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What is a Phylogeny?

Part of a statistical model for comparative studies that explains
covariance among measurements of traits due to common
ancestry.

Tony Ives

A connected, acyclic edge-weighted, semi-labeled graph where
tip nodes are labeled to represent taxa and edge weights usually
represent the expected number of nucleotide substitutions per
site.

Cécile Ané

Truth.

Ken Sytsma
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How do we estimate a phylogeny?

There are a multitude of methods to estimate phylogenies from
various sorts of data.

Presently, the most common approaches use multiple alignments of
DNA sequence data, but this is not always the case (especially when
some taxa are represented by fossils).

There are methods for trait data, amino acid sequences, AFLP
markers, restriction sites, and others.

When selecting a method to construct a phylogeny, it is important to
understand the underlying assumptions.
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Methods of Phylogenetic Reconstruction

Primary methods of phylogenetic reconstruction include these:

Parsimony

UPGMA

Neighbor joining (and variants)

Maximum likelihood

Bayesian approaches

Here are important considerations for each with regard to finding a tree for
a comparative analysis.
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Parsimony

Parsimony seeks the tree topology that requires the fewest total
changes on each edge of the tree.

Parsimony does not directly estimate edge lengths.

For a given site, there can be multiple equally parsimonious ways to
map the minimum number of changes onto a tree.

If a tree topology is selected by parsimony, additional methods are
needed to find branch lengths.

There are conditions (especially long branch attraction) where the
parsimony method is likely to select the incorrect tree topology.

Evaluation of the parsimony score on a single tree is computationally
fast, but searching for the single most parsimonious tree when there
are many taxa requires heuristic methods that may not find the true
optimal tree.
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UPGMA

UPGMA acts directly on a pairwise distance matrices among taxa; it
is an algorithm for producing a tree from such a distance matrix, not
a model.

UPGMA produces rooted ultrametric trees (trees where all tips are
equidistant from the root).

Such trees are consistent with a molecular clock hypothesis in which
the expected rate of nucleotide substitution is constant across all
lineages.

To use UPGMA, one needs to specify how distances between taxa are
calculated; a common choice is the maximum likelihood distance
between the sequences, but this also requires a selection of a
maximum likelihood model.

UPGMA and other distance methods are often used when data other
than DNA sequences are used.
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UPGMA (cont.)

When the true underlying rates of nucleotide substitution are not
equal, UPGMA can be biased against finding the correct tree
topology.

In formal likelihood-based tests, it is exceedingly rare with real
sequence data to find examples where the molecular clock hypothesis
is not strongly rejected.
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Neighbor-joining

Equivalently to UPGMA, neighbor-joining is an algorithm for
producing trees directly from pairwise distances.

Unlike UPGMA, neighbor-joining produces an unrooted tree topology
with branch lengths.

For comparative methods purposes, a root needs to be selected (often
by using outgroups), but the resulting tree will not be ultrametric.

Just as with UPGMA, neighbor-joining is an algorithm that makes
trees rapidly from even large pairwise distance matrices, but to be a
complete method requires a specification of how the distances are
calculated.

Both UPGMA and neighbor-joining lose information when reducing
aligned DNA sequences to distances, and in many settings are less
accurate in reconstructing the phylogeny than methods that work
with sequence data directly.
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Maximum Likelihood

Maximum likelihood depends on an explicit continuous-time Markov
chain model for how DNA sequence (or other data) changes along a
tree.

There are many variants among likelihood models that make fewer or
greater restrictions among parameters.

Similar to parsimony, maximum likelihood requires a heuristic search
across tree space.

Calculating the likelihood score for a given tree with branch lengths is
about as computationally difficult as finding a parsimony score, but
the need to optimize all parameter values in addition to branch
lengths makes maximum likelihood more computationally intensive,
especially for larger trees and large data sets.

The resulting tree has branch lengths.

The search for the best tree can be restricted to ultrametric trees.

Variations include ultrametric trees with rates that can change along
the tree (often in a penalized way).
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Bayesian Methods

The Bayesian paradigm differs from the other methods in that the end
result is a probability distribution on tree space, not a single best tree.

