1 − r)j−1 = 1 − r

r
.(6)

Under the assumption that insertion and deletion happen independently in accor-
dance with Poisson rates λ and μ, respectively, the occurrence of an indel event
that will affect the fragment is a Poisson process with rate

η = (RL + RR + N − 1)λ + (
RL + RR + N + (1 − r)/r

)
μ,(7)

where (N + 1)×λ is the rate of insertions that start within the intermediate region
and hence change the sequence size, (RL + RR − 2) × λ is the rate of insertions
that kill the fragment by starting within the end regions, (1 − r)/r × μ is the rate
of long deletions that start before the fragment and remove at least one base in the
left end region, N × μ is the rate of deletions which start within the intermediate
region and either kill the fragment by removing one or more bases in the right end
region or just change the sequence size, and (RL +RR)×μ is the rate of deletions
that start within the end regions and hence kill the fragment.

For an edge in a phylogenetic tree, let h refer to the indel history along it. The
indel history includes a sequence of events which are characterized by time, type,
position and length. Time (t) describes when the event happens by regarding the
time of the parent node as 0. Type (w, described in Table 2) indicates whether
the event is an insertion or deletion, and whether it kills the fragment or not. Po-
sition (s) refers to the starting point of an event. Length (l) gives the number of
bases inserted or deleted. The events are ordered by their occurrence times.

For an indel history with k events, denote the characteristics of the ith event as
time ti , position si , type wi and length li . Let Ni be the number of bases in the

3The base counts between markers are finite, but sufficiently large such that approximating the
sums in (6) as infinite makes no difference.



230 R. LUO AND B. LARGET

intermediate region after the ith event. Then Ni = Ni−1 +wi × li if wi = 1 or −1.
For convenience, if there are k indel events during a period of time T , let tk+1 = T

and Nk+1 = Nk . Let N0 denote the length of the intermediate region before the first
indel event. Let kill = 1 or 0 indicate the possible occurrence of a killing event.

Under these assumptions, the likelihood for an indel history h = (ti,wi, si, li,

i = 1, . . . , k) is

p(h|N0,RL,RR) = exp

(
−

k+1∑
i=1

ηi × (ti − ti−1)

)

(8)

×
k∏

i=1

{
λI (wi>0)μI (wi<0)r(1 − r)(li−1)}

if there is no killing event, and

p(h|N0,RL,RR) = exp

(
−

k∑
i=1

ηi × (ti − ti−1)

)

(9)

×
k∏

i=1

{
λI (wi>0)μI (wi<0)r(1 − r)(li−1)}

if a killing event occurs, where ηi = (RL +RR +Ni−1 −1)λ+ (RL +RR +Ni−1 +
1−r
r

)μ. Equation (8) has one more term in the argument of the exponential function
than does (9), which accounts for the likelihood that no indel events happen during
the time period (tk, tk+1).

Consider a particular edge with length T . Let h be the indel history along it,
(MP ,MC) be the number of mismatches, and (ZP ,ZC) be the presence of cutters
at the parent and child nodes, respectively. Let NP be the number of residues in the
intermediate region of the fragment at the parent node. Given the lengths of the end
regions (RL,RR), the likelihood of indel and substitution histories (h,MC,ZC)

given the parent information MP ,ZP ,NP is

p(h,MC,ZC |T ,MP ,ZP ,RL,RR,NP )

= p(h|NP ,RL,RR)(10)

× (
I (kill = 0)P

(M)
MP ,MC

(T |R)P
(Z|h)
ZP ,ZC

(T ) + I (kill = 1)
)
,

where P
(M)
MP ,MC

(T |R) is the transition probability for the number of mismatches

changing from MP to MC during time T , and P
(Z|h)
ZP ,ZC

(T ) is the transition proba-
bility for the presence of cutters changing from ZP to ZC during time T .

4.2. Modeling of AFLPs in a tree. A rooted binary tree is used to describe the
evolutionary history of AFLP markers. Our likelihood calculation requires a prior
distribution for the state at the root. To account for the fact that loci producing
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TABLE 3
An example of observable AFLP data

50 51 52

Taxon 1 1 1 0
Taxon 2 0 1 1
Taxon 3 1 0 0

markers are very atypical in the genome relative to random DNA segments that
do not produce markers, we assume that each locus that produces one or more
markers in the data would have produced an AFLP marker at some time in the
lineage ancestral to the common ancestor of all taxa. We do not assume this time
to be the same for each locus. So for each locus, we attach an edge from the root to
an ancestor A with a locus-specific length and assume that at node A the process
begins with zero mismatches and without cutters in the intermediate region. Then
the number of edges is E = 2T − 1, and the number of nodes is N = 2T , where
T is the number of taxa. We assume that the number of loci is random and that
all loci share the same rooted tree topology. We also assume that fragments at
different loci evolve independently.

Given an evolutionary history with K loci, we specify a K × T × 2 ma-
trix Y to describe the markers produced by each locus. Elements yki1 and yki2
(k = 1,2, . . . ,K , i = 1,2, . . . ,T ) denote the AFLP value and fragment length for
the ith taxon at the kth locus, respectively. There are three possible values for yki1:
1, 0 and −1. Element yki1 = 1 indicates that the ith taxon produces a marker with
length yki2 at the kth locus. When yki1 = 0, it indicates that the ith taxon retains
the potential to produce a marker at the kth locus, but does not produce a marker
due to either mismatches in the end regions or cutters in the intermediate region.
And yki1 = −1 represents that there is a killing event in the evolutionary history of
taxon i at locus k. If we let xij denote the observed AFLP marker value for the ith
taxon and the j th band, xij = 1 (or 0) indicates the presence (or absence) of the j th
marker in the ith taxon, then there could be multiple three dimensional K ×T × 2
(K could be different) matrices Y that match the observed AFLP data X. For ex-
ample, (11) and (12) are two assignments for the data set X in Table 3 with 2 and 3
loci, respectively, where Yk·· represents the assigned AFLP values and lengths for
all taxa in the kth locus:

