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Abstract

Nested transactional memory (TM) facilitates software 9, 11] or Java synchronized methods [4]). This paper focuses on
composition by letting one module invoke another without either systems implemented with hardware supgbitMs)[1, 7, 13, 21,
knowing whether the other uses transactio$osed nested 28]; others examinsoftware-only TM (STM3ystems [10, 12, 29].
transactions extend isolation of an inner transaction until the top-

level transaction commits. Implementations may flatten nestedl'1 Challenge§ ) )
transactions into the top-level one, resulting in a complete abort on/Ve See three major challenges to composing software modules in a

conflict, or allow partial abort of inner transactioi@pen nested ~ {ransactional memory system: supporting software composition for
transactions allow a committing inner transaction to immediately transactions, providing high concurrency for long-running
release isolation, which increases parallelism and expressiveness ggnsactions that require contended resources, and invoking non-

the cost of both software and hardware complexity.

This paper extends the recently-proposed flabg-based
Transactional Memory (LogTM)with nested transactions. Flat
LogTM saves pre-transaction values in a log, detects conflicts wit

read (R) and write (W) bits per cache block, and, on abort, invokes

a software handler to unroll the log. Nested LogTM supports
nesting by segmenting the log intstack of activation recordand
modestly replicating R/W bits. To facilitate composition with non-

transactional code, such as language runtime and operating system

services, we proposescape actionshat allow trusted code to run
outside the confines of the transactional memory system.

Categories and Subject DescriptorsC.1.4 [Processor Archi-
tectureg Parallel Architectures

General Terms Design Languages
Keywords Transactional Memory, Nesting, LogTM

1. Introduction

transactional language and operating system (OS) services.

Challenge 1: Facilitating Software Compositionldeal software
compositionallows a module A to invoke a module B, which can

hinvoke C, etc., using module interfaces rather than deep knowledge

of module internals [27]. The currently prevalent methotboking

fails to provide composition, because to ensure safety and avoid
deadlock, programmers often need to know what locks are (or may
be) held by caller and callee implementations. Open Solaris even
arns relatively sophisticated operating system programmers that
“Blocking on a mutex is a surprisingly delicate ddr|{dé8].

To aid software composition, TM systems must supfrarisaction
nesting [22] wherein a transaction may begin and end within
surrounding transactions. Straightforward nesting—catiksed
nesting—ensures atomicity and isolation until the top-level (i.e.,
outermost) transaction commits. Most HTMs implement closed
nesting byflatteninginner nested transactions into the top-level
transaction [1, 7, 21]Transaction begin() simply increments a
counter,ransaction_end() decrements it, and commit occurs only

Emerging chip multiprocessors (a.k.a. multi-core chips) arewhen the count returns to zero.
energizing interest in making multithreaded programming less\ypile functionally correct, flat closed nesting may degrade

painful. One promising approach tsensactional memory (TM)
[13]. A TM system lets a programmer invoke a transaction (e.g.,
transaction_begin(); <some work>; transaction_end(); ) and
rely on the system to make its execution appatsmic with
intermediate datesolated A successful transactiamommits while

an unsuccessful one thabnflictswith a concurrent transaction
abortsand may transparently or explicitly retry. Programmers may
invoke transactions directly (e.g., by callimgnsaction_begin()

from C) or indirectly (e.g., with statically scoped atomic blocks [8,

performance. In particular, a conflict on an inner transaction may
cause a&omplete aborto the beginning of the top-level transaction.
A partial abort could improve performance, by only aborting the
inner transaction and avoiding an abort of the possibly much longer
top-level transaction [6].

Challenge 2: Enhancing ConcurrencyClosed nesting does not
eliminate all problems posed by modular software. In particular,
closed transaction semantics limit concurrency by maintaining
isolation until the top-level transaction commits. Consider, for
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Open nested transactiorsldress some of the above concerns by
relaxing the atomicity guarantee and managing isolation at a higher



level of abstraction [32]. When an open nested transaction S Contribution 2: Open Nesting.Nested LogTM supports access
commits within an enclosing transaction L, (a) the TM system to highly contended resources within a transaction with open
releases data read or written by S, so that other transactions camested transactions, which may commit and release isolation prior
access them without generating conflicts and (b) S may registerto the top-level transaction's commit. When an open nested
commitand compensating action® be run when transaction L transaction commits, the inner log segment is removed and commit
commits or aborts, respectively [9, 32]. These actions allow and compensating action records are added to the parent's log
programmers to raise the level of abstraction by providing higher- segment. In addition, the inner transaction's R/W bits are cleared in
level isolation and undo semantics [25]. For example, one can the cache.

compensate for aaloc) by executing afree)  (or by simply Contribution 3: Escape Actions.Nested LogTM supports calls
relying on garbage collection). Simply restoring the values of to a lower-level non-transactional system, including the OS, from
memory locations modified by S (e.g., the free list pointer) is within a transaction wittescape actionsvhich bypass transaction
insufficient, since subsequent open transactions may have modifiedsersion management and conflict detection. Escape actions can be
them. invoked explicitly via new instructions or implicitly as part of a
Challenge 3: Escaping to Non-Transactional Systemslany trap. An escape action may register commit and compensating
TM systems will run on top of non-transactional base systems that actions like an open nested transaction. Nested LogTM
may include run-time libraries, language virtual machines (e.g., implements escape actions with a per-thread flag, which disables
JVMs), operating systems (Windows, Linux, Solaris), and even logging and conflict detection when set. We view escape actions as
system virtual machines (VMware). TM applications may need to an enabling mechanism for supporting non-transactional system
escapeto such systems explicitly (e.g., system calls) or implicitly activity in HTMs. For example, trap handlers and many system
(e.g., TLB traps or interrupts). Likesm( statements in C, these calls can execute within escape actions, which both increases the
escapes allow access to lower-level capabilities, but they shouldvariety of code that can execute within transactions and reduces
not be directly used by most application programmers. the need to abort a transaction due to OS activity. In addition,
STMs handle such escapes easily, because they virtualize the TMescape actions are a key building block for implementing 1/0
mechanisms in user-level software. HTMs, on the other hand, Within transactions and for supporting debuggers and garbage
often use hardware conflict detection bits and/or speculative value collectors.

