
Array Length Inference for C Library Bindings

Alisa J. Maas
University of

Wisconsin–Madison
Madison, WI, USA

ajmaas@cs.wisc.edu

Henrique Nazaré
Universidade Federal de

Minas Gerais
Belo Horizonte, Brazil

hnsantos@dcc.ufmg.br

Ben Liblit
University of

Wisconsin–Madison
Madison, WI, USA

liblit@cs.wisc.edu

ABSTRACT
Simultaneous use of multiple programming languages (polyglot pro-
gramming) assists in creating efficient, coherent, modern programs
in the face of legacy code. However, manually creating bindings to
low-level languages like C is tedious and error-prone. We offer relief
in the form of an automated suite of analyses, designed to enhance the
quality of automatically produced bindings. These analyses recover
high-level array length information that is missing from C’s type
system. We emit annotations in the style of GObject-Introspection,
which produces bindings from annotations on function signatures.
We annotate each array argument as terminated by a special sentinel
value, fixed-length, or of length determined by another argument.
These properties help produce more idiomatic, efficient bindings.
We correctly annotate at least 70% of all arrays with these length
types, and our results are comparable to those produced by human
annotators, but take far less time to produce.

CCS Concepts
•Software and its engineering→Automated static analysis; Soft-
ware libraries and repositories; Data types and structures; Soft-
ware maintenance tools; •Theory of computation → Type struc-
tures; Pattern matching;

Keywords
FFI, foreign function interfaces, bindings, libraries, static analysis,
type inference

1. INTRODUCTION
In modern programs, writing code in a single language may

not always suffice. Developers may wish to write new code in one
programming language yet use legacy code written in another, or may
wish to switch among languages depending on the task at hand. This
leads programmers to produce polyglot programs that mix multiple
languages in a single application. Foreign function interfaces (FFIs)
support polyglot developers by letting high-level languages call into
low-level languages through a series of library bindings. These
bindings can hide the tedious details of converting data types from

one language to another. In the context of a cross-language function
call, the host language is the language supporting the callee, and the
guest language is the language supporting the caller.

A well-written binding does more than just hide low level details
of polyglot programming. It additionally exposes low-level language
functions in a way that is consistent with the style and idioms of
the high-level-language. For example, a C function that accepts an
array usually also requires the array’s length as a separate argument.
A well-written, idiomatic binding hides such details, freeing the
programmer to simply pass the array.
However, creating bindings manually is time-consuming and te-

dious. Additionally, human-created bindings frequently contain
errors (Section 5.3.2), resulting in a scarcity of high-quality bindings.
We are concerned with creating high-quality bindings to C, a popular
target for language bindings. However, the C type system lacks
high-level type information, complicating the automatic production
of high-quality bindings. For example, most high-level languages
clearly distinguish pointers (references) from lists, and the represen-
tation of a list includes its length. By contrast, C conflates arrays
with pointers. A C array is simply a raw pointer to allocated memory
that may extend beyond a single element, and the length of an array
is not stored as part of its run-time representation. Even a C string
is represented merely as the char∗ pointing to its first character.
Thus, C developers are left on their own to determine how large

a given array is, and may adopt different strategies in different
functions. Three idiomatic strategies are particularly common:

1. The array ends with a special sentinel value that can never
appear as a regular array element. Such arrays are considered
to be sentinel-terminated. Correct C programs should not
read past this sentinel value. C strings are the most common
example. Each string in C is represented as an array of char
ending with the sentinel character '\0', or ASCII NUL.

2. The length is stored as some other value maintained alongside
the array itself. For example, a function may take two argu-
ments: one for the array, and one for the length. Likewise, a
structure might store an array and its length in a pair of fields.

3. The length of the array is a constant. A fixed-length array of
size k requires an implicit agreement between the caller and
the callee: the callee provides an array of at least size k, and
the caller never accesses more than k elements from the array.

In C, there is no way for a function to verify that it has been given
an array argument of the correct length. A library binding written
in a high-level language could perform this task. Ideally, a library
binding for a function accepting a C pointer should allow the caller
to present a high-level array or string when appropriate. Our goal is
to automate the production of such language bindings.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970310

461

mailto:ajmaas@cs.wisc.edu
mailto:hnsantos@dcc.ufmg.br
mailto:liblit@cs.wisc.edu

def foo(array, string, fixedLen):
x = c_expectLenArg(array, len(array))
nulSafeArray = string.replace('\0', '')
nulSafeArray.append('\0')
y = c_expectNulTerm(nulSafeArray)
z = c_expectFixedLen(fixedLen)
return (x, y, z)

Listing 1: Calls using language bindings from Python to C
without length inference

def foo(array, string, fixedLen):
x = c_expectLenArg(array)
y = c_expectNulTerm(string)
z = c_expectFixedLen(fixedLen)
return (x, y, z)

Listing 2: Calls using language bindings from Python to C with
length inference

The remainder of this paper is organized as follows. Section 2
establishes the motivations for automating annotation inference,
and describes the annotation system that consumes our analysis
results. Section 3 reviews related work to set the context for our
novel approach. In Section 4 we formalize each length idiom, and
present our approach in detail (for each distinct length idiom as well
as for combining results across uses). Experimental evaluations
in Section 5 assess the effectiveness of our implementation when
applied to multiple real-world libraries. Section 6 discusses options
for future work and Section 7 concludes.

2. MOTIVATION
Our work automatically recovers high-level information about ar-

ray arguments in C library functions, enabling automatic production
of high-quality, idiomatic language bindings to C. Specifically, we
provide analyses that recover C array argument lengths from LLVM
[12] bitcode. Prior work approaches the problem of determining
the lengths of C arrays with the motivation of discovering memory
vulnerabilities in libraries, such as buffer overflow violations. Our
focus on language binding generation allows us to focus on extracting
programmer intent rather than discovering buggy code. This enables
us to recover more information about the intended length idiom,
which improves language bindings by freeing the caller to pass a
high-level string or array. Length information required by the callee
can be extracted by the binding, not the developer. This makes the
binding more intuitive, and lessens the risk that the user of the library
binding might accidentally provide incorrect length information.

Listings 1 and 2 show three calls to language bindings from Python
to C. Assume that array is a list with arbitrary length, string is a
NUL-terminated string, and fixedLen is an array of exactly length
4. In each example, the binding hides some of the more frustrating
parts of making an external call: allocating space for the array and
copying all of the elements over. Notice that Listing 1 contains an
additional loop and allocation in the form of the string.replace call.
The string must be NUL-terminated and not contain embedded NUL
characters, as the low-level C function expects. Without high-level
array type information available in the binding, the user is forced to
handle this manually. If the user is unsure whether the string ends
with a NUL or contains embedded NUL characters, she might have
to manually copy the characters to a separate array to ensure this.