Y1·· =
⎡
⎣ 1 50

1 51
1 50

⎤
⎦ , Y2·· =

⎡
⎣ 1 51

1 52
0 51

⎤
⎦ .(11)

Y1·· =
⎡
⎣ 1 50

1 51
1 50

⎤
⎦ , Y2·· =

⎡
⎣ 1 51

1 51
0 51

⎤
⎦ , Y3·· =

⎡
⎣ 1 51

1 52
0 51

⎤
⎦ .(12)
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Before calculating the likelihood of the indel history and substitution history for
a tree, we mention a difference between the substitution-only model in Luo, Hipp
and Larget (2007) and this Sub-ID model in terms of the distribution of number
of mismatches and presence of cutters at the root of a tree. Luo, Hipp and Larget
(2007) assume stationary distributions for these attributes at the tree root, but the
Sub-ID model does not. The Sub-ID model, for every locus, assumes an ancestral
node A for the root and this node A contains a fragment with the corresponding
end regions for the locus, where there are no mismatches in the end regions and
no cutters in the intermediate region. Hence, no killing event ever happens along
the ancestral edges of this node. Thus, one more edge from the root, together with
node A, is attached in the tree under the Sub-ID model. The attached edge is as-
sumed to have an exponential length a priori. Indel and substitution events happen
along this edge, and hence determine the length of the fragment, the number of
mismatches and the presence of cutters for the root, whose distributions are not
stationary. We introduce this change in the model in part to account for the se-
lection bias of considering only genomic loci that produce markers in some of the
taxa of interest and also because modeling killing events does not leave a stationary
distribution.

4.3. Likelihood calculation. Given the number of loci K , let hid = (h
(1)
id , h

(2)
id ,

. . . , h
(K)
id ) and hsub = (h

(1)
sub, h

(2)
sub, . . . , h

(K)
sub ) refer to the indel history and sub-

stitution history, respectively, over all loci. For any particular locus k, h
(k)
id =

(h
(k)
id,e1

, h
(k)
id,e2

, . . . , h
(k)
id,eE

) denotes the indel history over all edges of the tree, and

h
(k)
sub = (M

(k)
0 ,M

(k)
1 , . . . ,M

(k)
N ,Z

(k)
0 ,Z

(k)
1 , . . . ,Z

(k)
N ) denotes the number of mis-

matches and presence/absence of cutters for all nodes. Here E and N are the num-
ber of edges and nodes, respectively. Let (RL,RR) = ((R

(1)
L ,R

(1)
R ), (R

(2)
L ,R

(2)
R ),

. . . , (R
(K)
L ,R

(K)
R )) be the lengths of the left and right end regions, and NA =

(N
(1)
A ,N

(2)
A , . . . ,N

(K)
A ) be the fragment lengths at the attached node for all

loci. Under the assumption of independent loci, we get the likelihood of in-
del and substitution histories for the fixed tree topology τ and edge lengths
te = (t1, t2, . . . , tE ):

p
(
hid,hsub

∣∣ τ, te,K,RL,RR,NA
)

(13)

=
K∏

k=1

p
(
h

(k)
id , h

(k)
sub

∣∣ τ, te,R
(k)
L ,R

(k)
R ,N

(k)
A

)
,

which is the product of likelihoods over all loci. For a particular locus k, the likeli-
hood is the product of likelihoods of indel and substitution history over all edges:

p
(
h

(k)
id , h

(k)
sub

∣∣ τ, te,R
(k)
L ,R

(k)
R ,N

(k)
A

)
(14)

= ∏
e

pe

(
h(k)

e ,M
(k)
C(e),Z

(k)
C(e)

∣∣ te,M
(k)
P (e),Z

(k)
P (e),R

(k)
L ,R

(k)
R ,N

(k)
P (e)

)
.
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For each edge e, the likelihood pe(h
(k)
e ,M

(k)
C(e),Z

(k)
C(e)|te,M(k)

P (e),Z
(k)
P (e),R

(k)
L ,R

(k)
R ,

N
(k)
P (e)) is calculated by formula (10) if none of the ancestral edges have killing

events. Otherwise, the likelihood for this edge is 1 since all possible events could
happen along it and the events are not tracked. C(e) and P(e) denote the child and
parent node of edge e, respectively. Length N

(k)
P (e) is determined by N

(k)
A and the

indel history over the ancestral edges of P(e).
In the process of AFLP production, if primer pairs with different additional

bases are chosen in selective amplification, we get different AFLP data sets and we
call a data set from a primer pair a plate. If the AFLP data are from multiple plates,
under the assumptions of the Sub-ID model, we know that markers from different
plates are independent. Then the likelihood of indel and substitution histories over
the whole tree is the product of likelihoods like (13) over all plates.

5. Bayesian structure. We are interested in the posterior distribution of
topologies. Let X be the observed AFLP data and Y denote a three dimensional
matrix that could produce X, as described in Section 4.2. Multiple matrices Y cor-
respond to one observed data X. If we specify the prior for topology τ and edge
lengths te = (t1, t2, . . . , tE ), we know that P(τ, te|X) ∝ P(τ, te)P (X|τ, te). But
we cannot get the likelihood P(X|τ, te) analytically, which involves the integration
over all possible indel and substitution histories along the tree. So we use data aug-
mentation and consider instead the posterior p(τ, te,K,RL,RR,NA,hid,hsub|X).
By Bayes’ rule,

p(τ, te,K,RL,RR,NA,hid,hsub|X)

∝ p(τ, te,K,RL,RR,NA) × p(hid,hsub|τ, te,K,RL,RR,NA)(15)

× p(Y |τ, te,K,RL,RR,NA,hid,hsub) × p(X|Y),

where p(Y |τ, te,K,RL,RR,NA,hid,hsub) takes value 1 or 0 depending on
whether the data produced by the indel history hid and substitution history hsub
are consistent with the assignment of AFLP values Y or not, and p(X|Y) takes
value 1 or 0 depending on whether the assigned AFLP values Y produce markers
consistent with the original data set X or not. So, when we specify the priors for
(τ, te,K,RL,RR,NA), with the description of the model and likelihood calcula-
tion in the previous section, we can use an MCMC approach to infer the posterior
for topology and edge lengths.