buffers. An escape to a non-transactional system must disableOther recent HTM proposals have also explored support for closed
these mechanisms, because such software may not operat@mesting with partial aborts and open nesting [18, 24, 26]. We
correctly in the presence of transaction isolation and aborts [3].  extend this work several ways, including proposing escape actions,
12 Nested LogTM implementing nesting in LogTM, and defining a condition for

- ) mitigating subtle open nesting semantic issues in TM systems.
This paper explores the above chall_enges in the context of theWe evaluate Nested LogTM versus Flat LogTM running (mostly)
recently-proposedlog-based Transactional Memosystem [21],

. . TM microbenchmark Solaris 9 32- Iti
which we call Flat LogTM Flat LogTM provides hardware ICTOLENCAMATKS Oh S0lans = on a S Way MUTProcessor

mechanisms for version management and conflict detection h'chSimUIate‘j with an extension of Wisconsin GEMS [17]. Suted
ani versic nag ! ction, WHICR, it and B-Treemicrobenchmarks show little benefit from closed
compilers and run-time library software use to implement

lanquage-specific transactional memory policies. Flat LogTM nesting and partial abort, but show significant improvement from
guage-spe . yp ) g the increased concurrency provided by open nesting. We also see
performsversion managemetly storing new values (for commit)

- . little performance benefit from nesting running a subset of the

n place hm cz;clheablle V|r_tual mr?mz:y a_nd O:d values (for a:ort) SPLASH-2 benchmarks, in part due to the lack of conflicts

Isnua per-t ria 0g, also |fn cacb cable wrtuad memory. I;ar Waredbetween transactions in those workloads. Téteded array
pport Makes commits fast, because no data must be MOVE, icrobenchmark demonstrates that escape actions improve

while a (library) software handler unrol_ls the Iog on gborts. Like performance in the presence of TLB miss traps by allowing

many HTMs, Flat LogTM performsonflict detectiorusingread transactions to continue after a trap.

(R) and write (W) bits in caches, but also adds mechanisms to

allow cache evictions of transactional data. Flat LogTM uses a 2. A Transactional Memory Model

counter.to flatten closed nested transactions into the top-level This section informally describes an implementation-independent
transaction. model of closed nested transactional memory implemented by
Nested LogTMmakes three contributions by extending Flat flattening; the remainder of this paper evolves this model to
LogTM's mechanisms to support nesting and escape actions. support partial aborts, open nesting, and escape actions and
Contribution 1: Closed Nesting with Partial Aborts. Nested describes how the model maps to the Flat and Nested LogTM
LogTM allows inner transactions to abort separately from the top- implementations.
level transaction by segmenting the undo log and replicating the | et a TM system be represented by a memythat maps
R/W bits. Each segment records old values for a single nesting addresses to valuesv and a set of threads. Each threakas a
level. This makes the log resemble a standstetk of activation transaction leveleve|, a read seR;, a write setW, and a value
records where each frame holds the records for a given level of mapV; that maps addressaso updated values Letblock(a)be a
nesting. Nested LogTM narrows conflict detection to a specific function that maps an addressto a possibly-larger aligned
nesting level by extending cache R/W bits to hawepies (e.9.,4)  granularity (e.g., a memory block). Initially) maps initial values,
and flattening transactions nested deeper thaNested LogTM all leve| are zero, and alR;, W, andV, are null. Thread begins a
provides partial abort by unrolling a subset of log frames and transaction by incrementinigve|. Subsequent reads to address
clearing a subset of R/W bits. add block(a) to R,. Writing a new valuev to addressa adds
block(a) to W and the mapping & v> to V; (replacing any



previous mapping & Vv'> in \/i).1 A read of addresa generates a

conflict if block(a)is in W, of some threadtzi. A write of address
. . : User
agenerates a conflict Block(a)is in R, or W, of some thread#i. Registers
Transaction commit decrementsve| and, if leve| is now O, CPU
updatesM with the new mappings ¥ and makesR;, W, andV; PC Begin PC
null. A transaction abort discard®, W, andV;, setdevel to 0, and Log Frame Handler PG

reverts execution to just before the top-level transaction’s begin.

3. Flat LogTM Background

The Log-based Transactional Memosystem [21], referred to as

Log End (__ExceptionMas]

( &Esca e D (for escape action

Cache Controller

Flat LogTMand depicted in Figure 1, serves as the framework for [Timestamp]

our nested transaction implementations. Possible Cycle
Flat LogTM performsversion managemety storing new values Overflow

(for commit) “in place” in cacheable, virtual memory and old i

values (for abort) in a per-thread log, also in cacheable, virtual Directory Tag | Statg Sharer List
memory. The log consists of a fixed-size header containing thread ,‘

state (e.g., registers) and a variable sized body comprising undo L2 Tag | StatdR,w .RZW Data
records. Figure 2 shows an in-depth example of a transaction’s i

execution. After stepd, for example, the log header contains
threadi’s register state (including the program counter for stgp L1D Tag Statelegi?sz Data
and the log body contains an undo recordld<block-value

block(a)>, where old-block-valuecontains the value oblock(a)

prior to thetransaction_begin() in stepd (including the old value »
2 for a) and block(a) is the block’s aligned virtual address. The C —> Nested LogTM-specific state
processor maintains pointers to the log header and the log end. On Figure 1: LogTM Node

the first write to a block (i.e., W bit not set—see below), Flat Circles denote the architectural state additions to Flat LogTM
LogTM writes an undo record to the end of the log. On commit, [21] required to support Nested LogTM (with k=2).

Flat LogTM discards the log, resetting the log end pointer. On gate5 conservatively overestimate set membership for replaced
abort, Flat LogTM invokes a runtime software handler to unroll the ;s

log—processing the undo records in last-in-first-out order (i.e., . ) ]

starting with the log end pointer) and restoring thread state from 4. Closed Nesting With Partial Abort

the header. Flat LogTM implements closed transactional nesting This section presents requirements for closed nesting implemented
by using a counter to flatten all nested transactions into the top- with partial abort and an example.

level transaction.

