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Abstract Debugging is difficult and costly. As a programmer looks for a bug, it
would be helpful to see a complete trace of events leading to the point of failure.
Unfortunately, full tracing is simply too slow to use after deployment, and may even
be impractical during testing.

We aid post-deployment debugging by giving programmers additional informa-
tion about program activity shortly before failure. We use latent information in post-
failure memory dumps, augmented by low-overhead, tunable run-time tracing. Our
results with a realistically-tuned tracing scheme show low enough overhead (0%–
5%) to be used in production runs. We demonstrate several potential uses of this en-
hanced information, including a novel postmortem static slice restriction technique
and a reduced view of potentially-executed code. Experimental evaluation shows our
approach to be very effective. For example, our analyses shrink stack-sensitive inter-
procedural static slices by 53%–78% in larger applications.

Keywords postmortem program analysis, debugging, core dumps, static program
slicing, path tracing, coverage

1 Introduction

Debugging is a difficult, time-consuming, and expensive part of software develop-
ment and maintenance. Debugging, testing, and verification account for 50%–75%
of a software project’s cost (Hailpern and Santhanam 2002); these costs grow even
higher in some cases (Gauf and Dustin 2007; Tassey 2002). Yet, post-deployment
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failures are inevitable in complex software. When failures occur in production, de-
tailed postmortem information is invaluable but difficult to obtain.

Developers would benefit greatly from seeing concrete traces of events leading
to failures, failure-focused views of the program or program state, or suggestions of
potentially-faulty statements. Sadly, full execution tracing is usually impractical for
complex programs. Even for simple code, full-tracing overhead may only be accept-
able during in-house testing.

One common and very useful artifact of a failed program execution is a core
memory dump. Coupled with a symbol table, a core dump reveals the program stack
of each execution thread at the moment of program termination, the location of the
crash, the identities of all in-progress functions and program locations from which
they were called, the values of local variables in these in-progress functions, and the
values of global variables. Prior work with symbolic execution has shown that this
information can help in deriving inputs and/or thread schedules that match a failed
execution (Rößler et al 2013; Weeratunge et al 2010; Zamfir and Candea 2010).

Our goal is to support debugging using latent information in postmortem core
dumps, augmented by lightweight, tunable instrumentation1. This paper explores four
such enhancements: (1) a variant of Ball–Larus path profiling, (2) function coverage,
(3) statement coverage, and (4) call-site coverage. We evaluate the trade-offs among
these tracing methods, and conclude that pairing our path profiling variant with call-
site coverage yields a complementary, realistic, and valuable choice for deployed
applications.

Our results for this pairing with a realistically-tuned tracing scheme show low
overheads (0%–5% execution time, 0%–4% dynamic memory) suitable for produc-
tion use. We also demonstrate a number of potential preprocessing debugging uses of
this enhanced information, including a unique hybrid program slicing restriction and
a reduction of potentially-executed control-flow graph nodes and edges. These post-
mortem analyses can take advantage of all of our core dump enhancement tracing
mechanisms. For example, one of our evaluated applications, space, crashes within
a loop in a complex function containing many branches and a large switch statement.
The bug is a missing exit statement within one switch case. Our analysis is able to
provide the complete branch trace within the crashing function, reducing the possible
set of executed statements by over 65%. This benefit comes at a tracing time over-
head of just 0.3% relative to uninstrumented code. This is a simple, intraprocedural
example; section 6 indicates that our approach often performs even better on larger,
more complex, interprocedural cases.

This paper expands upon our previous conference paper (Ohmann and Liblit
2013) in several ways. First, we provide discussion and experimental results for vary-
ing granularities of program coverage tracing (at functions, call sites, and statements),
whereas Ohmann and Liblit (2013) only discussed call-site coverage. Section 4.1.2
details this change, and provides examples. Second, and partly due to these extended
tracing options, in this paper we more strongly emphasize the difference between our
instrumentation (which is static) and our run-time tracing (which is customizable).
We introduce the notion of a “scheme” to describe a possible tracing configuration,

1 Source code is available at http://pages.cs.wisc.edu/~liblit/ase-2013/code/.

http://pages.cs.wisc.edu/~liblit/ase-2013/code/
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Fig. 1 Overview of data collection and analysis stages. Sharp-cornered rectangles represent inputs and
outputs; rounded rectangles represent computations.

and provide a more in-depth discussion of this topic. See section 4 for details. Third,
with more instrumentation choices (due to the added forms of program coverage),
we provide some discussion of (and a new approach to) customization of tracing
post-deployment (see section 4.2).

Further changes involve our analyses and evaluation. First, we provide a more
detailed discussion of our control-flow node and edge reduction analysis (see sec-
tion 5.1). Second, we evaluate our techniques in much greater detail. Specifically,
we evaluate each tracing mechanism (including all coverage types) independently,
along with tracing schemes combining multiple mechanisms, including the “realistic”
scheme from Ohmann and Liblit (2013). We also assess the effect of post-deployment
customization support on our tracing overhead. See sections 6.1 and 6.3 for details.
Third, we provide an in-depth discussion of sources of ambiguity that we encounter
in our analysis framework. Note that ambiguity in our results is expected: we inten-
tionally sacrifice full-trace detail to reduce run-time overhead. However, the fact that
we use two independent pieces of software for pre-instrumentation and post-crash
analysis results in additional ambiguity (for matching trace data to analysis program
representations). Section 6.2.2 contains full details. Finally, we set further context
for our work: we discuss threats to the validity of our experiments (section 7), and
provide a more extensive discussion of our future work plans (section 9).
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void add_action(char *new_text) {
int len = strlen(new_text);

while (len + index >= size − 10) {
int new_size = size * 2;
if (new_size <= 0)

size += size / 8;
else

size = new_size;
array = realloc_char_arr(array, size);

}

strcpy(&array[index], new_text);
index += len;

}

(a) Code example
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(b) Control-flow graph

Fig. 2 Example code

Figure 1 shows the relationships between our instrumentation and analyses; each
feature of this diagram is described in the sections that follow. We begin with a mo-
tivating example in section 2, then review key background material in section 3. Sec-
tion 4 describes the kinds of data we collect and our instrumentation strategies for
doing so. Section 5 gives a detailed description of the analyses we perform on col-
lected data. We assess instrumentation overhead and usefulness of analysis results
in section 6. Section 7 discusses possible threats to the validity of our results. Sec-
tions 8 and 9 discuss related work and opportunities for future research. Section 10
concludes.

2 Example

Figure 2 shows an example we will refer to throughout the paper. The source code in
figure 2a is taken from flex: one of the applications used for evaluation in section 6.
Most often, we will make use of the function’s intraprocedural control-flow graph
(CFG) representation, shown in figure 2b.

3 Background

We begin by describing core dumps and their benefits for postmortem debugging.
We then review a well-studied path profiling approach by Ball and Larus (1996); the
present work develops a variant of this approach. Finally, we briefly outline program
slicing, which serves as the basis of one of our analyses.
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3.1 Core Memory Dumps

All widely-used modern operating systems can produce a “core dump” file containing
a snapshot of a program’s memory. A dump may be saved after abnormal program
termination due to an illegal operation (such as using an invalid pointer) or on demand
(such as by raising a fatal signal or failing an assertion). This can be useful if the core
dump is to be used for postmortem analysis.

Typically, a core dump includes the full program stack at termination. For our
purposes, the key elements are the point of failure (the exact location of the program
crash), as well as the final call location in each other still-active frame on the stack
(i.e., each stack frame’s return address). Conveniently, core dumps are only produced
in the case of program failure. Thus, collecting them imposes zero run-time overhead.
This is a key advantage to using core dumps for postmortem analysis.

3.2 Path Profiling

Path profiling is traditionally used to compute path coverage during program test-
ing. The approach we adopt from Ball and Larus (1996) is designed to efficiently
profile all acyclic, intraprocedural paths. The algorithm first removes back edges
to transform the control-flow graph (CFG) of a procedure into a directed acyclic
graph (DAG). We represent the transformed CFG as a single-entry, single-exit DAG
G = (V,E,s,x) where V is the set of nodes in the graph and E ⊆ V ×V is the set
of edges with no directed cycles. Every node in V is reachable by crossing zero or
more edges starting at the unique entry node s ∈V . Conversely, the unique exit node
x ∈ V is reachable by crossing zero or more edges starting from any node. A path
p through G is represented as an ordered sequence of nodes 〈p1, . . . , p|p|〉 such that
(pi, pi+1) ∈ E for all 1 ≤ i < |p|. We define a complete path as a path whose initial
and final nodes are s and x respectively. Let C represent the set of all complete paths;
note that this set is finite since G is a DAG. Loops are handled specially, and are
discussed later in this subsection.

The overall goal of the Ball–Larus algorithm is to assign a value Increment(e) to
each edge e ∈ E such that

1. each complete path in C has a unique path sum produced by summing over the
edges in the path;

2. the assignment is minimal, meaning that all path sums lie within the right-open
interval [0, |C|); and

3. the assignment is optimal, meaning that each path requires the minimal number
of non-zero additions.

The first step assigns a value to each edge such that all complete path sums are
unique and the assignment is minimal. To do so, the algorithm traverses the graph in
reverse-topological order. For each n ∈ V we compute NumPaths[n], the number of
paths from n to x. If we number the outgoing edges of n as e1, . . . ,ek with respective
successor nodes v1, . . . ,vk, then the weight Weight(ek) assigned to each outgoing edge
of n is ∑

k−1
j=1 NumPaths[v j]. After this step, complete path sums using Weight values

are unique, and the assignment is minimal.
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(a) Extra instrumentation code added for path profiling
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(b) Path numbers

Fig. 3 Path profiling example

The next step optimizes the value assignment. This uses a maximum-cost span-
ning tree (MCST) of G. A MCST is an undirected graph with the same nodes as G,
but with an undirected subset of G’s edges forming a tree, and for which the total
edge weighting is maximized. Algorithms to compute maximum-cost spanning trees
are well-known. Remaining non-tree edges are chord edges, and all edge weights
must be “pushed” to these edges. The unique cycle of spanning tree edges containing
a chord edge determines its Increment.

Instrumentation is then straightforward. Track the path sum in a register or local
variable pathSum, initialized to 0 at s. Along each chord edge e, update the path sum:
pathSum += Increment(e). When execution reaches x, increment a global counter
corresponding to the path just traversed: pathCount[pathSum]++.