5.1. Prior specification. The topology τ , edge lengths te and number of loci K

are assumed to be independent a priori. The prior for the topology is assumed to
be uniform over all possible rooted binary tree topologies and the lengths for all
edges except the edge attached to the root are mutually independent exponential
random variables with a common mean γ . The attached edge length is exponential
with mean ν. We consider two separate models for the set of loci in the ancestral
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genome that are capable of producing markers. The general model includes a set
of ancestral loci that evolve to produce the observed data, but may contain some
loci that produce no markers in the extant taxa. In contrast, the restricted model
includes a restricted set of loci, each of which evolves to produce at least one
marker in one extant taxon. We take a uniform distribution on a range as a prior
for the number of loci KG in the general model. The effect of the range on the
inference is examined in Section 7. Under the restricted model, we take a negative
binomial distribution as a prior for the number of loci KR . The number of markers
is taken as an empirical estimate of the mean, and we take a large variance for
the negative binomial distribution. We will compare the inferences from these two
models in Section 7.

Since we assume that the loci are independent, given the number of loci K

(either KG under the general model or KR under the restricted one), the pri-
ors for (R

(1)
L ,R

(1)
R ), (R

(2)
L ,R

(2)
R ), . . . , (R

(K)
L ,R

(K)
R ) are independent, and so are

N
(1)
A ,N

(2)
A , . . . ,N

(K)
A . For each locus k, the lengths of the end regions (R

(k)
L ,R

(k)
R )

take values {(7,9), (9,7), (9,9)} with expected proportions 16 : 16 : 1. The frag-
ment length N in the intermediate region has approximately a geometric distribu-
tion with rate ρ = 17/46 under the approximation that {I (4)

i } and {I (6)
i } are inde-

pendent [Luo, Hipp and Larget (2007)], where I
(4)
i indicates the presence of se-

quence “TTAA” for the four bases starting at position i for i = 1,2, . . . ,N −3, and
I

(6)
i indicates the presence of “GAATTC” for the six bases starting at position i for

i = 1,2, . . . ,N − 5. Assume that the observable marker length is restricted within
a range between Nmin and Nmax. We take a mixture distribution with following
form as a prior for N

(k)
A :

p(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − w

2

ρ(1 − ρ)Nmin−N−1

1 − (1 − ρ)Nmin−1 , if N < Nmin;

w
ρ(1 − ρ)N−Nmin

1 − (1 − ρ)Nmax−Nmin+1 , if N ≥ Nmin and N ≤ Nmax;

1 − w

2
ρ(1 − ρ)N−Nmax−1, if N > Nmax.

(16)

Let Geom(ρ) and TrGeom(ρ,N) represent a geometric distribution with rate ρ

and a truncated geometric distribution truncated at N , respectively. A random
variable following a TrGeom(ρ,N) takes value x (x = 1,2, . . . ,N ) with prob-
ability ρ(1 − ρ)x−1/(1 − (1 − ρ)N). Then the three distributions in (16) are
Nmin − TrGeom(ρ,Nmin − 1) on {1,2, . . . ,Nmin − 1}, a geometric distribution
Geom(ρ) restricted on {Nmin,Nmin + 1, . . . ,Nmax} and a shifted geometric distri-
bution Geom(ρ) + Nmax on {Nmax + 1,Nmax + 2, . . .}.

6. MCMC approach. We sample from our model posterior p(τ, te,K,RL,

RR,NA,hid,hsub|X) using reversible jump Markov chain Monte Carlo
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(RJMCMC) [Green (1995, 2003)]. The states that we need to update include the
number of loci K , the assignment of AFLP values Y , the lengths of the end regions
(RL, RR), the tree topology τ , edge lengths te, the indel history hid and substitution
history hsub. The updates involving indel histories and the number of loci change
the dimension of state space, and we follow Green (1995) to propose reversible
jump updates and calculate the acceptance probabilities. Our MCMC algorithm
employs a deterministic-scan line Metropolis-within-Gibbs [Tierney (1994)] ap-
proach. Fixing the topology and edge lengths, we update the number of loci by
adding a new locus (including new indel and substitution histories) or deleting an
existing locus (including the old indel and substitution histories for this locus).
Fixing the number of loci K , we update the assignment of AFLP values Y , the
lengths of the end regions (R

(k)
L ,R

(k)
R ) and fragment length N

(k)
A for each locus

k = 1,2, . . . ,K . Fixing K , (RL,RR) and Y , we update the indel history h
(k)
id and

substitution history h
(k)
sub for each locus k = 1,2, . . . ,K . Except for the substitution

status, all other updates involve proposing new indel histories compatible with the
AFLP data. We will focus on the update of indel histories on a single edge, given
whether or not the history contains a killing event. This is the essential part of most
updates involving indel histories. Luo (2007) describes all the updates in detail.

