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Phylogenetic methods for the analysis of species data are widely used in evolutionary studies. However, preliminary data trans-

formations and data reduction procedures (such as a size-correction and principal components analysis, PCA) are often performed

without first correcting for nonindependence among the observations for species. In the present short comment and attached

R and MATLAB code, I provide an overview of statistically correct procedures for phylogenetic size-correction and PCA. I also

show that ignoring phylogeny in preliminary transformations can result in significantly elevated variance and type I error in our

statistical estimators, even if subsequent analysis of the transformed data is performed using phylogenetic methods. This means

that ignoring phylogeny during preliminary data transformations can possibly lead to spurious results in phylogenetic statistical

analyses of species data.
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Phylogenetic methods for the statistical analysis of species data

have become widely accepted in recent years (e.g., Cheverud

et al. 1985; Felsenstein 1985; Grafen 1989; Harvey and Pagel

1991; Garland et al. 1992; Martins 1994; Hansen and Martins

1996; Hansen 1997; Butler et al. 2000; Hansen et al. 2008).

This is because biologists are aware that data for species may

be nonindependent due to shared history (Blomberg and Gar-

land 2002; Freckleton et al. 2002; Blomberg et al. 2003; Gar-

land et al. 2005; Revell et al. 2008). Although it has become

rare to find published studies in which the authors choose to ig-

nore phylogeny in their primary analysis, it is not uncommon

to see phylogeny effectively bypassed during preliminary statis-

tical data manipulations, such as size-correction and principal

components analysis (PCA). However, both standard linear re-

gression (the most common method of size-correction in evolu-

tionary ecology) and PCA assume that the sample consists of
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independent datapoints—an assumption that is frequently vio-

lated by phylogenetic data from species (Harvey and Pagel 1991;

Martins and Hansen 1997; Garland et al. 2005; but see Price

1997).

A relatively commonly used procedure for phylogenetic

statistical transformation of interspecific data was provided by

Garland et al. (1992). According to this procedure, we first cal-

culate standardized phylogenetically independent contrasts (fol-

lowing Felsenstein 1985). To size-correct, we then regress the

contrasts for each size-correlated variable on the contrasts for

size (conducting regression “through the origin,” i.e., without an

intercept term; Garland et al. 1992) and compute the residuals

as deviations between the predicted and estimated contrast val-

ues. To perform PCA, we first calculate the variance–covariance

or correlation matrix from our contrasts (again, without intercept

terms; e.g., Revell et al. 2007), then calculate its eigenvectors

and eigenvalues, and, finally, compute PC scores for contrasts in

the typical way (e.g., Ackerly and Donoghue 1998; Clobert et al.

1998).
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Although these methods should yield phylogenetically in-

dependent and size-corrected or rotated evolutionary differences,

they have two main disadvantages. The first is that it is difficult

or impossible to use these methods under non-Brownian mo-

tion (BM) models for the evolutionary process (although branch-

length transformations can be used to mimic some other evolu-

tionary processes, such as punctuational evolution; e.g., Martins

and Garland 1991; Garland et al. 1993; Pagel 1994). The sec-

ond disadvantage of size-correction and PCA on contrasts is that

the residuals or scores that are returned are residual evolutionary

differences between nodes rather than residual values for species

(i.e., they are associated with internal nodes in the tree rather than

with the species at the tips of the tree). This latter consideration

might not be a problem in some studies (e.g., if the residuals are

destined only to be analyzed by a linear regression and merely the

slope and significance of this secondary analysis are of interest).

However, many evolutionary analyses require the association of

size-corrected or rotated phenotypic values with tip taxa in the

tree. Types of analyses that might require transformed values for

tip species include (but are not limited to): the estimation of phy-

logenetic signal (Freckleton et al. 2002; Blomberg et al. 2003);

ancestral state reconstruction (Schluter et al. 1997); the phylo-

genetic analysis of variance (ANOVA) or analysis of covariance

(ANCOVA) (Garland et al. 1993); and phylogenetic regression in

which both slope and intercept (or prediction in the species space)

are of concern (Rohlf 2001).

In the present short comment, I describe statistically cor-

rect procedures for phylogenetic size-correction and PCA. Al-

though in some cases these procedures are developed elsewhere

(e.g., Garland and Ives 2000; Rohlf 2001; Blomberg et al. 2003),

they have not previously been presented in detail and in the ex-

plicit context of preliminary statistical data transformation. I also

use numerical simulations to examine the consequences of ig-

noring phylogeny in preliminary transformations prior to a sta-

tistical analysis by standard phylogenetic methods, such as in-

dependent contrasts followed by linear regression (Felsenstein

1985).