Cycles in the original CFG create an unbounded number of paths. Control flow
across back edges requires creating extra paths from s to x by adding “dummy” edges
from s to the back edge target (corresponding to initialization of the path sum when
following the back edge) and from the back edge source to x (corresponding to a
counter increment when taking the back edge). The algorithm then proceeds as be-
fore. Because of the dummy edges to x and from s, counter increments and reinitial-
ization of the path sum occur on back edges. We expand our definition of a complete
path to include paths that begin at back edge targets or that end at back edge sources.

Figure 3 shows possible instrumentation to profile paths in the example function
from figure 2. Figure 3a shows the function’s CFG annotated with pathSum and
pathCount increments. Each acyclic path completes at either function exit or the
loop back edge, and the counter for the path’s value is incremented at that point. As
shown in figure 3b, each acyclic path is uniquely numbered. Note that the assignment
is clearly minimal, as each acyclic path contains at most one pathSum initialization,
and one pathSum increment.

The preceding overview of path profiling focuses on details relevant to the present
work; see Ball and Larus (1996) for the complete, authoritative treatment. There has
been a great deal of follow-on work since the original paper (Ammons et al 1997;
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Melski and Reps 1999; Sumner et al 2010; Vaswani et al 2007), some of which pro-
vides opportunities for potential future work described in section 9.

3.3 Program Slicing

Program slicing with respect to program P, program point n, and variables V deter-
mines all other program points and branches in P which may have affected the values
of V at n. The original formulation by Weiser (1984) proposed the executable static
slice: a reduction of P that, when executed on any input, preserves the values of V
at n. In this work, we are concerned with non-executable or closure slices, which are
the set of statements that might transitively affect the values of V .

Ottenstein and Ottenstein (1984) first proposed the program dependence graph
(PDG), a useful program representation for slicing. The nodes of a PDG are the same
as those in the CFG, and edges represent possible transfer of control or data. A con-
trol dependence edge is labeled either true or false and always has a control pred-
icate or function entry as its source. An edge n1 → n2 means that the result of the
conditional at n1 directly controls whether n2 executes. (A node may have multiple
control-dependence parents in the case of irregular control flow such as goto, break,
or continue statements.) A data dependence edge is labeled with a variable v and
has a variable definition at its source and a variable use at its target.

Our definition of the system dependence graph (SDG), an interprocedural depen-
dence graph, is drawn from Horwitz et al (1988). The SDG combines all PDGs, and
adds a number of new nodes and edges. Each call is now broken out into three types of
nodes: a call-site, actual-in, and actual-out nodes. (We treat globals as additional pa-
rameters, following Horwitz et al (1988).) A special actual-out node is created for the
return value. Each PDG is also augmented with formal-in and formal-out nodes cor-
responding to formal parameters and the return value, as well as global variables used
or defined in the procedure. Interprocedural control dependence edges are added from
each call site to the called procedure’s entry node. Interprocedural data dependence
edges are added for all appropriate (actual-in, formal-in) and (formal-out, actual-out)
pairs, including the return value. Finally, summary edges from actual-in to actual-out
nodes are computed; these represent transitive data dependence summarizing the ef-
fects of each procedure call. Details on the computation of these edges can be found
in Horwitz et al (1988).

A static slice considers all possible program inputs and execution flows. While
debugging, one prefers a slice that is constrained to a particular execution. Korel and
Laski (1988) first proposed dynamic slicing as a solution to dataflow equations over
an execution history. We are interested in closure dynamic slices similar to those pro-
posed by Agrawal and Horgan (1990). The authors propose four variants of dynamic
slicing. The first simply marks all executed nodes, and performs a static slice over
that subset of the graph. The second recognizes that each executed node has exactly
one control-dependence parent and one reaching definition for each variable used in
the statement. Therefore, this variant slices using only dependence edges actually
observed as active during the execution. The third approach recognizes that differ-
ent instances of each node may have different dependence histories. Therefore, this
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approach replicates each statement each time it occurs in the execution trace, attach-
ing only the active dependence edges for that instance of the statement. Agrawal and
Horgan’s final approach only replicates nodes with unique transitive dependencies.

Dynamic slicing can be very expensive, potentially requiring data equivalent to
a full execution trace. To make matters worse, one must trace all memory accesses
due to pointer variables, arrays, and structures to have a completely accurate dynamic
slice in the general case (Agrawal et al 1991; Korel and Laski 1990). Kamkar et al
(1993) and Zhang and Gupta (2004) are able to reduce the cost of dynamic slicing,
but the cost of fully-accurate slicing remains too high for production use. Venkatesh
(1991) and Binkley et al (2006) formalize the semantics of program slicing and dis-
cuss the distinctions and orderings among the different types of program slices.

4 Data Collection

When considering which data to collect and how, several desirable properties guide
our choices. Instrumentation must be efficient in time and space, and therefore suit-
able for production use. Data must be held in memory until failure, adding no I/O
or other system calls during normal execution. Data size must scale with aspects of
execution state, such as stack depth or number of program locations. Results must be
mappable back to source code, and contain as little ambiguity as possible. Lastly,
instrumentation must be tunable (for overhead or to change focus) without recompi-
lation or redeployment.

Any core dump already records the return address of each active function at the
time of failure. While this has all the above qualities, it may be insufficient on its
own. Therefore, we augment core dumps with two novel techniques: path tracing
and various forms of program coverage. Some of these techniques can be combined.
Throughout the remainder of the paper, we will refer to a (possibly empty or single-
ton) set of tracing mechanisms as a tracing scheme.

The distinction between instrumentation and tracing is key to our technique. First,
during compilation, the program must be instrumented to support each possible de-
sired tracing scheme. Section 4.1 describes the four tracing mechanisms we consider
in this paper. Second, tracing must be customizable post-deployment. We discuss the
preliminary method we adopted in section 4.2. Section 4.3 touches on thread safety.

4.1 Tracing Mechanisms

This paper considers four tracing mechanisms (path tracing, statement coverage, call-
site coverage, and function coverage) which we group into two different high-level
methods of tracing. Our path tracing mechanism is an extension of work by Ball and
Larus (1996). Coverage mechanisms are all traced similarly, while only the traced
program points differ. For each instrumented function, we produce a metadata file
used to interpret traced data for reconstruction and postmortem analysis; we describe
this metadata individually for each tracing mechanism.
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4.1.1 Ball–Larus Inspired Path Tracing

Path tracing records the last N acyclic paths taken through each function on the stack
at the time of failure. Like any stack-bound data, this is discarded whenever a function
returns. We achieve this using a variant of Ball–Larus path profiling. Rather than
counting acyclic path executions, we instead record each completed acyclic path in a
stack-allocated circular buffer.

However, completed paths alone do not yield an execution suffix. We also need
the final “incomplete” path leading up to the failure. Fortunately, given a CFG G,
failing node v, and a partial path sum w, we can recover the unique acyclic path
that accumulates the value w upon reaching v. This is a natural consequence of the
Ball–Larus approach: v and w are the only state maintained while determining acyclic
paths, and therefore must constitute the system’s entire “memory” of the partial path
covered so far.

Formally, for any node v ∈ V , every (pathSum,v) pair either encodes a unique
subpath in G or is infeasible. Conversely, every unique subpath in G is represented
by a unique (pathSum,v) pair. The proof that these uniqueness properties hold is
straightforward by contradiction. G has a unique exit node, x, that is reachable from
v via some sequence of edges E. This sequence of edges need not be unique. Each of
those edges has been assigned an increment, and, therefore, we can compute the sum
of the “suffix” sequence of edges to be w = ∑e∈E Increment(e). Suppose two distinct
subpaths p and q both begin at s, end at v, and share the same value of pathSum.
We can “complete the path” for both of them by connecting each subpath to E and
getting a total path sum of wfinal = w+pathSum. However, we know that two acyclic
paths do not share the same path sum by the proof from Ball and Larus (1996). It is
trivially the case that no subpath can give rise to more than one possible pair as edge
increments are fixed. We must merely guarantee that an accurate partial path sum is
available at every point during execution, since failure can occur at any time.

Figure 4 shows appropriate instrumentation for the example from section 2. Note
that the pathSum increments and pathTrace stores correspond to the path profiling
instrumentation scheme shown in figure 3. Our implementation of path tracing in-
cludes a number of changes relative to standard Ball–Larus path profiling. We move
array allocation into the stack, giving one trace (pathTrace ) per active call. The size
of this array determines how many acyclic paths are retained. This is fixed at build
time, defaulting to 10. (We performed preliminary experiments on small applications,
varying the buffer size over several orders of magnitude up to 100,000. We find that
overhead initially increases anywhere from 10%–40% per order of magnitude. Over-
head eventually stabilizes once the array is so large that most of it is unused and
therefore never mapped into memory.) Note that, since space for path traces is stack-
allocated, it naturally scales directly with the stack depth. Its allocation is also “free”
as no explicit allocation is required, and (depending on the choice of trace size) it has
minimal impact on the size of a stack frame.

The stack-allocated array serves as a circular buffer. A local variable (pathIndex )
tracks the current buffer position. At each back edge and function exit, we append
the path sum (pathSum ) for the just-completed path to this buffer. On back edges,
the path sum is reinitialized (pathSum = 3 ) to uniquely identify paths beginning
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void add_action (char *new_text) {
volatile int pathSum = 0;
volatile int pathTrace[N];
volatile int pathIndex = 0;

int len = strlen(new_text);

while (len + index >= size − 10) {
int new_size = size * 2;
if (new_size <= 0) {

size += size / 8;
pathSum += 1;

} else
size = new_size;

array = realloc_char_arr(array, size);

pathTrace[pathIndex] = pathSum;
pathIndex = (pathIndex + 1) % N;
pathSum = 3;

}

pathSum += 2;
pathTrace[pathIndex] = pathSum;

strcpy(&array[index], new_text);
index += len;

}

Fig. 4 Path tracing instrumentation example. Highlighted code implements path tracing .

at the loop head. Obviously, we cannot instrument functions with more paths than
can be counted in a machine integer. This rarely affects 64-bit platforms, though
section 6.3 notes one exception seen in our experimental evaluation. Instrumentation
skips affected functions, for which we simply collect no trace data.