This distribution is typically represented by a large random (but not
independent) sample of trees selected by Markov chain Monte Carlo.

It is common for people to compute a consensus tree from the
Bayesian sample as a single representative of the distribution.

Bayesian methods can use the same likelihood models as used in
maximum likelihood, and actually often use models richer in
parameters than is feasible with maximum likelihood (for example, by
partitioning data into parts, each with separate sets of parameters).

Bayesian methods are computationally intensive for large data sets
and trees; they are computationally favorable to maximum likelihood
plus bootstrapping, but not for finding a single maximum likelihood
tree.

Bayesian methods can be restricted to ultrametric trees or not.
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Bayesian Methods (cont.)

To account for phylogenetic uncertainty in a comparative analysis,
one approach is to use MCMC to select some trees, carryout the
comparative analysis on each, and average the results.
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A Famous Quote About Models

Essentially, all models are wrong, but some are useful.
George Box
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The Markov Property

Use the notation X (t) to represent the base at time t.

Formal statement:

P {X (s + t) = j | X (s) = i ,X (u) = x(u) for u < s}
= P {X (s + t) = j | X (s) = i}

Informal understanding: given the present, the past is independent of
the future.

If the expression does not depend on the time s, the Markov process
is called homogeneous.
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Rate Matrix

Positive off-diagonal rates of transition

Negative total on the diagonal

Row sums are zero

Example

Q = {qij} =


−1.1 0.3 0.6 0.2

0.2 −1.1 0.3 0.6
0.4 0.3 −0.9 0.2
0.2 0.9 0.3 −1.4


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Alarm Clock Description

If the current state is i , the time to the next event is exponentially
distributed with rate −qii defined to be qi .

Given a transition occurs from state i , the probability that the
transition is to state j is proportional to qij , namely qij/

∑
k 6=i qik .
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Transition Probabilities

For a continuous time Markov chain, the transition matrix whose ij
element is the probability of being in state j at time t given the
process begins in state i at time 0 is P(t) = eQt .

A probability transition matrix has non-negative values and each row
sums to one.

Each row contains the probabilities from a probability distribution on
the possible states of the Markov process.
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Examples

P(0.1) =

0BB@
0.897 0.029 0.055 0.019
0.019 0.899 0.029 0.053
0.037 0.029 0.916 0.019
0.019 0.080 0.029 0.872

1CCA P(0.5) =

0BB@
0.605 0.118 0.199 0.079
0.079 0.629 0.118 0.174
0.132 0.118 0.671 0.079
0.079 0.261 0.118 0.542

1CCA

P(1) =

0BB@
0.407 0.190 0.276 0.126
0.126 0.464 0.190 0.219
0.184 0.190 0.500 0.126
0.126 0.329 0.190 0.355

1CCA P(10) =

0BB@
0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200

1CCA
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The Stationary Distribution

Well behaved continuous-time Markov chains have a stationary
distribution, often designated π (not the constant close to 3.14
related to circles).

When the time t is large enough, the probability Pij(t) will be close to
πj for each i . (See P(10) from earlier.)

The stationary distribution can be thought of as a long-run average—
over a long time, the proportion of time the state spends in state i
converges to πi .
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Markov Models on a Tree

The value of the character at
the root is either thought to be
fixed and unknown or drawn
from a probability distribution
(typically the stationary
distribution).

Given the value at an internal
node, the Markov process splits
and continues independently up
each edge.

Each edge has a corresponding
probability distribution.

A
B

C
D

E

F

●●
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Model (cont.)

The process continues to cover
the entire tree.

A
B

C
D

E

F

●

●

●

●

●

●

●
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Model (cont.)

We only observe data at the
tips.

The tree topology (shape and
leaf labels), the edge lengths,
and the history of genetic
changes are unobserved.

A
B

C
D

E

F

●

●

●

●

●

●

?
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Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a very general method to
sample from probability distributions by means of simulation.

A Markov chain is a sequence of random variables where the
distribution of each random variable depends only on the value of the
previous random variable.

Given the present, the future is independent of the past.

The term Monte Carlo signifies a computer simulation of random
numbers.