Like several other HTMs, Flat LogTM perforne®nflict detection 4.1 Requirements ) ) o
using read (R) and write (W) bits in caches. Both commit and abort T0 extend the model with partial aborts, each thread maintains a
flash cleartheseR andW bits. Flat LogTM handles cache evictions ~Separate read set, write set, and value map for each nesting level.

of transactional data with an extended directory protocol (i.e., the For nesting levej, threadi maintains a read sd¥(j), write set
sticky-Sandsticky-Mstates [21]). W(j), and value mapy/(j). Transaction begins, reads, and writes

| are similar to the base model in Section 2. Threabegins a
transaction by incrementindeve|. Reading address adds
block(a) to Ri(level). Writing a new valuev to addressa adds
block(a) to Wi(leve]) and the mapping & v> to V; (level).

Reading addresa generates a conflict iblock(a)is in W(j) of

some threadk#i and some levej. Writing addressa generates a
conflict if block(a)is in R(j) or Wi(j) of some threadizi and some

Flat LogTM implements Section 2’s transactional memory mode
not as a forward-value map, but instead as a backward-value map
It replaces memoryl with update-to-date memomyI* and each
“forward” value mapV; with a “backward” value may;* that has

old mappings, e.gsa, v'>. Because Flat LogTM updates memory
in place,M* always equal$! O Union{Vi}, where A O B means
that mappings<a,v> in A are replaced with corresponding

mappings<a,v’> in B. Conflict detection ensures that theare level].

disjoint sets. Flat LogTM can always revert memady back to Transaction commit changes more significantly with the addition
memoryM, sinceM = M* O Union{V,*}. For example, to abort of partial aborts. Aop-levelcommit (eve| = 1) remains the same:
threadi’s transaction, Flat LogTM uses the backward mébto decrementeve| to zero, updatd! with the new mappings iNj(1),

undo only thread's changesNI* 0= \;*). We omit a proof here, ~ and clearR(1), Wi(1), andVi(1). A closed nested comnfite., a
since the equivalence of backward and forward logs is well commit when leve| > 1) instead promotes the committed
understood in the database literature [20]. Finally, Flat LogTM's R fransaction's state to the parent transaction’s nesting level.
and W bits directly maintain the model's read and write sBfs, ~ Specifically, a closed nested commitete| maintains isolation at
and W, for blocks in the cache, while theticky-Sand sticky-M level-1 by taking the union of the read and write se®gleve|-1)

O= R(level) and Wi(level|-1) O= W(level|), where ‘A 0= B’
means that set A is assigned the set union of A and B. Similarly,
the commit merges the value mapsl®ie| andlevel-1: V;(leve|-

1. The model assumes the same granularity for read and write conflicts, but1) 0= Vj(leve|), where ‘A= B’ is the same as ‘AJ= B’ except
could be generalized for systems with different granularities, like TCC [7]. that a mapping<a,v> in B replaces a mappinga, v’> in A.

3
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Figure 2: Nested LogTM Operation
This figure shows three snapshots of the log and conflict detection bits. The lower half shows the cache stateollmans correspond
to the variable names from Figure 3, and tfa columns show the current values in the processor local cache. The upper half shows a
logical view of the log. Frames are separated by a solid black line. For instance, part (a) has two frames, while parts (b) and (c) each have
only one. A dotted line separates the header from the undo records in each frame. Only the previous frame pointer part of the header
records is shown. An undo record is abbreviated <old value>, <variable name>. The logs pictured also assioo& (st block(by
block(c)
Part (a) shows a snapshot of the log and the conflict detection bits after Figure 3. §tbpre are several key points here. First, we see
multiple logging: there are two logged “old values” af one in level 1's frame, and one in level 2's frame. Second, level 2’s header
includes a pointer to the beginning of level 1's frame for restoration on commit or abort. The header also contains other data, including a
register checkpoint (not shown).
Finally, there is also “redundant” conflict detection: both levels have mablkaipart of their read set. Clearly, a conflict occurs if another
thread tries to writéb. But a conflict also happens if another thread tries to feakhe important difference is how these bits affect abort.
For instance, suppose another transaction makes a read requestRedundant” conflict detection shows that it would be sufficient to
abort and roll back only the level 2 transaction to successfully resolve this conflict. Conversely, a write conflict would abort both
transaction levels 1 and 2.
Part (b) shows the state after level 2 completes execution and commitsl(étem Figure 3). The key take-away here is how the merge
operations work. The log contains the same data before and after the merge; the only difference is that what used to be level 2’s frame is
now encompassed by level 1's frame. Note the two sources of waste: level 2's header and level 2's previousvaluesefare useless
because a subsequent abort would have to go back through level 1, so level 1's header would be restored, and (since the log is traversed in
LIFO order) level 1's old value a&d would be the final value restored before restart.
The conflict detection bits also show the result of the merge operation. A level 1 bit is still set if it had been set before the level 2 commit,
but it is additionally set if the corresponding level 2 bit was set. The level 2 bits have all been flash cleared. A write canflicutd
now be attributed to level 1 (the sole writer).
Part (c) shows the post-commit state if level 2 had been open instead of closed (Section 5). Unlike part (b), level 2’s versions have been
discarded and replaced with a compensation record (abbreviatgd,4n the figure). The conflict bits show that the level 2 bits have
been flash cleared, but the level 1 bits remain the same as before the transaction. At this point, another transaction/zauldi nezdi or
write ¢. When traversing the log, an abort handler first executes the compensating action left by level 2, and only then restores the old
value ofa. It distinguishes the record types by examining their tags (not shown).