We must be able to access the current path sum at any point, not just at the very
ends of complete paths. For safety, we forbid the compiler from keeping this value in
a register. Rather, both the path sum and the trace array are declared volatile.

Instrumentation produces a metadata file necessary for future analyses. For each
function, we record (1) a full representation of the control-flow graph with edges
labeled with path sum increments; and (2) a mapping from basic blocks to line num-
bers. The linker aggregates this metadata into a single record for the entire executable:
path info in figure 1.

4.1.2 Program Coverage

Path traces provide very detailed information close to the point of failure in each
active stack frame. However, path traces have two major blind spots: old paths that
have already rotated out of the circular trace buffer, and interprocedural paths through
calls that have already returned.

Program coverage data can easily provide coarser-grained global information, al-
lowing tracing to scale gracefully as the debugging task departs from the active crash
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stack. Coverage instrumentation uses one global array per instrumented function, and
one local array (of the same size) for each stack frame. For a function f , we select
a set of statements, which we call trace points. These trace points are numbered
0,1, . . . ,n−1; these serve as indices into f ’s local and global coverage arrays. Cov-
erage that we gather is binarized, meaning that we record whether each trace point
was ever executed (1) locally, in each particular invocation of f corresponding to a
stack frame; and (2) globally, for any invocation of f across the entire program’s
execution. Thus, each trace point corresponds to one local coverage bit per active f
stack frame plus one global coverage bit. Taken together, the local and global cover-
age bits have several desirable properties. The local bits offer up-to-date information
for trace points in each still-active function. Space for this is stack-allocated, so, like
path traces, it naturally scales with the stack depth. Conversely, the global coverage
bits summarize data from completed calls which have already left the stack.

Our prior work (Ohmann and Liblit 2013) considered only one set of trace points:
call sites. In this work, we place that choice in better context, by also considering
two alternatives. First, one may elect to gather full statement coverage. Naïvely, one
trace point could be used for each statement in f . However, one trace point per basic
block in f is sufficient. Second, if one is interested in function coverage, one need
only select one trace point per function. Any statement guaranteed to execute on any
execution of f will do; we use function entry, as selecting function exit may require
either multiple trace points or adding a shared exit block. Note that function coverage
is unique in that it has no stack-local variant: all functions currently in the active stack
are clearly executing.

Call-site coverage is the final coverage form we consider. This mechanism is
taken directly from our prior work (Ohmann and Liblit 2013). Here, we have one
trace point for each call site in f . Our use of call sites as the program points for
which to gather coverage information is somewhat arbitrary. However, the choice is
well-matched to its purpose. Call sites mark departures from the visible call stack;
these are places where stack-based tracing (such as path tracing) cannot help us.
Intuitively, coverage at call sites complements dense stack-local mechanisms where
that help is most likely to be useful. We find that call-site coverage works extremely
well in practice (see section 6.3).

Figure 5 shows appropriate instrumentation for the example from section 2. The
three variants correspond to our three sets of trace points. This example also shows
some of the subsumption relationships that hold among the three types of program
coverage. Call-site coverage is more precise than function coverage for this particular
function: it is able to determine whether the loop was ever taken via tracing the call
to realloc_char_array. The subsumption relationship, however, does not hold in gen-
eral, as a function may be a leaf function (i.e., contain no calls) or not be guaranteed
to execute a call instruction on every path through the function. However, statement
coverage always subsumes both function and call-site coverage. In the examples of
figure 5, only statement coverage distinguishes the direction of the if statement within
the loop.

Local coverage data is stored in a stack-allocated n-element array (cov ), zero-
initialized at function entry. A per-function global n-element array (add_actionCov ),
initialized at program start, holds global coverage information. Immediately follow-
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volatile bool add_actionCov = false;

void add_action(char *new_text) {
add_actionCov = true;

int len = strlen(new_text);

while (len + index >= size − 10) {
int new_size = size * 2;
if (new_size <= 0)

size += size / 8;
else

size = new_size;
array = realloc_char_arr(array, size);

}

strcpy(&array[index], new_text);
index += len;

}

(a) Function coverage

volatile bool add_actionCov[3] = {false, false, false};

void add_action(char *new_text) {
volatile bool cov[3] = {false, false, false};

int len = strlen(new_text);
cov[0] = add_actionCov[0] = true;

while (len + index >= size − 10) {
int new_size = size * 2;
if (new_size <= 0)

size += size / 8;
else

size = new_size;
array = realloc_char_arr(array, size);
cov[1] = add_actionCov[1] = true;

}

strcpy(&array[index], new_text);
cov[2] = add_actionCov[2] = true;
index += len;

}

(b) Call-site coverage

volatile bool add_actionCov[6] = {false, false, false, false, false, false};

void add_action(char *new_text) {
volatile bool cov[6] = {false, false, false, false, false, false};

int len = strlen(new_text);
cov[0] = add_actionCov[0] = true;

while (len + index >= size − 10) {
int new_size = size * 2;
cov[1] = add_actionCov[1] = true;
if (new_size <= 0) {

size += size / 8;
cov[2] = add_actionCov[2] = true;

} else {
size = new_size;
cov[3] = add_actionCov[3] = true;

}
array = realloc_char_arr(array, size);
cov[4] = add_actionCov[4] = true;

}

strcpy(&array[index], new_text);
index += len;
cov[5] = add_actionCov[5] = true;

}

(c) Statement coverage

Fig. 5 Program coverage instrumentation example. Highlighted code implements coverage .
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ing each trace point i, we store true into slot i of both the local and global coverage
arrays. To preserve ordering, the arrays are declared volatile.

For each trace point, we record a small amount of static metadata used to iden-
tify the trace point during analysis. In practice, our setup requires that this data dif-
fer slightly depending on the type of trace point used. Function coverage need only
record the name (or mangled name) of the function. Call-site coverage records: (1) the
name of the called function, if known; and (2) the line number of the call site. State-
ment coverage records the sequence of line numbers occurring in the basic block,
and, for reasons discussed further in section 6.2.2, any calls that occur within the
basic block. The linker aggregates this metadata into a single record for the entire
executable: coverage info in figure 1.

4.2 Tracing Customization

In production code, it can be difficult to specify instrumentation overhead require-
ments beforehand, as these requirements may change over time, or vary for each
program instance. Furthermore, while focusing on failure-related code could substan-
tially reduce tracing cost, it is impossible to predict where or when post-deployment
failures will occur before release. Therefore, if the cost of full program tracing is too
high for production use, customizable tracing is necessary.

Our approach statically replicates each function, instruments each replica with
one possible tracing scheme, and dynamically decides which replica to execute. Our
original implementation from Ohmann and Liblit (2013) used internal replication.
That is, we replicated each function body inside the function, and added a branch
at function entry to select between tracing schemes. However, that work considered
only two alternatives: call-site coverage with and without path tracing.

In this extended work, we allow substantially more freedom in tracing schemes,
and add two new coverage alternatives. Note that the number of possible tracing
schemes grows exponentially with the number of possible tracing mechanisms. Of
course, some schemes are unnecessary; for example, statement coverage subsumes
both call-site coverage and function coverage. Nevertheless, the number of possible
schemes can quickly become unwieldy: there are 10 possibilities for our mechanisms
proposed in section 4.12.

This explosion prompted us to instead use external replication; that is, we repli-
cate each function, f , into multiple functions, one for each of f ’s possible tracing
schemes. The original body of f is changed to a “springboard” that calls the correct
variant. This significantly reduces the sizes of individual functions, and makes se-
lected tracing schemes easier to identify (as each now constitutes its own function).
However, many alternatives and optimizations are possible here. For example, one
could use a switch statement or a jump table, inline functions or use tail calls, use a
binding method to change later indirect calls to direct calls, etc. Our current approach
is very straightforward, using standard switch statements and function calls. We rely

2 Each of no coverage, function coverage, call-site coverage, statement coverage, and (for some func-
tions) function coverage + call-site coverage; possibly paired with path tracing.
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enum {
INST_NONE,
INST_CC,
INST_CC_PT

} add_actionInst;

void add_action(char *new_text) {
switch (add_actionInst) {

default:
add_action_NONE(new_text);
return;

case INST_CC:
add_action_CC(new_text);
return;

case INST_CC_PT:
add_action_CC_PT(new_text);
return;

}
}

Fig. 6 Tracing customization example

on compiler optimizations to make appropriate choices regarding inlining or con-
version to jump tables. For each function, a global variable encodes which function
variant to use on that particular run. These variables are stored in a special section of
the data segment where they can easily be changed by direct editing of the program
binary. Applications can initially ship with all instrumentation turned off. Over time,
instrumentation can be activated for selected functions based on previously-observed
failures.

Figure 6 shows an example for the function from section 2. The new global vari-
able, add_actionInst, determines which tracing to use for this particular run. Here
there are three possibilities: no tracing, call-site coverage tracing, or call-site cover-
age plus path tracing. Note that our simple approach introduces an extra indirection
into each function call. This example is reasonably small; however, as mentioned pre-
viously, the number of possible tracing schemes can grow rapidly in more extreme
cases. In section 6, we investigate both the memory and run-time costs of this cus-
tomization.

4.3 Additional Consideration: Thread Safety

Our experimental evaluation uses only single-threaded applications, but our instru-
mentation remains valid with threads. Path tracing only accesses stack-allocated vari-
ables, and each thread independently maintains its own path traces. Program coverage
writes to globals, but never reads from globals. (We store each coverage bit as a full
byte for atomicity.) Thus, even updates to the global coverage arrays have no malign
race conditions.
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5 Analyses

Here we describe two analyses we developed to demonstrate the utility of the new
information embedded in core dumps. First, we describe a simple algorithm that re-
stricts the feasible execution set of control-flow graph nodes and edges based on
dynamic information from a failing run. Second, we describe a novel static program
dependence graph restriction algorithm which can be used without knowledge of slic-
ing criteria to allow future restricted static program slicing. Both analyses are defined
with respect to data collected as per section 4. We assume that this data has been
extracted from the core file and is named and organized as follows:

path: One execution suffix for each frame on the stack at program termination.
Each suffix contains at least one entry: either the final crash location (for the inner-
most frame on the stack) or the location of the still-in-progress call to the next inner
frame (for all other frames).

localCoverage: One array for each (coverage mechanism × stack frame) at pro-
gram termination. Array elements are Booleans, with one element per static trace
point in the frame’s function. If a particular form of coverage is not used, all its ele-
ments are true. From this we extract unusedPoints, the set of unexecuted trace points
in each frame. Note that this description is equally valid for either call-site cover-
age or statement coverage. Specifically, if we only trace call-site coverage for some
frame, the localCoverageSTMT array contains all true elements.

globalCoverage: One Boolean array for each (coverage mechanism × function)
in the program, regardless of the state of the stack, with one element per static trace
point in the corresponding function. If the corresponding coverage is traced, each
element denotes whether or not the corresponding trace point was ever executed.
Otherwise, all elements are true. From this we extract globalUnusedPoints, the set
of unexecuted trace points across the entire run. Again, this description applies to
all three forms of program coverage (function coverage has only a single entry per
function). Unused tracing mechanisms result in wholly true entries.

