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Abstract

RNA-Seq technology provides the foun-
dation for accurately measuring gene expres-
sion levels when paired with a model for
mapping the produced sequencing reads to
a reference genome. Because of the shorter
length of RNA-Seq reads, a single read is not
uniquely mapped to a single location in the
genome and requires probabilistic treatment
to accurately measure relative expression lev-
els. We present a directed acyclic graph with
edge weights learned using the EM algorithm
from a collection of RNA-Seq where reads
mapping to multiple locations are distributed
according to their probability.

1 Introduction

Ever since Francis Crick proposed the central dogma
of molecular biology in 1958 [2], it has been widely
known and accepted that DNA and RNA are actu-
ally detailed repositories for information. Transcrip-
tion transfers DNA information to RNA via RNA
polymerase, and the product RNA interacts with the
cell’s ribosomes to translate the information into pro-
teins. Between transcription and translation, alterna-
tive gene splicing may act to modify the pre-mRNA
to alter the eventual protein produced. Once a ge-
netic sequence of a number of introns and exons has
been transcribed, the introns as well as various exons
or portions of exons are removed from the mRNA
based on the demands of the particular cell at that
time. This allows for a single genetic sequence to code
for a number of different proteins simultaneously [3].

There are several possible alternative splicing op-
tions. Two exons may always appear, with an op-
tional exon between them, called a “cassette exon”.
A portion of the intronic sequence may be retained, or
a portion at the beginning or end of an exon may be
spliced out. There may be several alternate promoter

regions or polyadenylation sites. Exons may also be
mutually exclusive — if one appears in the mRNA, the
other is removed. Diagramming the various splice ac-
tivities of a genetic sequence can be done using what
is called the alternative splice graph, or just splice
graph [3].

Until recently, it has been prohibitively expensive
to sequence RNA in a cell using the standard microar-
ray methods or tag-based sequencing approaches. Re-
cently, with the advent of the RNA-Seq technology
[7], a population of RNA is converted to cDNA frag-
ments which are then subjected to high-throughput
sequencing to obtain short reads from each fragment
(typically 30-400 base pairs). These reads can then
be mapped to an existing reference genome, and are
useful for determining expression levels — say, of dif-
ferent alternative splicings of a single gene sequence.

A particular advantage of the RNA-Seq technol-
ogy is that as opposed to standard microarray meth-
ods, which give rough analog estimates of gene ex-
pression levels, the data resulting from an RNA-Seq
procedure is a digital count of reads [6], much more
precise than microarrays. These digital counts lend
themselves much more readily to machine learning
methods, as we simply take the reads and their counts
directly and perform alignment against our reference
genome.

After alignment of these reads, we note there are
three types of reads: reads which map uniquely to a
single location on the genetic sequence, reads which
map to multiple locations, and reads which do not
map to any location on the sequence [1]. Uniquely
mapping reads are very easy to deal with, and non-
mapping reads can simply be removed from analysis,
but multiply-mapping reads are generally difficult to
analyze, particularly in deterministic models. Some
models (e.g. [4]) simply discard these reads as well
as the non-mapping reads, but this clearly increases
experimental bias.
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Figure 1: The probabilistic splice graph for the known isoforms of the mouse gene Gfra4 as listed in the
UCSC Genome Browser [5] (http://genome.ucsc.edu, mm9, UCSC Genes track). This gene’s possible
transcripts include alternate promoter regions, a cassette exon (represented as a choice between two shorter,
gapped segments or one long segment), and optional beginning and ending sequences in the final segment.

1.1 Problem statement

Our aim is to create a representative transcriptome:
a complete collection of the possible alternative tran-
scripts or isoforms of a given gene and their relative
frequencies in a cell at a given time. The work in this
paper is concentrated on discovering the frequencies
of various isoforms; our future work will explore the
possible isoforms and constructing an accurate repre-
sentation of the alternative splicing events of a partic-
ular gene given read data (see section 4.1 for a more
detailed discussion).