The purpose of this comment is almost wholly utilitarian, and

as such I have appended R (R Development Core Team 2008) and

MATLAB (The Mathworks 2006) code for the analyses described

herein. The inspiration for this comment comes from the frequent

questions posed to me by evolutionary biologists and ecologists

who are interested in phylogenetic methods for size-correction

and PCA, but unsure how to proceed.

Methods
In the present section, I describe correct procedures for phyloge-

netic size-correction and PCA. Three primary disclaimers must

accompany this material.

First, my presentation focuses on BM as a model for evo-

lution. Various authors have already pointed out that BM is an

inappropriate model under many circumstances (e.g., Felsen-

stein 1988; Hansen 1997; Butler and King 2004; Hansen et al.

2008), although it is a suitable model for genetic drift and some

types of natural selection (e.g., O’Meara et al. 2006; Revell and

Harmon 2008). In the present comment, I use BM as my model

for the evolutionary process—however, as noted below, the meth-

ods described herein can theoretically be applied equally well

using other evolutionary models (e.g., Pagel 1999; Butler and

King 2004; Hansen et al. 2008).

Second, I focus on a single, very common method of

size-correction in evolutionary studies. This is the method in

which we obtain residuals from a least-squares regression of the

size-dependent trait against body size (Gould 1966; Jolicoeur

et al. 1984; e.g., Glossip and Losos 1997; Hulsey et al. 2007;

Revell et al. 2007). However, size-correction can be performed

by many methods, only one of which is detailed herein, and

an extensive literature exists on procedures for size-correction

(e.g., Humphries et al. 1981; Jolicoeur et al. 1984; Rohlf and

Bookstein 1987; Garcı́a-Berthou 2001; McCoy et al. 2006). My

use of a linear regression for size-correction should not be con-

sidered an endorsement of this method. Garcı́a-Berthou (2001)

and Freckleton (2002, 2009) both caution against using size-

corrected residuals as data for subsequent statistical analyses, and

instead recommend that size be included as a covariate (Garcı́a-

Berthou 2001) or as an additional independent variable in a mul-

tiple regression (Freckleton 2002). Even when size-correction is

desired, Rohlf and Bookstein (1987) have pointed out some of the

reasons why a linear regression should not be our size-correction

procedure of choice, particularly when data for size are collected

with sampling error (as will be true of almost any evolutionary

study). In most cases, it is possible to extend the presented phy-

logenetic approach to less commonly used statistical procedures

for size-correction (e.g., shearing; Humphries et al. 1981).

Finally, third, although I present methods for phylogenetic

size-correction and phylogenetic PCA, it is important for the

reader to note that these procedures provide residuals and scores

in the original, phylogenetically dependent, species space—not

in a transformed phylogenetically independent space. This means

that the residuals and scores from these analyses still probably

need to be analyzed using phylogenetic methods! Why then, one

might ask, should we bother to use phylogenetic methods for size-

correction or data rotation? I show below, in section Examples,

that phylogenetic size-correction and principal components pro-

vide estimates of the allometric coefficient and eigenstructure that

will have lower variance relative to nonphylogenetic procedures,

thus reducing type I error to its nominal level when residuals and

scores are subsequently analyzed using phylogenetic methods. If

phylogeny is instead ignored in these preliminary transformations,
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then variance and type I error of our statistical estimators and hy-

pothesis tests can be substantially increased.

PHYLOGENETIC SIZE-CORRECTION

The procedure for conducting phylogenetic size-correction us-

ing the residuals from a least squares regression analysis, while

controlling for nonindependence due to phylogenetic history, is

straightforward.

First, we compute the matrix C that describes the expected

covariances of our data due to phylogenetic relatedness and will

provide the error structure in our linear model (Grafen 1989; Rohlf

2001). C is estimated from our tree and evolutionary model. In

most phylogenetic analyses of continuously valued characters,

the evolutionary model of choice is constant rate BM. Most of

the procedures described herein can also be performed if the

error structure, C, is obtained assuming a non-Brownian model

of evolutionary change (Rohlf 2001; e.g., Pagel 1999; Butler and

King 2004; Hansen et al. 2008).