5.1 Restriction of Execution Paths

Our first analysis determines the set of CFG nodes and edges which could not have
executed given the crashing program stack and tracing data collected. This analysis
involves only computing static control-flow graph reachability based on the path and
coverage data. As the analysis is very light-weight, it could be used before debugging
to filter portions of the program structure shown to a programmer.

Let P be a program with control-flow graph G. While the statements and edges
in G represent all possible control flows on any execution of P, they are a static over-
approximation of those active in any possible run of P. A full execution trace for
a specific run r can precisely yield the set of executed statements and edges in G.
With this information, one might reasonably restrict G to a subgraph Gr containing
only the CFG nodes and edges active during r, and use the restricted subgraph during
debugging or subsequent r-specific analyses.
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Procedure intra_active_nodes(G f , path, unusedPoints)
input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉 representing a path in G f
input: a set unusedPoints of unexecuted trace points in G f
output: a set of nodes retain

coverage_reduce(G f , unusedPoints, path|path|);
retain = path.nodes ∪ cfg_backward_reachable(G f , path1);

Fig. 7 Intraprocedural active node analysis

Procedure coverage_reduce(G f , unusedPoints, last)
input: a single-function combined graph G f
input: a set unusedPoints of unexecuted trace points in G f
input: a node last representing the last executed node in f

G f .nodes −= unusedPoints;
G f .nodes = cfg_forward_reachable(G f , f .entry) ∩ cfg_backward_reachable(G f , last);

Fig. 8 Coverage reduction

If the complete execution trace is unavailable, but possible execution flows can
be safely over-approximated, then the graph Gr can likewise be approximated, giving
a subgraph that is larger than ideal, but still smaller than G. In our case, we have
path traces and program coverage data as described in section 4. This trace data is
incomplete and ambiguous: many runs can produce the same data. Our goal is to use
this trace data to determine the set of possibly-active nodes and the set of possibly-
active edges on any run that is consistent with the trace data.

Figure 7 shows the algorithm for intraprocedural active nodes analysis. We first
run the procedure coverage_reduce() shown in figure 8. This procedure eliminates all
trace points in the function that were not executed in a particular activation record, as
well as any other program points which could not have executed given that the trace
points did not execute. The procedure has two phases. First, it determines the set of
nodes forward-reachable from function entry; then it finds the set of nodes backward-
reachable from the function’s end (in this case, the crash point). Any node not in the
intersection of these two sets either (1) only executes if an eliminated trace point
executes or (2) only occurs after the crash point. Then, continuing with figure 7, all
nodes in the path trace must be kept, along with any nodes backward-reachable from
the first path entry (path1). All other nodes can be eliminated. Though not shown,
determination of active edges is identical; the only difference is that we track edges
crossed rather than nodes visited for each stage.

The interprocedural algorithm in figure 9 is largely an extension of the intrapro-
cedural algorithm, with some complexities to deal with stack data. We apply the logic
from figure 8 to every procedure in the entire application, now using globalUnused-
Points. After this, for each frame on the stack, we execute the intraprocedural algo-
rithm over a mutable copy of the procedure’s CFG, G′. This is necessary because the
analysis will remove nodes from G′ via a call to coverage_reduce(), and the result
must respect the retain sets of all invocations of each procedure on the stack (in the
case of recursion) and all possible invocations through transitive calls. To incorporate
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input: a whole-program combined graph G
input: a vector of frames stack, each composed of: a vector of nodes path = 〈path1, . . . ,path|path|〉

representing a path in G; and a set unusedPoints of unexecuted trace points in G
input: a mapping globalUnusedPoints from functions to a set of their unexecuted trace points
output: a set of nodes retain

forall (f , unusedPoints) in globalUnusedPoints do
G f = fragment of G representing function f ;
coverage_reduce(G f , unusedPoints, f .exit);

retain = /0;

foreach frame in 〈stack|stack|, . . . ,stack1〉 do
G′ = temporary copy of G restricted to frame.function;
retain′ = intra_active_nodes(G′, frame.path, frame.unusedPoints);
retain ∪= retain′;

end_call = call node located at frame.path|frame.path|;
calls = {n ∈ retain′ | n is a call};
if end_call 6∈ cfg_backward_reachable(G′, path1)∪{path1, . . . ,path|path|−1 } then

calls −= end_call;

foreach call in calls do
retain ∪= edges interprocedurally forward-reachable from

call.target without crossing any return edges;

Fig. 9 Interprocedural active node analysis

possible execution flows outside the visible stack, we collect the set of possibly-
executed calls (excluding the final call, end_call, corresponding to the crash location
for the relevant stack frame), and determine the set of CFG nodes that may have ex-
ecuted during those calls. This set is determined as all forward-reachable CFG nodes
from the entry of each called function. This reachability analysis crosses call edges
(to get full interprocedural information) but not return edges (to preserve context-
sensitivity). Instead, we assume the intraprocedural CFG contains an intraprocedural
edge corresponding to the call and return for each call site. As with the intraprocedu-
ral variant, gathering active edge information is nearly identical. Here, an additional
requirement is that we also maintain a set of possible return edges (which, for this
simple analysis, can be derived directly from the set of possible call edges). After all
frames have completed, we can eliminate nodes and/or edges which were eliminated
for all frames.

5.2 Static Slice Restriction

Our second analysis is a novel technique for program dependence graph (PDG) re-
striction based on an early dynamic program slicing algorithm originally proposed
by Agrawal and Horgan (1990). Note, however, that we are not actually computing
a dynamic slice: during analysis, the slicing criteria (program point and variables of
interest) may not yet be known. Rather, we restrict the static PDG to respect the fail-
ing execution data. This can be a preparatory step for multiple future slice queries for
any given slicing criteria.
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input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉 representing a path in G f
input: a set unusedPoints of unexecuted trace points in G f
output: a restricted version of G f with respect to path and unusedPoints

coverage_reduce(G f , unusedPoints, path|path|);
retain = intra_control_retain(G f , path) ∪ intra_data_retain(G f , path, /0);
G f .pdg_edges ∩= retain;

Fig. 10 Intraprocedural dependence graph reduction

Let P be a program with dependence graph G. As with the CFG in section 5.1,
dependence edges in G are a static over-approximation of those active in any pos-
sible run of P. Suppose in this case that one knew exactly which control and data
dependence edges were actually used during a specific run r. One might reasonably
restrict G to a dependence subgraph Gr containing only the dependence edges active
during r, and use the restricted subgraph during subsequent r-specific analyses. For
example, a backward static slice over Gr would yield an r-restricted dynamic slice
for any program point of interest. This corresponds to approach 2 in Agrawal and
Horgan (1990).

As in the CFG case, our path traces and program coverage data from section 4
allow us to over-approximate the exact set of dependence edges active in r, yielding
a safe over-approximation of the ideal Gr. Specifically, we wish to compute a trace-
restricted dependence graph that retains every dependence edge that could possibly
have been active in any run that is consistent with the trace data.

For this formulation, we assume that G is also overlaid with the control-flow
edges in each procedure (as the PDG contains all nodes from the CFG by our defini-
tion). In the remainder of the paper we refer to a graph with both CFG and PDG edges
as a combined graph. In figures 11 to 13, “→” always refers to a control-dependence
(not control-flow) edge, while “→v” refers to a data-dependence edge defining v. For
the high-level descriptions of the algorithms given here, we collapse all actual-in and
actual-out nodes into their associated call nodes for ease of presentation.

5.2.1 Intraprocedural Restriction

Figure 10 shows the overall process of computing intraprocedural PDG restrictions,
which proceeds in several phases. This algorithm resembles that in figure 7 for active
CFG nodes, but determining active dependence edges is somewhat more complex.
To begin, coverage information is used to prune the reachable nodes in the combined
graph per figure 8, described earlier. Next, we identify the control and data depen-
dence edges that must be retained. This process is more complex than simple reacha-
bility required for CFG nodes and edges; details for each of control-dependence and
data-dependence edges appear in figures 11 and 12 respectively. Lastly, we remove
all dependence edges not selected for retention.

Figure 11 shows the process for determining the retained set of control depen-
dence edges. The goal is to identify the immediate control-dependence parent of each
node in path and each node potentially executed prior to path. The vector unattributed
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Function intra_control_retain(G f , path)
input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉 representing a path in G f
output: a set of nodes retain

unattributed = path;
retain = /0;
foreach (n, i) in (path|path|, |path|), . . . ,(path1,1) do

foreach p in pathi−1, . . . ,path1 do
if p→ n is a control dependence edge in G f then

retain ∪= {p→ n};
remove slot i from unattributed;
break;

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→ n | n ∈ reachable};
retain ∪= {q→ n | q ∈ reachable ∧ n ∈ unattributed};

Fig. 11 Intraprocedural control-dependence retention

holds path entries for which the algorithm has yet to determine the most direct con-
trolling node. The outer foreach loop walks backward (beginning from the crash
point) through the entries in path. The inner loop begins with the entry immedi-
ately prior to the current node, again walking backward through path. During this
inner-loop search, if a node is encountered that controls the execution of the outer-
loop node, then the control dependence edge between those nodes was “active” in the
traced execution, and thus must be retained. Once such a node is found, the outer-loop
node has found its directly-controlling conditional; it is removed from unattributed
and the search for that node ends. After attributing control dependence parents to as
many path entries as possible, the algorithm determines the set of nodes backward-
reachable from the first entry in the trace. These nodes have no additional dynamic
information: any control dependence edge from a reachable node could have been ac-
tive in some run producing this trace. Finally, all remaining unattributed nodes from
path must retain all incoming control dependence edges from reachable nodes.