We use two measures of relative frequency in our
work: the relative frequency of transcripts ¢ of a
given isoform n, denoted P(¢,), and the relative fre-
quency z;; of moving from one possible set of nu-
cleotides (which we refer to as “segments”, denoted
s;) to any of the possible subsequent segments s;.
The primary assumption from which we derive our
relative frequencies is that the number of reads pro-
duced by RNA-Seq and corresponding to isoform n is
directly proportional to the relative frequency of that
isoform in the RNA population. We also assume that
all potential isoforms are represented in our reference
transcript.

2 Methods

2.1 Model description

The model which we use to represent the relative fre-
quencies of transcript isoforms for a given gene is
called a probabilistic splice graph, or PSG. A PSG
is a directed acyclic graph with M nodes, each of
which represents a segment of nucleotides of some
given length. Each of the nodes is reachable from the

source node s1 via one or more paths along the edges
of the graph, and there is also at least one path from
each node to the sink node sy;. Each edge has ex-
actly one source node and exactly one target node,
and has some weight 0 < o;; < 1.

A subpath s in the PSG is a sequence of vertices
s ={s1,...,Sm}; a transcript ¢t or path is therefore a
subpath with s; = 1 and s, = M. The probability
of a subpath s is the product of the weights of its
edges:

m—1
w(s) = H Qsisia
i=1

The probability that a transcript containing segment
s; also contains a subpath from s; to s; can be com-
puted as the sum of the weights of all paths between
the two segments, which can be computed recur-
sively:

i=7
iFj

(1)
The length of a subpath s is simply the sum of the
lengths of its segments:

SN w(s) = !
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Any given read produced by RNA-Seq is dependent
upon both the frequency of the transcript from which
it derives and the length of that transcript: a longer
transcript may produce more reads, but each given
read has a lower probability because of the large
number of nucleotides from which a read might be-
gin in that transcript. Because of this dependence
on length, it is also useful to have definitions for



the expected prefix (s : 53 = 0,8, = %), and suffix
(s: 81 =14,8n = M) lengths for segment s;, denoted
d,(7) and ds(i) respectively, which we can compute
recursively.
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Using these equations, we can compute the expected
length of a transcript generated from our PSG by
dq(1) = dp(M).

2.2 Learning with EM

The goal of our maximization is quite simple: create
a model that fits our data as well as possible. Given
a model structure and a set of IV reads generated
by RNA-Seq, we wish to learn the parameters of our
PSG. In this situation, we only wish to learn the ap-
propriate weights for the edges, maximizing the like-
lihood of the reads R given the model under current
parameters a:
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where f(0,4) is as defined in (1), s are the possi-
ble subpaths, t are the possible transcripts, and b
are the possible locations where a read may start
within a segment. Since f(4,7) is a function of the
parameters «, this function is quite difficult to maxi-
mize directly. We choose to employ the Expectation
Maximization (EM) algorithm to maximize the like-
lihood of the data given the model incrementally: the
model is randomly initialized, the data is mapped to
the model given the probabilities, and the parameters
are updated to more accurately reflect the data map-
ping. The data is then re-mapped given these new
parameters, and the steps are repeated until some
convergence criteria are met.

Pre-processing

As an implementation detail, there are three steps
that we take before we begin our algorithm. First
we perform string alignment on the RNA-Seq reads
— if the reads are guaranteed exact (as we assume for
this implementation) we merely use substring match-
ing; if not, a more complex alignment method may
be employed allowing for uncertainty in the reads. As
an important detail, we allow reads to match multi-
ple segments as well as multiple times within a seg-
ment. Our other two steps initialize the model for
algorithmic processing: we reset all outgoing edges
from a segment to be equal and sum to 1; we also
pre-calculate the current values of the f(i,7) func-
tion, though this must be repeated for every update
to the model parameters.

E-step

The expectation step in our algorithm comprises the
computation of the expected values of the Z;; vari-
ables for each edge e;;, which can be interpreted as
using the current parameters to calculate how much
of read n’s transcript might have been explained by
a given edge. Z;; = 1 if edge e;; is used in a read’s
transcript; Z;; = 0 otherwise. Because we allow a
read to map to multiple locations — potentially mu-
tually exclusive locations — our E(Z;;) values for each
read will be some probability 0 < E(Z;;) < 1.

