
Peeking Behind the Curtains of Serverless Platforms

Liang Wang 1, Mengyuan Li 2, Yinqian Zhang 2, Thomas Ristenpart3, Michael Swift1

1UW-Madison, 2Ohio State University, 3Cornell Tech

Abstract
Serverless computing is an emerging paradigm in which
an application’s resource provisioning and scaling are
managed by third-party services. Examples include
AWS Lambda, Azure Functions, and Google Cloud
Functions. Behind these services’ easy-to-use APIs
are opaque, complex infrastructure and management
ecosystems. Taking on the viewpoint of a serverless
customer, we conduct the largest measurement study
to date, launching more than 50,000 function instances
across these three services, in order to characterize their
architectures, performance, and resource management
efficiency. We explain how the platforms isolate the
functions of different accounts, using either virtual
machines or containers, which has important security
implications. We characterize performance in terms
of scalability, coldstart latency, and resource efficiency,
with highlights including that AWS Lambda adopts
a bin-packing-like strategy to maximize VM memory
utilization, that severe contention between functions can
arise in AWS and Azure, and that Google had bugs that
allow customers to use resources for free.

1 Introduction
Cloud computing has allowed backend infrastructure
maintenance to become increasingly decoupled from
application development. Serverless computing (or
function-as-a-service, FaaS) is an emerging application
deployment architecture that completely hides server
management from tenants (hence the name). Tenants
receive minimal access to an application’s runtime
configuration. This allows tenants to focus on developing
their functions — small applications dedicated to specific
tasks. A function usually executes in a dedicated function
instance (a container or other kind of sandbox) with
restricted resources such as CPU time and memory.
Unlike virtual machines (VMs) in more traditional
infrastructure-as-a-service (IaaS) platforms, a function
instance will be launched only when the function is
invoked and is put to sleep immediately after handling
a request. Tenants are charged on a per-invocation basis,
without paying for unused and idle resources.

Serverless computing originated as a design pattern
for handling low duty-cycle workloads, such as process-
ing in response to infrequent changes to files stored on
the cloud. Now it is used as a simple programming model
for a variety of applications [14,22,42]. Hiding resource
management from tenants enables this programming
model, but the resulting opacity hinders adoption for
many potential users, who have expressed concerns
about: security in terms of the quality of isolation,
DDoS resistance, and more [23, 35, 37, 40]; the need to
understand resource management to improve application
performance [4, 19, 24, 27, 28, 40]; and the ability
of platforms to deliver on performance [10–12, 29–
31]. While attempts have been made to shed light on
platforms’ resource management and security [33, 34],
known measurement techniques, as we will show, fail to
provide accurate results.

We therefore perform the most in-depth study of
resource management and performance isolation to
date in three popular serverless computing providers:
AWS Lambda, Azure Functions, and Google Cloud
Functions (GCF). We first use measurement-driven
approaches to partially reverse-engineer the architectures
of Lambda and Azure Functions, uncovering many
undocumented details. Then, we systematically examine
a series of issues related to resource management: how
quickly function instances can be launched, function
instance placement strategies, function instance reuse,
and more. Several security issues are identified and
discussed.1 We further explore how CPU, I/O and
network bandwidth are allocated among functions and
the ensuing performance implications. Last but not least,
we explore whether all resources are properly accounted
for, and report on two resource accounting bugs that
allow tenants to use extra resources for free. Some
highlights of our results include:

• AWS Lambda achieved the best scalability and
the lowest coldstart latency (the time to provision
a new function instance), followed by GCF. But

1We responsibly disclosed our findings to related parties before this
paper was made public.

the lack of performance isolation in AWS between
function instances from the same account caused up
to a 19x decrease in I/O, networking, or coldstart
performance.

• Azure Functions used different types of VMs as
hosts: 55% of the time a function instance runs on
a VM with debased performance.

• Azure had exploitable placement vulnerabilities [36]:
a tenant can arrange for function instances to run on
the same VM as another tenant’s, which is a stepping
stone towards cross-function side-channel attacks.

• An accounting issue in GCF enabled one to use
a function instance to achieve the same computing
resources as a small VM instance at almost no cost.

Many more results are given in the body. We have
repeated several measurements in May 2018 and high-
light in the paper the improvements the providers have
made. We noticed that serverless platforms are evolving
quickly; nevertheless, our findings serve as a snapshot
of the resource management mechanisms and efficiency
of popular serverless platforms, provide performance
baselines and design options for developers to build more
reliable platforms, and help tenants improve their use of
serverless platforms. More generally, our study provides
new measurement techniques that are useful for other
researchers. Towards facilitating this, we will make our
measurement code public and open source.2

2 Background

Serverless computing platforms. In serverless com-
puting, an application usually consists of one or more
functions — standalone, small, stateless components
dedicated to handle specific tasks. A function is most
often specified by a small piece of code written in some
scripting language. Serverless computing providers
manage the execution environments and backend servers
of functions, and allocate resources dynamically to
ensure their scalability and availability.

In recent years, many serverless computing platforms
have been developed and deployed by cloud providers,
including Amazon, Azure, Google, and IBM. We focus
on Amazon AWS Lambda, Azure Functions and Google
Cloud Functions.3 In these services, a function is
executed in a dedicated container or other type of
sandbox with limited resources. We use function
instance to refer to the container/sandbox a function
runs on. The resources advertised as available to a
function instance varies across platforms, as shown in
Table 1. When the function is invoked by requests, one
or more function instances (depending on the request
volume) will be launched to execute the function. After

2https://github.com/liangw89/faas_measure
3We use AWS, Azure and Google to refer to these services.

AWS Azure Google

Memory (MB) 64 * k
(k = 2, 3, ..., 24) 1536 128 * k

(k = 1, 2, 4, 8, 16)

CPU Proportional to
Memory Unknown Proportional to

Memory

Language
Python 2.7/3.6

Nodejs 4.3.2/6.10.3
Java 8, and others

Nodejs 6.11.5,
Python 2.7,
and others

Nodejs 6.5.0

Runtime OS Amazon Linux Windows 10 Debian 8*
Local disk (MB) 512 500 > 512
Run native code Yes Yes Yes
Timeout (second) 300 600 540

Billing factor Execution time
Allocated memory

Execution time
Consumed memory

Execution time
Allocated memory

Allocated CPU

Table 1: A comparison of function configuration and
billing in three services. (*: We infer the OS version
of GCF by checking the help information and version of
several Linux tools such as APT.)

the function instance(s) have processed the requests
and exited or reached the maximum execution time
(see “Timeout” in Table 1), the function instance(s)
becomes idle. They may be reused to handle subsequent
requests to avoid the delay of launching new instances.
However, idle function instances can also be suddenly
terminated [32]. Each function instance is associated
with a non-persistent local disk for temporarily storing
data, which will be erased when the function instance
is destroyed.

One benefit of using serverless services is that tenants
do not pay for resources consumed when function
instances are idle. Tenants are billed based on resource
consumption only during execution.4 In common
across platforms is charging for aggregated function
execution time across all invocations. Additionally, the
price varies depending on the pre-configured function
memory (AWS, Google) or the actual consumed memory
during invocations (Azure). Google further charges
different rates based on CPU speed.

