
Markov Process for 1 discrete trait

Basic case: a single trait Y, only 2 states: 0,1.

Markov process: needs

- \triangleright transition rates q_{01} (gain) and q_{10} (loss)
- \triangleright probability of each state at the root: π_0 , π_1

Similar to evolutionary models for DNA, but only a single 'column' of data.

1. Maximum Likelihood: estimate rates

Choose gain (q_{01}) and loss (q_{10}) rates so as to maximize the likelihood:

P(tip data | rates $q_{01} q_{10}$, prior frequency at root)

Possible prior frequencies at the root:

- \triangleright equal: $\pi_0 = \pi_1 = 0.5$
- \succ equilibrium: $\pi_0 = q_{10}/(q_{10} + q_{01})$, $\pi_1 = q_{01}/(q_{10} + q_{01})$

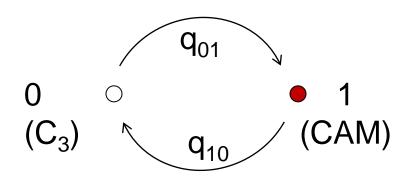
Possible constraints on rates:

- **≻**none
- \triangleright equal: $q_{01} = q_{10}$
- Fixed value for gain rate. Ex: $q_{01} = 0.1$

2. Maximum Likelihood: ancestral states

Conditioned on the estimated rates, estimate ancestral states using the posterior probabilities:

P(0 at node j | tip data, rates q_{01}, q_{10} , prior π_0, π_1 at root)


P(1 at node j | tip data, rates q_{01}, q_{10} , prior π_0, π_1 at root)

and plot these as a pie chart.

Choices made in Silvera et al.

In Silvera et al. and Mesquite:

"Mk1" = Markov, k-state trait, 1 parameter: $q_{01} = q_{10}$ "Asymmetric Mk" = Markov, 2-state trait, 2 parameters "bias" = q_{01}/q_{10} .Used the constraint bias<1 i.e. $q_{01} < q_{10}$

Choices made in Silvera et al.

Continuous data analysis:

"Correlated divergence analysis was performed by constructing a 0-intercept linear regression between divergence in trait 1 (δ^{13} C) and divergence in trait 2 (epiphytism) [...]. We used divergence width instead of independent contrasts as a measure of absolute trait radiation because the SD (divergence width) can be used when polytomies are present in the phylogeny)"

"divergence width" = SD across daughter nodes compared to their parent (Phylocom). For resolved nodes: divergence ~ absolute value of non-standardized contrast.

Markov Process for 2 discrete traits

Basic case: traits X and Y, 2 states each: 0,1.

Markov process: needs

- > transition rates q's
- \triangleright probability of each state at the root: π 's

(terrestrial,
$$C_3$$
) 0,0 Q_{13} Q_{21} Q_{24} Q_{42} (epiphyte, C_3) 1,0 Q_{43} Q_{43} 0,1 (terrestrial, CAM)

Maximum Likelihood

Same as with 1 trait: get rates (q values) that maximize the likelihood:

P(tip data | rates q's, prior frequency at root)

Possible prior frequencies at the root:

- \triangleright equal: $\pi_{00} = \pi_{10} = \pi_{10} = \pi_{11} = 0.25$
- \triangleright equilibrium: π = some function f(q's)
- ➤ For better accuracy or numeric stability: Fix small value for "first gain" rates. Ex: q₁₂= q₁₃= 0.1

Testing correlation with ML

►Independent evolution for the 2 traits: parallel arrows have equal rates:

$$q_{12} = q_{34}$$
, $q_{21} = q_{43}$, $q_{13} = q_{24}$, $q_{31} = q_{42}$

If <u>any</u> of these equalities does not hold, then correlated evolution.

Likelihood Ratio Test for correlation:

 ℓ_0 = logL(tip data | independence equalities enforced) ℓ_1 = logL(tip data | independence equalities NOT enforced)

Compare $2^*(\ell_1 - \ell_0)$ to a chi-square distribution.