In Listing 2, the user directly passes the arrays and string without
extracting length information. In Listing 1, she must manually pass
the length of each array, even though the Python object representing
each array maintains length information. Extracting the length
information on the Python side is straightforward; the difficulty lies
in determining what length information the C code requires.
Although Listings 1 and 2 call functions whose names make

the expected length information abundantly clear, this is often
not obvious from the API. Programmers who wish to call a C
function must first search for documentation, which may or may
not give an indication as to expected length conventions. Worse,
in many libraries, this documentation is sparse, out-of-date, or
non-existent. Developers may be forced to examine the source
code by hand, searching for evidence of one length convention or
another. We address this hidden work involved in manually creating
a cross-language call such as the one in Listing 2. To that end, we
automate this process using static analysis. Recovering high-level
type information about C arrays lets us produce language bindings
that are more intuitive for users of high-level languages.
In the case of fixed-length arrays, we offer some benefit beyond

a more intuitive binding: we can produce a more efficient binding
by stack-allocating arrays wherever possible. GObject-Introspection
supports annotations providing memory ownership information,
and these annotations can be inferred using work by Ravitch and
Liblit [19] (see Section 3). This gives GObject-Introspection the
ability to know when it is safe memory management to stack-allocate
arrays. However, only fixed-length arrays may be stack-allocated
in C. Stack allocated arrays avoid memory leaks due to incorrect
library usage and also reduce heap churn, simplifying the job of
the garbage collector. Bindings with stack-allocated arrays are also
more amenable to further analysis than bindings that use the heap.
One difficulty in automatically extracting length information

concerns the availability of code which uses the library, or client
code. Client code is a natural way to discover information about the
lengths of arrays, both at allocation points and at library API call sites.
Unfortunately, many libraries that would benefit from an automated
language binding generator do not have easily accessible client code.
It might be possible to use test code instead. However, among the
six libraries in our evaluation, gck has no test suite, and libssh2’s
minimal tests do not cover its entire API. The remaining libraries
have tests, but we cannot speak to their thoroughness. Further, we
expect that production of language bindings is most helpful early in
a library’s development.At this time, tests are likely to be incomplete
or even missing. Thus, we do not assume client code will be present.

Our high-level goal is to create more automatic, intuitive bindings:
more like those in Listing 2 than those in Listing 1. We expect this
to reduce frustration and ease the learning curve associated with
polyglot programming, for the developer producing the binding and
the developer using the binding. If creating intuitive bindings is made
easier for developers, more developers will create language bindings.
If more intuitive language bindings exist, more programmers will be
able to effectively make use of polyglot programming.
To that end, we emit annotations in a format read by GObject-

Introspection [9]. GObject-Introspection provides a suite of tools
that read in a series of annotations to provide an automatic, idiomatic
language binding to C. GObject-Introspection can produce language
bindings to C from many high-level languages, including Python,
Java, Perl, and others. In addition to producing language bindings
to each of these languages, GObject-Introspection streamlines the
process of producing language bindings, making it possible to
create language bindings from an arbitrary language more efficiently.
Examples in this paper assume that the guest language is Python.
However, GObject-Introspection’s annotations are more general, and

462

our tool inherits its generality. While we are limited to GObject-
Introspection’s annotations, their annotations are fairly extensive,
and already have many users. The utility of a ready-made user base
and binding generator far outweighs the modest improvement in
precision we could get by creating our own system of more complex
annotations. Producing length annotations automatically bypasses
some of the tedious work involved in writing language bindings,
which saves developer time. Further analyses could be combined
with ours to create the full set of GObject-Introspection annotations,
which are not limited to just array length annotations.

3. RELATED WORK
Ravitch et al. [20] automatically generate bindings based on

static analysis of C, while Ravitch and Liblit [19] analyze memory
ownership in C libraries to produce bindings that correctly handle
memory management. Our work extracts array length information,
not memory management models, from C. It could be used in
cooperation with these to produce better bindings. SALInfer [11]
statically analyzes C, in part to detect potential buffer overflows.
SALInfer also produces annotations, including a “zterm” annotation
for strings, which it detects by recognizing writes of NUL into
buffers. SALInfer operates over a complete program, and therefore
is guaranteed to have access to the source code that writes NUL
into each sentinel-terminated array. We analyze library code, and
therefore cannot assume that sentinel writes are visible to us. Furr and
Foster [4] describe a pair of tools that ensure type-safety of OCaml-
to-C and Java-to-C (JNI) bindings. These tools are complementary
to ours, as they statically check produced FFIs for safety, whereas
we automate part of the process of creating those FFIs. Lu et al.
[15] perform access correlation in order to hunt concurrency bugs.
In particular, they track constraint specification, which includes
symbolic lengths of arrays. However, they focus only on globals and
structure fields, in order to narrow in on concurrency bugs, while
we are interested ultimately in arguments of arrays.

CCured [18] retrofits run-time bounds checks into C code to
ensure memory safety. CCured identifies potentially unsafe accesses
by using type inference rules that follow from physical subtyping
and limited manual annotations. We share CCured’s desire to use
static inference to extend the limited type system of C. However,
our ultimate goals differ, leading CCured to add run-time checks for
potentially unsafe memory accesses. In contrast, we might ignore
these accesses to extract high-level programmer intent. Further,
CCured requires some hand-crafted annotations; we require none.
A host of other work attempts to recover length information in

C, typically with the goal of statically detecting memory safety
violations. Wies et al.’s shape analysis [24] relies on complex
symbolic predicates to facilitate a precise approach. They require
precision in order to accept only safe memory accesses. Dhurjati et al.
[3]’s static analysis enforces memory safety without (programmer-
created) annotations, run-time checks, or garbage collection. They
provide a region analysis to accomplish this. Our approach is more
heuristic, which may allow us to derive more information.
All of these approaches analyze complete programs, not library

functions. They assume that the code being analyzed is untrustworthy,
while we assume that library code is correct (at least in intent). A
bug-hunting approach seeks inconsistencies in the way C length
information is treated, and so can only determine that an array is used
safely. Our high-level understanding of the length of an array does
not require bug-free implementations. We extract developer intent,
which may still be recognizable despite implementation errors.

Le and Soffa [13] detect user-specified faults, and use path-
sensitive data to reduce the number of false positives presented to
the user. They categorize potentially vulnerable statements into

five types, allowing their users to focus on relevant statements.
They recognize the burden on the programmer to provide length
information and wish to automate this process. SoftBound [16]
analyzesmetadata created at run time in order to catch unsafememory
accesses. SoftBound uses static analysis to determine where to use
metadata at run time, but they focus on program transformation. They
attempt to find every potentially unsafe memory access. Further,
they do not produce symbolic length types evident in the source
code; length information is stored at run time in metadata. We seek
a purely static approach, as we do not assume a complete program.
Rugina and Rinard [21] use an interprocedural bounds analysis

to determine memory safety, and has a wide variety of applications.
Their approach is similar to that of the symbolic range analysis
performed by Nazaré et al. [17], which we use to compute upper and
lower bounds of array indices in our tool. Nazaré et al.’s approach is
very lightweight, and appears to scale well to large programs, while
Rugina and Rinard’s results indicate that there may be issues with
scaling to larger programs, such as the libraries we intend to analyze.

Alves et al. [1] provide an optimization technique to disambiguate
pointers at run time. Their focus is towards producing superior
optimized code, and to this end they transform the code to make use
of run-time information. Although disambiguation of pointers is
very useful for our algorithm, we take a static approach, and thus
cannot make use of dynamic information.

SWIG [2] is a very popular tool providing a different set of bindings
from GObject-Introspection, and theoretically could benefit from
our provided annotations as well. However, at this time, SWIG does
not support annotations identifying pointers as arrays, nor handle
the lengths of arrays. Thus we target GObject-Introspection instead.