Related work. Many serverless application developers
have conducted their own experiments to measure
coldstart latency, function instance lifetime, maximum
idle time before shut down, and CPU usage in AWS
Lambda [10–12, 19, 27, 28, 40]. Unfortunately, their
experiments were ad-hoc, and the results may be
misleading because they did not control for contention
by other instances. A few research papers report on
measured performance in AWS. Hendrickson et al. [18]
measured request latency and found it had higher latency
than AWS Elastic Beanstalk (a platform-as-a-service
system). McGrath et al. [34] conducted preliminary
measurements on four serverless platforms, and found

4Azure Functions offers two types of function hosting plans.
Consumption Plan manages resources in a serverless-like way while
App Service Plan is more like “container-as-a-service”. We only
consider Consumption Plan in this paper.

https://github.com/liangw89/faas_measure

that AWS achieved better scalability, coldstart latency,
and throughput than Azure and Google.

A concurrent study from Lloyd et al. [33] investigated
the factors that affect application performance in AWS
and Azure. The authors developed a heuristic to
identify the VM a function runs on in AWS based on
the VM uptime in /proc/stat. Our experimental
evaluation suggests that their heuristic is unreliable (see
§4.5), and that the conclusions they made using it are
mostly inaccurate.

In our work, we design a reliable method for identi-
fying instance hosts, and use systematic experiments to
inspect resource scheduling and utilization.

3 Methodology
We take the viewpoint of a serverless user to characterize
serverless platforms’ architectures, performance, and
resource management efficiency. We set up vantage
points in the same cloud provider region to manage and
invoke functions from one or more accounts via official
APIs, and leverage the information available to functions
to determine important characteristics. We repeated the
same experiment under various settings by adjusting
function configuration and workloads to determine the
key factors that could affect measurement results. In the
rest of the paper, we only report on the relevant factors
affecting the experiment results.

We integrate all the necessary functionalities and
subroutines into a single function that we call a mea-
surement function. A measurement function performs
two tasks: (1) collect invocation timing and function
instance runtime information, and (2) run specified
subroutines (e.g., measuring local disk I/O throughput,
network throughput) based on received messages. The
measurement function collects runtime information via
the proc filesystem on Linux (procfs), environment
variables, and system commands. It also reports
on execution start and end time, invocation ID (a
random 16-byte ASCII string generated by the function
that uniquely identify an invocation), and function
configurations to facilitate further analysis.

The measurement function checks the existence of a
file named InstanceID on the local disk, and if it does
not exist, creates this file with a random 16-byte ASCII
string that serves as the function instance ID. Since the
local disk is non-persistent and has the same lifetime as
the associated function instance, the InstanceID file will
not exist for a fresh function instance, and will not be
modified or deleted during the function instance lifetime
once created.

The regions for functions were us-east-1, us-central-1,
“EAST US” in AWS, Google and Azure (respectively).
The vantage points were VMs with at least 4 GB RAM
and 2 vCPUs. We used the software recommended by the

VM1

Instance root ID:

sandbox-root-aaaaaa

VM2

Instance root ID:

sandbox-root-bbbbbb

VM1

website instance_id: abcd…

B

AWS Lambda Azure Functions

A

A

func1

func2

B func3

B func3

A

func1

func2

Figure 2: VM and function instance organization in AWS
Lambda and Azure Functions. A rectangle represents a
function instance. A or B indicates different tenants.

providers and follow the official instructions to configure
the time synchronization service in the vantage points. 5

We implemented the measurement function in various
languages, but most experiments used Python 2.7 and
Nodejs 6.* as the language runtime (the top 2 most
popular languages in AWS according to Newrelic
[25]). We invoked the functions via synchronous HTTP
requests. Most of our measurements were done from
July–Dec 2017.

Ethical considerations. We built our measurement
functions in a way that should not cause undue burden
on platforms or other tenants. In most experiments,
the function did no more than collecting necessary
information and sleeping for a certain amount of time.
Once we discovered performance issues we limited our
tests to not DoS other tenants. We only conducted
small-scale tests to inspect the security issues but did not
further exploit them.

4 Serverless Architectures Demystified
We combine two approaches to infer the architectures
of AWS Lambda, Google Cloud Functions, and Azure
Functions: (1) reviewing official documents, related
online articles and discussions, and (2) measurements
— analyzing the data collected from running our
measurement functions many times (> 50,000) under
varying conditions. This data enables partially re-
verse engineering the architectures of AWS, Azure,
and Google.

4.1 Overview

AWS. A function executes in a dedicated function
instance. Our measurements suggest different versions
of a function will be treated as distinct and executed
in different function instances (we discuss outliers in
§5.5). The procfs file system exposes global statistics
of the underlying VM host, not just a function instance,
and contains useful information for profiling runtime,

5AWS: http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/set-time.html; Google: https://developers.

google.com/time/; Azure does not offer instructions so we use the
default NTP servers at http://www.pool.ntp.org/en/use.html

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://developers.google.com/time/
https://developers.google.com/time/
http://www.pool.ntp.org/en/use.html

(1) Set up N distinct functions f1, ..., fN that run the
following task upon receiving a RUN message: record
/proc/diskstats, write 20 K – 30 K times to a file (1
byte each time), and record /proc/diskstats again.

(2) Invoke each function once without RUN message to launch
N function instances.

(3) Assuming the instances of f1, ..., fk (k instances) share the
same instance root ID, invoke f1, ..., fk once each with the
RUN message and examine I/O statistics of each function
instance.

Figure 3: I/O-based coresidency test in AWS.

identifying host VMs, and more. From procfs, we
found host VMs mostly have 2 vCPUs and 3.75 GB
physical RAM (same as EC2 c4.large instances).

Azure. Azure Functions uses Function Apps to
organize functions. A function app, corresponding
to one function instance, is a container that contains
the execution environments for individual functions [5].
The environment variables in the function instance
contain some global information about the host VM. The
environment variables collected suggest the host VMs
can have 1, 2 or 4 vCPUs.

One can create multiple functions in a function app
and run them concurrently. In our experiments, we
assume that a function app has only one function.

Google. Google isolates and filters information that can
be accessed from procfs. The files under procfs only
report usage statistics of the current function instance.
Also, many system files and syscalls are obscured or
disabled so we cannot get much information about
runtime. The /proc/meminfo and /proc/cpuinfo

files suggest a function instance has 2 GB RAM and 8
vCPUs, which we suspect is the configuration for VMs.

4.2 VM identification
Associating function instances with VMs enables us to
perform richer analysis. The heuristic for identifying
VMs in AWS Lambda proposed by Lloyd et al.,
though theoretically possible, has never been evaluated
experimentally [33]. Therefore, we looked for a more
robust method.

AWS. The /proc/self/cgroup file has a special entry
that we call instance root ID. It starts with “sandbox-
root-” followed by a 6-byte random string. We found
it can be used to reliably identity a host VM. Using
the I/O-based coresidency tests (shown in Figure 3), we
confirmed that the instances sharing the same instance
root ID are on the same VM, as the difference in the total
bytes written between two consecutive invocations, for fi
and fi+1 respectively, is almost the same as the number of
bytes written by fi. Moreover, we can get the same kernel
uptime (or memory usage statistics) from the instances

when reading /proc/uptime (/proc/meminfo) at the
same time.

We call the IP obtained via querying IP address lookup
tools from an instance VM public IP, and the IP obtained
from running uname command VM private IP. Function
instances that share the same instance root ID have the
same VM public IP and VM private IP.