Finally, a commit clearsj(leve}), Wi(level), and Vj(leve|) and 4.2  Closed Nesting in LogTM

decrementeve|. We adapt Flat LogTM to support closed nesting with partial aborts
Like a top-level commit, a top-level abort with closed nesting by extending version management and conflict detection. Figure 1
remains unchanged: sketve| to 0, clearR;(j), Wi(j), andV;(j) for depicts the architectural state added to a Nested LogTM node.

all levels j, and revert execution to just before the transaction Buffers used to hide the latency of log writes are not shown.

begins. Aborting a closed nested transaction at leyet 1, results ~ version managementClosed nesting extends Flat LogTM's per-
in a partial abort that leaves the enclosing transactions’ states thread log (header plus a series ebld-block-value, block-

unchanged. Specifically, an abort at leyelearsR;(n), W(n), and address>undo records) into a stack of log frames, resembling a
Vi(n) for 2, setslevey toj-1, and reverts execution to just before  stack of activation records (similar to Harris et al. [11]). Each log
the begin transaction at leyel. frame consists of a fixed-size header and variable-size body

Figure 3 presents an extended example of closed nesting, includingcontaining undo records and garbage headers, described below.

top-level and nested transactions, reads and writes, a partial abortMore specifically, Nested LogTM operates as follows. A

and eventual commit. transaction begin allocates a new log frame and initializes it with
the thread’s current registers (e.g., program counter), saves its



Ithread i at level O (Non+ransactional)
a=2;b=4;c=6;/ iniialize

handler undg-m+1 log frames. This is easily implemented in a
software handler, an advantage of LogTM’s approach.

transaction_begin(); /top-evel (evel 1) O Conflict detection.Closed nesting changes each cache line’s R
a=b+1;//agets5 U and W bits into an array of bits, R[k].and W[1.K], wherek is
transaction_begin(); // level 2 0 small (e.g., 4—Chung et al. [5] find two levels of explicit support

c=b-3;//cgets1 0 sufficient). Reads and writes at transaction lgwsst R[] and WJ[]
//PARTIAL ABORT: first write to b u if j<k, and RK] and W] if j>k (i.e., flattened at leved). Flattening
b=a+2;//bgets7 0 provides the correct behavior for deeper nests but removes the
a=c+7;/lagets8 u performance benefit of partial abort. An incoming readlotk(a)
transaction_commit(); // level 2 g generates a conflict at levglfor the minimumj for which the
transaction_commit(); // level 1 0 corresponding W] is set (i.e., the outermost conflicting

transaction). Similarly, an incoming write examines the
corresponding R] and W[] to find the minimumj with a conflict.
When there is a possible cycle, indicating potential deadlock,
Nested LogTM uses a bit per transaction level to inform the
software handler how far to rollback.

A top-level transaction commit clears R[1] and W[1] with a flash
clear. A nested transaction commit (leyet 1) merges R] and

WI[j] into R[j-1] and W|-1], respectively, and flash clearsjRand
WIj]. One implementation of the merge isflash-ORcircuit that
calculates RF1] = R[j] and W[-1] 0= W[j] for each cache line

in parallel (where AJ= B assigns the logical-or of A and B to A).

A flash-OR circuit adds two transistors and one “bit” line to the
seven transistors and one “word” and three “bit” lines of an SRAM
cell with flash clear. A transaction abort from leyddack through
level m first undoes log frames (see above) and then flash clears
R[i] and W] for m<i <j.

Figure 2a and Figure 2b illustrate version management and conflict
detection with closed nested transactions. Figure 2a shows Nested
LogTM state when a nested transaction is ready to commit within
a top-level transaction (after stép in Figure 3). Note that the
level-1 frame records the write from stép, while the level-2
frame records the writes from stepls 0 andd. Figure 2b shows
Nested LogTM state after the inner transaction performs a closed
commit, leaving only the top-level transaction active.

Correctness argumentNested LogTM with closed nesting
implements Section 4.1's closed nesting model in two steps. First,
its stack of log frames provides backward magg(j) that
complement the forward map4(j) in a manner similar to the way

in which Flat LogTM'sV;*’'s complemented it¥4’s. For example,

a partial abort of threadfrom levelj back through levein must
undo the changes made by thréad transaction levelsn through

Figure 3: Closed Nesting Example
Threadi begins execution at non-transactional level 0 and
initializes variablesa andb.
It then begins the top-level (level 1) transaction at sfepAt
stepd, the read of variable first addsblock(b)to R;(1) for
conflict detection. Next, the write of variable with value 5
addsblock(a)to Wi(1) for conflict detection anga, 5> to V(1)
for version management.
Threadi begins a nested (level 2) transaction at sfefAt step
0, the read of b addsblock(b)to R;(2), while the write ofc
with 1 addsblock(c)to W(2) and<c, 1> to V;(2). At step,the
first try of stepd’s write of variableb encounters a read conflict
(i.e., block(b)is in R(j) for somek#i). The system resolves this
with a partial abort, which clear®;(2), W(2) and V;(2) and
restarts execution at stép
Assume that the retry of step succeeds, addinglock(a) to
Ri(2), block(b)to Wi(2) and<b, 7> to V;(2). Next, stepd adds
block(c)to R;(2), block(a)to W(2) and<a, 8> to Vi(2). Note
that an address may exist in the structures of more than one
transaction level. After stefd, for example plock(b)is in both
Ri(1) andR;(2), block(a)is in bothW(1) andW(2), and<a, 5>
is inVj(1) and<a, 8> is inV;(2).
At stepl, the nested (level 2) transaction commits by merging
Ri(2), Wi(2) and V;(2) into Ry(1), Wi(1) and V;(1), respectively.
Note that the merge causes the mapp#zy 8> in Vi(2) to
replace the mappinga, 5> in V;(1). Finally, at sted], the top-
level transaction commits, updating memoly with the
mappings invj(1) before clearindx (1) andW(1).

parent’s transaction information (e.g., base of the parent’s frame),
and sets the log frame pointer to the new frame. Like Flat LogTM,
Nested LogTM reuses W bits (described below) to detect the first
e N Lo ohas o 0= V') 0.0 (142 Second, cache bis R and
9 Y- 9 WI[1..K] directly implement multi-level read- and write-sefg(j)

tag to each log record, indicating whether it is an undo record, . . : .
frame header, etc. Since block addresses are aligned to 64-byteand (), for j < k while, due to flattening, R] and WK

blocks, the common undo record's tag vabods encoded for free fepresent the union of ai(j) andWw(j), forj <k.
in the address’s least-significant address bits. 5. Open Nested Transactions

A closed nested commit merges the current log frame with its Nested LogTM also supports open nested transactions [24, 32],
parent's frame. Specifically, Nested LogTM sets the log frame which provide greater concurrency and richer semantics. In this
pointer back to the parent’s frame (using the value saved atsection, some “generational” terminology is helpful. Let a
transaction begin in the committing transaction’s frame). The transaction T be invoked by threaat levelj. T's parentis thread
committed transaction’s frame header remains in the body of the j'g levelj-1 transaction, which began T. Tancestorsre its parent
parent as @arbage headerGarbage headers occupy space in the and its parent's ancestors. Biblingsare the levej transactions of
parent’s frame, but have no semantic value. threadi begun by T’s parent (not including T).