E(Zni;) = P(Znij=1ry)
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where we define the g functions as

g(s) = f(0,s1)w(s)
cid) = f(s1)w(s) eij €5
9(s,7.) {w(s)aijf((),i)f(j,sl) else



if we assume that e;; precedes s in the PSG; otherwise
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Once the E(Z;;) =), E(Zy,i;) has been calculated
for all reads n, we determine the current maximum
a posteriori likelihood of the data given the model,
given by the product over all reads of the probability
of taking the transcript path suggested by that read,
divided by all possible transcript probabilities times
their lengths:

€ij; €8
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If we calculate the log value of the complete data
likelihood, however, we reduce this to

T, w(tn)
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P(r, z|la) =

E(log P(r,z|la) =

If the edge weights obey the constraint joaj =1,
then we observe that ), w(t)¢; is the mean length of
the expressed transcripts, which we write more con-
cisely as d4(0), as defined in (3). Because we observe
only the segments to which our reads r,, map rather
than their entire transcripts t,,, we then replace w(t,,)
with the sum of the weights over the possible paths to
the mapped segments, denoted f(0,s)w(s). We also
discard the constant 1/N since it is not a function
of a and provides us no additional information. This
results in a log likelihood equation of

E(log P(r, z|a) = Z log ZZ;Z)(;?I)_

Once this value is maximized (that is, when the mag-
nitude of its increase over the previous probability is
below a certain threshold), we consider the algorithm
complete.

M-step

Given the Z;; values as calculated in the expectation
step, we now adjust our model parameters to their
maximum likelihood estimation. Our intuition sug-
gests that the ML estimate for «;; is directly propor-
tional to the number of times e;; is used and inversely

proportional to the average length of a transcript in-
cluding e;;. To show this, we consider again the com-
plete data likelihood

N
P(r,z|a) = dq(O)*N H HOKZ’L'”
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We take the log of this function to produce our @
function for maximization over « using the current
values a(¥) and the z;; values from the expectation
step:

Q(ala®)
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Since we must constrain ) _; a;; = 1 for all 4, for max-
imization purposes we introduce the Lagrangian

Ala,A) = —Nlogd,(0) + Z zi; log au;
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To maximize, we take the derivative with respect to
oy; and set the result to zero:
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The derivative of the d4(0) factor can be written as
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And so to maximize our Q(a|a® function, we must
find a solution to
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Since d,(i) and dg(j) are not functions of «;xVk, we
can treat all parameters oy, # ¢ as fixed and ob-
serve that

i =0
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The denominator is a sum over all outgoing edges
from segment %, so we ensure that Zj a;; = 1.

We also consider at this point a termination condi-
tion wherein if the largest magnitude of the difference
between the previous edge weights a¥) and the new
weights « is below a certain threshold, we consider
the algorithm complete.

3 Results

3.1 Simulating RN A-Seq data

At this point in the investigation we are simply devel-
oping the methods for analysis rather than perform-
ing actual analysis on RNA-Seq data, so it is nec-
essary to simulate our own given PSGs with preset
weights. It is extremely important to generate these
data accurately, since the EM model is extremely sen-
sitive to systematic probability errors and will fail to
learn correct probabilities if the reads generated do
not adhere to our previously stated assumptions of
proportionality to frequency of expression and tran-
script length.

In our generated data, we allow reads to span mul-
tiple segments® and overflow the 3’ end of the gene,
resulting in a poly-A tail, so as to more closely mimic
potential RNA-Seq data. We do not introduce read
errors or SNPs, so as to simplify the alignment step.

Modeling the reads requires four random vari-
ables:

- R,: the sequence of read n.

- T,: the full transcript path from which read n
arises.

- Sp: the subpath in the PSG from which read
n arises. Sp, = {Sn1,...,Sm} where m is
the number of vertices in the subpath, and

Sn CT,.
- B,: the position in S}, ; at which read n begins.