Azure. The WEBSITE INSTANCE ID environment
variable serves as the VM identifier, according to official
documents [6]. We refer to it as Azure VM ID. We used
Flush-Reload via shared DLLs to verify coresidency of
instances sharing the same Azure VM ID [43]. The
results suggest Azure VM ID is a robust VM identifier.

Google. We could not find any information enabling
us to identify a host. Using I/O-based coresidency did
not work as procfs contains no global usage statistics.
We tried to use performance as a covert-channel (e.g.,
performing patterned I/O operations in one function
instance and detecting the pattern from I/O throughput
variation in another) but found this is not reliable, as
performance varied greatly (See §6.2).

4.3 Tenant isolation
Prior studies showed that co-located VMs in AWS
EC2 allow attacks [36, 38, 41]. With the knowledge
of instance-VM relationship, we examined how well
tenants’ primary resources — function instances — are
isolated. We assume that one tenant corresponds to one
user account, and only consider VM-level coresidency.

AWS. The functions created by the same tenant will
share the same set of VMs, regardless of their con-
figurations and code. The detailed instance placement
algorithm will be discussed in §5.1. AWS assigns
different VMs to each tenant, since we have never seen
function instances from different tenants in the same
VM. We conducted a cross-tenant coresidency test to
confirm this assumption. The basic principle is similar
to Figure 3: in each round, we create a new function
under each of the two accounts at the same time, write
a random number of bytes in one function, and check the
disk usage statistics in another function. We ran this test
for 1 week, but found no VM-coresidency of cross-tenant
function instances.

Azure. Azure Functions are a part of the Azure App
service, in which all tenants share the same set of
VMs according to Azure [2]. Hence, tenants in Azure
Functions should also share VM resources. A simple test
confirmed this assumption: we invoked 500 functions in
each of two accounts and found that 30% of function
instances were coresident with a function instance from
the other account, executing in a total of 120 VMs. Note
that as of May 2018, different tenants no longer share the
same VMs in Azure. See §5.1 for more details.

4.4 Heterogeneous infrastructure
We found the VMs in all the considered services had a
variety of configurations. The variety, likely resulting
from infrastructure upgrades, can cause inconsistent
function performance. To estimate the fraction of
different types of VM in a given service, we examined
the configurations of the host VMs of 50,000 unique
function instances in each service.

In AWS, we checked the model name and the
processor numbers in the /proc/cpuinfo, and the
MemTotal in the /proc/meminfo, and found five types
of VMs: two E5-2666 vCPUs (2.90 GHZ), two E5-
2680 vCPUs (2.80 GHZ), two E5-2676 vCPUs (2.40
GHZ), two E5-2686 vCPUs (2.30 GHZ), and one E5-
2676 vCPUs. These types account for 59.3%, 37.5%,
3.1%, 0.09% and 0.01% of 20,447 distinct VMs.

Azure shows a greater diversity of VM configurations.
The instances in Azure report various vCPU counts:
of 4,104 unique VMs, 54.1% use 1 vCPU, 24.6% use
2 vCPUs, and 21.3% use 4 vCPUs. For a given
vCPU count, there are three CPU models: two Intel
and one AMD. Thus, nine (at least) different types
of VMs are being used in Azure. Performance may
vary substantially based on what kind of host (more
specifically, the number of vCPUs) runs the function.
See §6 for more details.

In Google, the model name is always “unknown”, but
there are 4 unique model versions (79, 85, 63, 45),
corresponding to 47.1%, 44.7%, 4.2%, and 4.0% of
selected function instances.

4.5 Discussion
Being able to identify VMs in AWS is essential for our
measurements. It helps to reduce noise in experiments
and get more accurate results. For the sake of
comparison, we evaluated the heuristic designed by
Lloyd et al. [33]. The heuristic assumes that different
VMs have distinct boot times, which can be obtained
from /proc/stat, and group function instances based
on the boot time. We sent 10 – 50 concurrent requests
at a time to 1536 MB functions for 100 rounds, used
our methodology (instance root ID + IP) to label the
VMs, and compared against the heuristic. The heuristic
identified 940 VMs as 600 VMs, so 340 (36%) VMs
were incorrectly labeled. So, we conclude this heuristic
is not reliable.

None of these serverless providers completely hide
runtime information from tenants. More knowledge of
instance runtime and the backend infrastructure could
make finding vulnerabilities in function instances easier
for an adversary. In prior studies, procfs has been
used as a side-channel [9, 21, 46]. In the serverless
setting, one actually can use it to monitor the activity
of coresident instances; while seemingly harmless, a

0 100 200
0
5

10
15
20
25
30
35

No. of concurrent requests

N
o.

of
V

M
s

128 MB 256 MB 512 MB

Figure 4: The total number of VMs being used after
sending a given number of concurrent requests in AWS.

dedicated adversary might use it as a steppingstone to
more sophisticated attacks. Overall, accesses to runtime
information, unless necessary, should be restricted for
security purposes. Additionally, providers should expose
such information in an auditable way, i.e., via API calls,
so they are able to detect and block suspicious behaviors.

5 Resource Scheduling
We examine how instances and VMs are scheduled in the
three serverless platforms in terms of instance coldstart
latency, lifetime, scalability, and more.

5.1 Scalability and instance placement
Elastic, automatic scaling in response to changes in
demand is a main advertised benefit of the serverless
model. We measure how well platforms scale up.

We created 40 measurement functions of the same
memory size f1, f2, . . . , f40 and invoked each fi with 5i
concurrent requests. We paused for 10 seconds between
batches of invocations to cope with rate limits in the
platforms. All measurement functions simply sleep for
15 seconds and then return. For each configuration we
performed 50 rounds of measurements.

AWS. AWS is the best among the three services
with regard to supporting concurrent execution. In
our measurements, N concurrent invocations always
produced N concurrently running function instances.
AWS could easily scale up to 200 (the maximum
measured concurrency level) fresh function instances.

We observed that 3,328 MB was the maximum
aggregate memory that can be allocated across all
function instances on any VM in AWS Lambda. AWS
Lambda appears to treat instance placement as a bin-
packing problem, and tries to place a new function
instance on an existing active VM to maximize VM
memory utilization rates, i.e., the sum of instance
memory sizes divided by 3,328. We invoked a single
function with sets of concurrent requests, increasing
from 5 to 200 with a step of 5, and recorded the
total number of VMs being used after each number
of requests. A few examples are shown in Figure 4.

#vCPU Total 1 2 3 4 >4
1 61.3 16.6 24.6 13.7 4.9 1.5
2 19.5 7.3 7.1 3.3 1.4 0.4
4 19.2 7.6 6.2 3.9 1.3 0.2
All 100 31.5 37.9 20.9 7.6 2.1

Table 5: The average (over 10 runs) probabilities (as per-
centages) of getting N-way single-account coresidency
(for N ∈ {1,2,3,4,} and N > 4, when launching 1,000
function instances in Azure. Here N = 1 indicates no
coresidency among the functions.

The number of active VMs are close to the “expected”
number if AWS maximizes VM memory utilization.
Quantitatively speaking, more than 89% of VMs we got
in the test achieved 100% memory utilization. Sending
concurrent requests to different functions resulted in
the same pattern, indicating placement is agnostic to
function code.

In a further test we sent 10 sets of random numbers
of concurrent requests to randomly-chosen functions of
varied memory sizes over 50 runs. AWS’s placement still
worked efficiently: the average VM memory utilization
rate across VMs in the same run ranged from 84.6% to
100%, with a median of 96.2%.