4. APPROACH
This section is laid out as follows. Section 4.1 describes the

formal definitions of each of our length properties, and Section 4.2
introduces the assumptions we leverage to approximate these length
properties. Sections 4.3 to 4.5 lay out the analyses used to recover
length information, and Section 4.6 describes ourmethod formerging
length properties when more than one strategy appears to be used for
encoding the length. Section 4.7 discusses expanding our analysis
to structure fields. Finally, Section 4.8 explains sources of false
positives and true negatives in our analyses.

4.1 Formal Definitions
Let a be one dynamic instance of a zero-based array in one

execution of a function in one particular run of the code under
analysis. Let access(a, i) be true if this specific run ever accesses a at
element i. Let allocated(a) be the total number of elements allocated
in the block of memory containing a. Note that allocated(a) ≥ 0
in all cases. Then define memsafe(a) as @i ≥ allocated(a) such
that access(a, i). This is the basicmemory safety property, which
requires that a never be accessed beyond its allocated bounds.

We now define the length of an array argument a in the context of
a particular execution of function f . In each of the following cases,
assume first that memsafe(a). Then:

Case 1: Let k be the minimum non-negative integer such that
access(a, i) → i < k. Then a has fixed-length k.

Case 2: Let n be an argument to f . If access(a, i) → i < n, then a
has symbolic-length n.

Case 3: Let ω be some sentinel value. If ∃n | a[n] = ω ∧ ∀0 ≤
i < n, a[i] , ω ∧ ∀i > n,¬access(a, i), then a is sentinel-
terminated by ω.

463

Jointly, we refer to these as the formal length properties of an
array. For a to have a property statically, it must have that property
in every possible execution of f . Thus, the valid static properties
of a are the intersection of the properties across all executions of
f under all possible inputs. It is possible for an array to have more
than one of these length types simultaneously. An array might have
a fixed-length, and always end with a NUL. Likewise, perhaps an
array has a symbolic-length whose actual value is always a constant.
In general, an array’s length may be some function of other symbolic
or constant values. However, empirically, this is very uncommon,
and we do not address this generalization.
All three of the above cases are undecidable in general. For

example, access(a, i) is quantified over all possible runs, on all
possible inputs, while allocated(a) requires knowing the exact sizes
of arrays, including those dynamically allocated. In the context of
library APIs lacking client code, this becomes evenmore challenging:
the allocation points may not even be present. These definitions
serve as useful Platonic ideals: perfect but unattainable. With these
in mind, we design static approximations that sacrifice soundness
and completeness in exchange for decidability and greater utility.

4.2 Key Ideas
We address the problem of extracting high-level properties about

the static lengths of pointers representing arrays in C. In particular,
we recover whether each array argument to a C function is termi-
nated by a sentinel value, or discover the symbolic or constant value
representing the length. Our approach for doing so necessarily ap-
proximates the (undecidable) formal length properties. Our approach
at times over-approximates and at times under-approximates these
properties. In order to more completely analyze libraries, we make
three key assumptions, which introduce these approximations.

1. We assume that functions will not be intentionally obfuscated,
and that the developer intends for each array argument to
have at most one formal length property.

2. We assume that library code treats an argument like a sentinel-
terminated, symbolic-length or fixed-length array only if that
matches programmer intent. Due to this, if an argument
is ever treated as if it has a length property, it has that
property. The formal definitions (Section 4.1) only ascribe
a property to an array if it must have that property across all
possible executions. We ascribe properties to arrays if they
have that property in some execution. Our reasons for doing
this are twofold: computing the exact array length properties
is undecidable in the general case; and due to assumption 1.

3. We assume the memory safety property discussed in Sec-
tion 4.1. That is, we assume that all accesses to elements
from an array are safe. Leveraging this assumption, we re-
cover programmer intent of array length, even in code without
the memory safety property (where behavior is technically
undefined). While bug-hunting approaches analyze the
code you have, we analyze the code you think you have.

We do not assume that we have any access to client code that
uses a given library. Analyzing client code would allow us to make
use of arguments to malloc indicating the actual size of the array.
However, we intend for our tool to be useful to developers early in
the development process, when there may not yet be any client code
to analyze. Further, the amount of work required for the developer
to find client code, verify that it uses the library code as intended,
install the client code and then run our tool may be prohibitive, and
our work seeks to make the process as easy as possible for the library
developer. Thus, we do not currently analyze client code.

int symbolicLength(int ∗array, int y)
{

if (array[3] < 0)
return array[0];

int sum = 0;
for (int i = 0; i < y; i++)

sum += array[i];

return sum;
}

Listing 3: Example function with an argument of symbolic
length

4.3 Symbolic Range Analysis
Our techniques (especially those in Section 4.4) rely heavily on

determining upper bounds on indices into arrays. We accomplish
this using static range analysis. Range analyses attempt to statically
infer intervals that conservatively encompass all values a given
program variable can assume. The range analysis we use, which
is described and implemented by Nazaré et al. [17], handles only
integer values and allows interval expressions to be symbolic.

For a practical explanation, consider Listing 3, with three integer
variables (y, sum, and i) and one array variable (array). Let ~y�
represent the statically-inferred interval across which y ranges, and
likewise for ~sum� and ~i�. y is regarded as an input, as are all
integer parameters, since nothing is known about the values they can
assume. In a numeric range analysis, this would typically mean that
it resides at the top of the interval lattice, which denotes a complete
absence of information. This can be represented by [−∞,∞]. On a
symbolic lattice, however, symbolically representing variable bounds
is possible. So, while very little is known about the actual numeric
values y assumes, denoting its interval as [y, y], y ∈ N is valid
and is what the symbolic range analysis does. Naturally, since i is
bounded below by 0 and bounded above by y, ~i� = [0, y]. Through
variable renaming, the analysis also infers that inside the for loop,
~i� = [0, y − 1]. The variable sum is repeatedly summed with
unknown values, so the analysis gives it an abstract state of [−∞,∞].
Range analyses have a variety of applications, such as static

branch prediction or proving safety with regard to memory and
integer overflow. Nazaré et al. use their analysis to check array
subscripts against the size of the arrays themselves, in an attempt
to statically prove the safety of load and store operations; i.e.,
the memory safety property for loads and stores. We instead use
subscript intervals to infer the intended lengths of the arrays they
index, as we explain in Section 4.4.

4.4 Symbolic- and Fixed-Length Detection
At a high level, we infer that array argument array has symbolic

length y if at most the first y elements are accessed from it. Note the
parallel to our definition in Section 4.1. We are attempting to identify
exactly the length in case 2. Consider the function in Listing 3. This
function accesses the elements 0 through y− 1 from array. Note that
array could actually have more than y elements; this code would still
obey the memory safety property if y were smaller than the actual
length of array. We exploit key assumption 2 when we say that array
has symbolic length y. We cannot recover allocated(array), but we
can recognize the programmer’s intended length.

To find symbolic lengths, we consider the possible range of values
for each index into each pointer argument, array, in a function, f.