An abort of the current transaction at leyelraps to a (library)
software handler that walks the bodyjsflog frame backwards to ] ) ) ]
process undo records and skip garbage headers, finally restoring“” open nested transaction releases isolation on commit and
the register state saved in the header. A transaction abort through £Ptionally registersommitand compensating actiohandlers [9,

level m ancestor of the current transaction lej/élas the software 14]. To ensure consistency, open nested transactions must raise the

5.1 Requirements

5



level of abstraction of both isolation and rollback [25]. For insert(int key, int value) {

example, Figure 4 illustrates an ouieert_set) transaction that open_begin();

callsinse) ~ to add multiple entries to a B-tree data structure. leaf = find_leaf(key);

Making each insert) an open nested transaction increases entry = insert_into_leaf(key, value);
concurrency by releasing memory-level isolation on internal data /I lock entry to isolate node

structures. But to preserve consistency, the data structure must entry->lock = 1;

maintain isolation on these inserted entries—e.g., using a lock flag open_commit(abort_action(delete(key)),

as in Figure 4—until the outer transaction commits. Note that the commit_action(unlock(key)));

outer transaction must release isolation on the inserted entries by}
performing the specified commit actions, e.g., by calling insert_set(set S) {

unlockkey) . Similarly, the compensating actions must undo the open_begin();

forward action at this higher level of abstraction, e.g., by calling while ((key,value) = next(S))

deetekey)  for each B-tree entry. insert(key, value);

An open nested transactioggk,commits by propagating its value open_commit(abort_action(delete_set(S)));
map V(j) to the nearest enclosing value map or memory, clearing }

Ri(i), W(j), andV(j), (optionally) registering commit actiongge Figure 4: Open Nested B-Tree Example

and/or compensating (or abort) action,#, and decrementing
leve|. For each mappinga, v> in Vi(j), if there exists a mapping  higher-level delete_set() routine as Apen-parent replacing the
<a, v> in Vj(k), max k<j,then the value propagates byk) 0= individual calls todelete()

<a, v>. Otherwise the value propagates to memidri= V,(j).

If threadi invokes only one open nested transaction, then when
TopensS top-level ancestor commits, it performs the commit action
Copend@s an open nested transaction (at a level no greater thap T
used before it committed). If one of,Jens ancestors aborts, the
system executes fy.nas an open nested transaction. Moss argues

5.2 Interactions Between Undo and Compensating Actions

Open nested transactions can lead to strange behavior when a
transaction J,enand one or more of its ancestors write to the same
memory location. Figure 5 gives one such example. The problems
arise because of non-obvious interactions between the memory-

that a compensating action should execute “in the state that heldlev_eI und_o operat|on_s of the parent and the se_mantlc ““d‘? of the
when its forward action committed” [23], that isefler executes child. This problem is exacerbated because different TM imple-

with the sameVi(l) O Vi(2) O .. O Vi(-1) as when Ipen mentations handle these interactions differently [18, 24, 26].
committed. The top-level ancestor transaction releases isolation T0 avoid making programmers reason about subtle, non-portable
only after processing all commit or compensating actions. Note implementation details, we advocate that most programmers
that programmers are responsible for ensuring that these actions d@bserve the following restriction with open nested transactions.
not generate additional conflicts beyond the original transaction; Condition O1 (No Writes to Data Written by Ancestors):
failure to do so may result in deadlock [31]. Neither an open transaction, ook, nor its commit and

If threadi executes more than one open nested transaction before £ompensating actions,qfenand Aypen Writes any data written by
top-level transaction commits, we must specify how handlers Topens @ancestors\W(k) for all k<j), where F,epis executed by
interact. For clarity, we first explain the semantics for the case threadi at level).

where thread executenly open nested transactions. As sibling We see three advantages to (usually) obeying condition O1:

open transactionsglen-1--- Topen-nCOMMIt, they register commit e Obeying condition O1 allows many effective uses of open

and compensating actiongfen.1--- Copen-n@Nd Agpen-1-+- Aopen-n nested transactions, For example, the B-tree example and our
with their parent transactiongfen-parent If Topen-parencOmmMits, uses of open nested transactions in Section 8 obey condition O1.
the commit actions get executedfirst-in-first-out (FIFO)order, o opeying condition O1 frees programmers from reasoning about
Copen-1-+ Copen-n the compensating actiongfn.1--- Agpen-nare many subtle issues surrounding the leakage of uncommitted

discarded, and ghen-parentigisters higher-level commit and
compensating actions ggen-parenNd Aopen-parent CONversely, if
Topen-paren@orts, the compensating actions get executddst its ancestors are still active?

in-first-out (LIFO) order: Agpen-n:- Agpen-z The action Apen.i * Obeying condition O1 avoids subtle interactions between the

executes with Moss’s simple semantics (i.e., the same value maps ) .
. . recovery of the parent’s old values and the semantic undo of the
Vi(1) 0 Vi(2) O ... O Vi(j-1) as when Fpencommitted) as long as child’s actions

none of the open nested transactions or compensating actions have
written to the same address as an ancestor. Section 5.2 address&s3  Open Nesting in LogTM

the potential problems that arise in this case. More generally, when open nesting in Nested LogTM requires changes to version
threadi executes both closed and open nested transactions, thesgnanagement and conflict detection.

actions are taken when the closest open ancestor transactio : ;
commits. P r\/ersu_)n manggementWhen an open nested transactiogych at

] ) ) ) ) level j commits, Nested LogTM discards, ks frame from the
To illustrate compensating actions for multiple open transactions, |og (making Tpens Parent at levelj-1 current) and optionally
suppose that chen-parentS the insert set) routine that calls  appends commit and compensating action recoggg@nd Aypen
nse) - to add multiple key/value pairs to a B-tree. pbn-parent  to the newly exposed end of,J.qs parent's frame. The handler

aborts, the compensating actiongpéy,.jcall delete)  to remove  yecords contain a function address, a variable-length argument list,
the inserted keys. But onceygden-parenCOMMIts, it registers a  gnd its length.