Determining the retained set of data dependence edges, detailed in figure 12, fol-
lows a similar process, albeit with some additions. Here, each node must determine
active data dependence parents for each variable used at that node. The algorithm
first determines which variables must be defined and may be used by each node in
the combined graph. For brevity in presentation, mustDef and mayUse are computed
as sets of (node, variable) pairs, but will also be interpreted as mappings from nodes
to sets of variables. Each entry of the unattributed vector again corresponds to a
node from the path trace, but instead tracks all unattributed variable uses at that entry.
The calleeExclusions parameter is unused by the intraprocedural analysis. The nested
loops step backward through path, as in control dependence retention. In this case,
the outer loop finishes with a path entry only once it has attributed each variable used
(or potentially used, in the case of pointers) at that node. Otherwise, at each inner
loop step, data dependence edges are retained for any variables not yet attributed.
Summary data dependence edges (from the appropriate actual-in to actual-out nodes)
should be added to retain whenever a call node is encountered. The path trace does
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Function intra_data_retain(G f , path, calleeExclusions)
input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉 representing a path in G f
input: a set of variables calleeExclusions unused at call site path|path|
output: a set of nodes retain

mustDef = {(n,v) | n ∈ G f .nodes ∧ n must define v};
mayUse = {(n,v) | n ∈ G f .nodes ∧ n may use v};
unattributed = 〈mayUse[pathi] for i in 1, . . . , |path|〉;
unattributed|path| −= calleeExclusions;
retain = /0;
foreach (n, i) in (path|path|, |path|), . . . ,(path1,1) do

foreach p in pathi−1, . . . ,path1 do
if unattributedi = /0 then break;
if p→v n is a data dependence edge in G f for some v ∈ unattributedi then

retain ∪= {p→v n};
if v ∈ mustDe f [p] then

unattributedi −= {v};

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→v n | n ∈ reachable};
forall (n, i) in (path1,1), . . . ,(path|path|, |path|) do

retain ∪= {q→v n | q ∈ reachable∧ v ∈ unattributedi };

Fig. 12 Intraprocedural data-dependence retention

not contain data-flow information. Thus, in the case of pointers with multiple possi-
ble variable targets, the analysis cannot be certain which dependence for v was active.
Therefore, the algorithm considers a used variable v attributed only if the source must
always define v. Lastly, we conservatively add all possible data-dependence edges to
unattributed variable uses, much as figure 11 did for control-dependence edges lead-
ing to unattributed nodes.

5.2.2 Interprocedural Restriction

Figure 13 gives the steps for interprocedural restriction. The formulation closely mir-
rors the interprocedural slicing method given in Horwitz et al (1988), which is also
later used to slice over the restricted dependence graph. First, we use global unused-
Points information to remove unexecuted trace points from each function, as well as
any other nodes execution-dependent on those program points.

Next we process each stack frame, beginning with the crashing function. This
phase identifies active dependence edges within and between stack procedures; tran-
sitive dependencies from called (and returned) procedures are captured with sum-
mary edges. For each frame, we create G′, a temporary subgraph of G containing
only nodes from the frame’s function. As with the active nodes analysis from fig-
ure 9, interprocedural restriction must respect the retain sets of all possible invoca-
tions of each procedure. We then remove unused trace points. At this point, we need
to connect this frame to the previous frame by retaining data dependence edges from
formal-in nodes to actual variables from the call. For the innermost frame, this has
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input: a whole-program combined graph G
input: a vector of frames stack, each composed of: a vector of nodes path = 〈path1, . . . ,path|path|〉

representing a path in G; and a set unusedPoints of unexecuted trace points in G
input: a mapping globalUnusedPoints from functions to a set of their unexecuted trace points
output: a restricted version of G with respect to stack and globalUnusedPoints

forall (f , unusedPoints) in globalUnusedPoints do
G f = fragment of G representing function f ;
coverage_reduce(G f , unusedPoints, f .exit);

retain = /0;
formals = /0;

foreach frame in 〈stack|stack|, . . . ,stack1〉 do
G′ = temporary copy of G restricted to frame.function;
call = call node located at frame.path|frame.path|;
coverage_reduce(G′, frame.unusedPoints, call);
actuals = variables for actual arguments for call;
connected = {call→v f | v ∈ actuals ∧ f ∈ formals};
unconnected = {v ∈ actuals | @ call→v _ ∈ connected};
retain ∪= connected;
retain′ = intra_control_retain(G′, frame.path)

∪ intra_data_retain(G′, frame.path, unconnected);
retain ∪= retain′;
formals = { formal | formal→ _ ∈ retain′ };

worklist = all call nodes n such that retain contains any intraprocedural dependence edge from n;
retain ∪= edges interprocedurally backward-reachable from worklist

without crossing any edges from calls to formal-ins;
G.pdg_edges ∩= retain;

Fig. 13 Interprocedural dependence graph reduction

no effect. For other frames, connected will contain those edges to formal-in nodes
that correspond to (transitively) potentially-used formals in the previous stack frame;
these must be retained. unconnected contains any actuals not connected to a useful
formal. Note that here the intraprocedural restriction algorithms are used as subrou-
tines. We now use the third parameter to intra_data_retain: the algorithm does not
consider unused actuals to be “unattributed,” as incoming data dependence edges for
these variables were unused.

The final step of the algorithm retains dependence edges from transitive calls be-
ginning from the stack frames. A worklist is populated with all calls not correspond-
ing to the crash point in this frame. All dependence edges backward-reachable in the
SDG from the worklist nodes (including edges corresponding to function returns but
excluding those corresponding to function calls) must be retained. These edges cor-
respond to transitive interprocedural dependencies for previously-returned calls. The
algorithm does not need to “re-ascend” to calling procedures because summary edges
are included in both phases.

5.2.3 Additional Considerations and Relationship to Dynamic Slicing

Slices over a restricted graph, like those of Agrawal and Horgan (1990) and Horwitz
et al (1988), are closure slices. These over-approximate the set of statements that may
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have affected the variable values at the chosen slice point, but are not necessarily
executable or equivalent to the original program.

Unlike Agrawal and Horgan, our dependence graph restriction algorithms are not
actually computing dynamic slices: they are not “slicing from” any particular pro-
gram point. In fact, one way to define the analyses is as partial-trace dynamic slicing
from every point along our execution suffix. The choice of static-slice start node is
orthogonal to this restriction. Every static slice taken over the restricted graph should
be consistent with the trace data, modulo the loss of accuracy (as in Agrawal and
Horgan’s approach 3) when a node is executed multiple times with different incom-
ing dependence edges. Our dependence graph is static, so these dynamically-distinct
nodes are necessarily collapsed into one static node.

It would be possible to unroll all traced paths into the dependence graph and track
individual dependencies. This approach for a full execution trace produces what is
known as a dynamic dependence graph, and is equivalent to Agrawal and Horgan’s
approach 3; our approach would produce a partial-dynamic dependence graph. While
it can yield smaller dynamic slices, this approach also makes the PDG significantly
larger and more complex to understand. Despite advances in compressing dynamic
dependence graphs (e.g., Zhang and Gupta (2004) and the final approach by Agrawal
and Horgan (1990)), graph sizes remain quite large, increasing the time and mental
effort for a developer to sift through graph data to find a reasonable slice point. Thus,
we do not work with dynamic dependence graphs for our analysis results; future work
could consider this possibility.

Our primary goal is extremely lightweight data collection. Therefore, we do not
track updates to memory locations as would be necessary for fully-accurate interpro-
cedural dynamic slicing (Agrawal et al 1991). We accept a potential loss of accuracy
that comes with static alias analysis for globals and pointer variables when crossing
procedure boundaries.

6 Experimental Evaluation

We conducted experiments to assess the efficiency of our data collection strategies
and the utility of the information we collect. We use Clang/LLVM 3.4 (Lattner and
Adve 2004) to compile and instrument programs. Instrumentation operates directly
on LLVM bitcode.

We selected a range of applications varying in functionality and size. Table 1
gives additional details about our test subjects. The Siemens applications, flex, grep,
gzip, sed, and space were obtained from the Software-artifact Infrastructure Repos-
itory (Do et al 2005; Rothermel et al 2006). space contains real faults, sed contains
both seeded and real faults, and the remaining SIR-provided test subjects contain only
seeded faults. ccrypt and gcc are real, released versions with real faults. Some appli-
cation versions have multiple faults which can be enabled separately; the “Variants”
column of table 1 counts unique builds across all versions and all available faults. All
of these applications are written in C. However, there are no practical reasons our ap-
proach could not be applied to object-oriented programming languages, and both our
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Table 1 Evaluated applications

Application Type Variants Mean LOC

print_tokens Siemens 7 727
print_tokens2 Siemens 10 568
schedule Siemens 9 413
schedule2 Siemens 10 373
tcas Siemens 41 173

ccrypt Linux utility 1 5,280
flex Linux utility 81 14,946
grep Linux utility 59 15,460
gzip Linux utility 59 8,114
sed Linux utility 75 14,314
space ADL interpreter 38 9,563

gcc C compiler 1 222,196

analysis back end and compiler front end support compilation and analysis of C++
code.

Results presented in this section are aggregates across all versions, bugs, and test
suites of each application. In general, results vary little among builds of a given appli-
cation; we note any exceptions below. We also aggregate results for all applications
from the Siemens test suite to simplify presentation. These are very small, simple ap-
plications, and results indicate that they have similar results for both tracing overhead
and analysis effectiveness. Again, we note exceptions below.

6.1 Overhead

Our first evaluations assess the efficiency of our tracing mechanisms and customiza-
tion methodology from section 4. All experiments used a quad-core Intel Core i5-
3450 CPU (3.10 GHz) with 32 GB of RAM running Red Hat Enterprise Linux 6.5.

6.1.1 Run-Time Overhead

Overhead is the ratio of execution times for instrumented and uninstrumented code.
For each version of each application, we ran the test suite over the non-faulty build
at least three times and took the geometric mean of the overheads for each test case.
Results appear in figure 14. Smaller values are better, with 1.0 conveying no instru-
mentation overhead. We built each application version using our instrumentor, with
all non-library functions instrumented with various instrumentation configurations.