The computation of C has been described in many prior

studies (e.g., Hansen and Martins 1996; Martins and Hansen

1997; Rohlf 2001; O’Meara et al. 2006; Revell 2008; Revell and

Harmon 2008). For n species, C is an n × n matrix containing, on

its diagonal, values proportional to the expected variances for in-

dividual characters, and, on its off-diagonals, values proportional

to the expected covariances between each trait value in different

taxa due to the phylogeny. Under BM, in which variance among

lineages is accumulated in a direct proportion to the time elapsed,

each i, jth element of C (Ci j ) is computed as the patristic distance

from the root of the tree to the common ancestor of species i and

j. If the phylogeny is ultrametric and contains only extant taxa,

then C = t11′ − 1
2 P, where 1 is a n × 1 column vector of 1.0 s,

t is the total length of the tree, and P is a patristic distance ma-

trix (Revell and Harmon 2008). For all of the analyses presented

herein, the units of branch length of the tree used to calculate C
are of no particular consequence, only their relative lengths are

significant. (This is not true in all phylogenetic analyses of species

data, e.g., Revell and Harmon 2008.)

To remove the effect of size from each of our variables, we

next compute the least squares regression coefficients in the re-

gression of our dependent variable on size, controlling for the

phylogenetic correlations between our observations for species.

To do this, we use the standard generalized least squares estimat-

ing equation

b = (X′C−1X)−1X′C−1y. (1)

In this equation, b is a row vector containing our least squares

estimates of the regression intercept and slope, and y is a vector

containing the size-dependent morphological trait in all species.

X is an n × 2 matrix containing a column of ones and our data

for size (Rohlf 2001; Rencher and Schaalje 2008).

We can then calculate the vector of residuals, r, using the

equation

r = y − Xb, (2)

(Rohlf 2001). Although we used a phylogenetic regression to

obtain these residuals, the reader should pay heed that, as noted

above, the residuals in r are not phylogenetically independent!

Size correction has been performed using the phylogeny to derive

the error structure and thus properly estimate the linear regression

model for size-correction, however the residuals from this analysis

are in terms of the original species and should be subsequently

analyzed by standard phylogenetic means (such as independent

contrasts, PGLS, phylogenetic ANCOVA, etc.).

This procedure for size-correction can also be performed

using independent contrasts with BM as our model for evolu-

tion (Felsenstein 1985). To do so, we first estimate the regres-

sion slope from bivariate regression through the origin performed

on the independent contrasts for size and our dependent vari-

able (Garland et al. 1992). We then fit the slope of that regres-

sion line to the species data through the phylogenetic means

for both characters (see eq. 3, below). Finally, we calculate

the residual deviations from this regression line in the standard

way.

This is the same procedure that is described in Garland and

Ives (2000; Blomberg et al. 2003), but is different from that

in Garland et al. (1992) because the residuals are computed in

the original space, rather than in the phylogenetically indepen-

dent (contrasts) space, and thus a regression is performed through

the phylogenetic mean (which corresponds to the maximum-

likelihood estimate for the ancestral states at the root node of

the tree; Schluter et al. 1997; Rohlf 2001) rather than through

the origin. I consider the method based on generalized least

squares and described above to be simpler (so long as we have

an easy way to obtain C, for example, using the R package APE;

Paradis et al. 2004, 2006; see Appendix), because it involves fewer

steps. However, both the phylogenetic generalized least squares

procedure and regression through the phylogenetic mean using

the slope from contrasts regression should yield the same set of

size-corrected residual values, given an evolutionary model of

BM.

PHYLOGENETIC PRINCIPAL COMPONENTS ANALYSIS

The procedure for conducting phylogenetic PCA and obtaining

scores for species in a rotated principal components space is re-

lated to the procedure for phylogenetic size-correction, above.

Using the matrix C derived from the tree and our evolution-

ary model, as before, and an n × m data matrix X containing

the data for m traits measured in n species, we first compute

a vector containing the estimated ancestral states for each of
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our characters. This vector is also called the vector of “phylo-

genetic means,” as previously mentioned, and can be estimated as

follows:

a = [(1′C−11)−11′C−1X]′. (3)

Equation (3) yields an m × 1 column vector. We then esti-

mate the evolutionary variance–covariance matrix for the m traits

in our study. This is computed as follows:

R = (n − 1)−1(X − 1a′)′C−1(X − 1a′), (4)

following Revell and Harmon (2008; also Revell and Collar 2009).

In some instances we would like to perform PCA on the evolu-

tionary correlation matrix, rather than the evolutionary variance–

covariance matrix (Manly 2005). This is straightforward: we just

calculate the elements of the correlation matrix Rcorr as follows:

Rcorr,ij = Rij

/√
Rii Rjj, (5)

and then use this matrix in subsequent analysis. Prior to comput-

ing scores, in this case, we must also standardize the values for

species to have unit evolutionary variance. This is performed by

dividing each element of X by the square-root of the correspond-

ing diagonal element of R, i.e.,

Xs,ij = Xij

/√
Rjj, (6)

in which Xi j is the value for the jth trait in the ith species, and

Xs,i j is the corresponding standardized value.

