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ABSTRACT

Protecting data privacy is an important problem in micro-
data distribution. Anonymization algorithms typically aim
to protect individual privacy, with minimal impact on the
quality of the resulting data. While the bulk of previous
work has measured quality through one-size-fits-all mea-
sures, we argue that quality is best judged with respect to
the workload for which the data will ultimately be used.

This paper provides a suite of anonymization algorithms
that produce an anonymous view based on a target class
of workloads, consisting of one or more data mining tasks,
as well as selection predicates. An extensive experimental
evaluation indicates that this approach is often more effec-
tive than previous anonymization techniques.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms

Algorithms, Experimentation, Security

Keywords
Privacy, Anonymity, Data Recoding, Predictive Modeling

1. INTRODUCTION

k-Anonymity [22, 23] and I[-diversity [18] have been stud-
ied widely as mechanisms for preventing re-identification at-
tacks in microdata release. Of course, subject to the given
anonymity constraints, the data should remain as useful as
possible. Unfortunately, there is often a tension between
these two goals.

It is our position that the best way of measuring quality
is based on the task for which the data will ultimately be
used. This paper provides anonymization techniques that
incorporate a target workload of selections and mining tasks.

1.1 Motivating Example

Suppose that a trusted agency compiles a database of dis-
ease information for several million hospital patients. How-
ever, the agency is prohibited by law from distributing this
data without taking precautions to ensure individual pri-
vacy. For example, the agency should take steps to guaran-
tee that the released data does not reveal any individual’s
HIV status.

Alice is an external researcher who is directing two sep-
arate studies, each of which could benefit from using the
data in the central database. As part of the first study,
Alice wants to build a classification model that uses age,
smoking history, and HIV status to predict life expectancy.
In the second study, she would like to find combinations of
variables that are useful for predicting elevated cholesterol
and obesity in males over 40.

In this situation, it is desirable to distribute anonymized
microdata to individuals like Alice (the data recipients).*
One might consider a simpler protocol, in which Alice re-
quests a specific model, constructed entirely by the agency.
However, there are two downsides to this approach. First,
the simple model-distribution protocol assumes that the tasks
are fully-specified at the time of the initial request. How-
ever, in our example, Alice’s second study involves an entire
class of models, each constructed using a subset of the data
(attributes and records). Indeed, workloads like this arise
naturally in certain types of exploratory data analysis [9].

Also, the inference implications of releasing one or more
models constructed on the agency’s unmodified data are not
well-understood. Each such model reveals something about
the distributional characteristics of the agency’s data, and
in certain cases, the revealed information might constitute a
breach of privacy. However, in the case of a single released
view, there are well-defined notions of anonymity, and the
best Alice can do is to approximate the distribution in the
(sanitized) data she is given.

The work presented in this paper is motivated by this type
of scenario, where the goal is to create a single view of the
database that respects all given anonymity constraints, but
that remains useful for carrying out the tasks in a target
class of workloads.
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We begin by reviewing the problems of anonymity, classi-
fication, and regression in Section 2. Because previous defin-

'We assume that Alice only receives one version of any given
data set and that she does not collude with others receiving
data distributions from the same source.



itions of anonymity with respect to a sensitive attribute (i.e.,
l-diversity [18]) have assumed that the sensitive attribute is
nominally-valued, we also propose a novel diversity require-
ment for numeric attributes.

Our first main contribution, described in Section 3, is a
suite of algorithms for generating an anonymous data snap-
shot, while preserving the utility of the data with respect to
a target class of workloads. While previous work has con-
sidered incorporating a single classifier (constructed over the
entire released data set) [13, 15, 24], we incorporate the fol-
lowing expressive workload characteristics:

e Classification & Regression We incorporate models
predicting both categorical and numeric attributes.

e Multiple Target Models Often, the data recipient will
want to build separate models to predict multiple different
attributes.

e Selection & Projection Frequently, one or more of the
mining tasks will involve only a subset of the data (e.g.,
males over 40). In this case, it is important to guarantee
that this data can be precisely and accurately selected
from the released snapshot. Similarly, it is important to
guarantee that the data remains useful when only a subset
of the released attributes is used for a particular task.

Our second main contribution is an extensive experimen-
tal evaluation, described in Section 4. The results show
that our anonymization algorithms are often more effective
than previous algorithms in producing high-quality data, as
judged by a variety of workloads.

Much of the previous work on k-anonymity has measured
data quality or optimality using simple measures based on
equivalence class size or the total number of generaliza-
tions/suppressions [2, 5, 17, 19, 22, 23]. Not surprisingly,
our experiments also show that one-size-fits-all measures are
not necessarily indicative of quality with respect to a par-
ticular workload.

In order to assess the impact of anonymization on sub-
sequent analysis techniques, we first had to address some
additional problems. Because standard learning algorithms
use point data for training, rather than the region data pro-
duced by multidimensional recoding, Section 4.2 proposes
a pre-processing step for converting regions to points. Fol-
lowing pre-processing, standard learning algorithms can be
applied without modification.

The paper concludes with discussions of related and future
work in Sections 5 and 6.

