
ll
d
g
ns
ch-

nd
at-
In

due
n
t

is
nd
n-
e

ng
i-
ing
ts
try
th
d

of

ro-
to

-
ail-
he
,

Practical Analysis of Stripped Binary Code

Laune C. Harris and Barton P. Miller
Computer Sciences Department

University of Wisconsin
1210 W. Dayton St.

Madison, WI 53706-1685 USA
{lharris,bart}@cs.wisc.edu

1. Abstract

The executable binary code is the authoritative source of
information about program content and behavior. The
compile, link, and optimize steps can cause a program’s
detailed execution behavior to differ substantially from its
source code. Binary code analysis is used to provide infor-
mation about a program’s content and structure, and is
therefore a foundation of many applications, including
binary modification, binary translation, binary matching,
performance profiling, debugging, extraction of parame-
ters for performance modeling, and computer security and
forensics. Ideally, binary analysis should produce informa-
tion about the content of the program’s code (instructions,
basic blocks, functions, and modules), structure (control
and data flow), and data structures (global and stack vari-
ables). The quality and availability of this information
affects applications that rely on binary analysis.

This paper addresses the problem of using static binary
analysis to extract structural information from stripped
binary code. Stripped binaries are executables that lack
information about the locations, sizes and layout of func-
tions and objects. This information is typically contained
in compiler generated symbol tables. Analysts, however,
are often confronted with stripped binaries. Commercial
software is usually stripped to deter reverse engineering
and unlisenced use. Malicious code is stripped to resist
analysis. System libraries and utilities are often stripped to
reduce disk space requirements. Occassionally, even avail-
able symbol tables need to be ignored because they con-
tain incorrect or misleading information.

This structural information consists of both inter- and
intra-procedural control flow in addition to the start
addresses of functions, function ranges, basic blocks, entry
and exit points. Our approach to extracting structural
information builds on control flow extraction and function
identification techniques that have been employed in pre-
vious work. In particular our work extends techniques

used by LEEL and RAD which use breadth first static ca
graph and control flow graph traversal to discover an
classify code. RAD additionally uses pattern matchin
against standard function preambles to discover functio
in sections of the code space that are not statically rea
able.

Previous approaches are incapable of discovering a
classifying code belonging to functions that are never st
ically referenced and have no recognizable preamble.
addition they treat functions as range code ranges, and
optimizations in modern compilers, and hand writte
assembly often found in libraries, this view does no
always reflect the structure of production programs.

This paper does the following:
• Presents a framework for stripped code analysis. Th

framework has a modular design with replaceable a
interchangeble components making it generic (indepe
dent of operating system, file format, and machin
architecture)

• Describes a control flow based model for representi
functions. This model is able to properly describe prev
ously unconventional code constructs that are becom
increasingly common in modern. These construc
include non-contiguous code ranges and multiple en
point functions. Our function model can represent bo
modified (rewritten or instrumented) and unmodifie
code.

• Documents our experiences dealing with peculiarites
production code.

• Presents evaluation of our analysis on hundreds of p
grams. Our evaluation compares the our results
source code and symbol tables.

Our design consists of three main components: afile for-
mat reader, aninstruction decoder, and acode parser. The
file format reader extracts relevant file information includ
ing the locations of the code and data segments, any av
able symbol table information, and the address of t
program’s entry point. Typical formats include ELF9



COFF, PE, and XCOFF. The file format reader also han-
dles extraction of information from external debugging
files. The scanner decodes byte streams (usually from the
program’s code segment) and produces architecture spe-
cific instruction sequences. The parser reconstructs the
program’s control flow and is built on top of the scanner
and file format reader. The parser produces the following
output: the program’s call graph, control flow graph, and
function information (symbols). The parser interacts with
the file format reader and with the scanner through a
generic assembly language interface. The assembly lan-
guage interface exports a machine independent instruction
representation to the parser. The scanner and file format
reader are pluggable and interchangeable components
enabling our techniques to function on broad range of plat-
forms by changing the combination of scanner and file for-
mat reader. Currently, our implementation has scanners
supporting the IA32, Power, and AMD64 architectures,
and file format readers supporting ELF, COFF, XCOFF,
and PE.

Our code analyzer uses a multiple entry control flow
graph model that treats all code connected by intra-proce-
dural control flow as part of the same function. This model
was chosen for its ability to accurately represent structures
in modern code (multiple entry points, non-contiguous
code ranges) and for its ability to represent pre- and post
modified code without alteration.


	Practical Analysis of Stripped Binary Code
	Laune C. Harris and Barton P. Miller
	Computer Sciences Department University of Wisconsin 1210 W. Dayton St. Madison, WI 53706-1685 US...
	1. Abstract