For N reads, our data likelihood is a joint probability
over reads, transcripts, subpaths and starting indices:

H P(rn[sn, by)

Since we require at this time that reads are exactly
generated from the model, we have

1
P(rp|$n,bn) = {0

P(r,t,s,b)

P(sn, bultn)P(tn)

rn € Sy beginning at by,
else

We assume that the position in which a read begins in
a given transcript ¢, is simply uniformly distributed
across the length of the transcript?, and so we simply
have

P (S, bpltn) = {ltn

Sn € tn, by € [lvgan]

0 else

Finally we assume the probability of generating a
read from a transcript is proportional to the fre-
quency of ¢, and its length:

w(tn)l,
Zt w(t)ly

Combining all of these probabilities and assuming
that the reads r, transcripts ¢, subpaths s and start
positions b are compatible, we observe that the final
likelihood simplifies to

P(t,) =

Hn w(ty,)

P(r,t,s,b) = SO

To generate our data, we first calculate the prob-
ability that read n begins in segment i:

ZZP(Sn,l :i’Bn:j,Tn:t)
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We sample our S, segment according to these prob-
abilities and select a starting position b uniformly
within S, 1. If the specified read length ¢, does not
fit fully within the segment, we select a subsequent
segment with probability o;;, repeated as necessary.
If the subsequent vertex is the sink node, we add a
poly-A tail of the required length to the end of the
read.

Again we caution against carelessness with the
implementation of this sampling algorithm — any sys-
tematic error in probability violating the assumptions
of relationship to length and frequency of the tran-
script will result in the EM algorithm converging to
incorrect edge weights.

1We note that our currently-implemented alignment strategy only robustly allows for a two-segment span.
2This is a simplifying assumption, as the cDNA fragmentagion producing RNA-Seq data is strongly biased toward the 3’

ends of transcripts [7].
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Figure 2: Using the Gfra4 PSG model with 16 edges (11 of which have weight # 1), the average Manhattan
distance of the learned edge weights from the true edge weights calculated over five runs. (a) plots the
distance over the log of increasing numbers of 10-base reads, from 10 reads to 1 million reads. (b) plots the
distance over the length of a read from 5 bases to 30 bases as calculated for 10,000 reads.

Simulation procedure

For the purposes of our trials, we employ the
above mathematical procedure to the mouse gene
Gfra4 as listed in the UCSC Genome Browser
[5] (http://genome.ucsc.edu, mm9, UCSC Genes
track). As presented in the UCSC Genome Browser,
there are six known isoforms of this gene (though
the model we employ in our analysis, pictured in fig-
ure 1, can produce 13 distinct isoforms). However
the Genome Browser does not provide information
on relative expression levels, so for our trials we as-
sume that each of the six isoforms is equally likely.
We then collapse these relative frequencies onto the
appropriate edges in our model, and use these as our
initial « values for read generation as detailed above.
These are therefore also our target values to learn
in the EM procedure, and the distances mentioned
below are measured from these weights.

3.2 Sufficient numbers of reads

One of the critical pieces of data we wish to determine
in this stage of development is how many RNA-Seq
reads are required to sufficiently approximate the cor-
rect weights of a PSG. We chose to run the EM algo-
rithm on our Gfra4 model five times for each quantity
of 10-base reads, ranging from 10 reads to 1 million
reads, and determined the average Manhattan dis-
tance (da (&, ) = 32, | — o) over all five runs
of the learned edge weights from the true edge weights
used to generate the data.

We have confirmed that with an increasing num-
ber of reads as shown in Figure 2a the average to-
tal distance between the true weights and learned
weights in the PSG over five runs of the EM al-
gorithm is a decreasing function of the number of
reads with a linear regression equation of log(y) =
—.421log(z) + 2.67, where y is the expected Man-
hattan distance and « is the number of reads in our
dataset. The slope is significantly different from zero
with p < .001, so it is very safe to say that increases
in numbers of reads is logarithmically effective at de-



creasing the distance between learned weights and
true weights.

The Gfra4 model has 16 edges, 11 of which have
weights different from 1.0 and must be learned with
the EM algorithm. We find that to achieve an average
learned weight error (defined as total error divided by
number of edges with learnable weights) of less than
.01, approximately 100,000 reads of length 10 are re-
quired. However, we also observe that average error
is only .07 with 1,000 reads and .03 with 10,000 reads,
providing a relatively accurate approximation of the
true frequencies even when data is somewhat limited.