We first demonstrate MCMC with an example.
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Example

We have a function h(θ) from which we want to sample.

We only need to know h up to a normalizing constant.

Target Distribution
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Initial Point

We begin the Markov chain at a single point.

We evaluate the value of h at this point.

Initial Point
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Proposal Distribution

Given our current state, we have a proposal distribution for the next
candidate state.

Proposal Distribution
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First Proposal

We propose a candidate new point.

Current state θ; Proposed state θ∗

This proposal is accepted.

First Proposal

θθ*

Accept with probability 1
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Second Proposal

The proposal was accepted, so proposed state becomes current.

Current state θ; Proposed state θ∗; Make another proposal.

This proposal is rejected.

Second Proposal

θ θ*

Accept with probability 0.153
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Third Proposal

The proposal was rejected, so proposed state is sampled again and
remains current.
Current state θ; Proposed state θ∗; Make another proposal.
This proposal is accepted.

Third Proposal

θ θ*

Accept with probability 0.536
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Beginning of Sample

The first four sample points.

Vertical position is random to separate points at the same point.

Sample So Far

●
●

●

●

MCMC Example 29 / 39



Larger Sample

Repeat this for 10,000 proposals and show the sample.

Large Sample

MCMC Example 30 / 39



Comparison to Target
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Things to Note

The resulting sample mimics the target sample very well.

The shape of the proposal distribution did not depend on the target
distribution at all: almost any type of proposal method would have
worked.

There is a lot of autocorrelation: MCMC produces dependent samples.

The acceptance probabilities depend on the proposal distributions and
relative values of the target.

Summaries of the sample are good estimates of corresponding target
quantities:

I The sample mean converges to the mean of the target.
I The sample median converges to the median of the target.
I The sample tail area above 1.0 converges to the relative area above 1.0

in the target.
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Connections to the Paper

In the paper, the model for the data includes:
I A tree and a prior probability distribution on the tree.
I A model for the evolution of discrete characters along the tree.

The paper assumes that one or more trees have been sampled from
the posterior distribution using MCMC from other data.

The state space of the Markov chain includes:
I full histories of character mapping onto each tree;
I parameters for the substitution process.

The basic principles of MCMC in this setting are identical to the
previous simple example, but the details are substantially more
complicated.
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Possible Inferences

The paper addresses methods to infer:
I The process of evolution of the trait;
I Frequency of cooccurence of trait values relative to a null hypothesis of

independence;
I Ancestral states.
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Addressing Questions

When considering more than a single change along a branch on a
tree, is the assumption that a morphological character can
change back and forth multiple times between character states
always true? Are the biological aspects of the morphological
characters really being considered when the probability of the
changes is based on molecular models of evolution?

The methods described here assume nondirectional change processes.

The methods could be extended by assuming, say, an ancestral state
for each trait with a one-way mutation process.

Such a Markov process would not be time-reversible.
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Addressing Questions

As long branch lengths are problematic for character
assignment/changes on a tree, are there cases where a branch
length is sufficiently long that the character state can’t be
determined? If so, how is this reflected in the output data?

In the model, long branches would correspond to weak information
about the state of the trait in descendants, even given information
from the ancestors.

Taxa separated by long branches would be essentially independent.

In an analysis of cooccurence of trait values, long branches can
provide increased power to detect correlated evolution as the
phyologeny would explain very little.
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Addressing Questions

I don’t have a particular question about the paper, because I
could not understand very well how the stochastic mapping
should be used. For example, I did not understand how Tables 5,
6, 7, and 8 should be interpreted.

Table 5, for example, shows a summary of the number of events
mapped onto the tree.

In this example, each event was either a gain or a loss.

A single mapping of a history onto a tree will contain some number of
gains and losses.

Each number is a posterior probability that the actual history had this
many gains and losses.

This is evaluated for two separate prior distributions.

The posterior distributions are similar with one gain and two losses
being most probable, but there is considerable uncertainty.
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Table 5
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Addressing Questions

What software package(s) should I use to implement this method
on my data?

I suggest SimMap. How about a software demo?
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