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Modern Phylogenetics

Phylogenies are usually estimated from aligned DNA sequence data.

Phylogenetics is the primary tool for systematics.

Phylogenetics is used for studying viruses such as HIV and Influenza..

Phylogenetics has been used in court for forensic purposes.

Phylogenetics is being used increasingly in comparative genomics and
study of gene function.
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Phylogenetics and Systematics

Phylogenetic methods, particularly for molecular sequence data, have
become the primary tool for systemicists to determine evolutionary
relationships.

These tools have been used to confirm expected relationships — for
example, that chimpanzees are the closest living relative to humans —

and have also been key in revealing several more surprising findings,
including:

I birds are descended from dinosaurs;
I polar bears form a monophyletic group within brown bears;
I the most closely related land mammal to whales is the hippopotamus.
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Phylogenetic Tree of Whales
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Phylogenetics and Forensics

Phylogenetic trees have been used in several instances in the courts to
provide evidence about the likely transmission of HIV.

Examples include:
I Confirming that a nurse contracted HIV from mishap with a broken

glass blood collection tube from an infected patient and not from an
alternative source;

I Providing evidence of deliberate infection in a criminal case;
I Indicated that an infected friend was likely not the direct source of

infection in a case.
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Forensic Phylogenetic Tree
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Figure 2. Neighbor-joining phylogram representing the reconstruction  of the phylogenetic relationships
between the env (C2-V5) sequences  obtained from the index case (A31-44), the alleged recipient  (B22-
29), three local controls (LC45 and LC48; LC46 and LC47; and  LC49 and LC50) and 48 sequences
chosen from GenBank. Ten iterations  of random sequence addition were used. Scale bar represents
10%  genetic distance. Bootstrap values are shown at nodes with greater  than 70% support.
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DNA Data from a Sample of Birds

First 24 bases of 1558 from Cox I gene.

Alligator GTG AAC TTC CAC --- CGT TGA CTC ...
Emu GTG ACA TTC ATT ACT CGA TGA TTT ...
Kiwi GTG ACC TTT ACT ACT CGA TGA CTC ...
Ostrich GTG ACC TTC ATT ACT CGA TGA CTT ...
Swan GTG ACC TTC ATC AAC CGA TGA CTA ...
Goose GTG ACC TTC ATC AAC CGA TGA CTA ...
Chicken GTG ACC TTC ATC AAC CGA TGA TTA ...
Woodpecker GTG ACC TTC ATC AAC CGA TGA TTA ...
Finch ATG ACA TAC ATT AAC CGA TGA TTA ...
Ibis GTG ACC TTC ATC AAC CGA TGA CTA ...
Stork GTG ACC TTC ATT ACC CGA TGA CTA ...
Osprey ATG ACA TTC ATC AAC CGA TGA CTA ...
Falcon GTG ACC TTC ATC AAC CGA TGA CTA ...
Vulture ATG ACA TTC ATC AAT CGA TGA CTA ...
Penguin GTG ACC TTC ATT AAC CGA TGA CTA ...
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An Estimated Phylogeny
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Activity 1: Example Tree

How many descendent taxa does
the common ancestor of taxa A
and C have?

Which taxon is sister to A?

Which taxa are more closely
related, A and C or C and D?

Which taxa are more closely
related, A and E or D and E? A

B

C

D

E

F
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Activity 2: Compare Trees

Which trees have the same tree topology?

A

B

C

D

E

F

C

B

A

D

F

E

F

E

D

C

A

B

C

B

A

D

F

E

A

B

C

D

E

F

C

B

A

D

F

E

Activity 3: Unrooted Trees

Some methods estimate
unrooted trees.

If C is the outgroup, what is the
rooted tree topology?

If taxon C is the outgroup,
which node is sister to B?

If taxon A is the outgroup,
which node is sister to B?

How many rooted tree
topologies are consistent with
this unrooted tree topology?

A
B

C

D
E
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How Many Trees?

# of Taxa # Unrooted Trees # Rooted Trees

1 1 1
2 1 1
3 1 3
4 3 15
5 15 105
6 105 945
7 945 10395
8 10395 135135
9 135135 2027025

10 2027025 34459425
11 34459425 654729075
12 654729075 13749310575
13 13749310575 316234143225
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Formula for Counting Trees

The number of rooted tree topologies with n taxa is
1× 3× · · · × (2n − 3) ≡ (2n − 3)!! for n ≥ 3.

There are more rooted trees with 51 species (2.7× 1078) than
estimated # of hydrogen atoms in the universe (1.3× 1077).