Azure. Azure documentation states that it will
automatically scale up to at most 200 instances for
a single Nodejs-based function and at most one new
function instance can be launched every 10 seconds [7].
However, in our tests of Nodejs-based functions, we saw
at most 10 function instances running concurrently for a
single function, no matter how we changed the interval
between invocations. All the requests were handled by a
small set of function instances. None of the concurrently
running instances were on the same VM. So, it appears
that Azure does not try to co-locate function instances of
the same function on the same VMs.

We conducted a single-account coresidency test to
examine how function instances are placed on VMs of
different numbers of vCPUs. We invoked 100 different
functions from one account at a time until we had 1,000
concurrent, distinct function instances running. We then
checked for co-residency, and repeated the entire test
10 times.

We observed at most 8 instances on a single 1/2/4-
vCPU VM. Co-resident instances tend to be on 1-vCPU
VMs (presumably because there are more 1-vCPU VMs
for Azure Functions). We show the breakdown of co-
residency results in Table 5. In general, co-residency is
undesirable for users wanting many function instances,
as contention between instances on low-end VMs will
exacerbate performance issues.

We further conducted a cross-account coresidency test
in a more realistic scenario where an attacker wants
to place her function instances on the same VM with

the instances of a target victim. In each round of this
test, we launched either 5 or 100 function instances
from one account (the victim) and 500 simultaneous
function instances from another account (the attacker).
On average, 0.12% (3.82%) of the 500 attacker instances
were coresident with the 5 (100) victim instances in each
round (10 rounds in total). So, it was possible to achieve
cross-tenant coresidency even for a few targets. In the
test with 100 victim instances, we were able to obtain
up to 5 attacker instances on the same VM. Security
implications will be discussed in §5.6.

We repeated the coresidency tests in May 2018 but
could not find any cross-tenant coresident instances,
even in the test in which we tired 500 victim instances.
Therefore, we believe that Azure has fixed the cross-
tenant coresidency issue.

Google. Google failed to provide our desired scalability,
even though Google claims HTTP-triggered functions
will scale to the desired invocation rate quickly [13].
In general, only about half of the expected number of
instances, even for a low concurrency level (e.g., 10),
could be launched at the same time, while the remainder
of the requests were queued.

5.2 Coldstart and VM provisioning
We use coldstart to refer to the process of launching
a new function instance. For the platform, a coldstart
may involve launching a new container, setting up the
runtime environment, and deploying a function, which
will take more time to handle a request than reusing an
existing function instance (warmstart). Thus, coldstarts
can significantly affect application responsiveness and,
in turn, user experience.

For each platform, we created 1,000 distinct functions
of the same memory and language and sequentially
invoked each of them twice to collect its coldstart
and warmstart latency. We use the difference of
invocation send time (recorded by the vantage point)
and function execution start time (recorded by the
function) as an estimation of its coldstart/warmstart
latency. As baselines, the median warmstart latency in
AWS, Google, and Azure were about 25, 79 and 320 ms
(respectively) across all invocations.

AWS. We examine two types of coldstart events: a
function instance is launched (1) on a new VM that
we have never seen before and (2) on an existing VM.
Intuitively, case (1) should have significantly longer
coldstart latency than (2) because case (1) may involve
starting a new VM. However, we found case (1) was only
slightly longer than (2) in general. The median coldstart
latency in case (1) was only 39 ms longer than (2) (across
all settings). Plus, the smallest VM kernel uptime (from
/proc/uptime) we found was 132 seconds, indicating
that the VM has been launched before the invocation.

py
tho

n2
.7-

12
8

py
tho

n2
.7-

51
2

py
tho

n2
.7-

10
24

py
tho

n2
.7-

15
36

py
tho

n3
.6-

12
8

py
tho

n3
.6-

15
36

no
de

js4
.3-

12
8

no
de

js4
.3-

15
36

no
de

js6
.10

-12
8

no
de

js6
.10

-15
36

jav
a8

-12
8

jav
a8

-15
36

500

1,000
C

ol
ds

ta
rt

la
te

nc
y

(m
s)

Existing VM New VM

Figure 6: Median coldstart latency with min-max error
bars (across 1,000 rounds) under different combinations
of function languages and memory sizes in AWS. Y-axis
is truncated at 1,000 ms.

So, AWS has a pool of ready VMs. The extra delays in
case (1) are more likely introduced by scheduling (e.g.,
selecting a VM) rather than launching a VM.

Our results are consistent with prior observations:
function memory and language affect coldstart la-
tency [10], as shown in Figure 6. Python 2.7 achieves
the lowest median coldstart latencies (167–171 ms)
while Java functions have significantly higher latencies
than other languages (824–974 ms). Coldstart latency
generally decreases as function memory increases. One
possible explanation is that AWS allocates CPU power
proportionally to the memory size; with more CPU
power, environment set up becomes faster (see §6.1).

A number of function instances may be launched
on the same VM concurrently, due to AWS’s instance
placement strategy. In this case, the coldstart latency
increases as more instances are launched simultaneously.
For example, launching 20 function instances of a
Python 2.7-based function with 128 MB memory on a
given VM took 1,321 ms on average, which is about 7
times slower than launching 1 function instance on the
same VM (186 ms).

Azure and Google. The median coldstart latency in
Google ranged from 110 ms to 493 ms (see Table 7).
Google also allocates CPU proportionally to memory,
but in Google memory size has greater impact on
coldstart latency than in AWS. It took much longer
to launch a function instance in Azure, though their
instances are always assigned 1.5 GB memory. The
median coldstart latency was 3,640 ms in Azure.
Anecdotes online [3] suggest that the long latency is
caused by design and engineering issues in the platform
that Azure is both aware of and working to improve.

Latency variance. We collected the coldstart latencies
of 128 MB, Python 2.7 (AWS) or Nodejs 6.* (Google
and Azure) based functions every 10 seconds for over

Provider-Memory Median Min Max STD
AWS-128 265.21 189.87 7048.42 354.43
AWS-1536 250.07 187.97 5368.31 273.63
Google-128 493.04 268.5 2803.8 345.8
Google-2048 110.77 52.66 1407.76 124.3
Azure 3640.02 431.58 45772.06 5110.12

Table 7: Coldstart latencies (in ms) in AWS, Google, and
Azure using Nodejs 6.* based functions for comparison.

 0

 50

 100

 150

 200

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168

AWS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168

b

Google

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Mon Tue Wed Thu Fri Sat Sun

Azure

Figure 8: Coldstart latency (in ms) over 168 hours. All
the measurements were started at right after midnight on
a Sunday. Each data point is the median of all coldstart
latencies collected in a given hour. For clarity, the y-axes
use different ranges for each service.

168 hours (7 days), and calculated the median of the
coldstart latencies collected in a given hour. The changes
of coldstart latency are shown in Figure 8. The coldstart
latencies in AWS were relatively stable, as were those
in Google (except for a few spikes). Azure had the
highest network variation over time, ranging from about
1.5 seconds up to 16 seconds.

We repeated our coldstart measurements in May 2018.
We did not find significant changes in coldstart latency
in AWS. But, the coldstart latencies became 4x slower
on average in Google, probably due to its infrastructure
update in February 2018 [15], and 15x better in Azure.
This result demonstrates the importance of developing a
measurement platform for serverless systems (similar to
[39] for IaaS) to do continuous measurements for better
performance characterization.