464

int symbolicLoop(int ∗array, int y)
{

int ∗end = array + y;
int sum = 0;
while (array < end) {

sum += ∗array;
array++;

}
return sum;

}

Listing 4: Example function with an argument of symbolic
length containing a specialized loop

Assume that y is some integer argument to f. For our analysis to
conclude that array has symbolic length y, some index must have
upper bound y − 1, and all other indices must either have a smaller
upper bound or a constant upper bound. This represents another
departure from our definition of symbolic-length from Section 4.1.
We apply our domain knowledge in order to assume that y will be
larger than any constant in the general case. We have not empirically
found any false positives arising from this assumption. In Listing 3,
we can see that the for loop will access precisely elements 0 through
y − 1, while element 3 is accessed outside the loop.
With a more sophisticated analysis, we might be able to recover

information such as “array has at least length 3 and at least length
y”. However, the utility of this for producing language bindings
is limited to dynamic checks that the binding is being used cor-
rectly. While it provides some benefit, it does not directly make the
production of language bindings more automatic or more intuitive.
Further, GObject-Introspection, our target binding generator, does
not currently support annotations that are complex enough to express
this. Notice that if our goal were to statically check for the memory
safety property, such information would be of great use. This would
allow us to infer that in order for the array access to be correct, array
must have size at least 3. We could then prove that array always has
at least size 3, or find some input where the size is less than 3.

We use Nazaré et al.’s Symbolic Range Analysis tool (SRA) [17]
to determine upper bounds of array indices. However, SRA only
computes the upper bounds of integer values; it does not handle
pointers ranges. We first transform pointer arithmetic and pointer
comparisons into equivalent array-offset indices, which SRA can
then analyze. This transformation replaces any code that increments
a pointer, array, with code incrementing an index, i, by the same
amount. Any operations accessing element j from array are then
transformed to access element j + i. (In most cases, j is 0.) This
transformation is interesting in two ways. First, it is an example
of a de-optimization done to make the code easier to reason about
and analyze. Strength reduction, a common class of compiler
optimization, may generate code that increments an array (interpreted
as a pointer to its data) rather than using array-offset indices. We
essentially reverse this optimization in order to make more effective
use of SRA. Second, our transformation pass may produce code that
is less efficient than the original. However, this is unimportant as
the code is discarded after analysis without being run.

We take an even more lenient approach to determining whether an
array may have a symbolic length in the presence of loops. For each
loop, we find code that compares the address of some element of the
array to a fixed offset from the array (y), and branches out of the loop
upon reaching that offset. If each iteration of the loop must complete
such a check, then array has symbolic length y, regardless of what

guint g_str_hash (gconstpointer v)
{

const signed char ∗p;
guint32 h = 5381;

for (p = v; ∗p != '\0'; p++)
h = (h << 5) + h + ∗p;

return h;
}

Listing 5: Real-world function with an argument sentinel-
terminated by NUL, taken from glib

happens outside the loop. For example, in Listing 4, each iteration of
the while loop must compare the current value of array to the initial
value of array + y. The while loop terminates once they are equal.
This approach is a heuristic; it causes us to over-approximate the set
of symbolic-length arrays compared to the definition of symbolic-
length from Section 4.1. This arises because of key assumption 1. In
practice, it appears that C programmers follow this assumption, even
though the type system does not require this. We have found no false
positives resulting from this heuristic in our empirical evaluation.
Fixed-length arrays are a special case of symbolic-length arrays,

where every offset from the array is constrained to be a constant. If
a non-constant offset from the array is ever accessed, then the array
cannot be fixed-length. The similarity in our approaches here mirrors
the similarity in our definitions of fixed-length and symbolic-length:
Cases 1 and 2 in Section 4.1.

4.5 Sentinel-Terminated Detection
Per Section 4.1, an array is terminated by a sentinel value if that

value lies at the logical end of the array. Note that this does not
necessarily mean that the sentinel value lies at the end of allocated
memory. Rather, any reads past the sentinel value have no semantic
interpretation. Since we assume correct code, we expect not to see
any such reads. Listing 5 shows a real-world string hash function
that accepts a logical string, and treats it accordingly in the loop.
To identify sentinel-terminated arrays, we search for arrays that are
never read past the sentinel character. In Listing 5, the sentinel
character is '\0', or ASCII NUL, and after the function processes a
NUL character, it never reads another element from the array.
Our analysis for sentinel-terminated arrays leverages loop struc-

tures in order to detect the sentinel-terminated property. Consider a
function, f, with pointer argument array. We examine each natural
loop that accesses offsets of array (directly or transitively), and
compute its set of mandatory sentinel checks of array.

Let the entry of the loop be Lentry. Let check (array, i, ω, b) be an
access of array at offset i, comparing the value at this offset toω with
Boolean result b. We consider check (array, i, ω, b) to be a sentinel
check of array when control flow exits the loop if b is true. Thinking
in terms of a dynamic execution of the loop, the loop contains a
mandatory sentinel check when every execution from Lentry looping
back to Lentry contains at least one sentinel check.
We determine whether a sentinel check of array is mandatory

using a depth-first search through the loop body. If at least one
sentinel check of array must execute on every possible iteration of
the loop, then this loop treats array as sentinel-terminated. Per key
assumption 2, if any loop treats array as sentinel-terminated, then
we annotate array as sentinel-terminated.

465

> = unknown

fixed(1)

...

fixed(maxConst)

notFixed

sentinel(ω)

· · ·

⊥ = inconsistent

symbolic(0) symbolic(numArgs − 1)

Figure 1: Result lattice for any single array under analysis in a
function with numArgs arguments and no constant index larger
than maxConst. Ellipses notwithstanding, the lattice is finite in
both width and height.

Notice a deviation from our formal definition of a sentinel-
terminated array in Section 4.1. Even with a mandatory sentinel
check in a loop, NUL characters may be skipped over in the course of
an iteration. The loop counter could increment by some value other
than 1, or reads and writes outside the loop may occur. In this case,
theoretically, sentinel characters might be passed over. Due to key
assumption 3, we ignore this possibility in order to arrive at a more
complete approach. Such an assumption would be unacceptable if
we were attempting to check the memory safety property.

4.6 Merging Length Types
To this point, we have discussed how to approximate whether an

array has each of the formal length properties within a single function.
Our formal definition of length types in Section 4.1 technically allows
for any combination of the three length types. However, our goal is to
produce source-code level annotations that facilitate cross-language
bindings. We are interested in length properties that rely more on
developer intent than on the physical layout of the arrays in memory.
For this reason, and due to key assumption 1 (see Section 4.2), we
produce at most one annotation per argument, even if more than
one could apply. Our goal is to provide the most helpful language
bindings possible, so we make an effort to produce the most helpful
annotation consistent with the analysis. Although multiple length
types may be correct, we attempt to determine the most general one,
based on the particular domain of language bindings for C libraries.
We also extend our analysis beyond individual procedures. In

order to address internal calls from one library function to another, we
iterate until we reach a fixed point. As we iterate, we combine results
from different parts of our analysis to select at most one annotation
per array argument. We endeavor to select the most general (still
correct) annotation for each array argument. Figure 1 compactly
summarizes our scheme for determining which annotations are the
most general. The most general annotation is considered to be the
greatest lower bound of this lattice. Our analysis is guaranteed to
terminate, because we only replace an annotation with a more general
annotation and there are a finite number of possible annotations.

Let fixed(n) denote a fixed-length typewhere n is the fixed length
of the array. Similarly, symbolic(n) represents a symbolic-length
type where n is the argument number of the argument representing

the length. The sentinel-terminated type with sentinel value NUL is
represented as sentinel(ω) .

We also use three special length types: unknown , notFixed , and
inconsistent . These types do not correspond to annotations, but
represent arrays with intermediate types. unknown means that the
argument is compatible with any length type. Often, this means that
there are no accesses to elements from the array at all. notFixed
means that the argument is compatible with any length type except
fixed(n) for any n. This can happen when any non-constant index
into the array is present. Often these non-constant indices are also
symbolic length, but it is also possible that the length of the array
is determined in some other way. inconsistent means that multiple,
incompatible length types appear to be present. For example, the
array might be accessed up to locations n and m, which both are
additional arguments to the function. In this event, the most general
annotation we can provide is no annotation at all, since neither piece
of length information is truly safe to present. The lattice is most
general at the top, which is consistent with any length type; it is least
general at the bottom, which is consistent with no length type.

