
An Introduction to Splus

Phil Spector
Statistical Computing Facility

University of California, Berkeley

November 10, 1999

1 Background

The S programming language was developed at AT&T Bell Labs, for internal use by a group of statisticians
who wanted an interactive, graphics environment that encouraged development of new statististical tech-
niques. As the program spread through universities, many people appreciated the same qualitites as the
AT&T researchers, and the language became quite popular among academic statisticians. The program re-
ceived a major rewrite in the late 1980s, eliminating an awkward macro language, and unifying some of
the basic concepts. Finally, in the early 1990s, Statistical Sciences in Seattle Washington began distributing a
commercial version of the S language known as Splus; that company was bought out by Mathsoft who now
distributes Splus.

2 Strengths and Weaknesses

2.1 Strengths

• highly extensible and flexible

• implementation of modern statistical methods

• strong user community

• moderately flexible graphics with intelligent defaults

2.2 Weaknesses

• slow or impossible with large data sets

• non-standard programming paradigms

• runs on limited platforms

3 Basics

Splus is a highly functional language; virtually everything in Splus is done through functions. Arguments to
functions can be named; these names should correspond to the names given in the help file or the function’s
definition. You can abbreviate the names of arguments if there are no other named arguments to the function
which begin with the abbreviation you’ve used. If you don’t provide a name for the arguments to functions,
Splus will assume a one-to-one correspondence between the arguments in the function’s definition and the
arguments which you passed to the function.

To store the output of a function into an object, use the special assignment operator <- , not an equal sign.
For example, to save the value of the mean of a vector x in a scalar called mx, use

1

mx <- mean(x)

This statement is read as “mx gets mean of x”.
If you forget to save the output of a function this way, the answer will be temporarily available in an

object with the name .Last.value .
Typing the name of any Splus object, including a function, will display a representation of that object.

You can explicitly display an object with the functions print or cat . Splus provides online help through
the help function, or by simply preceding a function’s name with a question mark (?). If you are running
Splus in an Xwindows environment, the command

help.start()

will provide a graphical interface to the help system. You should quickly get in the habit of consulting the
help files while you use Splus, because many of the functions have a number of useful optional arguments
which might not be apparent at first glance.

Splus supports a number of different data structures, accomodating virtually any type of data. At the
simplest level, Splus supports vectors and matrices. These, however are just one- and two-dimensional ex-
amples of the more general concept of an array; Splus supports arrays of virtually unlimited dimensions.
In addition, Splus implements the more traditional “observations and variables” format of rectangular data
sets through objects known as data frames, where character and numeric variables can be freely mixed. Fi-
nally, Splus has a very general data structure known as a list, which can hold virtually any structure of data
imaginable.

Besides numbers and character strings, the symbols T and F (or TRUEand FALSE) are reserved in Splus
to represent the logical values true and false, respectively.

The objects you create during an Splus session are stored in a directory known as the working directory.
By default the working directory is set to the directory .Data in your home directory. Note that, since this di-
rectory’s name begins with a period, it will not be displayed by the UNIX ls command unless the -a option
is given. You can create separate collections of objects for different projects by having .Data subdirectories
in different directories; if Splus finds a directory called .Data in the current directory, it will override its
usual default of using the .Data directory in your home directory.

In addition to your working directory, Splus searches for data and functions in a number of system di-
rectories. You can see the names of these directories by using the search function. Note that just typing
the name search will display a print representation of the search function; to invoke the function with
no arguments you must type

search()

You can see the contents of any directories in your search path through the objects function. With no
arguments, it will list all the objects in your working directory. The optional argument where allows you
to specify other directories in your search path by providing the index of the directory as provided by the
search command. The optional argument pattern will restrict the listing of objects to those whose names
contain the string or regular expression specified by the pattern argument. Quoted strings in Splus can be
surrounded by either single (’) or double (") quotes. Thus, the command

objects(p="dat")

will list those objects in your working directory whose names contain the string dat .
You can enter UNIX commands from an interactive session by preceding them with an explanation point

(!). From inside source files or functions, you can pass a UNIX command to the function .System for exe-
cution.

You can interactively debug Splus functions by passing the function call of interest to the inspect func-
tion; once inside the debugger, type help for more information.