6.1. Update an indel history without killing events. We denote the edge length
as T . Updating an indel history without killing events, we need to propose a new
history containing no killing events with fragment length N0 and NT at the parent
and child node, respectively. The idea is to first sample a potential time for the
next indel event from an exponential distribution with a rate that accounts for the
rates of indel events in the intermediate region. If the cumulative time is less than
the edge length T , we propose an insertion or deletion, according to their rates in
the intermediate region, that does not destroy the end regions; otherwise, we check
whether the fragment length matches NT or not. If the new fragment length after
these proposed indel events is not NT , we propose an additional event to match the
length. The detailed proposal is described in the Appendix.

If we let k be the number of indel events proposed, and let h = (ti ,wi, si, li, i =
1, . . . , k), then the proposal density under this scheme is

q(h) = exp

(
−

k−1∑
i=1

ζi(ti − ti−1)

)

×
k−1∏
i=1

{(
I (wi > 0)λ + μI (wi < 0)

1 − (1 − r)RL+Ni−1−si

)
g(li)

}

× exp
(−ζk(tk+1 − tk−1)

)
× 1

tk+1 − tk−1
×

(
I (wk > 0)

Nk−1 + 1
+ I (wk < 0)

Nk + 1

)
(17)
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+ exp

(
−

k+1∑
i=1

ζi(ti − ti−1)

)

×
k∏

i=1

{(
I (wi > 0)λ + μI (wi < 0)

1 − (1 − r)RL+Ni−1−si

)
g(li)

}
,

where ζi = (Ni−1 + 1)λ + Ni−1μ, and g(·) denotes the probability mass of a geo-
metric distribution with mean 1/r . The first term corresponds to the case that the
last event is specifically proposed to match NT . The second one corresponds to
the case when the proposed k events happen to match NT . Letting the new and old
indel histories be h′ and h, respectively, the Jacobian of transformation is 1 [Green
(1995)], and the acceptance probability is

min
{

1,
p(h′|N0)

p(h|N0)

q(h)

q(h′)

}
,(18)

where the likelihoods p(h′|N0) and p(h|N0) can be calculated according to for-
mula (8), and the proposal density is given in (17).

6.2. Update an indel history containing a killing event. To propose an indel
history containing a killing event, we repeatedly propose indel events along the
edge according to the likelihood. If a killing event is proposed, then we stop. If no
killing event is proposed when the cumulative time exceeds the edge length, we
propose to add one killing event after the last event where the cumulative time is
less than the edge length. The added killing event takes any of the four types −1R ,
−1P , −1N and 1R as described in Table 2 with probabilities proportional to their
rates. Suppose that k events h = (ti,wi, si, li , i = 1, . . . , k) are proposed. Then the
proposal density is

q(h) = exp

(
−

k∑
i=1

ηi(ti − ti−1)

)
k∏

i=1

{(
I (wi > 0)λ + I (wi < 0)μ

)
g(li)

}

+ exp

(
−

k−1∑
i=1

ηi(ti − ti−1)

)
× exp(−ηk(tk+1 − tk−1))

tk+1 − tk−1
(19)

×
k∏

i=1

{(
I (wi > 0)λ + I (wi < 0)μ

)
g(li)

}

× (1 − r)(−RL−Nk−1+sk−1)×I (wk=−1N).

Letting the new and old indel histories be h′ and h, respectively, the acceptance
probability is given by (18), where the likelihoods p(h′|N0) and p(h|N0) can be
calculated according to formula (9), and the proposal densities are given in (19).
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7. Simulation study. We study the effects of different prior settings on our
Bayesian inference with several simulated data sets of distinct number of taxa or
loci. We illustrate the results from one simulated data. The results are consistent
with other simulation studies. Table 4 contains one simulated data set from topol-
ogy ((A,B), ((C,D), (E,F ))) and ten loci, which leads to the observed AFLP
data given in Table 5. To see the effects of the priors for the number of loci on the
inference, we take three priors: KG ∼ Unif{1,2, . . . ,15}, KG ∼ Unif{1,2, . . . ,50}
and

KR ∼ NegBinom(μK,1000),(20)

where μK is taken as the number of markers for the data set. To study the effect of
priors for fragment length at the attached node NA, we take two priors: (16) with
w = 0.95 and prior

p(N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − w

2

ρ(1 − ρ)Nmin−N−1

1 − (1 − ρ)Nmin−1 , if N < Nmin;

w

Nmax − Nmin + 1
, if N ≥ Nmin and N ≤ Nmax;

1 − w

2
ρ(1 − ρ)N−Nmax−1, if N > Nmax;

(21)

with w = 0.9.
Table 6 summarizes the inferences for topologies and the number of loci un-

der different prior settings. In the six simulations under the Sub-ID model, the

TABLE 4
An example of simulated data Y from 10 loci. For any locus k and any taxon i, marker information
is shown with two values, where the first (yki1 = 1, 0 or −1) indicates whether or not the ith taxon

produces a marker with length yki2 (the second value). Loci 1, 5 and 6 do not produce markers.
Loci 7, 8 and 9 each produce two markers (locus-splitting)

Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

A 0 54 1 61 1 76 1 111 0 122
B 0 54 1 61 1 76 1 111 0 122
C 0 54 1 61 1 76 1 111 0 122
D 0 54 1 61 1 76 1 111 0 122
E 0 54 1 61 0 76 0 111 0 122
F 0 54 1 61 0 76 0 111 0 122

Locus 6 Locus 7 Locus 8 Locus 9 Locus 10
A 0 127 0 135 1 216 1 219 1 412
B 0 127 0 135 1 216 1 219 1 412
C 0 127 1 136 1 215 1 221 0 412
D 0 127 1 136 1 215 1 221 0 412
E −1 — 1 137 1 215 0 221 0 410
F −1 — 1 137 1 215 0 221 0 410
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TABLE 5
The observable AFLP data X from the simulated data in Table 4