To perform PCA, we next obtain the diagonal matrix of eigen-

values, D, and the matrix, V, containing the eigenvectors of R in

columns. D and V can be found by conventional means (and in

many standard computational environments, such as MATLAB

and R, see Appendix) or by singular value decomposition, such

that R = VDV−1. V and D contain the eigenvectors and eigenval-

ues, respectively, of the phylogenetic PCA. We can also compute

scores in the original (species) space as follows:

S = (X − 1a′)V. (7)

Here, S is an n × m matrix with the scores for n species and m

principal components, in columns.

A key property of PC axes calculated in this way is that they

are evolutionarily independent. This means that the phylogenetic

correlation (i.e., the correlation of independent contrasts) between

scores on each axis will be zero. This will not usually be true of

PC axes computed ignoring phylogenetic nonindependence.

As with typical principal components, calculating compo-

nent loadings can help in interpreting the principal component

axes (but see Rencher 2002 for a criticism of loadings). Load-

ings are just the correlations between our phenotypic data and

the principal component scores in the transformed space. As our

principal component scores are nonindependent due to the phy-

logeny, as before, we should not ignore the tree in computing the

correlations for our PC loadings. To compute our loadings while

incorporating nonindependence due to the phylogeny, we must

first compute the cross-covariance matrix, K as follows:

K = (n − 1)−1(X − 1a′)′C−1S. (8)

Here, notably, we should subtract the phylogenetic mean

from X, but we need not do so from S because the scores from

our phylogenetic PCA should already be centered by our previous

computations (i.e., they have phylogenetic means of 0.0).

We can then compute the loading of the ith trait on the jth

PC axis using the following calculation:

Lij = Kij

/√
Rii Djj. (9)

This may actually be fairly important because Rohlf (2006)

shows that the estimated correlation between two characters will

be downwardly biased if the phylogeny is ignored. Because load-

ings are just correlation coefficients, as noted above, they may

also be biased if they are calculated ignoring the phylogeny. As in

the phylogenetic size-correction, PC scores are in terms of species

and will still probably need to be analyzed phylogenetically in the

subsequent statistical analyses.

We can also perform phylogenetic PCA using independent

contrasts. In this case, we compute the uncentered variance–

covariance or correlation matrix from our independent con-

trasts (Ackerly and Donoghue 1998; Clobert et al. 1998; Revell

2007; Revell et al. 2007). We then calculate the eigensystem for

that matrix, and use the eigenvector matrix, V, and the set of phylo-

genetic means calculated using equation (3) to calculate principal

component scores for species with equation (7), above.

Examples
PHYLOGENETIC SIZE-CORRECTION

For the first example, I generated size-correlated data for two

characters on stochastic phylogenies. I used the following proce-

dure. First I simulated 20,000 stochastic pure-birth phylogenetic

trees, each containing n = 100 taxa. I then used BM as a model

of evolution to simulate the evolution of three characters on each

tree in two sets of simulations. In both sets of simulations, the

first character was analogous to size. The other two characters

were simulated to be highly correlated with size (r = 0.95), but

to either (1) possess an expected residual regression coefficient of

0.00, or (2) possess an expected residual regression coefficient of

0.75. The mathematical details of these simulations are provided

in the Appendix S1.

I then analyzed these data using two different procedures

for size-correction. First, I size-corrected the data using ordinary
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Figure 1. (A) Relative frequency distribution of b̂1 (the estimated regression slope) from the regression of residuals from size-corrected

data, with a generating residual regression slope of β1 = 0.0. Vertical cross-hatching is for the distribution obtained when size-correction

was performed using the phylogenetic method described herein, whereas horizontal cross-hatching is for the distribution of b̂1 ob-

tained when preliminary size-correction was by ordinary least-squares regression (i.e., nonphylogenetic). In both cases, the subsequent

evolutionary regression of size-corrected values was performed using phylogenetic generalized least-squares. (B) Cumulative frequency

distribution of b̂1 for the same analyses as (A). The dashed line indicates the nonphylogenetic size-correction. (C) Distribution of b̂1 from

the regression of residuals from size-corrected data, with a generating residual regression slope of β1 = 0.75. (D) Cumulative distribution

of b̂1 for the same analyses as (C). Phylogenetic and nonphylogenetic size-correction are indicated as in (A) and (B). b̂1 is an unbiased esti-

mator of β1 in both (A,B) and (C,D) regardless of the size-correction procedure, however the variance around the mean is approximately

33% larger when phylogeny is ignored during size-correction (horizontal cross-hatching; dashed line in cumulative distributions).

least squares regression ignoring the phylogeny. Next, I size-

corrected the data by calculating the residuals using the phylo-

genetic regression procedure described above. Then, I computed

the regression line between each set of size-corrected variables

using phylogenetic generalized least squares estimation (which

will yield the same regression slope as the method of independent

contrasts; Rohlf 2001). Thus, I performed size-correction using

first a nonphylogenetic and then the analogous phylogenetic pro-

cedure described above, then I analyzed the residuals using a

phylogenetic regression (Felsenstein 1985; Grafen 1989).