5.3 Instance lifetime
A serverless provider may terminate a function instance
even if still in active use. We define the longest time
a function instance stays active as instance lifetime.
Tenants prefer long lifetimes because their applications
will be able to maintain in-memory state (e.g., database
connections) longer and suffer less from coldstarts.

To estimate instance lifetime, we set up functions
of different memory sizes and languages, and invoked

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

F
ra

c
ti
o
n

Lifetime (mins.)

AWS

128MB,1 req/5s
1536MB,1 req/5s
128MB,1 req/60s

1536MB,1 req/60s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

F
ra

c
ti
o
n

Lifetime (mins.)

Google

128MB,1 req/5s
2048MB,1 req/5s
128MB,1 req/60s

2048MB,1 req/60s
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

F
ra

c
ti
o
n

Lifetime (hours.)

Azure

1 req/5s
1 req/60s

Figure 9: The CDFs of instance lifetime in AWS, Google, and Azure under different memory and request frequency.

them at different frequencies (one request per 5/30/60
seconds). The lifetime of a function instance is the
difference between the first time and the last time we saw
the instance. We ran the experiment for 7 days (AWS
and Google) or longer (Azure) so that we could collect at
least 50 lifetimes under a given setting.

In general, Azure function instances have significantly
longer lifetimes than AWS and Google as shown in
Figure 9. In AWS, the median instance lifetime across
all settings was 6.2 hours, with the maximum being 8.3
hours. The host VMs in AWS usually lives longer:
the longest observed VM kernel uptime was 9.2 hours.
When request frequency increases instance lifetime tends
to become shorter. Other factors have little effect on
lifetime except in Google, where instances of larger
memory tend to have longer lifetimes. For example,
when being invoked every five seconds, the lifetimes
were 3–31 minutes and 19–580 minutes for 90% of the
instances of 128 MB and 2,048 MB memory in Google,
respectively. So, for functions with small memory under
a heavy workload, Google seems to launch new instances
aggressively rather than reusing existing instances. This
can increase the performance penalty from coldstarts

5.4 Idle instance recycling
To efficiently use resources, Serverless providers shut-
down idle instances to recycle allocated resources (see,
e.g., [32]). We define the longest time an instance can
stay idle before getting shut down as instance maximum
idle time. There is a trade-off between long and short
idle time, as maintaining more idle instances is a waste
of VM memory resources, while fewer ready-to-serve
instances cause more coldstarts.

We performed a binary search on the minimum delay
tidle between two invocations of the function that resulted
in distinct function instances. We created a function,
invoked it twice with some delay between 1 and 120
minutes, and determined whether the two requests used
the same function instance. We repeated until we
identified tidle. We confirmed tidle (to minute granularity)
by repeating the measurement 100 times for delays close
to tidle.

AWS. An instance could usually stay inactive for at most
27 minutes. In fact, in 80% of the rounds instances were

shut down after 26 minutes. When their host VM is
“idle”, i.e., no active instances on that VM, idle function
instances will be recycled the following way: Assuming
that the function instances of N functions f1, . . . , fN are
coresident on a VM, and k fi instances are from fi. For a
given function fi, AWS will shut down bk fi/2c of the
idle instances of fi every 300 (more or less) seconds
until there are two or three instances left, and eventually
shut down the remaining instances after 27 minutes (we
have tested with k fi = 5,10,15,20). AWS performs these
operations to f1, . . . , fN on a given VM independently,
and also on individual VMs independently. Function
memory or language does not affect maximum idle time.

If there are active instances on the VM, instances
can stay inactive for a longer time. We kept one
instance active on a given VM by sending a request
every 10 seconds and found: (1) AWS still adopted the
same strategy to recycle the idle instances of the same
function, but (2) somehow idle time was reset for other
coresident instances. We observed some idle instances
could stay idle in such cases for 1–3 hours.

Azure and Google. In Azure, we could not find a
consistent maximum instance idle time. We repeated
the experiment several times on different days and found
the maximum idle times of 22, 40, and more than 120
minutes. In Google, the idle time of instances could be
more than 120 minutes. After 120 minutes, instances
remained active in 18% of our experiments.

5.5 Inconsistent function usage
Tenants expect the requests following a function update
should be handled by the new function code, especially
if the update is security-critical. However, we found in
AWS there was a small chance that requests could be
handled by an old version of the function. We call such
cases inconsistent function usage. In the experiment, we
sent k = 1 or k = 50 concurrent requests to a function,
and did this again without delay after updating one of
the following aspects of the function: IAM role, memory
size, environment variables, or function code. For a
given setting, we performed these operations for 100
rounds. When k = 1, 1%–4% of the tests used an
inconsistent function. When there were more associated
instances before the update (k = 50), 80% of our

rounds had at least one inconsistent function. Looking
across all tests from all rounds, we found that 3.8% of
instances ran an inconsistent function. Examining the
cases, we found two situations: (1) AWS launched new
instances of the outdated function (2% of all the cases),
and (2) AWS reused existing instances of the outdated
function. Inconsistent instances never handle more than
one request before terminating (note that max execution
time is 300 s in AWS), but still, a considerable faction of
requests may fail to get desired results.

As we waited for a longer time after the function
update to send requests, we found fewer inconsistent
cases, and eventually zero cases with a 6-second
waiting time. So, we suspect that the inconsistency
issues are caused by race conditions in the instance
scheduler. The results suggest coordinating function
update among multiple function instances is challenging
as the scheduler cannot do an atomic update.

5.6 Discussion
We believe our results motivate further study on
designing more efficient instance scheduling algorithms
and robust schedulers to further improve VM resource
utilization, i.e., to maximize VM memory usage, reduce
scheduling latency, and promptly propagate function
updates while guaranteeing consistency.

Loading modules or libraries could introduce high
latency during coldstart [1, 3]. To reduce coldstart la-
tency, providers might need to adopt more sophisticated
library loading mechanisms, for example, using library
caching to speed up this process, and resolving the
library dependence before deployment and only loading
required libraries.

Cross-tenant VM sharing in Azure plus the ability to
run arbitrary binaries in the function instance could make
applications vulnerable to many kinds of side-channel
attacks [16, 17, 20, 45]. We did not examine how well
Azure can tackle the potential threats resulting from
cross-tenant VM sharing, and leave the actual security
vulnerable as an open question.

AWS’s bin-packing placement may bring security
issues to an application, depending on its design. When
a multi-tenant application in Lambda uses IAM roles
to isolate its tenants, function instances from different
application tenants still share the same VMs. We found
two real services that use this pattern: Backand [8] and
Zapier [44]. Both allow their tenants to deploy functions
in Lambda in some way. We successfully achieved
cross-account function coresidency in Backand in just a
few tries, while failing in Zapier due to its rate limits
and large user base (1 M+). Nevertheless, we could
still observe the changes of procfs caused by other
Zapier tenants’ applications, which may admit side-
channels [9, 21, 46]. For these multi-tenant applications

0 500 1,000 1,500
0

0.2
0.4
0.6
0.8

1

Function memory (MB)

Fr
ac

tio
n

CPU utilization Mem*2/3328

(a) AWS

0 1,000 2,000

0.5

1

Function memory (MB)

Fr
ac

tio
n

CPU utilization

(b) Google

Figure 10: The median instance CPU utilization rates
with min-max error bars in AWS and Google as function
memory increases, averaged across 1,000 instances for a
given memory size.