3.3 Optimal read length

Based on the balance of error versus time efficiency,
we chose to use datasets of 10,000 reads of various
lengths from 5 to 30 bases, increasing in increments
of five bases. This represents the lower bound on
an RNA-Seq read — recall that RNA-Seq reads are
generally between 30 and 400 nucleotides long [7].
As read length increases, the number of multiply-
mapped reads (MMR) decreases as shown in the fig-
ure below, since it becomes easier with a longer read
sequence to uniquely determine the position in the
genetic sequence which gave rise to a given read.
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Though the average Manhattan distance between
the learned reads and the true reads as shown in Fig-
ure 2b is not strictly decreasing, we find that the
points are fit with a linear regression equation of
log(y) = —0.026x — .735, where y is the expected
Manhattan distance and x is the number of nu-
cleotides in a read. The slope is significantly different
from zero in a two-tailed t-test with p < .05, so we

say that the overall trend of increasing read length is
a decreasing error in learned weight.

As our tests were performed only on a single
model at this time, we hesitate to make recommen-
dations as to the optimal balance of read length and
the expense of acquiring longer reads. This optimal
length is determined by both the length of the gene in
question and the number and length of subsequences
repeated within that gene.

4 Discussion

In this paper, we have discussed a probabilistic model
for representing relative frequencies of gene isoform
expression that incorporates methods of dealing with
read mapping uncertainty with the goal of producing
a more accurate representation of true relative ex-
pression levels. We used a simulation of RNA-Seq to
produce reads from a given PSG, and then used these
reads to train a neutrally-weighted PSG to learn the
true weights from the original graph. We explored
the differences created by various read lengths and
dataset sizes, confirming that increases in read length
and dataset size result in a decrease in the error of
the learned weights.

Our focus for this project was on learning the rela-
tive probabilities of a single gene’s expression, though
in practice it would be quite unusual for only a single
gene’s isoforms to be present within the RNA library
used for RNA-Seq. It does not affect the mathematics
of the EM algorithm to generalize the current model
to multiple genetic isoforms; the alignment step will
merely need to be modified, dividing the read dataset
into multiple subsets which align to each given gene,
and an overall expression probability assigned to each
model in the set of PSGs of expressed genes.

Of particular interest in the implementation stage
of this project was the sensitivity of the model to dif-
ferent parameters (as well as implementation errors)
in the generation stage. A single change in the gen-
eration step is quite powerful to influence the learned
parameters, which has very optimistic implications
for the sensitivity of the model to true variations in
expression levels in a given RNA population. Previ-
ous work (e.g. [7]) has noted RNA-Seq’s large dy-
namic range of expression level detection, and it is
encouraging to note that our model is also sensitive
to these changes.

Although the present work was done exclusively
using simulated RNA-Seq data, we believe that the
simulations are consistent with the true characteris-



tics of RNA-Seq on an RNA population. Therefore
we are confident that the results of our simulated runs
in this situation are generalizable to true RNA-Seq
data, and we hope to have the opportunity to make
that generalization soon.

4.1 Future work

The next step in our research is to use RNA-Seq data
to construct the PSG structure, given the exonic seg-
ments in a gene. While it is possible to model all six
possible isoforms of the Gfra4 gene using our model
in Figure 1, the model also suggests an additional
seven isoforms which are not known to exist, and it
is our goal to create a model that contains only rela-
tive frequencies for the possible isoforms.

We are beginning with simulated reads as in
the present EM weight-learning case, and combining
these with a fully-connected linear DAG with only
one copy of each possible segment. Using a greedy
search, we then modify the graph by duplicating seg-
ments with multiple incoming edges so that each copy
of the segment has only one incoming edge and the
same number of outgoing edges as the original copy.
We then run the EM algorithm on this graph to deter-
mine its log likelihood, and combine with a Bayesian
Information Criterion (BIC) to enforce the minimum
description length principle, and accept the modifica-
tion with the highest BIC value and repeat our search
until no improvements are made. We hope to com-
plete the theoretical portion of this project shortly
and refine our implementation.
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