Biologists often estimate trees with more than 100 species.
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Probabilistic Framework

Essentially, all models are wrong, but some are useful.
George Box

Commonly used models of molecular evolution treat sites as
independent.

These common models just need to describe the substitutions among
four bases — A, C, G, and T — at a single site over time.

The substitution process is modeled as a continuous-time Markov
chain.
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Markov Property

Use the notation X (t) to represent the base at time t.

X (t) ∈ {A,C ,G ,T} for DNA.

Formal statement:

P {X (s + t) = j | X (s) = i ,X (u) = x(u) for u < s}
= P {X (s + t) = j | X (s) = i}

Informal understanding: given the present, the past is independent of
the future

If the expression does not depend on the time s, the Markov process
is called homogeneous.
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Rate Matrix

A stationary, homogeneous, continuous-time, finite-state-space
Markov chain is parameterized by a rate matrix where:

I off-diagonal rates are nonnegative;
I diagonal terms are negative row sums of off-diagonal elements;
I consequently, row sums are zero.

Example:

Q = {qij} =


−1.1 0.3 0.6 0.2

0.2 −1.1 0.3 0.6
0.4 0.3 −0.9 0.2
0.2 0.9 0.3 −1.4


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Alarm Clock Interpretation

How to simulate a continuous-time Markov chain beginning in state i .

I time to the next transition ∼ Exponential(qi ) where qi ≡ −qii .
I transition is to state j with probability

qij∑
k 6=i qik
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Path Probability Density Calculation

Example: Begin at A, change to G at time 0.3, change to C at time
0.8, and then no more changes before time t = 1.

P {path} = P {begin at A}

×
(

1.1e−(1.1)(0.3) · 0.6

1.1

)
×
(

0.9e−(0.9)(0.5) · 0.3

0.9

)
×
(
e−(1.1)(0.2)

)
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Probability Transition Matrices

The transition matrix is P(t) = eQt where

eA =
∞∑

k=0

Ak

k!
= I + A +

A2

2
+

A3

6
+ · · ·

A probability transition matrix has non-negative values and each row
sums to one.

Each row contains the probabilities from a probability distribution on
the possible states of the Markov process.
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Examples

P(0.1) =


0.897 0.029 0.055 0.019
0.019 0.899 0.029 0.053
0.037 0.029 0.916 0.019
0.019 0.080 0.029 0.872

 P(0.5) =


0.605 0.118 0.199 0.079
0.079 0.629 0.118 0.174
0.132 0.118 0.671 0.079
0.079 0.261 0.118 0.542



P(1) =


0.407 0.190 0.276 0.126
0.126 0.464 0.190 0.219
0.184 0.190 0.500 0.126
0.126 0.329 0.190 0.355

 P(10) =


0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200
0.200 0.300 0.300 0.200


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Stationary Distribution

Well-behaved continuous-time Markov chains have a stationary
distribution π. (For finite-state-space chains, irreducibility is
sufficient.)

When the time t is large enough, the probability Pij(t) will be close to
πj for each i . (See P(10) from earlier.)

The stationary distribution can be thought of as a long-run average
— the proportion of time the state spends in state i converges to πi .

The stationary distribution satisfies π>Q = 0>.

Also, π>P(t) = π> for any time t.
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Numerical Example

π>Q = 0>

(
0.2 0.3 0.3 0.2

)
−1.1 0.3 0.6 0.2

0.2 −1.1 0.3 0.6
0.4 0.3 −0.9 0.2
0.2 0.9 0.3 −1.4

 =
(

0 0 0 0
)
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Usual Parameterization

The matrix Q = {qij} is typically scaled and parameterized

qij = rijπj/µ

for i 6= j where

µ =
∑

i

πi

∑
j 6=i

rijπj

which guarantees that π will be the stationary distribution when
rij = rji .

With this scaling, there is one expected transition per unit time.
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Time-reversibility

A continuous-time Markov chain is time-reversible if the probability of
a sequence of events is the same going forward as it is going
backwards.

The matrix Q is the matrix for a time-reversible Markov chain when
πiqij = πjqji for all i and j .

That is, the overall rate of substitutions from i to j equals the overall
rate of substitutions from j to i for every pair of states i and j .

The matrix equivalent is ΠQ = Q>Π where Π = diag(π).
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General Time-Reversible Model

The GTR model is the most general basic time-reversible
continuous-time Markov model for nucleotide substitution.

The model is typically parameterized with 8 free parameters where

qij =

{
rijπj/µ for i 6= j

−
∑

j 6=i qij for i = j

with µ =
∑

i πi
∑

j 6=i rijπj .
I The stationary distribution π has three free parameters as π sums to

one;
I The vector r = (rAC , rAG , . . . , rGT ) is usually constrained to five degrees

of freedom (either by setting rGT = 1 or constraining the sum).