0 0.2 0.4 0.6 0.8
0

0.5

1

CPU utilization rate
Fr

ac
tio

n

1 vCPU 2 vCPUs 4 vCPUs

(a) Azure: CPU utilization CDF

2 4 6

0.2

0.4

0.6

0.8

No. of coresident instances

C
PU

ut
ili

za
tio

n
ra

te

1 vCPU 2 vCPUs 4 vCPUs

(b) Azure: CPU vs. coresideny

Figure 11: (a) CDFs of CPU utilization rates of instances
(1,000 for each type) and (b) the median CPU utilization
rates across a given number of coresident instances (50
rounds) in Azure, with min-max error bars.

to isolate their tenants and achieve better security and
privacy, AWS may need to provide a finer-grained VM
isolation mechanism, i.e., allocating a set of VMs to each
IAM role instead of to each account.

6 Performance Isolation
In this section, we investigate performance isolation. We
mainly focus on AWS and Azure, where our ability to
achieve coresidency allows more refined measurements.
We also present some basic performance statistics for
instances in Google that surface seeming contention with
other tenants.

6.1 CPU utilization
To measure CPU utilization, our measurement function
continuously records timestamps using time.time()

(Python) or Date.now() (Nodejs) for 1,000 ms. The
metric instance CPU utilization rate is defined as
the fraction of the 1,000 ms for which a timestamp
was recorded.

AWS. According to AWS, a function instance’s CPU
power is proportional its pre-configured memory [26].
However, AWS does not give details of how exactly
CPU time is allocated to instances. We measured the
CPU utilization rates on 1,000 distinct function instances
and show the median rate for a given memory size in

0 5 10 15 20
0

20

40

60

No. of coresident instancesA
gg

r.
th

ro
ug

hp
ut

(M
B

/s
)

128 MB 256 MB

(a) AWS: I/O

0 5 10 15 20
0

200

400

600

No. of coresident instancesA
gg

r.
th

ro
ug

hp
ut

(M
bp

s) 128 MB 256 MB

(b) AWS: Network

2 4 6
0

20

40

60

80

100

No. of coresident instancesA
gg

r.
th

ro
ug

hp
ut

(M
B

/s
)

1 vCPU 2 vCPUs 4 vCPUs

(c) Azure: I/O

2 4 6
0

500

1,000

No. of coresident instancesA
gg

r.
th

ro
ug

hp
ut

(M
bp

s) 1 vCPU 2 vCPUs 4 vCPUs

(d) Azure: Network

Figure 12: Aggregate I/O and network throughput across coresident instances as concurrency level increases. The
coresident instances perform the same task simultaneously. The values are the median values across 50 rounds.

Figure 10a. Instances with higher memory get more
CPU cycles. The median instance CPU utilization rate
increased from 7.7% to 92.3% as memory increased
from 128 to 1,536 MB, and the corresponding standard
deviations (SD) were 0.7% and 8.7%. When there is
no contention from other coresident instances, the CPU
utilization rate of an instance can vary significantly,
resulting in inconsistent application performance. That
said, an upper bound on CPU share is approximated by
2∗m/3328, where m is the memory size.

We further examine how CPU time is allocated among
coresident instances. We let colevel be the number of
coresident instances and a colevel of 1 indicates only
a single instance on the VM. For memory size m, we
selected a colevel in the range 2 to b3328/mc. We
then measured the CPU utilization rate in each of the
coresident instances. Examining the results over 20
rounds of tests, we found that the currently running
instances share CPU fairly, since they had nearly the
same CPU utilization rate (SD <0.5%). With more
coresident instances, each instance’s CPU share becomes
slightly less than, but still close to 2 ∗ m/3328 (SD
<2.5% in any setting).

The above results indicate that AWS tries to allocate a
fixed amount of CPU cycles to an instance based only on
function memory.

Azure and Google. Google adopts the same mechanism
as AWS to allocate CPU cycles based on function
memory [13]. In Google, the median instance CPU
utilization rates ranged from 11.1% to 100% as function
memory increased. For a given memory size, the
standard deviations of the rates across different instances
are very low (Figure 10b), ranging from 0.62% to 2.30%.

Azure has a relatively high variance in the CPU
utilization rates (14.1%–90%), while the median was
66.9% and the SD was 16%. This is true even though the
instances are allocated the same amount of memory. The
breakdown by vCPU number shows that the instances on
4-vCPU VMs tend to gain higher CPU shares, ranging
from 47% to 90% (Figure 11a). The distributions of
utilization rates of instances on 1-vCPU VMs and 2-
vCPU VMs are in fact similar; however, when colevel

increased, the CPU utilization of instances on 1-vCPU
VMs drops more dramatically, as shown in Figure 11b.

6.2 I/O and network

To measure I/O throughput, our measurement functions
in AWS and Google used the dd command to write
512 KB of data to the local disk 1,000 times (with
fdatasync and dsync flags to ensure the data is
written to disk). In Azure, we performed the same
operations using a Python script (which used os.fsync

to ensure data is written to disk). For network
throughput measurement, the function used iperf 3.13

with default configurations to run the throughput test for
10 seconds with different same-region iperf servers, so
that iperf server-side bandwidth was not a bottleneck.
The iperf servers used the same types of VMs as the
vantage points.

AWS. Figure 12 shows aggregate I/O and network
throughput across a given number of coresident in-
stances, averaged across 50 rounds. All the coresident
instances performed the same measurement concur-
rently. Though the aggregate I/O and network throughput
remains relatively stable, each instance gets a smaller
share of the I/O and network resources as colevel
increases. When colevel increased from 1 to 20, the
average I/O throughput per 128 MB instance dropped
by 4x, from 13.1 Mbps to 2.9 Mbps, and network
throughput by 19x, from 538.6 MB/s to 28.7 MB/s.

Coresident instances get less share of the network with
more contention. We calculate the Coefficient of Varia-
tion (CV), which is defined as SD divided by the mean,
for each colevel. A higher CV suggests the performance
of instances differ more. For 128 MB instances, the CV
of network throughput ranged from 9% to 83% across all
colevels, suggesting significant performance variability
due to contention with coresident instances. In contrast,
the I/O performance was similar between instances (CV
of 1% to 6% across all colevels). However, the I/O
performance is affected by function memory (CPU) for
small memory sizes (≤ 512 MB), and therefore the I/O
throughput of an instance could degrade more when
competing with instances of higher memory.

Azure. In Azure, the I/O and network throughput of an
instance also drops as colevel increases, and fluctuates
due to contention from other coresident instances. Even
more interestingly, resource allocation is differentiated
based on what type of VM a function instance happens
to be scheduled on. As shown in Figure 12, the 4-vCPU
VMs could get 1.5x higher I/O and 2x higher network
throughput than the other types of VMs. The 2-vCPU
VMs have higher I/O throughput than 1-vCPU VMs, but
similar network throughput.

Google. In Google, both the measured I/O and network
throughput increase as function memory increases:
the median I/O throughput ranged from 1.3 MB/s to
9.5 MB/s, and the median network throughput ranged
from 24.5 Mbps to 172 Mbps. The network throughput
measured from different instances with the same memory
size can vary substantially. For instance, the network
throughput measured in the 2,048 MB function instances
fluctuated between 0.2 Mbps and 321.4 Mbps. We found
two cases: (1) all instances throughputs’ fluctuated
during a given period of time, irrespective of memory
sizes, or (2) a single instance temporarily suffered from
degraded throughput. Case (1) may be due to changes in
network conditions, while case (2) leads us to suspect
that GCF tenants actually share hosts and suffer from
resource contention.