For purposes of producing annotations, it is most useful to present
only the single most general length type. Our notion of generality
is the one that selects the single binding that exposes the most
functionality. When multiple length types are present, we take
the meet (u) in the lattice depicted in Figure 1. For example,
fixed(n) u fixed(m) yields fixed(max(n,m)) . In general, fixed-
length types defer to any other kind of length: an array that is
treated as both fixed-length and sentinel-terminated is assumed to
be sentinel-terminated; an array that is treated as having both fixed
and symbolic lengths is deemed to have symbolic length overall. We
choose this to be the most general because a fixed-length array can
always be used where a sentinel-terminated or symbolic-length array
is used. The only requirement is that it be sentinel-terminated or
the length be passed as an argument as appropriate, and the binding
can hide this work. Symbolic lengths also subsume sentinels: for
all n, sentinel(ω) u symbolic(n) = symbolic(n) . We consider
symbolic length to be more general because a sentinel-terminated
array has a length that might be passed as the symbolic-length.
On the other hand, a symbolic-length array need not end with
a terminating sentinel character, and worse, might contain the
sentinel character well before the logical end. The binding would
need to determine how to handle this, and may make the wrong
decision. Finally, mismatched symbolic lengths are incompatible:
symbolic(n) u symbolic(m) = inconsistent unless n = m. In
this event, we have no recourse: there is no way to determine which
of the two symbolic lengths were intended by the developer, and any
assumption may cause a confusing binding to be created.

4.7 Structure Information
C structures can contain pointers which have the same ambiguities

as argument pointers, and can be analyzed similarly. Like C pointer
arguments, structure elements that are pointers also require their
length to be stored implicitly. This can be done in the form of an
additional structure field representing the length, or the structure
field can be sentinel-terminated, or may have a fixed, known size. A
structure field has a length property if any instance of the structure
treats the field that way, as per key assumption 2. Once we have
determined a length property for the structure field, consider that any
array arguments stored in it could be accessed wherever the structure
field is accessed. Thus, if a structure field element is ever treated
as fixed-length, sentinel-terminated or symbolic-length, then any
pointer arguments stored into that field must follow the same length
idiom (key assumption 1). This potentially allows us to retrieve
length information about array arguments that would otherwise be

466

impossible to determine, for example, in a setter function taking a
pointer to a structure along with the data to store in the structure.
After determining the length properties of structure fields (as in
Section 4), we search for store operations that store an array (either
an argument or structure field) into an annotated structure field. We
then propagate this length information to the stored array as well.
In theory, this also gives us more information about the structure
arguments to functions, as well. GObject-Introspection currently
does not support such annotations on structures, presumably because
most functions that require a structure are not part of the external API
that would require a binding. If structure annotations are available in
the future, our tool should provide these with minimal modification.
We implemented such an analysis and combined it with our

argument analyses. This did allow us to recover length information
for a handful of array arguments that had previously not been
recovered, but it also slowed execution time massively. Further
details on these results can be found in Section 5.5. This overhead is
likely because of the vast number of stores into structure elements
in a sizable library. Further, it seems that many of the functions
benefiting from this new information were not part of the public
API of the library, meaning that the end user will not benefit from
annotating these arguments in the first place.

4.8 Notes on Soundness and Completeness
Most length analyses, particularly those for verifying the memory

safety property, attempt to be sound or complete. Soundness
requires never erroneously reporting a length type; completeness
requires reporting all length types. We sacrifice both soundness and
completeness in favor of practical utility.

4.8.1 Practical Trade-Offs for Useful Bindings
We find a trade-off between two competing concerns. On the one

hand, finding the physical lengths in memory of each array argument
produces more useful bindings than finding the highest-numbered
element a function will access. However, this often cannot be
statically determined without introducing unsoundness. On the other
hand, finding the maximum array offset is more frequently statically
discoverable. However, this can produce less useful bindings, since
the last used element may or may not correspond to the allocated
length of the array.

A sound analysis would necessarily miss cases where arrays seem
to have different types of lengths in different contexts. We assume
this is the result of analysis imprecision, rather than a violation
of key assumption 1: library writers treat arrays as though they
have only a single type of length. This allows us to report length
annotations where a sound analysis could not. A complete analysis,
on the other hand, would necessarily retrieve some incorrect length
information, which would produce incorrect bindings. We strive to
avoid producing incorrect annotations, and so cannot take a complete
approach, either.
Therefore, we take an approach which is neither sound nor com-

plete, and thus we may produce both false positives and false
negatives. Recall from Section 4.6 that each array has a most gen-
eral correct annotation. Consider a false positive to be a function
argument annotation identifying an “incorrect” length: i.e., any
annotation but the most general correct one. A false negative fails to
attribute the correct annotation to a function argument that requires
an annotation. Note that a single annotation can be both a false
positive and a false negative if it identifies an incorrect annotation
in place of the correct one. For example, if an array has length
fixed(8) , reporting length fixed(7) both identifies an incorrect
annotation and fails to identify a correct annotation. In one sense,
this is the harshest method of assessing false positives and false

negatives that we could use. Not only do we fail to award “partial
credit” for inferring true length properties that are less general, but
this incurs a false positive in addition to a false negative.

4.8.2 Sources of False Positives and False Negatives
Even with an unsound and incomplete approach, it is important

to clearly identify the kinds and causes of potential errors, and to
mitigate these risks as much as is practical. We find both false
positives and false negatives resulting from our tool, but false
positives are much less common. We intentionally designed our tool
to produce more false negatives than false positives: a false negative
creates a binding that is less idiomatic but still usable, whereas a
false positive can render an API unusable. Such annotations may, for
example, unnecessarily hide arguments or overly restrict their types.
Our analysis is subject to imprecision resulting from pointer

aliasing, as we do not perform an alias analysis. This could result
in a false positive if the array has inconsistent types across aliases
(violating key assumption 1). For example, if the first y− 1 elements
are accessed from array, and the yth element is accessed only through
an alias of array, we would incorrectly report that array has symbolic
length y. However, in practice, we have not seen such false positives,
and believe this to be unusual. Thus, the additional time and space
overhead required for alias detection is not merited. Aliasing also
could theoretically result in false negatives, if elements from array
are accessed only via an alias. In that case, we will report that no
length information is available for array. This, also, has proved to
be rare in practice.

We may incur false negatives in the presence of variadic functions,
which do not accept a fixed number of arguments. The length of a
variadic list of arguments is usually determined by a format string.
While many arguments passed into variadic functions like printf are
strings, symbolic-length arrays, or fixed-length arrays, many are not.
It is possible to identify variadic arguments, but it is not possible to
determine their types without examining the format string, which
contains more complex type information than we support. Variadic
arguments serve as an extreme example of treating arguments as
having different types depending on context, so key assumptions 1
and 2 do not apply.

Our last causes of false positives and negatives arise from external
sources. SRA itself is unsound and incomplete, which may cause
us to produce false positives and negatives. Our approach can also
be incomplete if the only evidence for an argument’s length is in a
call to an external library function, whose code is not available to
analyze. In that case, we allow the user to provide as input a set of
hand-created annotations.