Optionally installed functions are organized into sections known as libraries. To see which libraries are
available on a given installation of Splus, type the command library() ; once you’ve found a library of in-
terest, you can make the functions in the library available with a command of the form library(libraryname) .
The command library(help=libraryname) will list the functions which are available, and the help
command can then be used in the usual way to get more information about individual functions in the li-
brary.

2

4 Specific Tasks

4.1 Entering and Exiting the Program

To start an interactive session with Splus, type

Splus -e

at the UNIX prompt. The -e flag enables command line reediting; you can redisplay and edit previous com-
mands using either vi or emacs keystrokes. Inside of Splus, the interactive prompt is a single greater-than
sign (>).

Splus obeys standard UNIX redirection, so you can execute source files in the usual way, with a command
like this one at the UNIX prompt:

Splus < infile >& outfile

The Splus commands to be executed would be in the file infile , and output would be sent to outfile .
The BATCHcommand of Splus packages this capability in a slightly different fashion. Typing

Splus BATCH infile outfile

at the UNIX prompt would have a similar effect as the previous command.
To execute Splus statements from a file from within an interactive session, you can use the source com-

mand. Type

source("infile")

at the Splus prompt to execute the commands in the file infile .
To exit an interactive Splus session, type q() . Note that just typing the q without the parentheses will

simply display a text representation of the q function.

4.2 Reading Data

The c function (mnemonic for combine) can be used to read small amounts of data directly into an Splus
object. For example, you could create a vector called x containing five numbers by using a statement like
the following

x <- c(12, 19, 22, 15, 12)

To read white-space-separated data into a vector, use the function scan . The sep argument can be used
for separators other than the default of white space. For example, to read the data in the file datafile into
a vector called x, use

x <- scan("datafile")

With no filename argument, scan reads your input from standard input; terminate the data entry with a
blank line. To read character data, use the what argument as follows:

chardata <- scan("charfile", what="")

Often the data you are reading from a file or entering at the keyboard is a matrix. The function matrix
can be used to reshape the elements of a vector into a matrix. Since the output of one Splus function is suit-
able as input to another Splus function, the calls to scan and matrix can be combined. Matrices in Splus
are internally stored by columns, so if your data is arranged by rows (as is usually the case), you must set
the byrows argument to the matrix function to T. Suppose that the file matfile contained a 10× 5 matrix,
stored by rows. The following statement would read the matrix into an Splus object called mat

mat <- matrix(scan("matfile"),ncol=5,byrow=T)

3

In addition to the ncol argument, there is also an nrow argument which could have be used (with a value
of 5 in the previous example). As shown in the example, if one or the other of these two arguments is miss-
ing, Splus will figure out the other based on the number of input items it encounters. You can also provide
descriptive labels for rows and columns using the dimnames function.

If your data has a mix of numeric and character variables, you will probably want to store it in a data
frame. To read data from a file directly into a data frame, use the function read.table . To use read.table ,
all the variables for a given observation must be on the same line in the file to be read. If the optional argu-
ment headers=T is given, then the first line of the file is interpreted as a set of names to be used for the
variables in the file, otherwise default names of V1, V2, , etc. will be used. The function data.frame can
also be used to create data frames directly from other Splus objects.

It should be mentioned that Splus does not contain a wide range of functions to handle input data. If
your input data is not suitable for scan or read.table , you may need to consider preprocessing the data
with a program like perl or sas before reading it into Splus.

4.3 Storing Data Sets

All of the objects which you create during your Splus session are automatically stored in your current direc-
tory. You can remove them by using the rm() function from inside of Splus.

A running session of Splus is always aware of new objects created in the .Data directory during the cur-
rent session. But if two different sessionsof Splus are sharing the same .Data directory, they will not be aware
of objects created by the other Splus session. While the easiest way to avoid problems caused by this fact is
to not run two sessions sharing a common .Data directory, the synchronize function can be used to make
Splus aware of objects placed in the .Data directory by other Splus sessions. This function needs a number
representing the database which needs to be synchronized; since it will be the default .Data directory, the
appropriate statement is

synchronize(1)

4.4 Accessing and Creating Variables

The basic tools for accessing the elements of vectors, matrices and data frames are subscripts; in S, subscripts
are specified using square brackets ([]); parentheses are reserved for function calls. You can refer to an
entire row or column of a matrix by omitting the subscript for the other dimension. For example, to access
the third column of the matrix x , you could use the expression x[,3] . Keep in mind that if you use a single
subscript, Splus will interpret it as the index into a vector created by stacking all the columns of the matrix
together.