6.3 Discussion
AWS and Azure fail to provide proper performance
isolation between coresident instances, and so contention
can cause considerable performance degradation. In
AWS, the fact that they bin-pack function instances from
the same account onto VMs means that scaling up a
function places the same function on the same VM,
resulting in resource contention and prolonged execution
time (not to mention a longer coldstart latency). Azure
has similar issues, with the additional issue that
contention within VMs arises between accounts. The
latter also opens up the possibility for cross-tenant
degradation of service attacks.

We leave developing new, efficient isolation mech-
anisms that take the special characteristics of server-
less (e.g., frequent instance creation, short-lived in-
stances, and small memory-footprint functions) as
considerations for future work.

7 Resource accounting
In the course of our study, we found several resource
accounting issues that can be abused by tenants.

Background processes. We found in Google one
could execute an external script in the background that
continued to run even after the function invocation
concluded. The script we ran posted a 10 M file every
10 seconds to a server under our control, and the

longest time it stayed alive was 21 hours. We could
not find any logs of the network activity performed by
the background process and were not charged for its
resource consumption.67 In contrast, one could run such
background script in Azure but Azure logged all the
activity. Our observations suggest that: (1) In Azure and
Google the function instance execution context will not
be frozen after an invocation, as opposed to AWS; and
(2) Google does resource accounting via monitoring the
Node.js process rather than the entire function instance.

One can exploit the billing issue in Google to run
sophisticated tasks at negligible cost. For a function
instance with 2 GB memory and 2.4 GHz CPU, one only
needs to pay for a few invocations ($0.0000029/100 ms,
with 2 M free calls) to get the same computing resources
as using a g1-small instance ($0.0257/hour) on Google
Cloud Platform.

CPU accounting. In Google, we found there was an
80% chance that a just-launched function instance (of
any memory size other than 2,048 MB) could temporally
gain more CPU time than expected. Measuring the CPU
utilization rates and the completion times of a CPU-
intensive task, we confirmed that the instances that one
expects to have 8%–58% of the CPU time (see §6) had
near 100% of the CPU time, the same as that given to
2,048 MB instances. The instance can retain the CPU
resources until the next invocation. Note that if one wants
to conduct performance measurements in Google, this
issue could introduce a lot of noise (we appropriately
controlled for it in previously reported experiments).

8 Conclusion

In this paper, we provided insights into architectures,
resource utilization, and the performance isolation effi-
ciency of three modern serverless computing platforms.
We discovered a number of issues, raised from either
specific design decisions or engineering, with regard to
security, performance, and resource accounting in the
platforms. Our results surface opportunities for research
on improving resource utilization and isolation in future
serverless platform designs.

Acknowledgements

The authors thank engineers from Microsoft, Amazon,
and Google for their feedback and helpful discussions.
This work was supported in part by NSF grants 1558500,
1330308, and 1718084.

6Google has a free tier of service, but even after that is used up the
background process consumption went unbilled.

7We have reported this issue to Google and Google has been
working on fixing it as of May 2018.

References
[1] SOCK: Rapid task provisioning with serverless-optimized

containers. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18) (Boston, MA, 2018), USENIX Association.

[2] Azure app service, virtual machines, service fabric, and cloud
services comparison. https://docs.microsoft.com/en-

us/azure/app-service/choose-web-site-cloud-

service-vm, 2017.

[3] Cold start taking a long time in consumption mode for
C# Azure Function. https://github.com/Azure/azure-

functions-host/issues/838, 2017.

[4] Consumption plan scaling issues. https://github.com/

Azure/azure-webjobs-sdk-script/issues/1206, 2017.

[5] Create your first function in the Azure portal. https:

//docs.microsoft.com/en-us/azure/azure-

functions/functions-create-first-azure-function,
2017.

[6] Azure runtime environment. https://github.com/

projectkudu/kudu/wiki/Azure-runtime-environment,
2017.

[7] Azure Functions scale and hosting. https://docs.

microsoft.com/en-us/azure/azure-functions/

functions-scale, 2017.

[8] Backand. https://www.backand.com/, 2018.

[9] CHEN, Q. A., QIAN, Z., AND MAO, Z. M. Peeking into
your app without actually seeing it: UI state inference and
novel android attacks. In USENIX Security Symposium (2014),
pp. 1037–1052.

[10] How does language, memory and package size affect cold starts
of AWS Lambda? https://read.acloud.guru/does-

coding-language-memory-or-package-size-affect-

cold-starts-of-aws-lambda-a15e26d12c76, 2017.

[11] Understanding AWS Lambda performance. https:

//blog.newrelic.com/2017/01/11/aws-lambda-cold-

start-optimization/, 2017.

[12] Understanding AWS Lambda coldstarts. https:

//www.iopipe.com/2016/09/understanding-aws-

lambda-coldstarts/, 2016.

[13] Google Cloud Functions quotas. https://cloud.google.

com/functions/quotas, 2017.

[14] GLIKSON, A., NASTIC, S., AND DUSTDAR, S. Deviceless edge
computing: extending serverless computing to the edge of the
network. In Proceedings of the 10th ACM International Systems
and Storage Conference (2017), ACM, p. 28.

[15] Google cloud functions release notes. https://cloud.

google.com/functions/docs/release-notes, 2018.

[16] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (2016), Springer, pp. 279–299.

[17] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache
template attacks: Automating attacks on inclusive last-level
caches. In USENIX Security Symposium (2015), pp. 897–912.

[18] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Serverless computation with
openlambda. In Proceedings of the 8th USENIX Conference on
Hot Topics in Cloud Computing (2016), USENIX Association,
pp. 33–39.

[19] How long does AWS Lambda keep your idle functions around
before a cold start? https://read.acloud.guru/how-

long-does-aws-lambda-keep-your-idle-functions-

around-before-a-cold-start-bf715d3b810, 2017.

[20] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A:
a shared cache attack that works across cores and defies vm
sandboxing and its application to AES. In Security and Privacy
(SP), 2015 IEEE Symposium on (2015), IEEE, pp. 591–604.

[21] JANA, S., AND SHMATIKOV, V. Memento: Learning secrets
from process footprints. In Security and Privacy (SP), 2012 IEEE
Symposium on (2012), IEEE, pp. 143–157.

[22] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I., AND
RECHT, B. Occupy the cloud: distributed computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing
(2017), ACM, pp. 445–451.

[23] KRUG, A. Hacking serverless runtimes profiling Lambda, Azure,
and more., 2017.

[24] Lambda CPU relative to which instance type? https:

//forums.aws.amazon.com/message.jspa?messageID=

614558, 2014.

[25] AWS Lambda in production. https://blog.newrelic.com/

2017/11/21/aws-lambda-state-of-serverless/, 2017.

[26] Configuring Lambda functions. https://docs.aws.amazon.

com/lambda/latest/dg/resource-model.html, 2017.

[27] How does proportional CPU allocation work with AWS
Lambda? https://engineering.opsgenie.com/how-

does-proportional-cpu-allocation-work-with-aws-

lambda-41cd44da3cac, 2018.