transactional state [26]. For example, f,f,and its ancestors
write datum D, does isolation on D end whelﬂ)g'ncommits, but



counter =0; // initializes 0 as a closed nested transaction. Wh%e;{'commits, however,

transaction_begin(); // toplevel 0 Nested LogTM simply flash clears all Rand W[] bits (instead
counter++; // counter gets 1 0 of employing the flash-OR used by a closed nested commit).
open_begin(); // level 2 0 Nested LogTM also supports two maskable exceptionsopen-
counter++; // counter gets 2 g level exception gets raised if ;e begins at levelk+1 which
/I commit with compensating action would exceed Nested LogTMislevels of R/W bits. Masking this
open_commit( exception supports unbounded nesting by converting deeply nested
abort_action(decr(counter))); u open transactions to flattened closed transactions and ignoring the
handlers registered at commit. Masking this exception is only
/I Abort and run compensating action O appropriate for open nested transactions used to enhance
/I Expect counter to be restored to 0 concurrency, but not those used for two-way communication.
Enabling aropen-levekxception allows software (error) handling
transaction_commit(); // not executed when full open nested semantics are required, e.g., when they are
used for communication between transactions.

Figure 5: An Example Violating O1
Consider this example where threiaditializes a counter (to 0), LogTM raises a maskableondition-Olexception if fpenWrites
begins a transaction, increments the counter (to 1), begins an data written by an ancestor (violating condition O1). If this
open nested transaction, increments the counter again (to 2), exception is not raised, the execution is known to obey the simpler
commits the open nested transaction with a compensating action semantics of condition O1. Programmers may choose richer
to decrement the counter (st&p), and later aborts the top-level  semantics by handling or masking this exception. In that case,

transaction (stefi)). If no other thread updated the counter, one  yemory locations modified by both the parent and the open child
might expect the counter to be restored to O. remain isolated (i.e. part oY, )
b parent*-

Nested LogTM (Section 5.3) would normally raise an exception -, . N .

at step[] to signal a dangerous programming practice. If the Condition O1 can tngger false violations when stacl_< locations
condition-O1 exception is masked, the Nested LogTM Used by aparenttransaction are reused by an open child. These are
implementation gets the expected value for this example. This ot true violations, because the parent implicitly deallocated those
occurs because it processes the log back to the commit point of stack addresses by changing its stack pointer. To prevent these

the open nested transaction (stép before running the unnecessary exceptions, Nested LogTM could provide a mecha-
compensating action, then processes the rest of the log (restoring nism to identify the bottom of the stack when a transaction begins,
the initial counter value). and mask O1 violations for addresses on the stack page below this

Conversely, the McDonald, et al. TCC implementation [18] will  address. For the common case, where a transaction begins and
set the counter to +1, not 0 [Kozyrakis and Olukotun, personal ands at the same language scoping level (i.e., the same stack

comm}:nliatlon]. 'Ihls2 _oct:curs becaushg rt]hel (ipe?h tr'ans?f[:tlon frame), the transaction begin would specify the address of the first
commit (StepL) Writes 2 In 9memory, which IS fater the nputto o ck variable written by the child transaction.
the compensating action’s decrement. Furthermore, because

other, more complex examples cause strange behavior in all TM Figure 2 (parts a and c) illustrates version management and

implementations, we believe that most programmers should conflict detection with open nested transactions. Recall that

obey condition O1. Figure 2a shows Nested LogTM state when a nested transaction is
ready to commit within a top-level transaction (after stépin

On transaction abort, the software abort handler uses the log toFigure 3). Note that the level 1 frame records the write from step
restore values and perform compensating actions. Processing thél. While the level 2 frame records the writes from stéps] and

log in LIFO order naturally produces the correct interleaving of U- Figure 2c shows Nested LogTM state after the inner open
restored values and compensating actions specified by Moss'transaction commits, leaving only the top-level transaction active.
semantics. The handler undoes transactional updates to the point oorrectness argumentHere we sketch why the changes to
each open commit, before performing a compensating action. support open nesting in Nested LogTM are correct. An open
Nested LogTM normally logs only the first store to a cache block transaction commit by threaidat levelj performs in FIFO order

at a given transaction level. After an open nested transaction@ly commit actions registered by committed descendent
commits, however, our semantics require that the log contain all transactions, discards,Jens frame (effectively promoting gyens

undo records needed to roll back to the state of memory when thatchanges to the nearest enclosing value map or memory) and clears
transaction committed. The run-time system ensures the presencéi(i) and Wi(j) (to release isolation for data not accessed by a
of all necessary log records by immediately beginning a new Parent transaction). The abort handler processes the log in LIFO
implicit closed transaction at the same nesting level as the justorder, performing memory undos and compensation actions in the
committed open transaction (i.e., lev@l The runtime system inverse order. Thus, even if a transaction violates condition O1, the
commits this implicit transaction immediately before the next COmpensating action sees an ancestral memory state equivalent to
begin or commit operation, promoting all conflict information to that which existed when the forward action committed.

thej-1 nesting level. 6. Escape Actions

Commit and compensating actions execute as open nesteo\N. . . .
. . hile open nested transactions promise greater concurrency, their
transactions (at the same (or lower) level as the corresponding ! - ) ) . ; .
semantics are ill-suited for invoking a conventional operating

Topenthat committed). These actions may conflict, abort, and retry system, which will not tolerate stalls or aborts due to data conflicts.

like any other open transaction. . ) )
To this end we proposeescape actionswhich (a) are not

Conf”ct detectlon.Beglnnlng an open nes_te_d t_ransacthﬂe'ﬁat transactional (no atomicity or isolation), (b) may not invoke a
levelj and performing reads and writes within it behaves the same
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Table 1: Escape Actions and Open Solaris System Calls