Many other popular models are special cases.

These models are often named by the initials of the authors and the
year in which they were published.
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Rate Variation Among Sites

A common extension to the standard CTMC models is to assume that
there is rate variation among sites.

At these sites, the Q matrix is multiplied by a site-specific rate.

The two most popular extensions are:
I Invariant sites: some sites have rate 0
I Gamma-distributed rates: rates are drawn from a mean 1 gamma

distribution

For computational tractability, the Gamma distribution is typically
replaced by a mean 1 discrete distribution with four distinct rates
based on quantiles of a Gamma distribution.
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Other Extensions

There are many other model extensions in common use and under
development.

It is common to partition sites (by gene, by codon position, by
genomic location) and to use different models for each part.

The covarion model allows different lineages to have different rates at
the same site.

This is typically modeled with a hidden Markov model where the site
can turn “off”.

There are models for amino acid substitution, models for codons,
models for RNA pairs, models that incorporate protein structure
information, and so on.

Current models still do not capture much of the important biological
processes that affect evolution of molecular sequences.
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Distance Between Pairs of Taxa

In a two-taxon tree, the distance between two taxa can be estimated
under any model by maximum likelihood.

If the distance is t and at site i one species has base A and the other
has base C, the contribution to the likelihood at this site j is

Lj(t) = πAPAC (t) = πCPCA(t)

for a time-reversible model.

The overall likelihood is

L(t) =
∏
j

Lj(t)

and the log-likelihood is

`(t) =
∑

j

log Lj(t) =
∑

j

(
log πx[j] + log Px[j]y [j](t)

)
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Distance Between Pairs of Taxa

For models with free π, it is common to estimate π with observed
base frequencies.

Other parameters are usually estimated by maximum likelihood.

The simplest models have closed form solutions, others require
numerical optimization.
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Notation for the Alignment

An alignment of m taxa and n sites will have mn nucleotide bases.

Let the observed base for the ith taxon and the jth site be xij .
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Notation for the Tree

With a time-reversible model, the location of a root (where the CTMC
begins at stationarity) does not affect the likelihood calculation.

We can assume an unrooted tree without loss of generality.

An unrooted tree with m taxa will have m − 2 internal nodes.

Number these nodes i = 1, . . . , 2m − 2 with the first m for leaf nodes
and the last m − 2 for internal nodes.

For calculation purposes, we will denote node ρ (which could be any
node) as the root.

There are 2m − 3 edges in the tree, numbered e = 1, . . . , 2m − 3.

Relative to root node ρ, edge e connects parent node p(e) and child
node c(e) where p(e) is closer to ρ than c(e).

Edge e has length te .
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Notation for Unobserved Data

The likelihood for a tree is computed by summing over all possible
bases at the internal nodes for each of the n sites.

For each site, there are 4m−2 possible allocations of bases at internal
nodes we will index by k.

Internal node i is set to nucleotide bik at the kth allocation,
i = m + 1, . . . , 2m − 2.

Let z(i , j , k) be the nucleotide at node i , site j , and allocation k.

z(i , j , k) =

{
xij if i ≤ m (i is a leaf node)
bik if i > m (i is an internal node)
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Likelihood of a Tree

Let P(t) be the 4× 4 probability transition matrix over an edge of
length t.

The likelihood of the tree is

∏
j

∑
k

(
πz(ρ,j ,k)

∏
e

Pz(p(e),j ,k)z(c(e),j ,k)(te)

)

Notice that the sum is over the 4m−2 possible allocations.

A naive calculation would not be tractible for large trees.
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Felsenstein’s Pruning Algorithm

Felsenstein’s pruning algorithm is an example of dynamic
programming.

By saving partial calculations, the time complexity of the likelihood
evaluation grows linearly with the number of sites, not exponentially.

For each site and node, the algorithm depends on calculating the
probability in the subtree rooted at that node for each possible base.

The algorithm begins at the leaves of the tree and recurses to the
root.

The likelihood of the site is a weighted average of the conditional
subtree probabilities at the root weighted by the stationary
distribution.
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Maximum Likelihood Estimation for one Tree

For a single tree topology, the ML estimation requires optimization of
branch lengths and of any parameters in the substitution model.

Numerical optimization methods are required even for simple models
and small trees.
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Tree Search

The search for the maximum likelihood tree conceptually requires
obtaining the maximum likelihood for each possible tree topology and
then picking the best of these.

For more than a dozen or so taxa, exhaustive search is non feasible.