5. EXPERIMENTAL EVALUATION
We have implemented the analyses described in Section 4 using

LLVM 3.7 [12]. Our implementation focuses on the special case
where the sentinel value is a zero of any type, as this is the standard
way to represent C strings. This is motivated by our target for
language bindings, GObject-Introspection, which currently only
has annotation-level support for zero-terminated arrays. Our tool
operates on LLVM bitcode, and therefore is easily incorporated into
any Clang-compatible build or analysis tool chain. All experiments
were run on one 2.67 GHz CPU of a desktop workstation with 24 GB
of RAM running Red Hat Enterprise Linux 7.

5.1 Test Subject Selection
We have evaluated our tool on the following libraries:

• gck v3.18 implements PKCS #11, a form of public key cryp-
tography [6].

467

Table 1: Library details. KLoC measures thousands of lines of source code, estimated with SLOCCount [23].
Number of Function Arguments

Name KLoC Number of Functions All Symbolic Fixed Sentinel Analysis Time (sec)
glib 151 1,813 4,092 77 12 483 211
gio 188 4,948 11,506 66 11 1,052 286
gck 15 247 719 26 0 12 7
telepathy-glib 151 917 2,016 25 0 155 275
libgit2 151 3,668 8,750 89 16 948 151
libssh2 39 349 1,266 125 6 81 14

Table 2: Rates of correct and incorrect analysis results in complete libraries
Rate of True Positives Rate of False Positives

Name Symbolic Fixed Sentinel Symbolic Fixed Sentinel
glib 0.7143 0.9167 0.8903 0.0002 0.0005 0.0044
gio 0.8030 0.7273 0.7814 0.0000 0.0000 0.0061
libgit2 0.7191 0.8125 0.8565 0.0001 0.0006 0.0003
libssh2 0.7280 0.8333 0.8765 0.0000 0.0047 0.0000

Arithmetic Mean 0.7411 0.8224 0.8512 0.0001 0.0015 0.0027

• gio v2.46.2 is a virtual file systems API [7].

• glib v2.46.2 provides a framework for C libraries, including
utility functions and a struct-based object system [8].

• libgit2 v0.23.4 implements the Git core methods as a linkable
library [14].

• libssh2 v1.6.1 is an implementation of the SSH2 protocol in
an extensible C framework [10].

• telepathy-glib v0.23.3 is a D-Bus framework for real-time
communication [22].

Most of these libraries are part of the GNOME Project [5] and
already have GObject-Introspection annotations, authored by the
library writers. The notable exceptions are libgit2 and libssh2, neither
of which is a GNOME library. The version of libgit2we analyzed had
no GObject-Introspection annotations, though annotations appeared
in a later release. libssh2 has no GObject-Introspection annotations
as of this writing, and no language bindings to our knowledge.
These libraries assess our technique on code that was not specifically
written with these annotations in mind. Table 1 provides more details
on our test subjects. To determine ground truth on the number of
symbolic-length, fixed-length, and sentinel-terminated arrays, we
manually inspected each library. Identifying whether a C argument
is an array or a pointer is a difficult task in its own right, and not
one we attempt. We therefore do not report the number of array
arguments in each function. All arguments that our tool infers to
possess a length property must be arrays: however, some arrays may
not follow any of the length types we detect.
For each library, we made a reasonable attempt to identify and

analyze any dependencies, whether manually or with the help of
our tool. We were unable to analyze most of libc, due to many
important functions being implemented in assembly rather than C.
Therefore, we manually selected several such important functions
and annotated them by hand. When analyzing each library, we
passed along information for all of its dependencies as generated by
our tool, and additionally included our hand-crafted annotations for
libc. Thus, some dependency information may be incorrect where

our tool is imprecise. We note the true positive rate and false positive
rate of each type of length information in Tables 2 and 3. The true
positive rate measures the ratio of correct annotations produced to
correct (and most general) annotations, whether produced or not.
The false positive rate measures the ratio of incorrect annotations
produced to arguments which should not have that annotation. A
higher true positive rate and lower false positive rate is desirable,
though we prioritize a lower false positive rate per Section 4.8.2.

5.2 Full Annotation Results
For gio, glib, libgit2, and libssh2, we manually annotated the

full library to use as a baseline for comparison. This provides a
complete picture of how many sentinel-terminated, symbolic-length,
and fixed-length arrays are in the libraries, but costs significant
time. Indeed, our experience indicates that libraries comparable
in size to these take upwards of eight hours to manually annotate.
Table 2 summarizes our findings. Over each of the full libraries, we
achieve a minimum true positive rate of 0.7 for each type of length
property, indicating that we produce at least 70% of the correct
annotations. Every false positive for sentinel-terminated arrays
belongs to a class of problems discussed further in Section 5.4. In
brief, each arises from a function that accepts an array argument
and a length argument, but treats the array as NUL-terminated if the
length is negative. Recall from Section 4.4 that we could introduce
false positives if a library writer ever mixes constant and symbolic
indexes in a fixed-length array. However, only one library in our
suite contains such code, libssh2, and manual inspection verifies the
two occasions when this occurs as truly symbolic-length arrays.
Our results for libssh2 are of particular interest. libssh2 appears

to have been built without awareness of GObject-Introspection
annotations. We see no evidence that polyglot interoperability
was factored into this library’s design in any way. Yet our analysis
performs about as well here as on the other (hand-annotated) libraries.
Furthermore, our true positive rate for sentinel-terminated arrays
is significantly higher than for most other libraries. These results
indicate that our tool can support even libraries that were not
built with language bindings in mind. Our approach can help
developers retrofit GObject-Introspection bindings onto existing
libraries without requiring analysis-friendly design from the start.

468

Table 3: Rates of correct and incorrect analysis results in external library APIs. gck and telepathy-glib use no fixed-length arrays.
Rate of True Positives Rate of False Positives

Name Symbolic Fixed Sentinel Symbolic Fixed Sentinel
gck 0.8077 — 1.0000 0.0000 — 0.0014
glib 0.7222 1.0000 0.8904 0.0004 0.0000 0.0056
gio 0.6875 0.5000 0.7051 0.0000 0.0000 0.0010
telepathy-glib 0.8800 — 0.6839 0.0000 — 0.0032
telepathy-glib + hints 0.8800 — 0.7806 0.0000 — 0.0037

Arithmetic Mean 0.7955 0.7500 0.8120 0.0001 0.0000 0.0030

5.3 API Results
For libraries with existing GObject-Introspection language bind-

ings (gio and glib) and the remaining libraries (gck and telepathy-glib),
we examine the annotations already present in the source code. These
are produced only for the subset of the library intended to be exposed
to the end user in the form of an API. We manually examined those
functions in the API where our tool produced a different annotation
than the human did. This method of determining ground truth is less
precise than manually determining the correct annotations for every
function argument in the library, but consumes much less time, and
allows us to determine how well we perform on the parts of a library
that ultimately require the annotations: the API.