The relative frequency and cumulative frequency distribu-

tions of regression slopes estimated from each procedure on

20,000 simulated trees and datasets are shown in Figure 1. Be-

cause the differences between these distributions are subtle, in
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panels (A) and (C) I use line rather than bar graphs to more

easily overlay the distributions obtained by each method. Both

procedures yielded unbiased estimates of the regression slope

from the phylogenetic regression on the size-corrected data, re-

gardless of the generating conditions (Fig. 1A,C). However, phy-

logenetic size-correction using the procedure described in the

Methods resulted in an approximately 25% decrease in the esti-

mation variance around the regression slope (Fig. 1). When the

generating residual correlation was 0.0, I also estimated the type I

error probability associated with each method. I found that type I

error was substantially greater than its nominal value of 0.05

when phylogeny was ignored in the size-correction procedure

prior to statistical analysis (type I error = 0.089; P (true er-

ror ≤ 0.05) < 0.0001). By contrast, when I size-corrected using

the phylogenetic method, type I error of the phylogenetic re-

gression on the residuals was statistically indistinguishable from

0.05 (type I error = 0.052; P (true error ≤ 0.05) = 0.153). This

shows that the consequence of ignoring phylogeny during size-

correction is greater than simply obtaining an allometric coef-

ficient with a high error. Rather, it can result in the substantial

opportunity (nearly a doubling in the present analysis) of ob-

taining a spurious residual correlation between our size-corrected

variables.

PHYLOGENETIC PRINCIPAL COMPONENTS ANALYSIS

For the second example, I generated data with known evolutionary

covariance structure on stochastic phylogenies. In each of 20,000

simulations performed on the same trees as above, I simulated

multivariate BM evolution. The generating variance–covariance

structure for simulation was determined randomly by first draw-

ing a matrix of m = 4 random orthonormal m × 1 vectors, V,

and then a diagonal matrix D containing positive, evenly spaced

eigenvalues, and computing R = VDV−1. This procedure is guar-

anteed to yield a positive semidefinite covariance matrix, R. The

generating evolutionary covariance matrix, R, must be positive

semidefinite to be valid. I then analyzed all the datasets and trees

using nonphylogenetic PCA and the procedure for phylogenetic

PCA described above. The mathematical details of these simula-

tions are provided in the Appendix S2.

PCA results in the calculation of eigenvalues, eigenvectors,

component loadings, and scores for each analysis. To summa-

rize the results of the 40,000 PCAs (20,000 nonphylogenetic and

20,000 phylogenetic, on the same datasets) I calculated two sum-

mary statistics from each analysis. First, I calculated the mean

vector correlation between corresponding generating and esti-

mated eigenvectors. Second, I calculated the mean correlation

between the generating and estimated eigenvalues. Because I cal-

culated each summary statistic twice for each dataset (once for the

nonphylogenetic and once for the phylogenetic analysis), I mea-

sured the relative performance of each procedure in determining

the generating eigensystem by then calculating the difference be-

tween the correlation from the phylogenetic and nonphylogenetic

analyses. Good correspondence of the true and estimated eigen-

structure should result in a high correlation between eigenvectors

and eigenvalues, thus a positive difference indicates that the phy-

logenetic PCA was better at recovering the eigenstructure of the

generating evolutionary variance–covariance matrix. The results

from these analyses are given in Figure 2. I found that phyloge-

netic PCA was much more effective at recovering the generat-

ing eigenstructure, particularly the eigenvectors of that structure

(Fig. 2A).

The scores and eigenstructure obtained from these analyses

have various uses. For example, scores from multiple different

PCAs on different sets of characters might subsequently be com-

pared using a linear regression, or the scores from phylogenetic

PCA might be used in the subsequent statistical analyses such as

phylogenetic ANOVA or ANCOVA (Garland et al. 1993). Alter-

natively, the eigenstructure might be used to identify primary axes

of diversification in the group (e.g., Schluter 1996; Revell et al.