If you’ve assigned row or column names to a matrix with the dimnames function, you can also use char-
acter strings to access parts of a matrix. (Data frames automatically have row and column names assigned
when they are created.) If you used statements like the following to create a matrix:

mat <- matrix(c(5,4,2,3,7,8,9,1,6),nrow=3,byrow=T)
dimnames(mat) <- list(NULL,c("X","Y","Z"))

then you could refer to the second column of the matrix as either mat[,2] or mat[,"Y"] .
While the above techniques will work for data frames as well as matrices, there is a simpler way to refer

to variables by name in a data frame, namely separating the data frame’s name from the name of the variable
with a dollar sign ($). For example, if a data frame called soil contained variables called Ca, K and pH, you
could access the variable pH as soil$pH . Note that, like other identifiers in Splus, variable names in a data
frame are case sensitive. Alternatively, you can use the attach command to make a data frame part of your
search path, and refer to variable names directly. The dollar sign notation can also be used to extract named
elements out of an Splus list.

You can create new objects, which will be stored in the current .Data directory with the assignment
operator (<-) mentioned in Section 3. For example, to create a variable z which would be the ratio of two
variables x and y , you could use the statement

4

z <- x / y

Virtually all operators and functions in Splus will operate on entire vectors and matrices in a single call. In
the above example, if x and y were each vectors of length n, then z would also be a vector of length n.

4.5 Subsetting Data

A variety of subscripting expressions can be used to extract parts of Splus matrices and data frames. As men-
tioned previously, you can specify a subscript for either rows or columns to extract entire rows and columns
of a matrix. You can also provide a vector of row or column numbers (or names, if dimnames were assigned
to the matrix), to extract subsets of a matrix or data frame. You can also provide a vector of row or column
numbers to extract subsets of a matrix or data frame. The colon operator (:), which generates sequences,
is often useful in this regard; it generates a vector of integers, separated by 1, from its first argument to its
second argument. For example, to extract the first, third and fourth variables for the first 10 observations of
a data frame or matrix called data , you could use the following expression

data[1:10,c(1,3,4)]

The seq function provides additional capabilities for generating sequences. A further useful feature of Splus
numeric subscripts is that negative subscripts represent all values except those specified in the subscripts.
So in the previous example, if we wanted all the columns of data , except for the first, third and fourth, we
could use the expression

data[,-c(1,3,4)]

Subscripts with a value of 0 are simply ignored.
If dimnames were assigned to the matrix, a vector of names can be substituted for the vector of numbers

in the example just given. A vector of names can be composed using the c function by surrounding the
names with double or single quotes.

Logical subscripts provide a powerful tool for subsetting data in Splus. When using logical subscripts,
they must be the same length as the object which is being subscripted; those elements in the subscripted
object corresponding to values of TRUEwill be extracted. Thus, to select all the rows of the matrix data for
which the third column is less than 10, the following expression could be used

data[data[,3] < 10,]

5 Missing Values

The value NA is used to represent missing values for input in Splus. An NAcan be assigned to a variable
directly to create a missing value, but to test for missing values, the function is.na must be used.

Splus propogates missing values throughout computations, so often computations performed on data
containing missing values will result in more missing values. Some of the basic statistical functions (like
mean, min , max, etc.) have an argument called na.rm , which, if set to TRUE, will remove the NAs from your
data before calculations are performed. In addition, the statisticalmodeling functions (like aov , glm , loess ,
etc.) provide an argument called na.action . This argument can be set to a function which will be called to
operate on the data before it is processed. One very useful choice for the na.action argument is na.omit .
This function (which can be called idependently of the statistical modelling functions) will remove all the
rows of a data frame or matrix which contain any missing values.

6 Graphics

There are basically two systems for producing graphs in Splus. The first, sometimes refered to as the core
graphics, consists of functions similar to those found in most graphical software - vectors or matrices are

5

passed to these functions, along with options and other information, and a graph is either created or addi-
tions are made to an already created graph. The second system, know as Trellis graphics, uses the statistical
modelling language as introduced in Section 8.2 to inform Splus about the graph you wish to produce. In
addtion, Trellis graphics provides a simple mechanism for producing several plots on a page to facilitate
side-by-side comparisons. This section will discuss the use of the core graphics system; more information
on Trellis graphics are presented in Section 9

The first step in using the core graphics in Splus is to choose an appropriate device driver. When view-
ing graphics on an Xwindow terminal, the motif() function should be called. This will open a window on
the screen, which, along with the display area, provides a button which will send your graph to the printer.
Other devices include tek4014 , for Tektronix emulation and printer for ASCII graphics. Use the com-
mand help(Devices) to get a complete list of supported devices. To save PostScript output in a file, use
the postscript() device driver.