Marker length 61 76 111 136 137 215 216 219 221 412

A 1 1 1 0 0 0 1 1 0 1
B 1 1 1 0 0 0 1 1 0 1
C 1 1 1 1 0 1 0 0 1 0
D 1 1 1 1 0 1 0 0 1 0
E 1 0 0 0 1 1 0 0 0 0
F 1 0 0 0 1 1 0 0 0 0

true topology and the true number of loci producing the AFLP data have the
highest posterior probabilities. For comparison, the substitution-only model sup-
ports (((A,B), (C,D)), (E,F )) with higher posterior probability than the true
topology, and infers clade ((A,B), (C,D)) with higher frequency (0.501) than
((C,D), (E,F )) (0.333). In an examination of the effects of priors (16) and (21)
for the fragment size at the ancestral node NA, we find that this choice had no de-
tectable effect on the posterior distribution of the tree topology, but that the poste-
rior distribution of the inferred number of loci KR , that produce markers under the

TABLE 6
Posterior inferences (in %) for topologies and KR under different prior settings. Values in

parentheses are standard errors (in %). True topology and KR are shown in bold face. NA,G and
NA,U represent the priors for NA as given by (16) and (21), respectively

KG ∼ KG ∼ KR ∼
Unif{1,2, . . . ,15} Unif{1,2, . . . ,50} NB(10,1000)

NA,U NA,G NA,U NA,G NA,U NA,G

Sub-
model

Topology
((A,B),((C,D),(E,F))) 32.4 (0.3) 31.5 (0.4) 28.7 (0.1) 31.0 (1.1) 33.8 (0.2) 32.7 (0.5) 16.3 (0.1)

((A,B),((C,(E,F)),D)) 20.1 (0.3) 19.3 (0.2) 20.4 (0.0) 19.9 (0.3) 20.3 (0.1) 21.1 (0.2) 4.8 (0.1)

((A,B),(C,(D,(E,F)))) 20.8 (0.5) 19.5 (0.5) 20.4 (0.4) 19.4 (0.5) 20.6 (0.4) 21.4 (0.2) 5.0 (0.1)

(((A,B),(E,F)),(C,D)) 8.7 (0.6) 10.5 (0.4) 11.0 (0.9) 11.7 (1.5) 10.0 (0.7) 9.9 (0.5) 6.9 (0.1)

(((A,B),(C,D)),(E,F)) 3.7 (0.4) 4.3 (0.3) 5.9 (0.3) 4.9 (0.2) 4.4 (0.3) 4.4 (0.1) 21.3 (0.2)

((A,(B,(E,F))),(C,D)) 0.7 (0.0) 0.8 (0.1) 1.1 (0.1) 0.8 (0.1) 0.3 (0.1) 0.4 (0.0) 0.1 (0.0)

(((A,(E,F)),B),(C,D)) 0.7 (0.1) 0.7 (0.1) 1.0 (0.1) 1.0 (0.0) 0.5 (0.1) 0.4 (0.0) 0.2 (0.0)

((A,((C,D),(E,F))),B) 1.4 (0.1) 1.3 (0.1) 0.9 (0.0) 0.8 (0.3) 0.7 (0.0) 0.7 (0.1) 2.3 (0.0)

(A,(B,((C,D),(E,F)))) 1.4 (0.1) 1.3 (0.1) 0.9 (0.1) 1.0 (0.4) 0.8 (0.1) 0.7 (0.1) 2.3 (0.0)

Cumulative prob.
(%) 90.7 89.4 90.2 90.6 92.3 92.4 59.2

KR

7 93.7 (0.3) 87.8 (0.1) 89.2 (0.5) 84.1 (0.3) 91.0 (0.3) 85.4 (0.4) —
8 6.1 (0.3) 11.4 (0.1) 10.1 (0.4) 14.4 (0.2) 8.7 (0.2) 13.4 (0.4) —
9 0.2 (0.0) 0.7 (0.0) 0.7 (0.1) 1.3 (0.1) 0.3 (0.1) 1.2 (0.1) —
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TABLE 7
Proportions (in %) of pairs of markers produced by a single locus in MCMC samples with different
priors for the number of loci and NA. Pairs of markers in italized face are produced by single loci.

Values in parentheses are the estimated Monte Carlo standard errors for proportions (in %)

(136,137) (215,216) (219,221) (215,219) (216,221)

Unif{1,2, . . . ,15}, NA,U 99.63 (0.1) 98.30 (1.1) 96.18 (1.1) 1.20 (1.1) 1.04 (1.0)
Unif{1,2, . . . ,15}, NA,G 99.22 (0.0) 97.42 (1.8) 94.45 (1.0) 1.62 (1.5) 1.53 (1.5)
Unif{1,2, . . . ,50}, NA,U 98.92 (0.1) 96.61 (1.1) 92.77 (1.1) 2.47 (1.0) 2.11 (1.0)
Unif{1,2, . . . ,50}, NA,G 98.69 (0.3) 97.67 (1.0) 94.08 (1.1) 1.10 (0.8) 0.86 (0.8)
NB(10,1000), NA,U 99.52 (0.1) 96.31 (0.0) 93.35 (0.3) 2.79 (0.2) 2.37 (0.1)
NB(10,1000), NA,G 99.35 (0.1) 96.67 (0.8) 93.19 (0.7) 2.27 (0.8) 1.93 (0.8)

restricted model, is relatively sensitive to this choice of prior distribution. Chang-
ing the prior for the number of loci does not affect the inference for topologies and
KR greatly.

The Sub-ID model also allows us to infer which pairs of markers are possi-
bly produced by single loci. We know that markers from each of the three pairs
(136,137), (215,216) and (219,221) are homologous. From the MCMC sam-
ples, we obtain the proportions that each pair is produced by a single locus and list
them in Table 7. All six simulations infer that each of the three pairs of markers
(136,137), (215,216) and (219,221) is produced by a single locus with probabil-
ities over 92% and that each of the two pairs of markers (215,219) and (216,221)

is much less likely homologous (with probabilities less than 3%). We know that
these pairs are actually produced by different loci.