We first evaluate each tracing mechanism individually. The first four bars (Func-
tion Coverage, Call Coverage, Statement Coverage, and Path Tracing) indicate instru-
mentation that does not require any customization (that is, all functions have only one
variant: the particular tracing mechanism listed). Function coverage causes no mea-
surable overhead for our test subjects. Call-site coverage is far cheaper than statement
coverage (gathered as basic block coverage). The maximum overhead for call-site
coverage among our test subjects was 2.0% (for gcc), while statement coverage has
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Fig. 14 Run-time overhead

overheads as high as 25.8% (for sed). gcc has thirteen functions with more than 263

acyclic paths; these cannot be instrumented for path tracing. Even so, the cost of full
path tracing is surprisingly low, varying across applications from negligible to 10.4%
(for gzip). This suggests that our adaptation of the classic path profiling approach
is very efficient, substantially reducing our overhead over full path profiling (which,
according to initial results by Ball and Larus (1996), has approximately 30% average
run-time overhead due to large storage requirements and the use of hashing).

Taking into account measured overheads and expected orthogonality of benefits,
we then considered instrumentation based on a realistic set of tracing schemes for
customization: {None, Call Coverage, Call Coverage + Path Tracing}. We then ac-
tivated call-site coverage tracing for all non-library functions and path tracing for
any function appearing in the crash stack of any failing test case for each applica-
tion version. This is a realistic configuration if latent instrumentation can be enabled
post-deployment in response to observed failures, and appears as “Realistic” in fig-
ure 14. Our results indicate that limiting path tracing to functions involved in failures
can significantly reduce overhead (especially for gzip and sed). The overhead of a
particular application appears to depend on non-trivial factors. For example, larger
applications do not necessarily have more overhead. Most applications have compa-
rable overheads for all versions with realistic instrumentation. One version of gzip
has significantly lower overhead (about 1% on average), while the other versions are
around 5%. Overheads between sed versions also vary somewhat, ranging from neg-
ligible to 2.5%. Averaged across all larger (non-Siemens) applications, the realistic
configuration shows a mere 2.0% overhead.

We next evaluated what portion of the overhead for the realistic configuration was
due to tracing customization (i.e., the springboard function discussed in section 4.2).
The “Realistic (fixed)” bar in figure 14 shows the run-time cost of the “Realistic”
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configuration had we disallowed customization (that is, had we re-instrumented each
function based on observed failures to obtain the same tracing data as “Realistic”
but with each function deciding at compile time—rather than run time—which trac-
ing scheme to use). Clearly, customization adds a substantial portion of the run-time
overhead for some applications (especially gzip). Overall, though, the “Realistic”
configuration has extremely low run-time overhead (< 5% in all cases), and would
be suitable for deployed applications.

All of the preceding results used non-optimized builds, as this is most conducive
to debugging. We also gathered results (not shown in figure 14) using each of our pre-
vious instrumentation schemes but with Clang “-O3” optimization enabled. Analysis
still works correctly on optimized code, due in part to our use of volatile declarations
as discussed in section 4. Results for optimized code are very similar to unoptimized
results, and suggest that our instrumentation does not seriously hinder program op-
timization. In fact, for the “Realistic” configuration with optimization, overhead av-
erages just 1.6% across all larger applications, with a maximum overhead of 4.5%
(for gzip). However, debugging optimized code is always tricky. For example, state-
ment reordering can make the execution paths we recover difficult to understand.
Prior work on debugging optimized code (Jaramillo et al 2000; Tice 1999) is directly
applicable here.

6.1.2 Memory Overhead

We next measured the ratio of the maximum resident memory size of the running
program for instrumented and uninstrumented code. Again, for each version of each
application, we ran the test suite over the non-faulty build at least three times and took
the geometric mean of the overheads for each test case. Results appear in figure 15.
Smaller values are better, with 1.0 conveying no instrumentation overhead.

Again, the first four bars indicate memory overhead for each tracing mechanism
individually (without customization). Our results indicate that function coverage and
call-site coverage have very small memory footprints. For statement coverage and
path tracing, however, extra memory usage is somewhat larger; for sed, overheads
reach 8.4% for path tracing and 6.7% for statement coverage.

The next two bars (“Realistic” and “Realistic (fixed)”) again correspond to the
scheme proposed in section 6.1.1: optional tracing of call-site coverage and path trac-
ing, with coverage enabled everywhere and path tracing enabled in functions appear-
ing in failing stack traces. Beginning with the “Realistic (fixed)” scheme, it is again
clear that specializing tracing to observed failures can significantly reduce overhead.
In the most extreme case (sed), the memory overheads for call-site coverage and path
tracing are 1.4% and 8.4% respectively (totaling 9.8%), but the uncustomized realistic
configuration causes only 3.0% overhead.

However, the “Realistic” results indicate that tracing customization appears to
take a large toll on static memory usage. Exploring this further, the final bar, “All
Options”, shows memory overhead for the pathological case where we instrument
for all 10 logical tracing possibilities (as mentioned in section 4.2), but perform no
tracing at execution time (i.e., we select the “none” variant for all functions). Perhaps
as one might expect, the memory cost of customization is quite high. Since we create
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Fig. 15 Memory overhead

a new copy of every instrumented version of each function, we can potentially cause
an exponential blow-up in code size. For the larger applications, the results of “All
Options” instrumentation indicate that this is a potential issue. This scheme does not
enable any tracing at run time, so the observed memory overheads are pure code
bloat.

Nevertheless, it is important to keep this result in perspective. First, our instru-
mentation makes rather naïve choices; in a real-world scenario, it may be possible
to make more informed decisions about which functions are likely to ever require
customization or tracing in the future. Second, and most importantly, the increased
memory usage for customization is a one-time cost: it does not scale throughout pro-
gram execution. Thus, the dynamic memory cost of tracing is more closely related
to the “Realistic (fixed)” results. The uncustomized realistic configuration shows just
1.8% memory overhead averaged across all larger (non-Siemens) applications.

As with time overhead, we also gathered memory overhead numbers for our trac-
ing configurations with standard “-O3” compiler optimizations enabled. For the most
part, the results are again similar to their unoptimized counterparts. Overhead num-
bers are slightly higher in optimized code. The differences are most pronounced for
coverage mechanisms; statement coverage sees its maximum overhead value (for
flex) increase from 5.9% to 12.4%. The uncustomized realistic scheme similarly sees
its maximum overhead increase from 4.5% to 7.6%. Nevertheless, the average over-
head for this realistic scheme with compiler optimizations (for the larger applications)
is only 2.5%. Thus, our tracing has a very small memory footprint, even for optimized
builds.
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if (code != REG && !exp_equiv_p (p−>exp, p−>exp, 1, 0))

if (elt) elt = elt−>first_same_value;

(a) Multiple expressions on a single line

if (GET_CODE (op) == CONST_INT
&& width <= HOST_BITS_PER_WIDE_INT && width > 0)

p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
GET_MODE (arg1));

(b) Single statements across multiple lines

Fig. 16 Examples of matching ambiguity

6.2 Analysis Implementation

This section describes details related to our implementation and evaluation of the
analyses described in section 5.

6.2.1 Implementation Details

CodeSurfer 2.2p0 (Anderson et al 2003) produces our combined graphs. These match
the SDG description given in section 3.3, and are overlaid with CFG edges. All CFG
nodes (i.e., all nodes except for those representing “hidden” formal and actual param-
eters such as global variables) have associated source-code location information.

Our analysis implementation follows that given in section 5. However, there we
simplified presentation by collapsing both global and local formals and actuals into
their associated call node. Formals and actuals are separate nodes in CodeSurfer
SDGs, and our analysis treats them separately; thus, retention can distinguish be-
tween used and unused formal and actual parameters, the unconnected set (figure 13)
is composed of nodes (rather than variables), and summary edges exist from actual-in
nodes to actual-out nodes (which are relevant for intraprocedural analysis).

6.2.2 Sources of Ambiguity

Because we use two different pieces of software (Clang and CodeSurfer) to determine
statement locations for path trace entries and coverage trace points, minor disagree-
ments are inevitable. Much of the ambiguity in matching program locations stems
from the fact that line numbers are the smallest granularity at which we can reliably
match Clang AST nodes to CodeSurfer graph nodes. We also find disagreements in
the selection of line numbers to assign to particular program points. Naturally, our
matching approach must always be conservative with respect to our analyses in order
to ensure that our results safely under-approximate (but never over-approximate) the
optimal reduction we can achieve.

We are generally unable to individually match different expressions occupying
the same source line, as Clang and CodeSurfer may break or order the expressions
differently. This means that the start, end, and size of expressions can differ, as well
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as the number of nodes or operations involved. Consider the two code lines shown
in figure 16a. In the first line, the LLVM bitcode contains significantly more instruc-
tions than the number of expressions given as CFG nodes produced by CodeSurfer
(dereferences, the unary “!” operation, etc.). The ordering of the actual parameters in
the call to exp_equiv_p and evaluation of their expressions need not correspond, so
we also cannot count on an ordered many-to-one relationship.

This in-line ambiguity is particularly problematic for path traces and statement
coverage data, but also has a small impact on call-site coverage matching. For path
traces, we handle the ambiguity by matching each path trace entry with a set of nodes
matching the given line number (rather than a single node). This set can be restricted
based existing CFG edges to previous or from following entries in the trace; neverthe-
less, significant ambiguity is common. Specifically, we are never able to distinguish
paths through a single line, such as the if statement given on the second line of fig-
ure 16a. Our analyses from section 5 suffer further from this problem because we of-
ten miss out on opportunities to remove a node from the unattributed sets (figures 11
and 12) due to not knowing if an assignment definitely executes on a particular line.
Ambiguity due to the matching of LLVM line numbers to CodeSurfer nodes reduces
the precision of our analysis in the correspondence stage of figure 1. Statement
coverage, similarly, cannot always distinguish between multiple basic blocks which
occur in the same line. However, as mentioned in section 4.1.2, the set of called func-
tions is also recorded for each basic block; this can often help to distinguish blocks
occurring purely within the same line. Call-site coverage is unable to distinguish be-
tween calls to the same function on the same line.