There are two types of graphics routines within Splus’ core graphics, high level and low level. The high
level functions produce a complete plot from your data, drawing appropriately scaled axes and including
labels and titles which you provide to the function. Examples of high level functions include barplot ,
boxplot , contour , coplot (conditioning plots), hist , pairs (scatterplot matrix), persp (3-dimensional
perspective), and plot . Low level routines, which provide finer control over the details of existing plots
include abline (drawing regression lines), axes (for titles and labels), axis (for custom axes), legend ,
lines , points , polygon , symbols , and text . In addition to the graphics functions, a set of graphics pa-
rameters further controls the appearance of your graph. The graphical parameters can be set globally using
the par function, or they are accepted as arguments to many of the other plotting functions to cause a tem-
porary change. One graphics parameter which is often useful is mfrow , which determines the arrangement
of multiple figures on a page. For example, the Splus statement

par(mfrow=c(3,2))

would result in six plots being placed on the page, with three rows of two columns each. The plots would
be placed by rows; a similar function, mfcol defines the arrangement, put plots the multiple figures by
columns. Keep in mind that you can not set parameters or call any graphics functions until a device driver
has been loaded as described at the beginning of this section.

7 Programming

Most functions and operators in S will operate on entire vectors, the most efficient programming techniques
in S are ones which utilize this approach. S does provide loops for more traditional programming, but they
tend to be inefficient, especially for large problems. The for loop is a basic tool which can be used for repet-
itive processing. It takes the form

for(name in values) expression

where name is a variable which will be set equal to each element of values inside of expression. If
expression contains more than one statement, the statements must be surrounded by curly braces ({ }).
The for loop works for lists as well as vectors.

Logical subscripts, introduced in Section 4.5, can be used on the left hand side of an assignmentstatement
to avoid the use of loops in many cases. A simple, but useful, example is replacing occurences of a particular
value with missing values (NA). For example, a double loop could be used to replace all occurences of 9 in a
matrix with NA:

for(i in 1:nrow(x))for(j in 1:ncol(x))if(x[i,j] == 9)x[i,j] <- NA

However, using logical subscripts, the following single statement is much simpler and far more efficient:

x[x == 9] <- NA

Many functions accept vectors as arguments, so loops can often be avoided by using a vector argument.
For example, suppose we wish to form a vector with each of the numbers from 1 to 5 repeated 6 times. One
approach would be to use a for loop:

6

result <- NULL
for(i in 1:5)result <- c(result,rep(i,6))

However, the same result can be acheived by using vector arguments:

result <- rep(1:5,rep(6,5))

It is worth noting that this gives a very different value from rep(1:5,6) :

> rep(1:5,6)
[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

When processing each row or column of a matrix or data frame, the function apply can be used to elim-
inate the need for loops. For example, to calculate the sum of each row of a matrix called mat , the following
call to apply could be used

rowsums <- apply(mat,1,sum)

The 1 in the apply call refers to processing by rows; a 2 results in processing by columns. The third argument
to apply , in this case, sum, is a function which will be applied to each row or column of the matrix in turn.
A similar function, tapply , will apply a function to different subsets of a vector based on the value of a
second vector. For example, suppose the vector score represents tests scores in an experiment, and the
vector group indicates which group each of the observations came from. To calculate the means for each
group, tapply could be called as follows:

group.means <- tapply(score,group,mean)

If the function being passed to apply or tapply requires more than one argument, the additional argu-
ments can be included in the argument list after the name of the function being passed.

For functions like apply and tapply , it is often useful to construct a function to be applied to each row
or column of a matrix, if the function you need is not otherwise available. Often a simple function is all that
is needed, and you can pass the function definition to apply or tapply . For example, suppose we have a
2 column matrix called meanvar whose rows contain a mean and corresponding variance, and we wish to
generate a vector of random numbers from normal distributions with these means and variances. We could
use apply by writing a function which calls the S function rnorm with appropriate arguments as follows:

rvars <- apply(meanvar,1,function(x)rnorm(1,x[1],x[2]))

The variable x in the function definition is a dummy variable which will take as its value each row of the ma-
trix in turn. The returned value, rvars , will be a vector with as many elements as meanvar , and the i th el-
ement of rvars will be a random number from a normal distribution with mean equal to meanvars[i,1]
and variance equal to meanvars[i,2] .