7.1. Sensitivity of the Jukes–Cantor assumption. We assume the Jukes–Cantor
model for nucleotide substitution, which allows us to analytically calculate
the transition probabilities for the number of mismatches (M) and the pres-
ence/absence of cutters (Z). This assumption is the simplest model for nucleotide
substitution and the real evolutionary process may have different base frequen-
cies and transition/transversion rates. We can study the robustness of our Sub-ID
model by applying our phylogenetic inference approach to data simulated from
insertion/deletion and nonJC model for nucleotide substitution. We first consider
the Tamura–Nei (TN) model [Tamura and Nei (1993)] with rate variations among
sites. The TN model assumes different base frequencies and allows different rates
for transversion, transition between purines and transition between pyrimidines.
The substitution rates at different sites are assumed to be different and indepen-
dently follow a gamma distribution (TN + 
 model) [Yang (1993, 1994)]. Here,
we assume the rates to follow Gamma(0.2,0.2) and specify the base frequencies
according to the nucleotide proportions in the genome of rice. Denote the model
with the insertion/deletion process as described in this paper and with the TN + 


model for substitution process as TN + 
 + ID model. We apply our methodology
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TABLE 8
Posterior probabilities (in %) for topologies analyzing data simulated from TN + 
 + ID model.

Values in parentheses are Monte Carlo standard errors (in %) estimated from multiple
independent MCMC runs

Sub-ID model

KG ∼ Unif KR ∼ NB Sub-model

((A,B),((C,D),(E,F))) 52.0 (4.7) 54.1 (4.0) 21.8 (0.1)

(((A,B),(C,D)),(E,F)) 14.7 (0.7) 17.5 (0.1) 21.3 (0.3)

(((A,B),(E,F)),(C,D)) 9.1 (2.4) 13.7 (1.6) 15.2 (0.4)

((A,((C,D),(E,F))),B) 13.4 (1.2) 10.3 (1.5) 17.1 (0.1)

(A,(B,((C,D),(E,F)))) 5.9 (0.9) 3.3 (0.9) 3.5 (0.0)

Cumulative prob. (%) 95.1 98.9 78.9

to the AFLP data simulated from the TN + 
 + ID model to check the sensitivity
of the Jukes–Cantor assumption. We take (16) as the prior for the fragment length
at the attached node A and (20) or KG ∼ Unif{1,2, . . . ,1000} as priors for the
number of loci. The posterior probabilities of topologies from the Sub-ID model
with different priors for the number of loci are close (Table 8), with the negative
binomial prior (20) giving a little stronger support for the true topology (0.541)
than the uniform prior (0.520). For comparison, we list the posterior probabilities
inferred from the substitution-only model in Table 8, which are more diverse than
the inferences from the Sub-ID model. Posterior inference for the number of loci
KR are close from the two simulations (figures not shown). Applying the uniform
prior, we inferred the true values of KR (20 and 23 for two plates) with the highest
posterior probability. Using the negative binomial prior (20), we inferred 24 with
a little higher probability (0.363) than the true value (with probability 0.353) for
the second plate.

The previous results are consistent with results from the analysis of another data
set. Both studies inferred the true topology and the number of loci KR producing
markers with high probabilities, implying that our method seems to be robust to
likelihood model misspecification about the substitution process.

8. Case study. We applied our methodology to a data set with fourteen differ-
ent sedge species and two plates that include 62 and 64 markers, respectively. This
is a subset of a larger data set published in Hipp et al. (2006). The taxa with number
of individuals from each are as follows: Carex bebbii (1), C. bicknellii (1), C. festu-
cacea (2), C. normalis (2), C. oronensis (2), C. tenera var. echinodes (2), C. tenera
var. tenera (2), and C. tincta (2). The taxa chosen for this study represent a mor-
phologically cohesive clade, with two closely-related taxa as outgroup (C. bebbii
and C. bicknellii). Monophyly of the former is supported by neighbor joining (NJ)
and minimum evolution (ME) analyses on an expanded data set that includes all
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members of an eastern North American clade identified in a previous study using
nuclear ribosomal DNA sequence data. Some of the relationships within the group,
however, are not strongly supported using distance methods, which was one of the
interests in exploring the phylogeny of this group using a more realistic model of
character evolution.

We ran four Metroplis-Coupled MCMC procedures, each with three heated
chains and one cold chain, from different starting points. Each run had 1,000,000 it-
erations and we sampled every 100 iterations from the cold chain. It took about
130 hours to run a MCMCMC procedure. Most of the acceptance ratios are in the
range of [0.1,0.4], except that the updates of root position and the lengths of the
end regions (RL,RR) were accepted less frequently (around 0.08 or 0.09), and
the updates of AFLP specification (Y ) and indel histories without killing event are
more easily accepted (about 0.8 or 0.9). To assess convergence for continuous pa-
rameters, we computed Gelman–Rubin R statistics [Gelman and Rubin (1992)] for
sampled leaf edge lengths and indel parameters. Internal edge lengths cannot be
used since they do not necessarily retain definition across topologies. All statistics
are near 1 with deviation from 1 less than 0.05.