2. PRELIMINARIES

K-anonymity [22, 23] and [-diversity [18] were proposed to
limit re-identification risk in microdata publishing. Consider
a single relation 7". In defining anonymity, each attribute in
T is characterized by at most one of the following types:

e Unique Identifiers A unique identifier is any attribute
that identifies individuals (e.g., SS#). Known identifiers
are typically removed entirely from released microdata.

e Quasi-identifier (Q1, ..., Q4) A quasi-identifier is a min-
imal set of attributes that can be joined with external
information to re-identify individual records. We assume
that a quasi-identifier is recognized based on knowledge of
the domain.

e Sensitive attributes (S) An attribute is considered sen-
sitive if an adversary should not be permitted to uniquely
associate its value with a unique identifier. For example,
the HIV Status field in released medical data would likely
be considered sensitive. Previous work assumed a single,
nominally-valued, sensitive attribute [18]; we also propose
an extension to a numeric sensitive attribute.

The k-anonymity requirement is quite simple. Intuitively,
it stipulates that no individual record should be uniquely
identifiable from a group of k on the basis of its quasi-
identifier values. We will refer to each group of tuples in T’
with identical quasi-identifier values as an equivalence class.

K-Anonymity [22, 23] A table T is k-anonymous with re-
spect to quasi-identifier set @1, ..., Qq if every unique tuple
(q1,...,q4) in the (multiset) projection of T on Q1,...,Q4
occurs at least k£ times.

I-Diversity [18] provides a natural extension, incorporat-
ing a nominal sensitive attribute S. The [-diversity prin-
ciple requires that each equivalence class (as defined by k-
anonymity) also contain at least [ “well-represented” distinct
values for S. This principle can be instantiated in various
ways. The strictest proposal formulates [-diversity in terms
of entropy. Because entropy is concave, entropy [-diversity
requires that the full database have entropy at least log(l).
Dgs denotes the (finite) domain of attribute S.

Entropy [-Diversity (Nominal S) [18] A table T is en-
tropy [-diverse with respect to quasi-identifier set Q1, ..., Qq
and sensitive attribute S if, for every equivalence class F in
T, 3 sep, —P(s|E)log p(s|E) > log(l), where p(s|E) is the
fraction of tuples in E with S = s.

For numeric sensitive attributes, diversity is more subtle.
For example, if S = Salary, an equivalence class containing
salaries {100K, 101K,102K } is considered 3-diverse, but in-
tuitively does not protect privacy as well as an equivalence
class containing salaries {1K,50K,500K }. For this reason,
we define a new diversity requirement that guarantees a cer-
tain level of dispersion within each equivalence class:

Squared-Error Diversity (Numeric S) Table T is squared-

error diverse with respect to quasi-identifier set Q1, ..., Qq
and sensitive attribute S if, for every equivalence class F in
T, Y ,cx(si—5(E))* > error, where (E) is the mean value
of S in E, and error is the diversity parameter.

2.1 Classification & Regression

In classification/regression, attributes are typically char-
acterized by at most one of the following types:

e Target attribute (C or R) The goal of classification
is to build a model that accurately predicts the value of
a nominal class label (C'). Regression aims to predict a
numeric attribute (R).

e Predictor attributes Some set of (discrete or continu-
ous) predictor attributes (also commonly called features)
are used to predict the target attribute.

When a target classification or regression model is consid-
ered in conjunction with anonymity, each attribute has two
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Figure 1: A possible value generalization hierarchy
for the Nationality domain

characterizations. In the remainder of this paper, we will as-
sume that the set of predictor attributes is a quasi-identifier.
Under this assumption, it is contradictory to categorize an
attribute as both target and sensitive, and we disallow this
categorization.

2.2 Recoding

Numerous recoding techniques have been proposed for san-
itizing microdata to satisfy an anonymity constraint. In a
relational database, each attribute X has a domain of values
Dx. A global recoding achieves anonymity by mapping the
quasi-identifier domains to ranges or coarsened values.

Global recoding can be broken down into two sub-classes
[16, 17]. If the quasi-identifier consists of d attributes (Q1,
.oy Qa), a single-dimensional global recoding is defined by a
set of functions ¢1, ..., ¢a such that each ¢; : Do, — D’. An
anonymous view V of T is obtained by applying each ¢; to
the value of @; in each tuple of T'.

On the other hand, a multidimensional global recoding is
defined by a single function ¢ : Dg, X ... x Dg, — D', which
is used to recode the domain of unique wvectors associated
with the quasi-identifier. In this case, V is obtained by
applying ¢ to the vector of quasi-identifier values in each
tuple of T

For attributes with continuous or ordinal (ordered cat-
egorical) domains, it is convenient to think of each vec-
tor of quasi-identifier values (¢i,...,qq) as a point in a d-
dimensional space. A class of multidimensional recoding
models partitions the domain space into non-overlapping d-
dimensional rectangular regions [17]. Recoding function ¢
is defined by mapping each point to the region in which it is
contained. Thus, each region corresponds to an equivalence
class in anonymous view V.2

When the domain of a quasi-identifier attribute is nomi-
nal, this partitioning may be further constrained by a user-
defined wvalue generalization hierarchy, or partial order, as
described by Samarati and Sweeney [22, 23]. For exam-
ple, Figure 1 shows a possible hierarchy for the Nationality
domain; the domain values are found at the leaves. The
notation French < European indicates that French is de-
scended from Furopean in the hierarchy.

The hierarchy can be used in several ways to constrain
the set of possible recodings [16]. In this paper, within a
particular d-dimensional region, we require that if ¢ maps
a leaf value v to some ancestor a, then all leaves that are
descended from a must also be mapped to a.