8 Statistical Functions

8.1 Descriptive Statistics

For descriptive statistics, Splus has individual functions for most common statistics. Interestingly, there is
no built-in standard deviation function; you need to use the square root of the variance. The summary func-
tion, when used on a numeric vector, will provide the minimum, the maximum, and the first, second and
third quartiles. The function stem provides a stemleaf diagram, along with a few descriptive statistics. For
categorical variables, the table function can provide both one-way and multi-way contingency tables. The
crosstabs function presents similar information in a possibly more familiar form.

7

8.2 Statisical Modeling

Splus provides a number of functions for statistical modeling, including a few for “modern” techniques
which may not be available elsewhere. These functions include lm (linear models), aov (analysis of vari-
ance), glm (generalized linear models), gam(generalized additive models), coxph (Cox proportional hazard
models), loess (local regression smoothing), tree (Recursive Tree models for classification or regression)
and nls (Non-linear regression.) For a more complete list, choose “Statistical Models” from the right-hand
menu displayed by the help.start() menu.

For most statistical modeling applications, there is a clear distinction between variables which enter the
model as factors (discrete categorical variables), and regressors (continuous numeric variables). For exam-
ple, in an analysis of variance, regressor variables are entered directly into the design matrix, while factor
variables are entered as one or more columns of dummy variables.

For variables you have identified as factors, Splus will automatically generate appropriate dummy vari-
ables, and most of the functions which display the results of the analysis will treat these groups of dummy
variables as a single effect. To let Splus know a variable is a factor, use the function factor . For example,
to change a variable called group to a factor, use

group <- factor(group)

If the variable group were stored in a data frame called mydata , a similar call would be used:

mydata$group <- factor(mydata$group)

Using a data frame for statistical modeling is especially easy, because all the modeling functions accept an
argument called data ; when a data frame is given as a data argument, Splus will resolve variable names
in that data frame, making your formulas more readable, and eliminating the need to repeat the data frame
name over and over.

To construct a formula in Splus, you use the tilda (˜), with your dependent variable on the left-hand
side and your independent variables on the right-hand side. You can also construct other terms for the right
hand side using the symbols in Table 1 below. Note that if you want any of the model operators in the table
to behave in their usual fashion inside a formula, the term including the operator should be passed to the
I() function.

Table 1: Operators Used in Model Formulas

Operator Usual Meaning Meaning in Formula
+ addition Add term
- subtraction Remove or exclude term
* multiplication Main effect and interactions
/ division Main effect and nesting
: sequence Interaction
ˆ exponentiation Limit depth of interactions

%in% none Nesting

Splus uses an object-oriented approach to statistical modeling. That means that each of the modeling
procedures produces an object which contains an attribute known as the class of the object, and that certain
functions will do the “right” thing when the are called with such an object as their argument.

For example, suppose we have a data frame called corn , containing variables Yield , Block , and Variety .
Since Splus will automatically treat character variables as factors, it is only necessary to identify those nu-
meric variables which you would like to be treated as factors; suppose Block is one such variable, taking
on the values 1, 2, 3 or 4. The statement

corn$Block <- factor(corn$Block)

will identify the variable Block as a factor when it is used in a statisticalmodel. Thus, an anaylsis of variance
performed with the following statement:

8

corn.aov <- aov(Yield ˜ Block*Variety, data=corn)

would correctly assign 3 degrees of freedom to the main effect for Block , instead of the single degree of free-
dom which would result if the variable was treated as a regressor. Functions like print , summary , anova ,
and plot would then all provide meaningful output when passed the corn.aov object.

8.3 Multivariate Analysis

Splus provides many functions for multivariate analysis - unfortunately, not all of them use the object ori-
ented model of the statistical modeling functions. Some of these functions include cancor (canonical cor-
relation), discr (discrimination analysis), manova (multivariate ANOVA), prcomp (principal components
analysis), and factanal (factor analysis). A number of auxiliary functions are also provided for factor anal-
ysis, to perform rotations and extract loadings).