2007). As such, I have not focused on any particular secondary

analysis, and instead have concentrated on showing that the phylo-

genetic PCA procedure described herein recovers the eigenstruc-

ture of the generating evolutionary variance–covariance matrix

with lower error.

Discussion
There is a growing consensus in evolutionary biology that phy-

logenetic information should not be ignored in the analysis of

species data (e.g., Harvey and Pagel 1991; Martins and Hansen

1997; Rohlf 2001; Butler and King 2004; Garland et al. 2005;

but see Price 1997). Various measures have been proposed to

control for the statistical nonindependence of data from species

(Cheverud et al. 1985; Felsenstein 1985; Grafen 1989; Harvey and

Pagel 1991), and these procedures have become quite widely used

in the evolutionary genetic, ecological, and anthropological liter-

atures (e.g., Nunn and Barton 2001; Andrews et al. 2009; Pontzer

and Kamilar 2009).

The most popular phylogenetic comparative method for

more than 20 years has been the independent contrasts method

of Felsenstein (1985). This method was developed based on the

insight that although values for species related by a tree are

nonindependent, the differences between species should not be

(Felsenstein 1985). According to this method, we thus calculate

the corrected differences between nodes (internal or tip) descend-

ing from each internal node of the tree. At the end of the procedure,

we have a set of n − 1 contrasts for each trait that have no ex-

pected covariance due to the phylogeny, and thus can be treated

as independent datapoints in a statistical analysis such as linear

bivariate or multivariate regression (Garland et al. 1992).
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Figure 2. (A) Relative frequency distribution of rp − rnp for the

eigenvectors. rp − rnp is the difference in the mean vector cor-

relation between the estimated and generating eigenvectors in

phylogenetic (p) and nonphylogenetic (np) principal components

analyses. A positive rp − rnp thus indicates that the eigenvectors

are better identified by the phylogenetic method. (B) Distribution

of rp − rnp for the eigenvalues. Here, rp − rnp is the difference in

the correlation between estimated and generating eigenvalues

for phylogenetic (p) and nonphylogenetic (np) analyses.

However, the contrasts values represent differences between

species, not species in the original space. As such, there is no

immediately obvious way to use the values for contrasts in pre-

liminary data transformations, such as size-correction by a linear

regression or PCA, if we want to obtain residuals or scores for

species from these procedures (but see Methods, above). Rightly

or wrongly, it is thus very common for evolutionary ecologists

and biologists to transform their data prior to analysis using non-

phylogenetic means and thus without controlling for the statistical

dependence of their observations due to the phylogeny.

In the present short comment, I provide a very simple

overview of proper methods to incorporate phylogenetic infor-

mation into preliminary data transformations prior to statistical

analyses. The procedures yield residuals or scores in the original

species space, but these are obtained while minimizing estimation

error. As such, I show that the phylogenetic procedures will pro-

duce lower variance and type I error than is obtained if preliminary

transformation is performed ignoring phylogeny.

Although the methods are general to multiple evolutionary

models, I focus on a model of evolution by BM. Adjusting the

methods presented herein to accommodate non-BM models of

character change is conceptually straightforward, but might be

easy or difficult in practice. For example, Pagel’s (1999) λ statistic

is a very useful phenomenological construct with which we can

transform the error structure of our size-correction or PCA model

(the matrix C in this article) to fit the observed covariance structure

in our data using likelihood. After optimizing λ (e.g., Freckleton

et al. 2002), we would then substitute the transformed matrix

(Cλ) for C in subsequent calculations (eqs. 1, 3, 4 and 8, herein).

In the extreme case in which λ̂ = 0.0, this reduces our analysis

to ordinary least squares regression (or nonphylogenetic PCA).

An intriguing possibility is that we might find different values

of λ in different steps of our analysis. In the Appendix S3, I

illustrate size-correction under the same simulation conditions as

the present study, but with λ = 0.5. Although this is a very simple

non-Brownian evolutionary model, the principle is the same as for

complex models (e.g., Hansen et al. 2008), although estimation is

much more straightforward. As noted earlier, it is also possible to

accommodate non-Brownian evolution using direct branch length

transformations (such as log-transformation; e.g., Garland et al.

1992), rather than manipulation of the error structure of the model

(e.g., Freckleton et al. 2002; Blomberg et al. 2003; Lavin et al.

2008; Revell and Harrison 2008).

In the case of more explicitly adaptive evolutionary models,

for example the Ornstein–Uhlenbeck model of Hansen (1997), the

error structure is more difficult to derive (e.g., Butler and King

2004). This is a very active area of research (e.g., Blomberg et al.

2003; Hansen et al. 2008; Lavin et al. 2008).