We summarize the sampled topologies with the priority consensus tree (Fig-
ure 2), which is a fully resolved tree built up by sorting groups in descending
order by posterior probabilities, and including clades under the restriction that
clades with lower probabilities do not contradict with those with higher probabili-
ties. For comparison, we include the consensus tree inferred with the substitution-
only model in Figure 2. In both simulations, individuals from the same species
were grouped together with probability over 54%, and both consensus trees con-
tain clade {C. festucacea, C. oronensis, C. tincta} with probability over 62%. We

FIG. 2. Priority consensus trees from Sub-ID model (right) and substitution-only model (left). Num-
bers represent posterior probabilities of each clade. The trees are rooted such that C. Bebbii is an
outgroup.
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FIG. 3. The first two most probable trees from the substitution-only model (a,b) and the Sub-ID
model (c,d).

will call this clade F/O/Ti. Both trees contain clade {C. tenera var. echinodes, C.
normalis} (denoted as Te/N) with small probabilities (27% for substitution-only
model and 30% for Sub-ID model). The two topologies differ in the grouping of
taxon C. bicknellii (denoted as Bi) and clade C. tenera var. tenera (denoted as Tt).
The substitution-only model first group Bi with clade F/O/Ti with probability 49%,
and take Tt as a sister group with clade Bi/F/O/Ti/Te/N, while the Sub-ID model
infers Bi as an outgroup of clade F/O/Ti/Te/N/Tt, which is consistent with the in-
ferences from Luo, Hipp and Larget (2007) using the NJ method, MrBayes method
or substitution-only model on a larger data set with 9 plates that take Bi as an out-
group of clade F/O/Ti/Te/N/Tt. The consensus tree from the Sub-ID model inferred
from the smaller data set with two plates has the same topology as the most proba-
ble tree (which is also the priority consensus tree) from the substitution-only model
(with probability 68.8%) applied on a larger data set with nine plates [see Figure 6
in Luo, Hipp and Larget (2007)].

The priority consensus tree from the Sub-ID model in Figure 2 is the most
probable tree [Figure 3(c)] and has posterior probability 6.4%. It has small sup-
port for clade Te/N (with posterior probability 30%), and clade Te/N is split in
the second most probable tree (with posterior probability 4.7%). The second most
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TABLE 9
Marker pairs produced by a single locus with high proportions in the MCMC samples. “Prob. (%)”
represents the percentage of the MCMC samples in which the marker pairs are produced by a single

locus, and “se (%)” shows the standard errors of the percentages

Plate 1 Plate 2

Markers 476 477 364 365 236 237 297 298 111 113 237 251 94 100 111 112 177 179 130 131

C. bebb 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1
C. bick 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1
C. fest1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0 0
C. fest2 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0
C. oron1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1
C. oron2 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1
C. tinc1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1
C. tinc2 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
C. norm1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
C. norm2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
C. echi1 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0
C. echi2 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1
C. tene1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
C. tene2 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0

Prob. (%) 77.03 76.47 26.97 24.98 21.27 16.96 64.74 63.03 43.71 27.14
se (%) 3.55 4.76 7.47 0.92 3.36 3.46 1.45 5.13 6.14 2.13

probable trees from both inferences [Figure 3(b,d)] have the same topology. For
the substitution-only model, the most probable tree [Figure 3(a)] differs from the
consensus tree by splitting clade Te/N.

The Sub-ID model allows us to infer which set of markers are possibly produced
by a single locus. Table 9 lists several pairs of markers for which our analysis
indicates evidence of potential locus-splitting. In addition, we get the probability
for each marker that it is a superposition. The probability ranges from 1.25% to
67.72%. On average, 17.23% of the markers are superpositions.

We can also infer the insertion and deletion rates relative to the substitu-
tion rate. Taking the substitution rate as 1 and applying priors r ∼ Unif(0,1),
μ ∼ Gamma(4,100) and β ∼ Beta(3,1) independently, where λ = μβ ∼
Gamma(3,100), we infer that the posterior means for insertion and deletion
rates are 0.025 and 0.031, with 95% credible intervals (0.013,0.041) and
(0.017,0.049), respectively. The 95% credible interval for r is (0.044,0.316).
While the substitution rate per site is much higher than the indel rate per site, both
substitution and indel processes are important for AFLP marker evolution. From
equations (3) and (7), first order approximations of the rates of events causing
marker loss or change are 1× (R +N/64) for substitutions and (λ+μ)× (R +N)

for indels. In this data set with an estimated combined indel rate of 0.056, indels
are expected to account for about 10% of changes in short fragments and more than
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half the changes in the longest fragment. The rate estimations may be sensitive to
prior specification, and we have not examined this possibility in detail.

9. Discussion. We have described a model for AFLP evolution involving both
nucleotide substitution and insertion/deletion, and have developed a Bayesian ap-
proach to infer phylogenies. Compared to the substitution-only model, modeling
the indel process relaxes the assumption that markers are independent and homol-
ogous. In addition to inferring the topology, we can infer the subset of markers
that are produced by a single locus in the MCMC samples and which set of mark-
ers are possibly homologous. Furthermore, our method provides an estimate of
the genome-wide indel rate relative to the substitution rate from AFLP marker
data. The phylogenetic inference based on the Sub-ID model takes more time and
can have smaller support for some clades than the Bayesian method based on the
substitution-only model of Luo, Hipp and Larget (2007). Since the Sub-ID model
is more complicated, the likelihood calculation is more time expensive and more
MCMC updates are needed. However, when we applied both methods to a subset
of a larger data set, and compared the inferred consensus trees with that obtained
by applying the substitution-only model on a larger data set [the tree obtained from
Luo, Hipp and Larget (2007)], the Sub-ID model inferred the same consensus tree
as the substitution-only model on the larger data set, while the substitution-only
model infers different consensus trees on the smaller and larger data sets. The Sub-
ID model better captures the phylogenetic information contained in AFLP marker
data.