5.3.1 Automated Analysis
Table 3 shows our results on these libraries. For the most part,

our automated approach does quite well. Rates for symbolic lengths
generally improve upon those for complete libraries in Table 2.
The notable exception is the gio library, which exposes only eight
symbolic-length arrays in its public API. Our 67% true positive rate
for sentinel-terminated arrays in telepathy-glib is likewise anomalous.
This is due to heavy use of variadic functions within telepathy-glib.
As discussed in Section 4.8.2, variadic functions pose a problem for
our analysis, as the type information may be dependent on the content
of a format string. Our tool has no way of reasoning about how to
extract type information from format strings. Thus, we are unable
to annotate any arguments whose type information is discoverable
solely through the use of variadic functions. This accounts for most
incorrectly-analyzed sentinel-terminated arguments in telepathy-glib.
Note that a developer could provide a set of manually annotated

functions to recover from this situation. When we manually anno-
tated ten functions that call variadic functions, the results improved
significantly (see the “telepathy-glib + hints” row of Table 3). More
manual annotations could provide a larger benefit, but even this
amount improves upon our results. GObject-Introspection anno-
tations are based on fixed argument positions, and cannot support
annotations of variadic arguments, but the library author could
annotate common functions that make calls to variadic functions.

5.3.2 Human Errors
We motivated this work with the claim that creating bindings

manually is tedious and error-prone. The numerous mistakes we
found in human-authored annotations support this claim. Humans’
errors are qualitatively different from those produced by our tool.
Understanding this mismatch helps illustrate how our approach can
complement human efforts.
Errors by human annotators seem to stem from inattention or

misinterpretation of functions in dependencies. One such mistake is
reporting that an argument has a symbolic length when it is only ever
passed to a function call in some dependency, which does not treat
the argument this way. This happens especially commonly when the

static inline gboolean
contains_non_ascii (const gchar ∗str, gint len)
{

const gchar ∗p;

for (p = str; len == −1 ? ∗p : p < str + len; p++) {
if ((guchar)∗p > 0x80)

return TRUE;
}
return FALSE;

}

Listing 6: Real-world function with inconsistent treatment of
an argument’s length, taken from glib

names of the arguments are misleadingly suggestive of a symbolic
length relationship between two arguments. These mistakes occur
even when the documentation does not suggest that the writers of
these dependencies considered them to be symbolic-length. In these
cases, it is likely that the library writer did not find it worth the time
to track down the source-level annotations in each dependency to see
what the length type of the argument actually is. Rather, they relied
on the name of the argument. Quantitatively, we can see in Table 4
that humans perform marginally better overall, but have a higher rate
of false positives for both symbolic-length and sentinel-terminated
arrays. Humans take much more time to produce these annotations,
while our analysis runs in under five minutes on each library we
considered. One bug that we detected in the library gio was fixed
since the time we ran our analysis. We have submitted a bug report
for the remainder of the human errors our analysis detected in the
library gio, which is awaiting action by the developers.1

5.4 Empirical False Positives
Most of our false positives arise when an array exhibits multiple

length properties (violating key assumption 1), particularly in the
symbolic-length case. For example, in Listing 6, string is treated as
sentinel-terminated by NUL when len is −1, and as having symbolic
length len otherwise. This appears quite often in real-world code, ev-
idently for efficiency; if the caller already knows the string’s length, it
can pass that down to avoid recomputing it in the library. Technically,
these functions can be used by character arrays that are not strings as
well, such as arrays with embedded NULs. By producing a binding
that only accepts strings, we remove functionality. Because our
analysis is not path sensitive, we are unable to identify that string is
treated as NUL-terminated only under some circumstances. We see
that string is treated as sentinel-terminated when it is used in the call

1https://bugzilla.gnome.org/show_bug.cgi?id=765063

469

https://bugzilla.gnome.org/show_bug.cgi?id=765063

Table 4: Rates of correct and incorrect human-authored annotations in external library APIs
Rate of True Positives Rate of False Positives

Name Symbolic Fixed Sentinel Symbolic Fixed Sentinel
gck 0.8846 — 1.0000 0.0252 — 0.0028
telepathy-glib 0.8800 — 0.9484 0.0045 — 0.0620

Arithmetic Mean 0.8823 — 0.9742 0.0148 — 0.0324

Table 5: Change in sentinel-terminated argument counts after
adding structure information analysis

Name
Analysis

Time (min)
New True
Positives

New False
Positives

gio >5,760 — —
glib 508 0 97
libgit2 2,376 5 10
libssh2 7 3 3

to strlen, and infer that it must be sentinel-terminated, although the
strlen call is conditional on the value of len. We chose to combine
analysis results using our Hasse diagram in Figure 1 in order to
combat this issue. We eliminate many of these false positives by
combining our sentinel-terminated and symbolic-length analyses,
and produce only the more general symbolic-length annotation. We
are unable to eliminate these false positives only when our analysis
fails to detect that the array may have a symbolic length.

5.5 Structure Information Results
We extended our implementation to analyze structure fields as

described in Section 4.7. We only found different results in the
sentinel-terminated case, so we just report these results. Table 5
shows that this does improve some cases, allowing us to discover a
few more sentinel-terminated arrays. However, the sheer number
of function arguments to annotate causes the global impact of these
improvements to be quite modest, and we introduce new false posi-
tives as a result of structure fields being treated inconsistently across
several functions. There do not appear to be many arrays whose
length information could be recovered by examining structures.

Further, the analysis now has far more work to do, making perfor-
mance a serious concern. We were unable to completely analyze all
of the libraries in Section 5.1 due to time constraints and dependency
information. Most of the GNOME libraries depend on glib and
gio. gio analysis timed out after four days. Therefore, we could not
analyze any libraries dependent on gio and obtain comparable results
to our other experiments. While further performance tuning of our
implementation is possible, the results (see Table 5) suggest that the
marginal benefits may not make structure analysis worthwhile.

6. FUTURE WORK
While our current approach substantially reduces the manual work

load of generating high-quality bindings, further improvements are
possible. One possible future direction is to consider any client code
that may be available. This would be optional input that would allow
the user to supply representative client code that uses the library.
One source of the client code might be the library itself, which often
call into its own public API. This analysis would be substantially
different from the one described here, as it could take allocation
points into account in the style of SALInfer [11].

We could also expand our analyses to handle function pointers.
Function pointers may be passed as callbacks into a C function, and
the length idiom used by array arguments to the function may be
partially or completely dependent on the definition of the callback.
In order for to analyze such functions, we would need to analyze all
the callbacks passed to such functions within a library.
We have been using GObject-Introspection annotations as our

ultimate analysis target. This ensures that our analysis findings
can be put to good use, but also limits how much detail we try to
recover. We could track other kinds of length information, such
as determining when a function accepts a start pointer and end
pointer. We could also infer predicated type information, which
determines the length information of a particular argument given the
values of other arguments. For example, a predicated description
of string from Listing 6 would state that it is sentinel-terminated by
NUL if len is −1, or has symbolic length len otherwise. GObject-
Introspection can neither express nor use array lengths such as these,
but if they are common enough in practice, that may justify extending
GObject-Introspection to include them as well.

7. CONCLUSIONS
We have presented a system for automatically inferring developer

intent about array argument lengths. This task bears some similarity
to that of checking that all array accesses are memory safe. However,
our focus on language bindings mandates a different design, tuned
to allow different kinds of imprecision and to use heuristics that
would be unacceptable when checking for memory safety violations.
Instead of finding mistakes, we are looking for trends in the kind of
length the library developer expects.
Empirical evaluation shows that we produce significantly fewer

false positives than existing hand-written annotations. Our results
also indicate that our tool performs well even with libraries that were
not built with the goal of being accessible to other languages.
The challenge of producing high-quality bindings is large. Our

inferred array lengths provide an important piece of that larger puzzle.
In cooperation with prior work by others, these analyses begin to
form a comprehensive suite that substantially reduces the manual
effort needed to cross language boundaries. In so doing, we liberate
polyglot programmers to mix and use the best tools, languages, and
libraries available.