(void *)logtm_sbrk(int incr) {

sbrk_sentinel = 0;
Category # Examples escape_begin();
Read-only calls 57 | Getd, ftmes, st tmp = sbrk(incr);
B0 S, S if (tmp 1= NULL) {
Undoable calls with (af 40 o ek escape_end(
ndoable calls with (& I, up, U abort_action(sbrk(-incr)));
renﬁoesctzsper-process sidp m fice,  seek } else escapg_end(NULL);
return (tmp);
Undoable calls with| 27 | Chmod, ~ mkdi,  link, }
global side effects (no mknod, stime
currently handled) Figure 6: Wrapper for sbrk()
Other callsnothandled | 89 X\’nﬁm‘d“r fork, exec, registering a compensating action to roll-back the effects of the
by escape actions call on transaction abort, and (3) releasing isolation when the

enclosing transaction commits. A sentinel is a location in the
transaction, (c) may register commit and compensating actions, process’s virtual memory that acts as a transactional “lock” on
and (d) have no effect on enclosing transactions. kernel state. Writing to this sentinel location before invoking a
Escape actions are low-level escapes to software that is non-System call in effect locks the sentinel and prevents other
transactional (the rest of the way down), thereby allowing transactions from invoking the call until the outer transaction
debuggers and 1/O libraries to access and modify uncommitted commits. Figure 6 illugtrates a transactional wrapper around the
transactional data without aborting transactions. They provide an So%0 ~ system call, which changes the process data segment size.
interface to deal with non-transactional code. which for the 1he wrapper firstwrites a sentinel that prevents other threads from
foreseeable future includes operating systems and device driversCalling sokine) —  until the enclosing transaction commits or
Even transactional operating systems, though, may use escap@POrts. After invokingsk) - successfully, the wrapper registers a
actions to interact with non-transactional 1/0 devices. To support COmpensating action that undoes the effect of the system call, in
non-transactional system calls, escape actions implicitly begin this case by resetting the data segment _back to its original size with
(end) when entering (exiting) kernel mode, gracefully handling @ call tosoktno) . The wrapper begins and ends the escape
simple exceptions like software TLB fills. Ttescape begin) ~ and action explicitly to ensure that the system call and compensating
escape end)  calls provide explicit escape actions. action registration appear atomic (since an enclosing transaction
Similar to processor management instructions that are only may abort immediately after the escape action ends). While

) : . . . entinels are sufficient for simple system calls, more general
available in assembly code, we envision escape actions being usecfockin mechanisms are necessgr fgr more corr’1 lex caI?s Like
to implement low-level functions (e.g., exception handlers, 9 y P ’

debuggrs,and e nime spoor), s Pcden rom ih-FST IUESEIOS, S setons s ol ek o slow
level language programmers. Thus, the complexity of writing y 9

. . . . commits.
escape actions is a one-time expense for library and OS developers

but not application developers in general. Escape actions, however, cannot make all system calls safe. For
example, calls that manipulate data in the file system are not undo-
6.1 Case Study: Open Solaris Systems Calls able because the effects may have been observed by other pro-
There are many reasons why TM applications may need to accessesses. Similarly, calls such &) or uniink() cannot be
conventional operating system services within a transaction. Usingundone, because the data associated with the process or file has
the memory allocator example from the introduction, transaction S been destroyed. Executing such calls safely inside a transaction
may invokesobrk) to grow the heap. But LogTM (or any other may require a serialization-based technique suchrasstricted
HTM) clearly cannot continue transactional operation within a transactiong3].
non-transactional kernel like Open Solaris. Doing so would cede Nevertheless, escape actions allow common exceptions, such as
isolation control of kernel memory to user-level code. TLB miss handlers and protection fault handlers, and many useful
Escape actions provide a bridge between transactional and nonsystem calls to execute correctly without disrupting running
transactional software. As summarized in Table 1, escape actionstransactions. This greatly simplifies transactional programming by
suffice to handle almost one hundred Open Solaris system calls forincreasing the amount of code that may run within a transaction.
core OS services, such as processor and thread management, filg 2 Requirements
1/0, and synchronization [30]. Escape actions are trivially correct ~* ) ) ) )
for read-only system calls, such gspd) , because concurrent Escape gctlons,_ like open transactlonsZ have the potentla_l_for
callers cause no errors and thus need no isolation or compensatioff®MPplex interactions between compensation and undo. In addition,
on aborts. Also in this category (but not shown in the table) are €SCape actions’ bypassing of transaction conflict detection and
traps, such as TLB misses, that read kernel state without causing’€rsion management (weak atomicity) can lead to further
user-visible changes (even if they cause transparent changes). ~ Programming challenges. As a result, we recommend that an
Escape actions can also be made correct for system calls, such agScape action X executed by thraaa transaction levglobey the

sbikiner) , that affect only threads in the current process. There TSOHOW.IIj]g conditions: . )
are two key steps to invoking such system calls: (1) isolating other €ondition X1 (No Writes to Data Written by Ancestors): X
transactions from the effect of the call with a lock or sentinel, (2) 90€s notwrite any data written by its ancestakg(K) for all k < ).
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Condition X2 (No Writes to Data Accessed by Others)X does Table 2: System Model Parameters
not write any data read or written by active transactions of other
threads R (k) O Wi(k) for m# i and allk). System Model Settings
Condition X3 (No Reads to Data Written by Others): X does

not read any data written by active transactions of other threads
(Wiy(K) for m# i and allk).

Processors 32, 1 GHz, single-issue, in-order,
non-memory IPC=1

Conditions X1 and X2 restrict an escape action from modifying L1 Cache 16 kB 4-way split, 1-cycle latency
uncommitted updates by its ancestor transactions and other | L2 Cache 4 MB 4-way unified, 12-cycle latency
threads’ transactions, respectively. Condition X3 restricts an Memory 4 GB 80-cycle latency
escape action from reading other threads’ uncommitted updates. . . .