Our tools must also grapple with statements that span multiple lines. This is be-
cause Clang and CodeSurfer builds do not necessarily agree about whether to as-
sign the line number(s) for a statement or expression to the first line, last line, or
(in CodeSurfer’s case) all relevant lines. Figure 16b shows two examples of state-
ments demonstrating this issue. This issue arises most frequently with conditional
expressions, ternary expressions, and calls. Actual parameters (unless they contain
other expressions which will necessitate their own line number, such as another call)
tend to be assigned the line number of the call statement (which is usually either the
first or last line of the entire statement). Because of the great uncertainty in match-
ing multi-line expressions, we intentionally introduce ambiguity into the combined
graph to safely match Clang’s output. We collapse all line numbers within each set of
nodes corresponding to a multi-line expression into a single set, which we assign to
all nodes of the expression. This impacts path traces, statement coverage, and call-site
coverage. For path traces, this further increases the ambiguity as to which expression
each path trace entry refers to on a particular line. For statement coverage, it necessi-
tates that we only remove nodes for which all trace points corresponding to that line
have “false” as their coverage bit. For call-site coverage, we similarly must ensure
that call nodes are only removed if they are either the only call site on the line (for
indirect calls), or the only call to the specified function (for direct calls).

Other intricate issues also necessitate some further minor introduction of ambi-
guity into the combined graph. For example, LLVM 3.4 assigns the line number of
the close of the statement block (i.e., the closing “}” brace) to the conditional of a
do–while statement. Naturally, this character has no semantic value, so it will not
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appear in the CodeSurfer graph. Thus, we must include all line numbers up to the
most recent statement within the loop in the set of line numbers for the loop guard
conditional. These changes, as well as changes necessary for multi-line expressions,
are referred to as the fix graph stage in figure 1. Finally, in flex, gcc, and one version
of grep, we had to modify one source code line by eliminating a line break at the start
of an if statement that otherwise caused irreconcilable disagreement between Clang
and CodeSurfer line numbers.

Unfortunately, this ambiguity is quite common in the applications we examined.
In fact, all four code lines from figure 16 are taken from one single function of gcc.
Nevertheless, our analysis results show that we can significantly reduce ambiguity in
the failing execution despite this ambiguity in our analysis framework.

6.3 Analysis Effectiveness

We evaluated the benefit of our analyses described in section 5. For test cases where
core dumps were already produced, we used the generated core file. If a test case
produced bad output without crashing, we used the output tracing tool of Horwitz et al
(2010) to identify the first character of incorrect output, and forced the application to
abort at that point. We aggregated results by taking arithmetic means across all failing
tests of each faulty build, then across all faulty builds of each version. This avoids
over-representing builds that simply have many failing test cases. For intraprocedural
results, we ran each analysis over every function on the stack that has at least one
ambiguous branch on a path from function entry to the crash point.

We ran analysis experiments by varying which tracing mechanisms were enabled.
In all cases, the tracing mechanisms specified were enabled for all functions in each
application. Path traces are purely intraprocedural tracing; therefore, restricting trac-
ing to functions appearing in crashing stacks (the “realistic” configuration from sec-
tion 6.1) does not result in any loss of information. As mentioned previously, gcc
has thirteen functions with more than 263 acyclic paths that cannot be instrumented
for path tracing; however, all program coverage remains available for these func-
tions. Due to memory constraints, we were unable to gather complete analysis re-
sults for gcc. Specifically, we excluded six gcc functions that we could not analyze
with our memory-based analysis: assign_parms, expand_expr, fold, fold_truthop,
rest_of_compilation, and yyparse. gcc’s large size also prevented us from construct-
ing the whole-program combined graph. Therefore, we omit interprocedural analysis
results for gcc.

6.3.1 Restriction of Execution Paths

The restriction algorithms in section 5.1 can eliminate CFG nodes and edges that
could not possibly have been active during a given run. Figures 17 and 18 show results
(intraprocedural and interprocedural, respectively) for “active edges” as a percentage
of all CFG edges. We show only results for edges here, as “active nodes” show very
similar patterns. These numbers are relative to context-sensitive, stack-constrained,
backward reachability. For the intraprocedural analysis, we count backward-reachable
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Fig. 17 Intraprocedural active edges

nodes and edges from the frame’s crash point. For the interprocedural analysis, we
work back from the crash point of the innermost stack frame. Smaller numbers here
are better: values close to the “None” result indicate little reduction, while values
closer to 0% mean that our analysis eliminated many inactive edges.

Figure 17 shows intraprocedural results. Here we measured the set of possibly-
active CFG edges as a percentage of all CFG edges in each stack frame’s function.
We ran our analysis over every function on the stack that has at least one ambiguous
branch on a path from function entry to the crash point. We first measured the reduc-
tions for each tracing mechanism individually. Reductions for the smaller Siemens
applications are modest across all tracing mechanisms. Execution ambiguity is gen-
erally very low for these applications due to the small size of most functions. Results
for larger applications, however, are much more impressive. Note that, by our analysis
formulation from section 5.1, function coverage does not contribute to intraprocedu-
ral analysis (as all functions in the crashing stack are clearly already executing). Our
other three tracing mechanisms all perform well, though complete statement cover-
age obtains the best results for all applications except sed (which achieves a 1% better
reduction with path tracing). The high cost of full statement coverage, however, mo-
tivates consideration of the “Realistic” scheme from section 6.1: the combination
of path traces and call-site coverage. Results indicate that the two mechanisms are
indeed complementary. For example, gcc sees an additional 20% reduction due to
the combination. The realistic configuration is the optimal choice for all but two of
the applications (ccrypt and gcc), and averages 41% reduction, with a maximum re-
duction of 54% (sed), across the larger applications. It achieves these reductions at
significantly less tracing cost than full statement coverage.

Figure 18 shows interprocedural results for active edges. Here, the plot shows the
set of possibly-active CFG edges as a percentage of all edges in the entire program
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(excluding external libraries). Again, reductions for smaller applications are modest.
There are, however, some exceptions: one version of print_tokens sees an average
46% interprocedural reduction in active edges. However, in general, as with intrapro-
cedural analysis, execution ambiguity is very low, often with only one stack frame
besides main. Considering the larger applications, however, results are again much
more impressive. Some patterns are clear. Coverage data is the dominating factor for
interprocedural analysis. This is not surprising: coverage maintains global-scope in-
formation not available to path tracing. However, path traces do still contribute to
the reduction for our “Realistic” result in all larger applications except space (which
generally has very little ambiguity within the failing stack). Comparing our coverage
mechanisms, it is clear that the coarse-grained global information provided by func-
tion coverage often still leaves a great deal of execution ambiguity that can be rectified
by the finer-grained coverage mechanisms. Full statement coverage provides a clear
benefit for some applications (e.g., flex, grep, and sed), but, for others, the reductions
obtained for the inexpensive “Realistic” configuration are comparable.

Overall, results for the combination of path tracing and call-site coverage are
quite impressive, with average reductions as high as 71% (ccrypt, interprocedural).
Most applications are uniform across versions, but versions of sed have active edge
reductions ranging from 38%–66% in the intraprocedural case, and 51%–85% in the
interprocedural case. space versions vary from 9%–56% intraprocedurally and 6%–
54% interprocedurally. In general, for complex applications, we find that a stack trace
alone leaves great ambiguity as to which code was active. Our feedback data and anal-
yses can significantly reduce this ambiguity with negligible impact on performance.
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6.3.2 Static Slice Reduction

Our PDG restriction algorithms from section 5.2 can compute a restriction of the
static PDG based on traced data. Per section 5.2.3, the computed restriction is in-
dependent of (and can be computed prior to selecting) the slicing criteria. For our
evaluation, we compute interprocedural static slices backward from the crash point
in the innermost stack frame; intraprocedural slices work backward from the crash
point in each function in the crash stack. All interprocedural slices are callstack-
sensitive (Binkley et al 2007; Horwitz et al 2010; Krinke 2004). Results show, to a
large extent, very similar patterns to those for active edges.

Intraprocedural slicing results are shown in figure 19, where bars indicate the
slice size for each stack frame’s function as a percentage of all PDG nodes that have
a source-code representation (i.e., that map to a line number). Note that a line can
have more than one node. For example, for a call with multiple parameters we count
each actual parameter separately, as some may be included in the slice while others
are not. The “None” bar represents the slice size for a backward static slice from the
crashing location in each active stack frame without the benefit of our dependence
graph restriction. Smaller numbers are again better: values close to “None” indicate
little reduction in slice size, while values closer to 0% mean that slices were much
smaller with our restriction analysis than without. Smaller applications again see less
benefit. However, larger applications again show much better results. Considering
each tracing mechanism individually, full statement coverage again has the strongest
results. However, the combination of path tracing and call-site coverage again per-
forms extremely well, with the best results for all applications except grep (for which
it lags behind full statement coverage by a mere 1.5% reduction). Intraprocedural
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slice reductions average 40% across all larger applications, with a maximum reduc-
tion of 53% for gcc, the largest application in our experiments.

Figure 20 shows interprocedural slicing results. Here, bars indicate the slice size
as a percentage of all SDG nodes in the entire program (excluding external libraries).
The “None” bar represents the slice size for a callstack-sensitive backward slice from
the crashing location without the benefit of our dependence graph restriction.

As in all previous cases, the Siemens applications see only a small benefit, though
there are some exceptions: one version of schedule has an average interprocedural
slice reduction of 73%, but the absolute slice sizes in this particular case are small, so
the absolute ambiguity is not large. Results improve substantially for larger applica-
tions, with interprocedural slice reduction showing better results (53%–78% reduc-
tion, “Realistic” trace data) than the intraprocedural variant. Coverage data is again
the dominating factor in interprocedural analysis. Here, however, the benefit of full
statement coverage over the combination of call-site coverage and path traces is much
less pronounced. Even for grep (the application with the largest discrepancy), full
statement coverage further reduces slice size by only 14% beyond the realistic trac-
ing scheme. Overall, the realistic scheme obtains the majority of the benefit of full
statement coverage at a much lower cost. space is the only larger application with
highly varied results, ranging from 6%–46% intraprocedurally and 9%–62% inter-
procedurally.