8. ACKNOWLEDGMENTS
This research was supported in part by grants from CAPEs and

CNPq; DARPA MUSE award FA8750-14-2-0270; and NSF grants
CCF-0953478, CCF-1217582, CCF-1318489, and CCF-1420866.
Opinions, findings, conclusions, or recommendations expressed
herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies. We would like to thank Peter
Ohmann, for insightful comments and contributions to the ideas in
this paper.

470

9. REFERENCES

[1] P. Alves, F. Gruber, J. Doerfert, A. Lamprineas, T. Grosser,
F. Rastello, and F. M. Q. a. Pereira. Runtime pointer
disambiguation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, pages
589–606, New York, NY, USA, 2015. ACM. . URL
http://doi.acm.org/10.1145/2814270.2814285.

[2] D. M. Beazley. Swig: An easy to use tool for integrating
scripting languages with c and c++. In Proceedings of the 4th
Conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4,
TCLTK’96, pages 15–15, Berkeley, CA, USA, 1996. USENIX
Association. URL
http://dl.acm.org/citation.cfm?id=1267498.1267513.

[3] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collection. In
Proceedings of the 2003 ACM SIGPLAN Conference on
Language, Compiler, and Tool for Embedded Systems, LCTES
’03, pages 69–80, New York, NY, USA, 2003. ACM. . URL
http://doi.acm.org/10.1145/780732.780743.

[4] M. Furr and J. S. Foster. Checking type safety of foreign
function calls. ACM Trans. Program. Lang. Syst., 30(4):
18:1–18:63, Aug. 2008. . URL
http://doi.acm.org/10.1145/1377492.1377493.

[5] The GNOME Project. GNOME, Nov. 2015. URL
https://www.gnome.org/.

[6] The GNOME Project. Gck library reference manual, Oct.
2015. URL https://developer.gnome.org/gck/3.18/.

[7] The GNOME Project. GIO reference manual, Nov. 2015.
URL https://developer.gnome.org/gio/2.46/.

[8] The GNOME Project. GLib reference manual, Nov. 2015.
URL https://developer.gnome.org/glib/2.46/.

[9] The GNOME Project. GObject-Introspection Annotations,
June 2015. URL https://wiki.gnome.org/Projects/
GObjectIntrospection/Annotations.

[10] S. Golemon, M. Gusarov, The Written Word, Inc., E. Fant,
D. Stenberg, and S. Josefsson. libssh2, Oct. 2015. URL
http://www.libssh2.org/.

[11] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking
for buffer overflows in the large. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06,
pages 232–241, New York, NY, USA, 2006. ACM. . URL
http://doi.acm.org/10.1145/1134285.1134319.

[12] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization,
CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE
Computer Society. URL
http://dl.acm.org/citation.cfm?id=977395.977673.

[13] W. Le and M. L. Soffa. Refining buffer overflow detection via
demand-driven path-sensitive analysis. In Proceedings of the

7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’07, pages 63–68,
New York, NY, USA, 2007. ACM. . URL
http://doi.acm.org/10.1145/1251535.1251546.

[14] The libgit2 contributors. libgit2, Oct. 2015. URL
https://libgit2.github.com/.

[15] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou. Muvi: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs. SIGOPS Oper. Syst. Rev., 41(6):103–116, Oct. 2007. .
URL http://doi.acm.org/10.1145/1323293.1294272.

[16] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: Highly compatible and complete spatial memory
safety for C. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’09, pages 245–258, New York, NY,
USA, 2009. ACM. . URL
http://doi.acm.org/10.1145/1542476.1542504.

[17] H. Nazaré, I. Maffra, W. Santos, L. Barbosa, L. Gonnord, and
F. M. Quintão Pereira. Validation of memory accesses through
symbolic analyses. SIGPLAN Not., 49(10):791–809, Oct.
2014. . URL http://doi.acm.org/10.1145/2714064.2660205.

[18] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-safe retrofitting of legacy software.
ACM Trans. Program. Lang. Syst., 27(3):477–526, May 2005.
. URL http://doi.acm.org/10.1145/1065887.1065892.

[19] T. Ravitch and B. Liblit. Analyzing memory ownership
patterns in C libraries. In P. Cheng and E. Petrank, editors,
International Symposium on Memory Management, ISMM ’13,
Seattle, WA, USA - June 20 - 20, 2013, pages 97–108. ACM,
2013. . URL http://doi.acm.org/10.1145/2464157.2464162.

[20] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic
generation of library bindings using static analysis. In
M. Hind and A. Diwan, editors, Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21,
2009, pages 352–362. ACM, 2009. . URL
http://doi.acm.org/10.1145/1542476.1542516.

[21] R. Rugina and M. C. Rinard. Symbolic bounds analysis of
pointers, array indices, and accessed memory regions. ACM
Trans. Program. Lang. Syst., 27(2):185–235, Mar. 2005. .
URL http://doi.acm.org/10.1145/1057387.1057388.

[22] The Telepathy Project. telepathy, Aug. 2014. URL
http://telepathy.freedesktop.org/.

[23] D. A. Wheeler. SLOCCount, June 2015. URL
http://www.dwheeler.com/sloccount/.

[24] T. Wies, V. Kuncak, K. Zee, A. Podelski, M. Rinard, T. Wies,
V. Kuncak, K. Zee, A. Podelski, and M. Rinard. Verifying
complex properties using symbolic shape analysis. In In
Workshop on heap abstraction and verification, 2007.

471

http://doi.acm.org/10.1145/2814270.2814285
http://dl.acm.org/citation.cfm?id=1267498.1267513
http://doi.acm.org/10.1145/780732.780743
http://doi.acm.org/10.1145/1377492.1377493
https://www.gnome.org/
https://developer.gnome.org/gck/3.18/
https://developer.gnome.org/gio/2.46/
https://developer.gnome.org/glib/2.46/
https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
https://wiki.gnome.org/Projects/GObjectIntrospection/Annotations
http://www.libssh2.org/
http://doi.acm.org/10.1145/1134285.1134319
http://dl.acm.org/citation.cfm?id=977395.977673
http://doi.acm.org/10.1145/1251535.1251546
https://libgit2.github.com/
http://doi.acm.org/10.1145/1323293.1294272
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/2714064.2660205
http://doi.acm.org/10.1145/1065887.1065892
http://doi.acm.org/10.1145/2464157.2464162
http://doi.acm.org/10.1145/1542476.1542516
http://doi.acm.org/10.1145/1057387.1057388
http://telepathy.freedesktop.org/
http://www.dwheeler.com/sloccount/

	Introduction
	Motivation
	Related Work
	Approach
	Formal Definitions
	Key Ideas
	Symbolic Range Analysis
	Symbolic- and Fixed-Length Detection
	Sentinel-Terminated Detection
	Merging Length Types
	Structure Information
	Notes on Soundness and Completeness
	Practical Trade-Offs for Useful Bindings
	Sources of False Positives and False Negatives

	Experimental Evaluation
	Test Subject Selection
	Full Annotation Results
	API Results
	Automated Analysis
	Human Errors

	Empirical False Positives
	Structure Information Results

	Future Work
	Conclusions
	Acknowledgments
	References