In the Appendix, I detail the procedures described in the

text using R and MATLAB code. I am also distributing code for

calculating the C matrix under a BM model from my website,

and functions for the calculation of C under various evolutionary

models already exist in R (Paradis et al. 2004; Paradis 2006).

I hope that this article and the appended material are as useful

as they are intended to be to evolutionary biologists, ecologists,

geneticists, and evolutionary anthropologists, who are interested

in performing statistical data-transformations using phylogenetic

methods, but are presently unsure of precisely how to do so.
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Appendix: Code for Data
Transformations Described in the
Methods
PHYLOGENETIC SIZE-CORRECTION

MATLAB code—The function below, phyl_resid.m, requires as

input (1) an n × n matrix, C; (2) an n × 1 vector x containing

the sizes of each of the n species in the analysis; and (3) an n × m

matrix Y containing the m size-correlated traits to be corrected

using phylogenetic least squares regression. It returns an n × m

matrix containing residuals in the original (species) space. Note

that the species order in C, x, and Y is assumed to be identical.

% function R = phyl_resid(C, x, Y) computes R residuals given

% C, x, and Y

function R = phyl_resid(C, x, Y)

% find out how many y variables and taxa we have

[n,m] = size(Y);

% prepare matrix containing size

X = ones(n,1); X(:,2) = x;

% now loop over those variables, each time calculating the

% regression & residuals

for i = 1:m

% estimate beta

beta = (X′∗C∧-1∗X)∧-1∗(X′∗C∧-1∗Y(:,i));

% compute residuals and put in ith column of R

R(:,i) = Y(:,i)-X∗beta;

end

% done

The astute reader (or MATLAB enthusiast) might note that

the looped computations can actually be performed more suc-

cinctly using:

beta = (X′∗C∧-1∗X)∧-1∗(X′∗C∧-1∗Y); R = Y-X∗beta;,

and I commend their careful reading, however I have pre-

sented the looped code for clarity and consistency with the de-

scription of the method in text.

R code—The function below, phyl_resid.R, requires as input

C, the vector x, and the matrix Y containing the m size-correlated

traits, as before. In R, the n × n matrix C under BM can be

computed using the APE functions read.tree() and vcv.phylo() as

follows:

> library(ape)

if the APE library has not already been loaded. Then:

> tree<-read.tree(“tree.file”);

> C<-vcv.phylo(tree);

in which tree.file is the name of the file containing the Newick

format tree. If left blank, i.e.,

> tree<-read.tree(“”);

then the user will be prompted to enter his or her tree at the

command line.

The rows and columns of C will be in the order of the tip

labels from left to right in the Newick input tree. Because this

order is unlikely to correspond to the order of taxa in x and Y, a

useful trick to get the rows and columns of C into alphabetical or

numerical order is as follows:

>C<-C[order(dimnames(C)[[1]]),order(dimnames(C)[[2]])].

Because the script specifically requires a matrix (not a data

frame) to run, the user might want to use the following commands:

> x<-as.matrix(x);

> Y<-as.matrix(Y);

before analysis, if their data are indeed in data frame form.

Non-BM C can also be computed using function

corMartins(), corPagel(), and corGrafen() in R using APE

(Paradis 2006). Once we have obtained C, we load the function

phyl_resid():

> source(“phyl_resid.R”);

and compute:

> r<-phyl_resid(C,x,Y);

The residuals are contained in the matrix, r. The function

phyl_resid() is given below:

phyl_resid<-function(C,x,Y){
# find out how many y variables and taxa we have

m<-ncol(Y); n<-nrow(Y);

# compute inverse of C
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invC<-solve(C);

# create a matrix for residuals

r<-matrix(,n,m);

# prepare X matrix

X<-matrix(,n,2); X[,1]<-1; X[,2]<-x;

# now loop over those variables, each time calculating the

# regression & residuals

for(i in 1:m){
# estimate beta

beta<-

solve(t(X)%∗%invC%∗%X)%∗%(t(X)%∗%invC%∗
%Y[,i]);

# compute residuals

r[,i]<-Y[,i]-X%∗%beta;

}
phyl_resid<-r;

}

PHYLOGENETIC PRINCIPAL COMPONENTS ANALYSIS

MATLAB code—The function below, phyl_pca.m, takes as input:

(1) the matrix, C, as above and in the text; (2) an n × m matrix

X containing the data for m traits from n species; and (3) an

optional string variable mode, which should be specified as ‘corr’

or ‘cov’ (the default is ‘cov’ if no mode is specified). As above,

the ordering of C and X should be the same. It returns scores,

eigenvalues, eigenvectors, and loadings, calculated as in the main

text. It also calls the eigensystem sorting function sorteig.m, also

provided below.