Every single-dimensional recoding can be equivalently ex-
pressed as a multidimensional recoding, but the reverse is
frequently not true [17]. Depending on the distribution of
the data, this can affect data quality. For example, consider
a dataset with exactly two predictors/quasi-identifiers (Age
and Zip). Suppose the distribution of class labels (+, —) is
as shown in Figure 2, and that £ = 3. In this case, there is

2Hyper-rectangular regions are easily expressed in tabular
form using range values (e.g., Age = [20-35]).
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Figure 2: Comparing multidimensional and single-
dimensional recoding in two dimensions

a k-anonymous multidimensional recoding that groups to-
gether only records with like labels, but this cannot be ac-
complished with single-dimensional recoding, which requires
that the values of each attribute be recoded uniformly.

3. WORKLOAD-AWARE ANONYMIZATION

This section proposes several algorithms for creating a
single snapshot of a given data set that respects a given
anonymity constraint, but remains useful for executing a
particular class of workloads. The target class of workloads
is specified by the following parameters:

1. A set of predictor attributes (Q1, ..., Qq)

2. Either a set of one or more nominal target class labels
(Ci,...,Cm), or numeric target attributes (R1, ..., Rm)

3. Optionally, a set of selection predicates (PR, ..., PR,)

The anonymity constraint is k-anonymity, optionally ex-
tended by [-diversity or squared-error diversity. Also, we
assume that the predictor attributes are a quasi-identifier.

In the simplest case, when the target workload consists
of one classification or regression model, without selection
predicates, the heuristics used by our algorithms implement
entropy [-diversity and squared-error diversity in reverse.

3.1 Single Target Classification Model

The Mondrian algorithm was recently proposed for k-
anonymization using multidimensional recoding [17]. The
algorithm is based on a greedy recursive partitioning of the
(multidimensional) quasi-identifier domain space (see Fig-
ure 3). In order to obtain approximately uniform parti-
tion occupancy, [17] suggests recursively choosing the split
attribute with the largest normalized range of values, and
(for continuous or ordinal attributes) partitioning the data
around the median value of the split attribute. This process
is repeated until no allowable split remains, meaning that
a particular region cannot be further divided without vio-
lating the anonymity constraint, or constraints imposed by
value generalization hierarchies. We refer to this algorithm
as Median Mondrian.

When the (set of ) target mining model(s) is known, we can
improve this heuristic. First consider a single target classifi-
cation model, with predictor attributes Q1,..., Qa4 (also the
quasi-identifier) and class label C. In this case, we pro-
pose a heuristic partitioning scheme based on information
gain, which is reminiscent of decision tree construction. In-
tuitively, the goal of this greedy criterion is to produce ho-
mogeneous partitions of class labels.

At each recursive step, we choose the split that minimizes
the weighted entropy over the set of resulting partitions



(without violating the anonymity constraint). P denotes the
current (recursive) tuple set, and partitions P’ denotes the
set of partitions resulting from the candidate split. p(c|P’)
is the fraction of tuples in P’ with class label C = c¢. We
refer to this algorithm as InfoGain Mondrian.
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InfoGain Mondrian handles continuous quasi-identifier val-
ues as they are typically handled by decision-trees, parti-
tioning around the threshold value with smallest entropy
(see [12]). The data is first sorted with respect to the split
attribute. Then the data is scanned, and each time there is
a change in class label, this candidate threshold is checked
with respect to anonymity and entropy. In the event that
no candidate threshold satisfies the anonymity constraint,
the median is also checked as a default.

InfoGain Mondrian scales to large data sets through a
straightforward adaptation of an existing scalable decision-
tree induction scheme, such as RainForest [14].

3.2 Single Target Regression Model

Similar greedy heuristics can be used when the target at-
tribute is numeric. Specifically, we use the mean squared
error (MSE) to measure the impurity of target attribute R
within a candidate partition P’. A heuristic inspired by the
CART algorithm for regression trees [7] recursively chooses
the split that minimizes the weighted sum of MSEs over the
set of resulting partitions. 7(P’) denotes the mean value of
Rin P'.

Entropy(P,C) =

MSE(P)
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Because |P| is constant for all candidate splits, the al-
gorithm chooses the split that minimizes the following ex-
pression (without violating anonymity). We call this Least
Squared Deviance (LSD) Mondrian. This algorithm
handles continuous attributes through discretization.
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3.3 Multiple Target Models

In certain cases, we would like to allow the data recipient
to build several models, to accurately predict the marginal
distributions of several class labels (Ch,...,Ch,) or regres-
sion attributes (R1,..., Rm). InfoGain Mondrian and LSD
Mondrian can be extended to handle multiple discrete and
numeric target attributes, respectively.

For classification, there are two ways to make this ex-
tension. In the first approach, the data recipient would
build a single model to predict the vector of class labels,
(Ch,...,Cp), which has domain D¢, X ... X D¢,,. A greedy
split criterion would minimize entropy with respect to this
single variable.

However, in this simple approach, the size of the domain
grows exponentially with the number of target attributes.