We considered a general and a restricted model for the number of loci. Different
priors on the number of loci KG in the general set or KR in the restricted set do
not affect the inference of topologies greatly, but have more effect on the posterior
inference of the number of loci producing markers. Simulation study shows that
our method recovers the true topology and true number of loci producing mark-
ers with high probability. Using a uniform prior of KG, we can further infer the
posterior distribution for the number of loci at node A. The inferences of KG

are indistinguishable when different uniform distributions are applied with ranges
large enough (figure not shown). Using a negative binomial distribution as a prior
for KR , MCMC simulations mix faster than those with a uniform prior for KG.
Different priors on the fragment length NA at node A have more effect on the
inference of KR than on topology.

Assumption of the Jukes–Cantor model for nucleotide substitution simplifies
the model in that the mismatch processes M(t) for the end regions is Markov-
ian and the process Z(t) for the intermediate region is approximately a Markov
process. Hence, we do not need to record all nucleotide bases in a fragment with
length N , but just keep the number of mismatches in the end regions and the pres-
ence/absence of cutters in the intermediate region. Thus, if we consider the substi-
tution process only, we reduce the number of states from N to 2, and reduce the
number of all possible values for the states from 4N to R+3, where R is the length
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of end regions. The real substitution process may not have equal base frequencies
and transition rates, which are what the Jukes–Cantor model assumes. The sensi-
tivity study by inferring topologies from data simulated from a nonJC model (like
TN +
 + ID) reveals that our Bayesian methodology is robust and can recover the
true topology and the number of loci producing markers KR .

When an end region is destroyed by a killing event in the SubID model, it is
destroyed forever and we have not allowed the rebirth of killed fragments. Hence,
the indel process is nonreversible and a rooted tree is required to model the indel
history. To know whether or not a new indel or substitution event remedies an end
region and changes a killing to a nonkilling event, we need to know the bases in
the destroyed end region and its neighboring bases, but this information is unob-
tainable in the current Sub-ID model since we do not record the full sequences.
Additional effort is needed to build up a model allowing birth of new AFLP mark-
ers.

The expensive computational cost of our method limits the scope of the data set
to which our method may be applied. The Bayesian approach described in Luo,
Hipp and Larget (2007) requires large computation [calculations of 2 × 2, 34 × 34
and 38 × 38 matrices for processes Z(t) and M(t) on each branch] for likelihood
calculations, and a full computation for each marker must be carried out since
marker length is used in the model and computations among markers with iden-
tical patterns cannot be shared. In addition to this, the Bayesian method based on
the Sub-ID model faces more computation problems. We can calculate the likeli-
hood of a topology under the substitution-only model using the pruning algorithm
[Felsenstein (2004)], but we cannot do this under the Sub-ID model since the like-
lihood involves the integration over all possible substitution and indel histories. We
use the data augmentation technique and MCMC method to avoid the direct calcu-
lation of likelihood of a topology, but they raise new questions of proposing good
indel histories and changing topologies. When a topology is proposed to change,
we must propose new indel and substitution histories to fit the new topology. In
our implementation, to increase the acceptance rate, we propose a new topology
with a local update and propose new indel histories by keeping as much of the old
histories as possible so that the new and old histories have closer likelihoods and
proposal densities and the acceptance probability is closer to 1. Broad application
of our Bayesian approach based on the Sub-ID model in phylogenetic inference
relies on better MCMC update algorithms and the improvement of software im-
plementation.

It may be important to know the relative phylogenetic information contained in
AFLP data as opposed to aligned sequence data. This is a complicated issue, the
solution of which will depend on factors such as the overall rate of substitutions,
substitution rate variation among different genes, genome size, the relative rate of
indels to substitutions, the nature of the indel process, and specifics of the underly-
ing tree among other considerations. AFLP marker data is relatively inexpensive,
but it remains unclear, in general, how the larger AFLP data set would compare to
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a smaller DNA sequence available at equal cost. We speculate that AFLP markers
which measure changes on a genomic scale may be most advantageous relative to
aligned DNA sequences in situations where the rate of substitution in standardly
available single gene sequences is so low that the aligned sequences contain very
little information.

APPENDIX: PROPOSE AN INDEL HISTORY WITHOUT KILLING EVENTS

Set t0 = 0, i = 0;
Repeat:

set ζi+1 = (Ni + 1)λ + Niμ, �t ∼ Exp(ζi+1).
if ti + �t < T , do:

ti+1 = ti + �t ;
with probability (Ni + 1)λ/ζi+1, propose an insertion as the (i + 1)th
event:

wi+1 = 1;
si+1 ∼ Unif{RL,RL + 1, . . . ,RL + Ni};
li+1 ∼ Geom(r);

with probability Niμ/ζi+1, propose a deletion as the (i + 1)th event:
wi+1 = −1;
si+1 ∼ Unif{RL,RL + 1, . . . ,RL + Ni − 1};
li+1 ∼ TrGeom(r,Ni + RL − si+1);

Ni+1 = Ni + wi+1 × li+1;
set i ← i + 1.

else, do:
if Ni = NT , Stop.
else, do:

ti+1 ∼ Unif(ti, T );
if Ni < NT , set the last event as an insertion:

wi+1 = 1, li+1 = NT − Ni , si+1 ∼ Unif{RL,RL + 1, . . . ,RL +
Ni}, Ni+1 = NT ;

else, set the last event as a deletion:
wi+1 = −1, li+1 = Ni − NT , si+1 ∼ Unif{RL,RL + 1, . . . ,RL +
NT }, Ni+1 = NT ;

Stop.

SUPPLEMENTARY MATERIAL

AFLP data for sedges (DOI: 10.1214/08-AOAS212SUPP). The data contains
126 markers from 2 plates for 14 species. The first column denotes the marker
length. The names of these species are abbreviated as: Be (Carex bebbii), Bi (C.
bicknellii, F (C. festucacea), N (C. normalis), O (C. oronensis), Te (C. tenera var.
echinodes), Tt (C. tenera var. tenera) and Ti (C. tincta).

http://dx.doi.org/10.1214/08-AOAS212SUPP
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