% function [S,Eval,Evec,L] = phyl_pca(C,X) performs PCA %

using the tree (C), data (X), and mode (‘cov’ or ‘corr’)

function [S,Eval,Evec,L] = phyl_pca(C,X,mode)

% check mode (covariance or correlation matrix)

if exist(‘mode’,‘var’)∼ = 1

mode = ‘cov’;% default mode is ‘cov’

end

% get m, n

[n,m] = size(X);

% first compute the vector of ancestral states

one = ones(n,1); a = (one′∗C∧-1∗one)∧-1∗(one′∗C∧-1∗X)′;
% now compute the evolutionary VCV matrix, V

V = (X-one∗a′)′∗C∧-1∗(X-one∗a′)/(n-1);

% if mode = = correlation matrix

if strcmp(mode,‘corr’)

% standardize X

X = X./(one∗sqrt(diag(V))′);
% change V to correlation matrix

V = V./(sqrt(diag(V))∗sqrt(diag(V))′);
% recalculate a

a = (one′∗C∧-1∗one)∧-1∗(one′∗C∧-1∗X)′;

end

% do eigenanalysis & sort

[Evec,Eval] = eig(V); [Evec,Eval] = sorteig(Evec,Eval);

% now compute scores in the original space

S = (X-one∗a′)∗Evec;

% compute cross covariance matrix and loadings

Ccv = (X-one∗a’)’∗C∧-1∗S/(n-1);

L = Ccv.∗(diag(V)∗ diag(Eval)’).∧(-1/2);

% done

% function [V2,D2] = sorteig(V,D) sorts eigenvectors (V) by

% eigenvalues (D)

function [V2,D2] = sorteig(V,D)

% make sorted diagonal matrix

[d,index] = sort(diag(D),‘descend’); D2 = diag(d);

% use index to sort V

V2 = V(:,index);

% done

R code– The function below, phyl_pca.R, requires as input C
and X, as before, and mode. Unlike in phyl_pca.m, mode needs

to be specified (as ‘corr’ or ‘cov’) for the function to run. In R, C
under BM can easily be computed as described for phyl_resid.R,

above. It returns a variable of the class phyl_pca with compo-

nents $Eval (eigenvalues), $Evec (eigenvectors), $S (scores), and

$L (PC loadings). The function is loaded and called using the

following commands:

> source(“phyl_pca.R”);

> pca.results<-phyl_pca(C,X,mode);

As before, the user might also find the following command

useful if the data in X are in data frame rather than matrix form:

> X<-as.matrix(X);

The function is as follows:

phyl_pca<-function(C,X,mode){
# find out how many columns and taxa we have

m<-ncol(X); n<-nrow(X);

# compute inverse of C

invC<-solve(C);

# compute vector of ancestral states

one<-matrix(1,n,1);

a<-t(t(one)%∗%invC%∗%X)∗sum(sum

(invC))∧-1;

# compute evolutionary VCV matrix

V<-

t(X-one%∗%t(a))%∗%invC%∗%(X-one%∗%t(a))∗(n-1)∧-1;

# if correlation matrix

if(mode = = ‘corr’){
# standardize X

X = X/(one%∗%t(sqrt(diag(V))));

# change V to correlation matrix

V = V/(sqrt(diag(V))%∗%t(sqrt(diag(V))));
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# recalculate a

a<-t(t(one)%∗%invC%∗%X)∗sum(sum(invC))∧-1;

}
# eigenanalyze

es = eigen(V);

result<-NULL; result$Eval<-diag(es$values);

result$Evec

<-es$vectors;

# compute scores in the species space

result$S<-(X-one%∗%t(a))%∗%result$Evec;

# compute cross covariance matrix

# and loadings

Ccv<-t(X-one%∗%t(a))%∗%invC%∗%result$S/(n-1);

result$L<-matrix(,m,m);

for(i in 1:m)

for(j in 1:m)

result$L[i,j]<-Ccv[i,j]/sqrt(V[i,i]∗result$Eval[j,j]);

phyl_pca<-result;

# done

}

Supporting Information
The following supporting information is available for this article:

Appendix S1: Simulation code: Phylogenetic size-correction simulations and analysis written for MATLAB.

Appendix S2: Simulation code: Phylogenetic principal components simulations and analysis written for MATLAB.

Appendix S3: Size correction using Pagel’s (1999) λ.

Supporting Information may be found in the online version of this article.

(This link will take you to the article abstract).

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors.

Any queries (other than missing material) should be directed to the corresponding author for the article.
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