Anonymize(tuples, attrs)
if (no allowable split for tuples)
return ¢ : t € tuples — bounding region(tuples)
else
best «— Choose_Attribute(attrs, tuples)
if continuous(best) or ordinal(best)
threshold < Choose_Threshold(best)
lhs — {t € tuples : t.best < threshold}
rhs «— {t € tuples : t.best > threshold}
return Anonymize(rhs,attrs) U Anonymize(lhs,attrs)
else if nominal(best)
recodings «— {}
for each child v; of root(best.hierarchy)
tuples; «— {t € tuples : t.best < v;}
attrs’ < replace root(best.hierarchy) with v; in attrs
recodings < recodings U Anonymize(tuples;, attrs’)
return recodings

Figure 3: Basic Mondrian algorithm

To avoid potential problems due to data sparsity, we instead
simplify the problem by assuming independence among tar-
get attributes. This is a reasonable assumption because
we are ultimately only concerned about the marginal dis-
tribution of each target attribute. Under the independence
assumption, a greedy split criterion minimizes the sum of
weighted entropies:

Z Entropy(P,C;) (3)
i=1

In regression (the squared error split criterion in particu-
lar), there is no analogous distinction between treating the
set of target attributes as a single variable and assuming in-
dependence. For example, if we have two target attributes,
R and R», the joint error is the distance between an ob-
served point (r1,72) and the centroid (71(P),72(P)) in 2-
dimensional space. The squared joint error is just the sum
of individual squared errors, (r1 — 71(P))? 4 (r1 — 72(P))>.
For this reason, the greedy split criterion minimizes the sum
of squared error:

zm: E'7‘7‘07‘2(P7 R;) (4)

i=1

3.4 Incorporating Selection

Sometimes one or more of the tasks in the target workload
will use only a subset of the released data, and it is important
that this data can be selected precisely, despite recoding.
For example, a researcher may want to build a model using
only males over 40, but this is difficult if the ages of some
men are recoded to the range [30 — 50]. This problem was
originally described in [17].

Consider a set of selection predicates (PR, ..., PRy, ) de-
fined by boolean functions of the quasi-identifier attributes
(@1, ...,Qa). Conceptually, each PR; defines a query region
R; in the domain space such that R; = {p € Dg, x...xDg, :
PR;(p) = true}. For the purposes of this work, we only con-
sider selections for which the query region can be expressed
as a hyper-rectangle. (Some additional selections can be
decomposed into two or more hyper-rectangles, and incor-
porated as separate queries.)

A multidimensional recoding function ¢ divides the do-
main space into non-overlapping regions Pi,..., P,. For-
mally, the recoding region P; = {p € Dg, X ... X Dqg, :
¢(p) = p;}, where pj is a particular generalization of the



Figure 4: Selection example

quasi-identifier vector. When evaluating PR; over the re-
coded view V, it may be that no subset of the recoding re-
gions can be combined to produce query region R;. Instead,
it is intuitive to return the tuples from V' that are contained
in any recoding region overlapping R;. More formally,

Overlap(R;) = U{PF;: PiNR,; # ¢}
PR;(V) = {é(p): ¢(p) €V Ap € Overlap(R;)}

Notice that this will often produce a larger result set than
evaluating PR; over the original table T'; the imprecision is
the difference in size between these two result sets.

imprecision(PR;,{P1, ..., Pn}) = |PR;(V)| — |PR;(T)| (5)

For example, Figure 4 shows a 2-dimensional domain space.

The shaded area represents a query region, and the tuples
of T are represented by points. The recoding regions are
bounded by dotted lines and numbered. Recoding regions
2, 3, and 4 overlap the query region. If we evaluated this
query using the original data, the result set would include
6 tuples. However, evaluating the query using the recoded
data yields 10 tuples, an imprecision of 4.

Ideally, the goal of selection-oriented anonymization is to
divide the domain space into a set of (anonymous) recod-
ing regions that minimize imprecision for the set of target
predicates. We incorporate this goal into the Mondrian algo-
rithm through a new greedy splitting heuristic. Specifically,
at each recursive step, when partitioning a recursive region
P, we choose the split that minimizes the total imprecision
for the set of resulting regions { P, ..., P, }:

Z imprecision(PR;,{P{,..., P} }) (6)

=1

The algorithm proceeds until there is no allowable split
that reduces the imprecision of the current partition P,
and continuous attributes are handled through discretiza-
tion. We will call this algorithm Selection Mondrian.

In practice, we expect this technique to be used most
often for simple selections, such as breaking down health
data by state. After incorporating selections, we continue to
anonymize each resulting partition independently, using the
appropriate classification- or regression-oriented algorithm.

4. EXPERIMENTAL EVALUATION

Our experimental evaluation has several goals, the first
of which is to provide some insight about quality evalua-
tion methodology. We describe an experimental protocol
for evaluating an anonymization algorithm with respect to
a target data mining workload, and we compare the results
to those obtained using some simpler quality measures.

27 3.7

X(min) | X(max) | Y(min) | Y(max)
2 3 4 7

(24) (34)

Figure 5: Mapping a d-dimensional rectangular re-
gion to 2 x d attributes

The second goal is to evaluate the algorithms described
in Section 3. In particular, we assess the impact of incorpo-
rating a set of target classification or regression models into
the anonymization, and multidimensional recoding. Also,
we evaluate the effectiveness of our algorithms with respect
to selections, projections, and multiple target models.

4.1 Methodology

Given a target classification or regression workload, the
most direct way to evaluate the quality of an anonymiza-
tion is by training each target model using the anonymized
data, and evaluating the resulting models using predictive
accuracy (classification), mean absolute error (regression),
or similar measures. We will call this methodology model
evaluation. All of our model evaluation experiments follow
a common protocol:

1. The data is first divided into training and testing sets (or
10-fold cross-validation sets), T¢rain and Tiest.

2. The anonymization algorithm determines recoding func-
tion ¢ using only the training set Tirain. Anonymous view
Virain 18 obtained by applying ¢ to Tirqin-

3. The same recoding function ¢ is then applied to the testing

set (Tiest), yielding Viest.