Overall, the results for path traces and call-site coverage are again very impres-
sive, especially interprocedurally. Even for flex, the worst among the large appli-
cations, our approach cuts interprocedural slice sizes in half. The best results, for
ccrypt, show a 78% reduction, the cost of which is a mere half percent of execution
time overhead (“Realistic” in figure 14).
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6.4 Discussion

Our results indicate that enhancing core dumps from failing applications with light-
weight, tunable tracing can yield significant postmortem analysis benefits. The com-
bination of path traces and call-site coverage proved an inexpensive, complementary,
and effective pairing to enhance postmortem analyses. Path traces have the additional
benefit of providing a detailed (though incomplete) partial trace leading up to the
point of failure. This would likely be very valuable to a developer in a real-world sce-
nario, but we could not assess this benefit in our present experimental setting. Future
work could consider performing a live debugging study with real developers to gauge
the complete benefit of path traces and the reductions from our coverage mechanisms.

There are clearly substantial trade-offs regarding coverage in our domain. While
function coverage has unmeasurably small overhead, its postmortem analysis benefit
is often significantly smaller than other options. Full statement coverage comes at a
high overhead cost, but is useful where its cost can be tolerated. Call-site coverage
provides most of the benefit of full statement coverage at significantly less cost; thus,
it is likely the best choice in many real-world deployed scenarios.

Overall, our goal was to show that a large benefit can be drawn from very lit-
tle cost via targeted core dump enhancement; we have succeeded in this regard. A
particular real-world application may benefit (in both overhead cost and analysis per-
formance) from a more customized tracing scheme than the rather simple schemes
we consider here. While our “Realistic” scheme proved widely applicable, different
scenarios will allow different choices. If higher execution overheads can be tolerated,
statement coverage proved helpful for many applications. If execution constraints are
tightened, simple function coverage can still yield significant benefit in many scenar-
ios. To this end, our approach is intentionally customizable.

7 Threats to Validity

We attempted to gather fair and generalizable results, but have not formally proven
the correctness of our approaches or implementation. Here we discuss threats to the
validity of our results, and measures taken to mitigate these risks.

7.1 Threats to Internal Validity

We began with a claim that nearly all deployed software will have bugs throughout
its lifetime. Our software is no exception. Bugs in our algorithm design or software
implementation could impact the correctness of analysis results or the accuracy of
overhead results.

We made significant attempts to control other factors (outside of our tracing
mechanisms) which could have impacted overhead results. We used a single machine
and ran our tests under minimal load. Nevertheless, our instrumentation does impact
code size, stack frame size, and (in rare cases where we need to place instrumentation
along edges) the control-flow graph of the programs. Thus, it is possible that other
factors not directly related to instrumentation may impact our results.
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Section 6.2.2 notes changes we required in order to match static information be-
tween the two tools we used for our analysis experiments. The intentional addition of
this ambiguity into our combined graphs makes our results a safe over-approximation
of the optimal result, but could impact the relationship between the results of different
tracing methods. In particular, it may have a larger effect on some tracing methods
when compared with others. From a subjective and cursory inspection, this seems to
impact our path traces most significantly.

7.2 Threats to External Validity

While we attempted to select applications with a wide variety of size and function-
ality, it is obviously impossible for us to test our approach on all possible programs.
Thus, our results may not generalize to all deployed software. In particular, we eval-
uate only applications written in the C programming language in this work, so the
applicability of our approaches to modern object-oriented languages cannot be guar-
anteed.

Many applications had seeded faults, raising typical concerns as to whether such
faults are realistic. All applications include test suites with both failing and successful
runs; we distinguished these by comparing the result with that produced by a non-
buggy reference version of the same application. In real deployed applications, it may
be more difficult to identify failures or to obtain failing core dumps (either due to not
recognizing failures until later in execution or due to security concerns). While this
does not directly impact the utility of our traced information, it could make it more
difficult for a developer to select appropriate functions for instrumentation/tracing,
or impact the “distance” between the failure and the fault. Longer fault propagation
distances likely increase the benefit of traced information, but the overall impact is
not clear from our lab experimental setting.

8 Related Work

Several prior efforts use symbolic execution in conjunction with dynamic feedback
data to reproduce failing executions (Cao et al 2014; Crameri et al 2011; Jin and Orso
2012; Rößler et al 2013; Zamfir and Candea 2010). We intentionally sacrifice perfect
replay in favor of low overhead and tunable instrumentation. As symbolic execution
can be very expensive and is undecidable in the general case, we see related work
on symbolic execution based on core dumps as possible beneficiaries of the restric-
tion analyses we perform. Yuan et al (2010, 2011) use static analysis with logs from
failing runs to identify paths that must, may, or cannot have executed between log-
ging points. Clause and Orso (2007) track environment interactions for replay and
minimization of failing executions. While we do not require run-time logging or trac-
ing of environment interactions, these approaches may provide additional valuable
sources of information that could be used in conjunction with the analyses described
here. Failure reconstruction is one possible postmortem analysis task worthy of study;
we propose other inexpensive pre-debugging analyses in this work, and demonstrate
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their effectiveness in reducing failing execution ambiguity. Manevich et al (2004) use
backward dataflow analysis to reproduce failing executions based on only a failure
location and typestate information regarding the failure. While very efficient, this ap-
proach is geared toward solving specific typestate problems with very simple types
(e.g., tracking NULL values for null-pointer dereferences). Our approach uses denser
information, but targets a wider range of unknown failures: anything that can be made
to dump core.

Adaptive bug isolation (Arumuga Nainar and Liblit 2010) and the Gamma project
(Bowring et al 2002; Orso et al 2002) emphasize adaptive post-deployment instru-
mentation with data collection aggregated across large user communities. Such ap-
proaches are complementary to our own: we focus on gathering very valuable in-
formation at very low cost, while these related efforts focus on how best to deploy
information-gathering instances.

Gupta et al (1997) compute slices within a debugger; ordered break points and
call/return traces restrict the possible paths taken. While Gupta et al focus on interac-
tive debugging, our approach is intended for deployed applications. This imposes dif-
ferent requirements, leading to different solutions. Our overheads must remain small
relative to a completely uninstrumented application, not merely relative to an appli-
cation running in an interactive debugger. Gupta et al use complete break-point and
call/return traces, while we have only bounded buffers for each morsel of dynamic
data. Takada et al (2002) offer near-dynamic slicing by tracking each variable’s most
recent writer. Our work focuses more on control than data; in the presence of pointers
and arrays, lightweight dynamic data dependence tracing in the style of Takada et al
could be a useful addition. Call-mark slicing (Nishimatsu et al 1999) marks calls that
execute during a given run, then uses this to prune possible execution paths, thereby
shrinking static slices. The first phase of our interprocedural slice restriction algo-
rithm uses a similar strategy. However, our information is more detailed: we have
both global coverage information as well as segregated information for each stack
frame.

9 Future Work

Our results indicate that the core dump enhancement approach has great potential to
aid in postmortem debugging. In this section, we consider some of the most promising
future directions for continued research.

9.1 Unused Information

The astute reader will note that, while our analyses can significantly reduce execution
ambiguity, we cannot claim to make full use of the information we gather. First, we
only make use of false coverage bits to eliminate unused code. It is clear that true
coverage bits can also provide important execution information; for example, if state-
ment branches not contained within a loop will always have only one branch covered
for local execution. Second, our present analysis does not make use of function cov-
erage bits for intraprocedural analysis, but it is possible to do so. All direct calls to
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any unexecuted function could also be removed as part of our coverage restriction
procedure from figure 8. Finally, our traced information holds great promise for more
heavyweight analyses. Particularly, our data could be used as additional constraints to
reconstruct failing executions via symbolic execution. Recent work has shown great
strides in this area (Jin and Orso 2012; Rößler et al 2013; Zamfir and Candea 2010).
Future work could also consider aggregation of data from multiple failing runs in, for
example, slice-based fault localization (e.g., Lei et al (2012)) or some form of union
slicing (e.g., Mulhern and Liblit (2008)).

9.2 Customization

Customization currently makes up a large portion of both the run-time and mem-
ory overheads of the realistic instrumentation configuration we propose. Future work
could take at least two possible routes to mitigate this. First, instrumentation could
eliminate tracing options for some functions by user customization (based on a more
limited set of expected future tracing needs) or by making more intelligent static de-
cisions (if it can be determined that certain functions are better or worse candidates
for specific tracing mechanisms). Second, as we note in section 4.2, we use a very
simple switch-based customization method for our current implementation. Future
work could consider other indirection techniques, such as function multi-versioning
for Scenario-Based Optimization (Mars and Hundt 2009).

9.3 Tracing Extensions

Our results indicate that specializing path tracing to functions involved in previous
failures can substantially reduce overhead. However, when path tracing is deployed
more widely, our preliminary inspection indicates that a large portion of its overhead
comes from functions with a very large number of acyclic paths. In addition, we
were unable to make use of path tracing instrumentation for a non-trivial number of
functions from one of our test subjects due to very large path counts. One might sim-
ply leave these uninstrumented; unfortunately, these complex functions may be ex-
actly what the programmer needs help understanding. One could also trace just some
paths, perhaps adapting work by Apiwattanapong and Harrold (2002) or Vaswani
et al (2007) on focused path profiling variants. The resulting trace suffix would be
ambiguous but potentially still useful.

Our global program coverage mechanisms work well as described here, but are
both coarse-grained and inflexible. We are interested in approaches that can encode
calling context with low overhead (Bond and McKinley 2007; Sumner et al 2010),
rather than explicitly and blindly logging all trace points. We are also interested in
leveraging aspects of data flow as well as control flow; analyses by Yuan et al (2011)
to identify “most-useful” variables may be a good start. Our current instrumentation
and analysis techniques should be able to analyze C++ applications; we are interested
in exploring whether our techniques translate well to larger object-oriented software
with many dynamically-bound calls.
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10 Conclusion

Our primary design goal was to provide valuable extended core-dump information
for debugging with low enough overhead to be used in a production setting. Our
adaptations of path tracing and program coverage are complementary strategies that
realize this goal. Experimental evaluation finds interprocedural slice reductions as
high as 78%, and active node and edge reductions as high as 71%. Average run-time
overheads are merely 1.2% in a realistic debugging configuration, with a maximum
overhead of less than 5%. Thus, we provide significant debugging support for negli-
gible cost.
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