
t
s-
try
to
ly

nd
at-
is-

not
n

iz-
n
less

L
e
nd

in

t of

of

at
n
re-
s;

nd
iple
n-

e
-
as-
o,
ter
Practical Analysis of Stripped Binary Code

Laune C. Harris and Barton P. Miller
Computer Sciences Department

University of Wisconsin
1210 W. Dayton St.

Madison, WI 53706-1685 USA
{lharris,bart}@cs.wisc.edu

1. Abstract

The executable binary code is the authoritative source of
information about program content and behavior. The
compile, link, and optimize steps can cause a program’s
detailed execution behavior to differ substantially from its
source code. Binary code analysis is used to provide infor-
mation about a program’s content and structure, and is
therefore a foundation of many applications, including
binary modification, binary translation, binary matching,
performance profiling, debugging, extraction of parame-
ters for performance modeling, and computer security and
forensics. Ideally, binary analysis should produce informa-
tion about the content of the program’s code (instructions,
basic blocks, functions, and modules), structure (control
and data flow), and data structures (global and stack vari-
ables). The quality and availability of this information
affects applications that rely on binary analysis.

This paper addresses the problem of using static binary
analysis to extract structural information from stripped
binary code. Stripped binaries are executables that lack
information about the locations, sizes, and layout of func-
tions and objects. This information is typically contained
in compiler generated symbol tables. Analysts, however,
are often confronted with stripped binaries. Commercial
software is usually stripped to deter reverse engineering
and unlicensed use. Malicious code is stripped to resist
analysis. System libraries and utilities are often stripped to
reduce disk space requirements. Occasionally, even avail-
able symbol tables need to be ignored because they con-
tain incorrect or misleading information.

This structural information consists of both inter- and
intra-procedural control flow in addition to the start
addresses of functions, function ranges, basic blocks, entry
and exit points. Our approach to extracting structural
information builds on control flow extraction and function
identification techniques that have been employed in pre-
vious work. In particular our work builds on techniques

used by LEEL[8] and RAD[4] which both use breadth firs
static call graph and control flow graph traversal to di
cover and classify code. Beginning at a program’s en
point both RAD and LEEL traverse the static call graph
find function entry points. Recursive traversal disassemb
is used to create intra-procedural control flow graphs a
discover each functions code. RAD additionally uses p
tern matching against standard function preambles to d
cover functions in sections of the code space that are
reachable by static call instructions in previously see
code. For functions without static references or recogn
able preambles, RAD uses an optimistic identificatio
strategy: treat unanalyzed byte sequences as code un
consistency checks indicate otherwise.

This paper makes the following contributions:
• Augments the binary parsing methods used by LEE

and RAD with an extended function model that mor
realistically describes the structure of modern code a
additional assurance checks to boost the confidence
the analysis.

• Presents tests and evaluation results on a large se
programs.

• Reports our experiences dealing with peculiarities
production code.
One of the first tasks in designing a binary parser th

identifies functions is defining an appropriate functio
model. Previous function models were designed to rep
sent code that complies with traditional code convention
for example, functions must have single entry points a
contiguous code ranges. Our code analyzer uses a mult
entry control flow graph model that treats all code co
nected by intra-procedural control flow as part of the sam
function. This model was chosen for its ability to accu
rately represent unconventional structures that are incre
ingly common in modern code. Our model can als
without alteration, represent code both before and af
modification such as instrumentation.



9,

,
.
t

le

e

4
,
E
g,

.

Our experience has shown that while optimistic func-
tion identification is a valuable strategy, it needs to be sup-
ported by strong assurance checks to reduce the number of
false positives (data or junk bytes interpreted as code). To
improve our confidence in optimistic identification we
incorporate some new assurance checks including tech-
niques used by Orso et. al[2] to verify the disassembly cor-
rectness of obfuscated code.