Heuristic search algorithms typically define a neighborhood structure
for possible topologies.

The search goes through neighbors and jumps to the first neighbor
with a higher likelihood.

When all neighbors are inferior to the current tree, the search stops.

Much improvement has been made in recent years (RAxML and
GARLI are two modern ML programs).
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Bayesian Inference

In Bayesian inference, the posterior distribution is proportional to the
product of the likelihood and the prior distribution.

For parameters θ and data D,

P {θ | D} =
P {D | θ}P {θ}

P {D}
.

The denominator is the marginal likelihood of the data, which is the
integral of the likelihood against the prior distribution.
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Bayesian Phylogenetics

For a phylogenetic problem, the parameter θ typically includes the tree
topology, the edge lengths, and parameters for the substitution model.

θ = (τ, ν, φ)

Often we assume independence of these components:

P {θ} = P {τ}P {ν}P {φ} .

In a typical phylogenetic problem, the marginal likelihood cannot be
computed as

P {D} =

∫
Θ

P {D | θ}P {θ}dθ

is a sum of very many terms (one for each topology) where each term
is a high-dimensional integral of a complicated function.
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Phylogenetic Inference

We may be interested in the posterior distribution of the tree
topology, P {τ | D}.
When this posterior distribution is diffuse, we can summarize it by
computing posterior distributions of clades.

The posterior probability of a clade C is the sum of the posterior
probabilities of all tree topologies that contain it.

P {C | D} =
∑
τ :C∈τ

P {τ | D}

A consensus tree which includes as many clades with high posterior
probability as possible is often used as a single tree summary of a
distribution of the tree topology.
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Sample-based Inference

Any aspect of a posterior distribution can be estimated from a sample
drawn from the distribution.

For example, the sample proportion of trees with topology τ0 is an
estimate of P {τ0 | D}.
Also, the sample mean of a transition/transversion parameter κ is an
estimate of the posterior mean E [κ | D].

But how do we sample from a complicated posterior distribution?
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a mathematical method for
obtaining dependent samples from a target distribution (such as a
posterior distribution).

The idea is to construct a Markov chain whose state space is the
parameter space Θ where the stationary distribution of the Markov
chain matches the target distribution, say P {θ | D}.
Simulating the Markov chain produces a sample

θ0, θ1, . . .

which, after discarding an initial burn-in portion, may be treated as a
dependent sample from the target distribution.
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Metropolis-Hastings

For notational convenience, let the target distribution be
π(θ) = P {θ | D}.
The most common form of MCMC uses the Metropolis-Hastings
algorithm in which a proposal distribution q which can depend on the
most recently sampled θi generates a proposal θ∗ which is accepted
with some probability.

When accepted, θi+1 = θ∗.

When rejected, θi+1 = θi .

The proposal distribution q is essentially arbitrary provided it can
move around the entire space Θ.
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Metroplis-Hastings Algorithm

The acceptance probability is

min

{
1,
π(θ∗)

π(θ)
× q(θ | θ∗)

q(θ∗ | θ)
× |J|

}
where |J| is a Jacobian.

Notice the target density appears only as a ratio — this means that it
only need be known up to scalar, and we can simply evaluate
h(θ) = P {D | θ}P {θ} since

π(θ∗)

π(θ)
=

P {D | θ∗}P {θ∗} /P {D}
P {D | θ}P {θ} /P {D}

=
h(θ∗)

h(θ)

Note that the proposal ratio

q(θ | θ∗)
q(θ∗ | θ)

can be tricky to compute.
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MCMC Example

Target Distribution

MCMC Example 44 / 54



First Point

Initial Point
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Proposal Distribution

Proposal Distribution
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First Proposal

First Proposal

Accept with probability 1
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Second Proposal

Second Proposal

Accept with probability 0.153
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Third Proposal

Third Proposal

Accept with probability 0.144
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Beginning of Sample

Sample So Far

●

●

●

●
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Larger Sample

Second Proposal
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Comparison to Target
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Cautions

MCMC does not always converge;

Should always run several chains with different random numbers and
compare answers;

If the true tree has some very short internal edges, Bayesian inference
can mislead;

Different likelihood models can lead to different results.
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Bayesian Inference

Development of Bayesian methods has led to continual improvement
in our ability to model and learn about molecular evolution.

Bayesian inference uses likelihood, but requires a prior distribution.

Bayesian inference is computationally intensive, but can be less so
than ML plus bootstrapping.

Bayesian inference directly measures items of interest on an easily
interpretable probability scale.

Some folks dislike the requirement of specifying a prior distribution.
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