[28] The occasional chaos of AWS Lambda runtime performance.
https://blog.symphonia.io/the-occasional-chaos-

of-aws-lambda-runtime-performance-880773620a7e,
2017.

[29] My accidental 35x speed increase of AWS Lambda
functions. https://serverless.zone/my-accidental-

3-5x-speed-increase-of-aws-lambda-functions-

6d95351197f3, 2017.

[30] Comparing AWS Lambda performance when using Node.js,
Java, C# or Python. https://read.acloud.guru/

comparing-aws-lambda-performance-when-using-

node-js-java-c-or-python-281bef2c740f, 2017.

[31] AWS Lambda performance issues. https://stackoverflow.
com/questions/43089879/aws-lambda-performance-

issues, 2017.

[32] Understanding container reuse in AWS lambda. https:

//aws.amazon.com/blogs/compute/container-reuse-

in-lambda/, 2014.

[33] LLOYD, W., RAMESH, S., CHINTHALAPATI, S., LY, L., AND
PALLICKARA, S. Serverless computing: An investigation of
factors influencing microservice performance.

[34] MCGRATH, G., AND BRENNER, P. R. Serverless computing:
Design, implementation, and performance. In Distributed
Computing Systems Workshops (ICDCSW), 2017 IEEE 37th
International Conference on (2017), IEEE, pp. 405–410.

[35] PETERSON, E. Serverless security and things that go bump
in the night. https://www.infoq.com/presentations/

serverless-security, 2017.

[36] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,
S. Hey, you, get off of my cloud: exploring information leakage
in third-party compute clouds. In Proceedings of the 16th ACM
conference on Computer and communications security (2009),
ACM, pp. 199–212.

https://docs.microsoft.com/en-us/azure/app-service/choose-web-site-cloud-service-vm
https://docs.microsoft.com/en-us/azure/app-service/choose-web-site-cloud-service-vm
https://docs.microsoft.com/en-us/azure/app-service/choose-web-site-cloud-service-vm
https://github.com/Azure/azure-functions-host/issues/838
https://github.com/Azure/azure-functions-host/issues/838
https://github.com/Azure/azure-webjobs-sdk-script/issues/1206
https://github.com/Azure/azure-webjobs-sdk-script/issues/1206
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function
https://github.com/projectkudu/kudu/wiki/Azure-runtime-environment
https://github.com/projectkudu/kudu/wiki/Azure-runtime-environment
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://www.backand.com/
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://read.acloud.guru/does-coding-language-memory-or-package-size-affect-cold-starts-of-aws-lambda-a15e26d12c76
https://blog.newrelic.com/2017/01/11/aws-lambda-cold-start-optimization/
https://blog.newrelic.com/2017/01/11/aws-lambda-cold-start-optimization/
https://blog.newrelic.com/2017/01/11/aws-lambda-cold-start-optimization/
https://www.iopipe.com/2016/09/understanding-aws-lambda-coldstarts/
https://www.iopipe.com/2016/09/understanding-aws-lambda-coldstarts/
https://www.iopipe.com/2016/09/understanding-aws-lambda-coldstarts/
https://cloud.google.com/functions/quotas
https://cloud.google.com/functions/quotas
https://cloud.google.com/functions/docs/release-notes
https://cloud.google.com/functions/docs/release-notes
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://read.acloud.guru/how-long-does-aws-lambda-keep-your-idle-functions-around-before-a-cold-start-bf715d3b810
https://forums.aws.amazon.com/message.jspa?messageID=614558
https://forums.aws.amazon.com/message.jspa?messageID=614558
https://forums.aws.amazon.com/message.jspa?messageID=614558
https://blog.newrelic.com/2017/11/21/aws-lambda-state-of-serverless/
https://blog.newrelic.com/2017/11/21/aws-lambda-state-of-serverless/
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://engineering.opsgenie.com/how-does-proportional-cpu-allocation-work-with-aws-lambda-41cd44da3cac
https://blog.symphonia.io/the-occasional-chaos-of-aws-lambda-runtime-performance-880773620a7e
https://blog.symphonia.io/the-occasional-chaos-of-aws-lambda-runtime-performance-880773620a7e
https://serverless.zone/my-accidental-3-5x-speed-increase-of-aws-lambda-functions-6d95351197f3
https://serverless.zone/my-accidental-3-5x-speed-increase-of-aws-lambda-functions-6d95351197f3
https://serverless.zone/my-accidental-3-5x-speed-increase-of-aws-lambda-functions-6d95351197f3
https://read.acloud.guru/comparing-aws-lambda-performance-when-using-node-js-java-c-or-python-281bef2c740f
https://read.acloud.guru/comparing-aws-lambda-performance-when-using-node-js-java-c-or-python-281bef2c740f
https://read.acloud.guru/comparing-aws-lambda-performance-when-using-node-js-java-c-or-python-281bef2c740f
https://stackoverflow.com/questions/43089879/aws-lambda-performance-issues
https://stackoverflow.com/questions/43089879/aws-lambda-performance-issues
https://stackoverflow.com/questions/43089879/aws-lambda-performance-issues
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://www.infoq.com/presentations/serverless-security
https://www.infoq.com/presentations/serverless-security

[37] Security and serverless. https://read.acloud.guru/

security-and-serverless-ec52817385c4, 2017.

[38] VARADARAJAN, V., ZHANG, Y., RISTENPART, T., AND SWIFT,
M. M. A placement vulnerability study in multi-tenant public
clouds. In USENIX Security Symposium (2015), pp. 913–928.

[39] WANG, L., NAPPA, A., CABALLERO, J., RISTENPART, T.,
AND AKELLA, A. Whowas: A platform for measuring web
deployments on iaas clouds. In Proceedings of the 2014
Conference on Internet Measurement Conference (2014), ACM,
pp. 101–114.

[40] WILLAERT, F. AWS Lambda container lifetime and config
refresh. https://www.linkedin.com/pulse/aws-lambda-
container-lifetime-config-refresh-frederik-

willaert, 2016.

[41] XU, Z., WANG, H., AND WU, Z. A measurement study on co-
residence threat inside the cloud. In USENIX Security Symposium
(2015), pp. 929–944.

[42] YAN, M., CASTRO, P., CHENG, P., AND ISHAKIAN, V.
Building a chatbot with serverless computing. In Proceedings of
the 1st International Workshop on Mashups of Things and APIs
(2016), ACM, p. 5.

[43] YAROM, Y., AND FALKNER, K. Flush+ reload: A high
resolution, low noise, l3 cache side-channel attack. In USENIX
Security Symposium (2014), pp. 719–732.

[44] Backand. https://zapier.com/, 2018.

[45] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-tenant side-channel attacks in PaaS clouds. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (2014), ACM, pp. 990–1003.

[46] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: Inferring your secrets from android
public resources. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (2013),
ACM, pp. 1017–1028.

https://read.acloud.guru/security-and-serverless-ec52817385c4
https://read.acloud.guru/security-and-serverless-ec52817385c4
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert
https://zapier.com/

	Introduction
	Background
	Methodology
	Serverless Architectures Demystified
	Overview
	VM identification
	Tenant isolation
	Heterogeneous infrastructure
	Discussion

	Resource Scheduling
	Scalability and instance placement
	Coldstart and VM provisioning
	Instance lifetime
	Idle instance recycling
	Inconsistent function usage
	Discussion

	Performance Isolation
	CPU utilization
	I/O and network
	Discussion

	Resource accounting
	Conclusion