The classification or regression model is trained using Virain,
and tested using Viest-

This experimental design is different from the setup used
by Fung et al. [13] for an important reason. In [13], the
combined training and testing sets were anonymized using
a single-dimensional recoding algorithm based on informa-
tion gain. Following this step, the data was separated into
training and testing sets. In our opinion, this setup is in-
appropriate for evaluating the anonymization algorithm be-
cause incorporating the test set when choosing a recoding
is tantamount to looking at the test set while doing feature
selection. Instead, all of our experiments hold out the test
set during both the anonymization and training phases.

We used k-anonymity as the anonymity constraint, and
we used the implementations of the following learning algo-
rithms provided by the Weka software package [25]:

e Decision Tree (J48) Default settings were used.

e Naive Bayes Supervised discretization was used for con-
tinuous attributes; otherwise all default settings were used.

¢ Random Forests Each classifier was comprised of 40 ran-
dom trees, and all other default settings were used.

e Support Vector Machine (SMO) Default settings were
used, including a linear kernel function.

e Linear Regression Default settings were used.

e Regression Tree (M5) Default settings were used.



Attribute Distribution Generalize
salary Uniform in [20,000, 150,000] continuous
commission | If salary > 75,000, then 0 continuous
Else Uniform in [10,000, 75,000]
age Uniform integer in [20,80] continuous
elevel Uniform integer in [0, 4] hierarchy
car Uniform integer in [1, 20] hierarchy
zipcode Uniform integer in [0, 9] continuous
hvalue zipcode * h * 100,000 continuous
where h uniform in [0.5, 1.5]
hyears Uniform integer in [1, 30] continuous
loan Uniform in [0, 500,000] continuous
Function | Group A
2 ((age < 40) A (50K < salary < 100K))V
((40 < age < 60) A (75K < salary < 125K))V
((age > 60) A (25K < salary < 75K))
4 ((age < 40)A
(((elevel € {0,1})?(25K < salary < 75K))
: (50K < salary < 100K))))V
((40 < age < 60)A
(((elevel € {1,2,3})?(50K < salary < 100K))
1 (75K < salary < 125K))))V
((age > 60)A
(((elevel € {2,3,4})?(50K < salary < 100K))
1 (25K < salary < 75K))))
6 ((age < 40)A
(50K < (salary + commission) < 100K))V
((40 < age < 60)A
(75K < (salary + commission) < 125K))V
((age > 60)A
(25K < (salary 4+ commission) < T5K))
7 disposable = .67 X (salary + commission)
—.2 x loan — 20K
disposable > 0

Figure 6: Synthetic predictor/quasi-identifier at-
tributes and class label functions

In addition to model evaluation, we also measured cer-
tain characteristics of the anonymized training data to see
if there was any correlation between these simpler measures
and the results of the model evaluation. Specifically, we
measured the average equivalence class size, and for classi-
fication tasks, we measured the conditional entropy of the
class label given the partitioning:

HCP)= > pp) >

partitions p classes ¢

—p(clp) log p(clp)  (7)

4.2 Learning from Regions

When single-dimensional recoding is used, standard learn-
ing algorithms can be applied directly to the resulting point
data, notwithstanding the “coarseness” of some points [13].
Although multidimensional recoding techniques are more
flexible, using the resulting hyper-rectangular data to train
standard data mining models poses an additional challenge.

To address this problem, we make a simple observation.
Because we restrict the recoding regions to include only d-
dimensional hyper-rectangles, each region can be uniquely
represented as a point in (2 * d)-dimensional space. For ex-
ample, Figure 5 shows a 2-dimensional rectangle, and its
unique representation as a 4-tuple. This assumes a total or-
der on the values of each attribute, similar to the assumption
made by support vector machines.

Following this observation, we adopt a simple pre-processing
technique for learning from regions. Specifically, we extend
the recoding function ¢ to map data points to d-dimensional

Census Database

Attribute Dist. Vals Generalization
Region 57 hierarchy
Age 7 continuous
Citizenship 5 hierarchy
Marital Status 5 hierarchy
Education (years) | 17 continuous
Sex 2 hierarchy
Hours per week 93 continuous
Disability 2 hierarchy
Race 9 hierarchy
Salary 2/continuous | target
Contraceptives Database
Attribute Dist. Vals | Generalization
Wife’s age 34 continuous
Wife’s education 4 hierarchy
Husband’s education 4 hierarchy
Children 15 continuous
Wife’s religion 2 hierarchy
Wife working 2 hierarchy
Husband’s Occupation | 4 hierarchy
Std. of Living 4 continuous
Media Exposure 2 hierarchy
Contraceptive 3 target

Figure 7: Summary of real-world data sets

regions, and in turn, to map these regions to their unique
representations as points in (2 * d)-dimensional space.

Our primary goal in developing this technique is to estab-
lish the utility of our anonymization algorithms. There are
many possible approaches to the general problem of learning
from regions. For example, Zhang and Honavar proposed an
algorithm for learning decision trees from attribute values at
various levels of a taxonomy tree [26]. However, a full com-
parison is beyond the scope of this paper.

4.3 Experimental Data

Our first set of experiments used synthetic data based
on the classification generator introduced by Agrawal et al.
[3]. Predictor/quasi-identifier attributes were generated ac-
cording to the distributions described in Figure 6, and class
labels were generated as a function of the predictor values.
We present results for four representative label functions,
chosen from the original ten (functions 2,4,6,7). To simplify
the evaluation, we applied the labeling functions determin-
istically, without injecting noise.