Among clustering techniques are hclust (hierarchial clustering) and kmeans (K-means clustering).

9 Trellis Graphics

Trellis graphics provide a graphical extension to the ideas behind the statistical modelling implemented in
Splus. Instead of passing matrices and vectors to a plotting function, with Trellis, you pass a formula (and
optionally a data frame in which to evaluate the formula), so that you can concentrate on studying the re-
lationship of interest, without being concerned about the syntax of a particular function. In addition, you
can provide a conditioning variable as part of a formula passed to any of the Trellis functions, which re-
sults in separate plots for each value or specified ranges of values of the conditioning variable. Unlike the
core graphics system (Section 6), which by default rescales each plot in a multiple plots/page display, Trellis
graphics insure that the scale of each plot is identical. In addition, Trellis graphics do not leave any white
space between individual plots, further facilitating comparisons between the plots in a Trellis display.

To get an idea of what Trellis graphics can do, consider the data set fuel.frame , which is included in
the datasetsof library of Splus. Suppose we wish to model the variable Mileage as a function of the variable
Weight . As explained in Section 8.2, the lm() (linear model) function could be called as:

lm(Mileage ˜ Weight,data=fuel.frame)

The formula passed to lm concisely describes the relation we are studying. Now suppose that we wish to see
if this relation changes as we consider different Type s (Small, Medium, Large ...) of cars. One way to study
this relation is to plot the values of Mileage and Weight . The function xyplot() is the Trellis function
appropriate for creating a scatterplot, so one could create the desired plots with the following statement:

xyplot(Mileage ˜ Weight|Type,data=fuel.frame)

This plot is displayed in Figure 1.
Note that the scales are identical on each of the plots, simplifying comparisons between plots, as well as

providing useful information about the range of variables at each level of the conditioning variable. Since
the Trellis graphics are built on top of the core graphics, it is theoretically possible to get the same result
using the core graphics, but there are two notable differences. First, to get separate plots for each group,
and to force each plot to use the same scale would require additional programming without Trellis. Sec-
ondly, the core graphics functions were not specifically designed for the types of comparisons which Trellis
is suitable for, so multiple plots are placed on the page with separate axes and labels for each plot, as well
as copious white space between each plot. For many of the Trellis functions, like xyplot() , it’s intuitive
as to how to specify variables of interest in a formula; for some others (like histogram), it may not be so
obvious. The basic rule is that the variable represented by the vertical (y−)axis should appear on the left side
of the tilda (˜), while the variable on the horizontal (x−)axis should appear on the right side. Thus the for-
mula ˜Income|Education would produce separate histograms for the variable Income for each level of
Education . Conditioning variables always are preceded by a bar (|), and immediately follow the formula.
If you use more than one conditioning variable, they should be joined by asterisks (*).

9

20

25

30

35

Compact

2000 2500 3000 3500

Large Medium

2000 2500 3000 3500

Small Sporty

2000 2500 3000 3500

20

25

30

35

Van

Weight

M
ile

ag
e

Figure 1: Scatterplot of Mileage vs. Weight conditioned on Type

Trellis graphics are designed to be highly customizable. The help file trellis.args is a good starting
point to learn more. Two very useful arguments accepted by all Trellis functions are panel , which allows
you to specify the function called to produce the individual plots, and strip , which controls the appearence
of the labels in the strip on top of each of the plots. To learn more about Trellis, a good place to start is the
Splus help file trellis.examples . For even more information on Trellis graphics, visit the web site

http://netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/

10 Resources

10.0.1 Distributors Web Page:

http://www.statsci.com

10.0.2 Newsgroup Archive:

http://lib.stat.cmu.edu/s-news

10.0.3 Function repository:

http://lib.stat.cmu.edu/s

10.0.4 Books:

1. The New S Language: A Programming Environment for Data Analysis and Graphics, by R.A. Becker, J.M.
Chambers and A.R. Wilks, Wadsworth & Brooks/Cole, Pacific Grove, 1988.

10

2. Statistical Models in S, by J.M. Chambers and T.J. Hastie (eds.), Wadsworth& Brooks/Cole, Pacific Grove,
1991.

3. An Introduction to S and S-Plus, by P. Spector, Duxbury Press, 1994.

4. Modern Applied Statistics with S-Plus, by W.N. Venables and B.D. Ripley, Springer-Verlag, 1994.

5. Various manuals available from Statistical Sciences, Inc.

11