Our analysis techniques were implemented in Dyninst
[1], a run-time binary modification tool is used in a wide
variety of research and commercial environments. Since
Dyninst is multi-platform (operates on multiple operating
systems and architectures) we created a generic frame-
work for stripped code analysis. Our framework has a
modular design with replaceable and interchangeable
components making it generic (independent of operating
systems, file format, and machine architecture). The
design consists of four main components: afile format
reader, an instruction decoder, an abstract assembly lan-
guage interfaceand acode parser. The file format reader
extracts relevant file information including the locations of
the code and data segments, any available symbol table
information, and the address of the program’s entry point.
Typical formats include ELF [3], PE [4], and XCOFF [7].
The file format reader also handles extraction of informa-
tion from external debugging files. The instruction decoder
transforms byte streams (usually from the program’s code
segment) into architecture specific instruction sequences.
The parser reconstructs the program’s control flow and is
built on top of the scanner and file format reader. The
parser produces the following output: the program’s call
graph, control flow graph, and function information (sym-
bols). The parser interacts with the file format reader and
with the scanner through the abstract assembly language
interface. The abstract assembly language interface
exports a machine independent instruction representation
to the code parser. The instruction decoder and file format
reader are pluggable and interchangeable components
enabling our techniques to function on broad range of plat-
forms by varying the combination of scanner and file for-
mat reader. Currently, our implementation has scanners
supporting the IA32, Power, and AMD64 architectures,
and file format readers supporting ELF, COFF, XCOFF,
and PE.

To evaluate our implementation we analyzed stripped
versions of a large set of test binaries. These tests, along
with feedback from Dyninst users gave us insight into the
issues involved in implementing robust stripped code anal-
ysis to meet the needs of a general purpose binary editor.

References

[1] B. Buck and J.K. Hollingsworth, “An API for Runtime

Code Patching”, International Journal of High
Performance Computing Applications 14, 4, pp. 317-32
Winter 2000.

[2] C. Cruegel, W. Robertson, F. Valeur, and G. Vigna
‘‘Static Disassembly of Obfuscated Binaries,’’ Proc. 13th
USENIX Security Symposium, pp. 255-270, pp. Augus
2004

[3] Executable and linking format,
http://www.skyfree.org/linux/references/ELF_Format.pd
f

[4] Microsoft Portable Executable and Common Object Fi
Format Specification,
http://www.microsoft.com/whdc/system/platform/firmwa
re/PECOFF.mspx

[5] M. Prasad and T. Chiueh, “A Binary Rewriting Defens
Against Stack-based Buffer Overflow Attacks”, USENIX
Annual Technical Conference, June 2003, pp. 211--22

[6] B. Schwarz, S. K. Debray, and G. R. Andrews
“Disassembly of executable code revisited”, Proc. IEE
Ninth Working Conference on Reverse Engineerin
Richmond, October 2002.

[7] XCOFF File Format,
http://www.unet.univie.ac.at/aix/files/aixfiles/XCOFF.ht
m

[8] L. Xun, “A linux executable editing library”, Masters
Dissertation, National University of Singapore, 1999
http://www.geocities.com/fasterlu/leel.htm


	Practical Analysis of Stripped Binary Code
	Laune C. Harris and Barton P. Miller
	Computer Sciences Department University of Wisconsin 1210 W. Dayton St. Madison, WI 53706-1685 US...
	1. Abstract
	References
	[1] B. Buck and J.K. Hollingsworth, “An API for Runtime Code Patching”, International Journal of ...
	[2] C. Cruegel, W. Robertson, F. Valeur, and G. Vigna, ‘‘Static Disassembly of Obfuscated Binarie...
	[3] Executable and linking format, http://www.skyfree.org/linux/references/ELF_Format.pd f
	[4] Microsoft Portable Executable and Common Object File Format Specification, http://www.microso...
	[5] M. Prasad and T. Chiueh, “A Binary Rewriting Defense Against Stack-based Buffer Overflow Atta...
	[6] B. Schwarz, S. K. Debray, and G. R. Andrews, “Disassembly of executable code revisited”, Proc...
	[7] XCOFF File Format, http://www.unet.univie.ac.at/aix/files/aixfiles/XCOFF.ht m
	[8] L. Xun, “A linux executable editing library”, Masters Dissertation, National University of Si...