Notice that the basic labeling functions in Figure 6 in-
clude a number of constants (e.g., 75K). In order to get a
more robust understanding of the behavior of the various
anonymization algorithms, for functions 2, 4, and 6, we in-
stead generated many independent data sets, varying the
function constants independently at random over the range
of the attribute.

Figure 6 notes, for each predictor/quasi-identifier attribute,
whether it was treated as continuous or nominal (with an
associated generalization hierarchy) during anonymization.

In addition to the synthetic data, we also used several
real-world data sets. The first was derived from a sample
of the 2003 Public Use Microdata, distributed by the United
States Census American Community Survey®, with target
attribute Salary. This data was used for both classification
and regression, and contained 49,657 records. For classifi-
cation, we replaced the numeric Salary with a Salary class
(< 30K or > 30K); approximately 56% of the data records
had Salary < 30K. For classification, this is similar to the

3http://www.census.gov/acs/www/index.html
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Figure 8: Average predictive accuracy for models trained using anonymized synthetic data (k=25)

Adult database from the UCI Machine Learning Repository
[6], which has been used in numerous k-anonymity evalua-
tions. However, we chose to compile a new data set that can
be used for both classification and regression.

The second real data set is the smaller Contraceptives
database from the UCI Repository, which contained 1,473
records after removing those with missing values. This data
includes nine socio-economic indicators, which are used to
predict the choice of contraceptive method (long-term, short-
term, or none) among sampled Indonesian women. Sum-
maries of both real data sets are provided in Figure 7.

4.4 Comparison with Previous Algorithms

InfoGain Mondrian and LSD Mondrian combine multidi-

mensional recoding with classification- and regression-oriented

splitting heuristics. In this section, we evaluate the effects of
these two components through a comparison with two pre-
vious anonymization algorithms. All of the experiments in
this section consider a single target model, constructed over
the entire anonymized training set.

Several previous algorithms have incorporated a single

target classification model while choosing a single-dimensional

recoding [13, 15, 24]. To gage the impact of multidimen-
sional recoding, we compared InfoGain Mondrian and the
greedy Top-Down Specialization (TDS) algorithm [13].
Also, multidimensional recoding was used in Median Mon-
drian [17], without regard to workload. We compare this to
InfoGain Mondrian and LSD Mondrian to gage the effects
of incorporating a target model.

Using the synthetic data, Figure 8 compares the predictive
accuracy of classifiers trained on data produced by the dif-
ferent anonymization algorithms. In these experiments, we
generated 100 independent training and testing sets, each
containing 1000 records, and we fixed £ = 25. The results
are averaged across these 100 trials. For comparison, we

also include the accuracies of classifiers trained on the (not
anonymized) original data.

InfoGain Mondrian consistently outperforms both TDS
and Median Mondrian, a result that is overwhelmingly sig-
nificant based on a series of paired t-tests. It is important to
note that the pre-processing step used to convert regions to
points (Section 4.2) is only used for the multidimensional re-
codings; the classification algorithms run unmodified on the
single-dimensional recodings produced by TDS [13]. Thus,
should a better technique be developed for learning from re-
gions, this would improve the results for InfoGain Mondrian,
but it would not affect TDS.*

We performed a similar set of experiments using the real-
world data. Figures 9(a,b,c) show results for the Census
classification data, for increasing k. The graphs show test
set accuracy (averaged across 10 folds) for three learning
algorithms. The variance across the folds was quite low, and
the differences between InfoGain Mondrian and TDS, and
between InfoGain Mondrian and Median Mondrian, were
highly significant based on paired t-tests.

It is important to point out that in certain cases, no-
tably Random Forests, the learning algorithm overfits the
model when trained using the original data. For example,
the model for the original data in Figure 9(c) gets 97% ac-
curacy on the training set, but only 73% accuracy on the
test set. When overfitting occurs, it is not surprising that
the models trained on anonymized data obtain higher ac-
curacy because anonymization acts as a form of feature
selection/construction. Interestingly, we also tried apply-
ing a traditional form of feature selection (ranked feature
selection based on information gain) to the original data,

4Note that by mapping to 2 * d dimensions, we effectively
expand the hypothesis space considered by the linear SVM.
Thus, it is not surprising that this improves accuracy for the
non-linear class label functions (Figure 8(d)).
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Figure 9: Comparing anonymization techniques using real-world data

and this did not improve the accuracy of random forests
for any number of chosen attributes. We suspect that this
discrepancy is due to the flexibility of the recoding tech-
niques. Single-dimensional recoding (TDS) is more flexible
than traditional feature selection because it can incorporate
attributes at varying levels of granularity. Multidimensional
recoding is more flexible still because it (conditionally) in-
corporates different attributes for different data subsets.

Next, Figures 9(d,e) show conditional entropy and aver-
age equivalence class size measurements, averaged across the
ten anonymized training folds of the Census classification
data. Average equivalence class size, which does not take
into account any characteristics of the workload, is not a
very good indicator of model accuracy. Conditional entropy,
which incorporates the target class label, is a lot better; low
conditional entropy generally indicates higher accuracy.

We performed the same set of experiments using the Con-
traceptives database, and observed similar behavior. Info-
Gain Mondrian yielded higher accuracy than TDS or Me-
dian Mondrian. Results for J48 are shown in Figure 9(f).
The remaining results are omitted due to space constraints.

For regression, we found that LSD Mondrian generally led
to better models than Median Mondrian. Figure 9(i) shows
the mean absolute test set error for the M5 regression tree,
using the Census regression data. A similar relative com-
parison was observed for linear regression, but the overall
error was higher because Salary is non-linear.

