Summary of Confidence Interval and Hypothesis Testing Formulae

Setting	Estimate	Standard Error	Confidence Interval	Test Statistic	Distribution
Population Mean — σ known — σ unknown	$ar{ar{x}}$ $ar{ar{x}}$	$ SE = \frac{\sigma}{\sqrt{n}} \\ \widehat{SE} = \frac{s}{\sqrt{n}} $	$\bar{x} \pm z^* SE$ $\bar{x} \pm t^* \widehat{SE}$	$z = \frac{\bar{x} - \mu_0}{\text{SE}}$ $t = \frac{\bar{x} - \mu_0}{\text{SE}}$	$\operatorname{Normal}(0,1) \ \operatorname{t}(n-1)$
Difference Between Population Means $-\sigma_1 \text{ and } \sigma_2 \text{ known}$ $-\sigma_1 = \sigma_2 \text{ unknown}$ $-\sigma_1 \neq \sigma_2 \text{ unknown}$	$egin{aligned} ar{x}_1 - ar{x}_2 \ ar{x}_1 - ar{x}_2 \ ar{x}_1 - ar{x}_2 \end{aligned}$	$SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ $\widehat{SE} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $\widehat{SE} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		$z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\text{SE}}$ $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\text{SE}}$ $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\text{SE}}$	$egin{aligned} \operatorname{Normal}(0,1) \ & \operatorname{t}(n_1+n_2-2) \ & \operatorname{t}(f) \end{aligned}$
$egin{aligned} & ext{Paired Samples} \ & -\!$	$\bar{d} = \bar{x}_1 - \bar{x}_2$ $\bar{d} = \bar{x}_1 - \bar{x}_2$	$ SE = \frac{\sigma_d}{\sqrt{n}} $ $ \widehat{SE} = \frac{s_d}{\sqrt{n}} $	$ar{d} \pm z^* \mathrm{SE}$ $ar{x} \pm t^* \widehat{\mathrm{SE}}$	$z = \frac{\bar{d} - \mu}{SE}$ $t = \frac{\bar{x} - \mu}{SE}$	$\operatorname{Normal}(0,1) \ \operatorname{t}(n-1)$
Population Proportion — confidence intervals — hypothesis tests	\hat{p} \hat{p}	$\widehat{SE} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ $\widehat{SE} = \sqrt{\frac{p_0(1-p_0)}{n}}$	$\hat{p} \pm z^* \widehat{\mathrm{SE}}$	$z = \frac{\hat{p} - p_0}{\text{SE}}$	Normal(0, 1)
Difference Between Population Proportions — confidence intervals — hypothesis tests	$\hat{p}_1-\hat{p}_2 \ \hat{p}_1-\hat{p}_2$	',	$\hat{p}_1 - \hat{p}_2 \pm z^* \widehat{ ext{SE}}$	$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\widehat{\text{SE}}}$	$\operatorname{Normal}(0,1)$

For a confidence interval with confidence level C, z^* is the value such that the area between $-z^*$ and z^* under the standard normal distribution is C.

For a confidence interval with confidence level C, t^* is the value such that the area between $-t^*$ and t^* under a t distribution with the indicated degrees of freedom is C.

 $s_p^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$ is a weighted average of the two sample variances weighted by their degrees of freedom and is used to estimate the common unknown population standard deviation.

$$f = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}$$

is a (non-integer) estimate of the degrees of freedom of the t distribution that best approximates the actual sampling distribution of the test statistic in the case that the population standard deviations are different and unknown.

 s_d is the sample standard deviation of the matched differences.

 $\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$ is the combined sample proportion of successes.