4.5 Multiple Target Models

In Section 3.3 we described a simple adaptation to the
basic InfoGain Mondrian algorithm that allowed us to in-
corporate more than one target attribute, expanding the
set of models for which a particular anonymization is “op-
timized.” To evaluate this technique, we performed a set of
experiments using the synthetic classification data, increas-
ing the number of class labels.

Figure 10 shows average test set accuracies for J48. We
first generated 100 independent training and testing sets,
containing 1000 records each. We used synthetic labeling
functions 2-6,7, and 9 from the Agrawal generator [3], ran-
domly varying the constants in functions 2-6 as described in
Section 4.3.

Each column in the figure (models A-G) represents the av-
erage of 25 random permutations of the synthetic functions.
The anonymizations (rows in the figure) are “optimized” for
an increasing number of target models. (For example, the
anonymization in the bottom row is optimized exclusively
for model A.) There are two important things to note from
the chart, and similar behavior was observed for the other
classification algorithms.

e Looking at each model (column) individually, when the
model is included in the anonymization (above the bold
line), test set accuracy is higher than when the model is
not included (below the line).
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e As we increase the number of included models (moving
upward above the line within each column), the test set
accuracy tends to decrease. This is because the quality of
the anonymization with respect to each individual model
is “diluted” by incorporating additional models.

4.6 Selection

In Section 3.4, we discussed the importance of preserv-
ing selections, and described an algorithm for incorporating
rectangular selection predicates into an anonymization. We
conducted an experiment using the synthetic data (1,000
generated records), but treating synthetic Function 2 as
a selection predicate. Figure 11 shows the imprecision of
this selection when evaluated using the recoded data. The
figure shows results for data recoded using three different
anonymization algorithms. The first algorithm is Median
Mondrian, with greedy recursive splits chosen from amongst
all of the quasi-identifier attributes. It also shows a re-
stricted variation of Median Mondrian, where splits are made
with respect to only Age and Salary. Finally, it shows the
results of Selection Mondrian, incorporating Function 2 as
three separate rectangular query regions. It is intuitive that
imprecision increases with k, and that imprecision is reduced
by incorporating the selection into the anonymization.

Incorporating selections can also affect model quality. In
the absence of selections, InfoGain and LSD Mondrian choose
recursive splits using a greedy criterion driven by the target
model(s). When selections are included, the resulting par-
titions may not be the same as those that would be chosen
based on the target model(s). In the worst case, there may
be a selection on an attribute that is uncorrelated with the
target attribute.

To test this intuition, we performed an experiment using
the Census classification data. To simulate the effect of se-
lections that are uncorrelated with the target model, we first

assigned each training tuple to one of n groups, chosen uni-
formly at random. (We assume ‘Danl > k.) This mimics
the behavior of Selection Mondrian for a set of equality selec-
tions on a new attribute, Group number, which takes values
1,...,n. We then anonymized each group independently, us-
ing either InfoGain Mondrian or Median Mondrian. Once
recodings were determined for each training group, we ran-
domly assigned each test tuple to one of the n groups, and
recoded the tuple using the recoding function for that group.
Finally, we trained a single classification model using the
full recoded training set (union of all training groups), and
tested using the full recoded test set. This process was re-
peated for each of ten folds.

The results of this experiment for J48 are shown in Fig-
ure 9(g), for increasing n and k = 50. As expected, ac-
curacy decreases slightly as the number of selections (n)
increases. However, several selections can be incorporated
without large negative effects. Similar results were observed
for the other classification algorithms.

4.7 Projection

Sometimes not every model constructed by the data re-
cipient will use the full set of predictor attributes; rather,
they will use a projected attribute subset. We conducted
an experiment to compare anonymization algorithms when
only a subset of the released predictor attributes is actu-
ally used. First, we ranked the attributes using the original
data and a greedy information gain criterion. Then we re-
moved the attributes in order, from most to least predictive,
and constructed classification models using the remaining
attributes. We fixed k = 100.

As expected, test set accuracy decreases as the most pre-
dictive attributes are dropped. However, the rate of this
decline varies depending on the anonymization algorithm
used. Figure 9(h) shows the observed accuracies for J48 us-
ing the Census database. Because of the single-dimensional
recoding pattern, which is known to preserve fewer attributes
over non-uniform quasi-identifier distributions [17], this rate
of decay is the most precipitous for TDS.

The results were similar for the other classification algo-
rithms and the Contraceptives data.

5. RELATED WORK

The most closely-related work includes several algorithms
that have incorporated a single classification model (con-
structed over the full data set) while choosing a k-anonymous
single-dimensional recoding. The proposed algorithms in-
clude top-down [13] and bottom-up [24] greedy heuristic
searches, and genetic algorithms [15]. Each of these papers
used the target classification model to evaluate the recoding.
Additionally, other recent work suggested using a workload
of aggregate queries as a tool for evaluating the quality of
anonymizations [17].

Numerous other k-anonymization algorithms have been
proposed [2, 5, 16, 19, 22, 23]. However, much of the pre-
vious work has sought to optimize simple general-purpose
measures of quality, such as the size of equivalence classes,
or the total number of generalizations/suppressions.

Aside from k-anonymity, a variety of other methods have
been proposed for protecting individual privacy while allow-
ing certain data mining tasks. One widely-studied approach
is based on the randomized response paradigm [4, 11, 21].
The main advantage of generalization is that the released



data is “truthful,” though at a coarsened level of granular-
ity. This allows additional workloads to be carried out using
the data, including selection. Generalization also has similar
advantages as compared to data swapping [20].

Several cluster-based techniques have also been proposed
that are similar in spirit to k-anonymity. The condensation
approach first divides the data into “condensation groups”
with required minimal occupancy, and then generates point
data based on the aggregate statistical properties of each
group [1]. Microaggregation first clusters the data into (ide-
ally homogeneous) groups of required minimal occupancy,
and then publishes the centroid of each group [10]. How-
ever, neither of these approaches requires that the resulting
groups be hyper-rectangular, nor do they handle categorical
attributes with hierarchical generalization constraints.

Finally, privacy-preserving histogram sanitization was pro-
posed with the similar goal of guaranteeing that individuals
blend into a crowd, based on some suitable distance measure
[8]. However, the probabilistic privacy definition does not
capture situations where the identification of even a single
individual would be considered a breach, and the proof of
privacy is highly dependent on the original data distribution.

6. CONCLUSION AND FUTURE WORK

k-Anonymity and [-diversity are widely-studied techniques
for protecting individual privacy in microdata release. Sub-
ject to the anonymity requirement, the data should remain
as useful as possible with respect to the workload for which
it will ultimately be used.

This paper provided algorithms for incorporating a class
of target workloads, consisting of classification or regression
models, as well as selection predicates, when generating an
anonymous data recoding. An extensive experimental study
validated the effectiveness of these algorithms with respect
to a variety of workloads. Additionally, our results show
that simple quality measures are not always indicative of
data quality with respect to a particular workload.

This work also brought to light several interesting op-
portunities for future work. As described in Section 4.4,
anonymization sometimes behaves as a form of feature selec-
tion or construction. This has some interesting implications
because multidimensional recoding naturally leads to a form
of feature selection where different attributes are condition-
ally retained (at varying levels of granularity) for different
data subsets. In the future, it will be valuable to character-
ize the situations under which this approach leads to better
predictive accuracy than traditional feature selection.

Additionally, our selection-oriented anonymization algo-
rithm (Section 3.4) currently only supports selections that
can be expressed as rectangular regions. Although we expect
simple queries to be the most common, we are working to
extend this algorithm to a more expressive class of queries.

Finally, a full study of the learning from regions problem
is the topic of future research.

Acknowledgments

Our thanks to Bee-Chung Chen, Hector Corrada Bravo, Ted
Wild, and Jude Shavlik for insightful conversations, to Jesse
Davis for comments on an earlier draft of this paper, and to
Benjamin Fung for providing an implementation of the TDS
algorithm.

This work was supported by an IBM Ph.D. fellowship and
National Science Foundation Grant I11S-0524671.

7. REFERENCES

[1] C. Aggarwal and P. Yu. A condensation approach to
privacy-preserving data mining. In EDBT, 2004.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,

R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing
tables. In ICDT, 2005.

[3] R. Agrawal, S. Ghosh, T. Imielinski, and A. Swami.
Database mining: A performance perspective. In IEEE
Transactions on Knowledge and Data Engineering,
volume 5, 1993.

[4] R. Agrawal and R. Srikant. Privacy-preserving data mining.
In SIGMOD, 2000.

[5] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. In ICDE, 2005.

(6] C. Blake and C. Merz. UCI repository of machine learning
databases, 1998.

[7] L. Breiman, J. Freidman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth
International Group, Belmont, CA, 1984.

[8] S. Chawla, C. Dwork, F. McSherry, and K. Talwar. On the
utility of privacy-preserving histograms. In Uncertainty in
Artificial Intelligence, 2005.

[9] B. Chen, L. Chen, Y. Lin, and R. Ramakrishnan.
Prediction cubes. In VLDB, 2005.

[10] J. Domingo-Ferrer and J. Mateo-Sanz. Practical
data-oriented microaggregation for statistical disclosure
control. IEEE Transactions on Knowledge and Data
Engineering, 4(1), 2002.

[11] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke.
Privacy preserving mining of association rules. In SIGKDD,
2002.

[12] U. M. Fayyad and K. Irani. On the handling of
continuous-valued attributes in decision tree generation.
Machine Learning, 8:87-102, 1992.

[13] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. In ICDE, 2005.

[14] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest: A
framework for fast decision tree construction of large
datasets. In VLDB, 1998.

[15] V. Iyengar. Transforming data to satisfy privacy
constraints. In ACM SIGKDD, 2002.

[16] K. LeFevre, D.DeWitt, and R. Ramakrishnan. Incognito:
Efficient full-domain k-anonymity. In ACM SIGMOD, 2005.

[17] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. In ICDE, 2006.

[18] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-Diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[19] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In PODS, 2004.

[20] S. Reiss. Practical data-swapping: The first steps. ACM
Transactions on Database Systems, 9:20-37, 1984.

[21] S. Rizvi and J. R. Haritsa. Maintaining data privacy in
association rule mining. In VLDB, 2002.

[22] P. Samarati. Protecting respondents’ identities in
microdata release. IEEE Trans. on Knowledge and Data
Engineering, 13(6), 2001.

[23] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. Int’l Journal on
Uncertainty, Fuzziness, and Knowledge-based Systems,
10(5):571-588, 2002.

[24] K. Wang, P. Yu, and S. Chakraborty. Bottom-up
generalization: A data mining solution to privacy
protection. In ICDM, 2004.

[25] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San
Francisco, 2nd edition, 2005.

[26] J. Zhang and V. Honavar. Learning decision tree classifiers
from attribute value taxonomies and partially specified
data. In ICML, 2003.