Directory Full-bit vector sharer list;

When conditions X1, X2, and X3 hold, escape action X operates as
if it were non-transactional (level 0) except that: (1) X may not

begin a transaction and (2) ending X resumes execution within . ) . i
threadi’s levelj transaction. Interconnection | Hierarchical switch topology,

Network 14-cycle link latency

migratory sharing optimization;
Directory cache, 6-cycle latency

An escape action may register commit and compensating actions

C and These handlers differ from their open
escape Pescape P X2 and X3 hold. When not executing escape actions, no behavior

transaction counterparts in that they execute as escape actions. . . -
E . that violat ¢ diti X1 X2 and is affected. When executing an escape action X on threaeked
scape actions that violale one or more of conaitions AL, Az, and g5, 3 transaction at levg) X reads values fronM™ (i.e., written

X3 may be important for debuggers and exception handlers—e.g.,by any transaction or from memory) and only writes data in
to allow updates to erroneous values before resuming atransactionmemory M* (and not theR()'s and W.()'s of any thread
. . . , . m!
EZL;T/IiS(’)rreiﬁzlc:;’irtlhe)?f);;?/(i:gg:igr?:CLtz)ﬁel\_/Z?Tt’\r/ll: SZEZS%??;OnindUdingi)' Thus, no transactionally-modified data is accessed.
9 : ! LogTM and Violations of X1, X2 and X3.In LogTM, reads in

these cases in other HTMs may differ in subtle implementation- .
escape actions always return the value of the most recent, even

dependent ways. i . o
Wr? diti y X1 X2 and X3 hold . bl uncommitted, write by any threadReads to data modified by a
en conditions X1, an old, escape actions resemble .onqaction in  another thread (X3 violation) return the

Zilles and Bauch'pause/unpausf86]. Each provides an escape uncommitted data as an uncacheable block [15]. Similarly, writes

mechan!sm for non-|§olated accesses to memory to support. NON%4 blocks read or modified by a transaction in another thread (X2
transactional operations, but escape actions do not maintain

} icity f d de. Zil violation) update values immediately. Such writes invalidate
pause's strong atomicity for user-mode code. ZIlles Now concurs o e caches—forcing modified blocks back to memory—and

thaF weak atomicity [2] is necessary to prevent deac_ilock if paused leave blocks in the sticky-S or sticky-M state [21]. Writes to
regions access transactionally isolated data [Zilles, personal memory locations modified by ancestors (X1 violation) update

communlcgtlon]. ) ) values, but do not affect ancestors’ W bits or log.
Escape actions also resemble #x¢éernal action®f Harris's STM

system for Java [9]. However, Harris’s external actions take special 7. Methods

and potentially costly steps to maintain Java memory safety, suchThis section describes target system assumptions and simulation
as pre-registration of future external actions, whereas escapetechniques for evaluating Nested LogTM versus Flat LogTM.
actions are a lightweight low-level mechanism useful for language Tapie 2 summarizes the parameters of our system model. The
design and system interactions. system has 32 processors, each with two levels of private cache. A
6.3 Escape Actions in LogTM MOES_I directqry protc_>co| maintains coher_ence_ over a high-
Implementing escape actions in Nested LogTM is straightforward. bandwidth switched interconnect. The _slngle-lssue in-order
An escape action requires a nemcape flag per thread (see processor mod_el assumes an aggressive, smgle-cycle non-memory
Figure 1) that indicates whether a transaction is escap&scade IPC The detailed memory system model |n9|udes most timing
is not set, Nested LogTM behaves as before. An escape actionntricacies of the transactional memory extensions.

begin setsEscape, and an escape action end clears it. Nesting of Our simulation framework usesvirtutech Simics [16] in
escape actions can be implemented in software, as there is ngeonjunction with customized memory models built Wisconsin
hardware action required when a nested escape action ends. If at®EMS [17, 33]. Simics, a full-system functional simulator,
ancestor transaction aborts while an escape action is running, theiccurately models the SPARC architecture but does not support

abort is delayed until thEscape flag is cleared. transactional memory. Support for LogTM was added using
Simics “magic” instructions: special no-ops that Simics catches

é’md passes to the memory model.

Version managementWhen executing escape actions, thread
makes no changes to its log. Reads and writes always acces
coherent memory to return the value from the latest, possibly g, Experiments

uncommitted, write (see below). This section presents four experiments that isolate the performance

Conflict detection.When executing escape actions, thread gigterences for the different nesting alternatives. Earlier studies

makes no changes to any of itskRfand WIK] bits. It ignores have examined the benefits of transactions over locks [1, 7, 21, 28].
conflicting accesses from other threads, except for the forced
writeback described below. 8.1 Exercising Nesting with Sorted List

Correctness argumentHere we sketch why changes from Nested ~ First, we use two versions of a sorted list microbenchmark to (a)
LogTM to support escape actions are correct when conditions X1, verify that Nested LogTM performs as expected and (b) illustrate
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or Open Nesting (over a Flat Implementation)

the conditions under which closed nesting with partial aborts Figure 8: Scalability of B-Tree using Flat Closed Nesting and
(Closed) and open nesting (Open) can outperform flattening (Flat). Closed Nesting with Partial Aborts and 1 (Flat-1 and Closed-

The sorted list microbenchmark searches a shared, sorted linked- 1) or 100 (Flat-100 and Closed-100) free lists
list of complex elements. Each thread repeatedly begins a top-level
transaction that examines list elements to find a matching field N B-Tree, each thread makes repeated accesses to a shared tree,

chosen at random. Both microbenchmark versions update a globalfandomly performing a lookup (with 85% probability) or an insert
shared counter in a level-two nested transaction, but do so at(15%). Thetreeis a 9-ary B-Tree, initially 6 levels deep. Each high

different points in the execution. Slist-EARLY performs the update '€vel operation (insert or lookup) is executed as a top-level
before the search, while Slist-LATE performs it afterwards. Since transaction. Inserts that encounter full nodes split them on the way
searches are read-only, all contention occurs on the counter updatedoWn the tree (preventing back propagation). Splits occur in a

Counter updates do not require a compensating action because th¥Vel-two closed nested transaction. New nodes are allocated from
counter value must be unique but not continuous. a shared free list in open or closed level-three nested transactions.

For Slist-LATE (the left side of Figure 7), Nested LogTM with We assume the presence of a garbage collector and therefore do

both Closed and Open improves performance relative to Flat ngt use a.compensating action with open ngsted trgnsactions.
LogTM by about 10%. Performance improves because both avoid Flgure 8 |IIustrate§ the speedup of alternative versions of B-Tree
complete aborts when the nested transactions conflict. The two€lative to sequential performance. Speedups can exceed 16 on 31
versions perform similarly, because the top-level transaction threads. (We use 31, not 32, threads, because Solaris does not

commits soon after the level-two transaction commits, limiting 2/lows threads to be bound to all processors.) Such speedups are
how long Closed and Flat extend isolation on the counter. cost-effective in multiprocessors that cost less than 16 times a

For Slist-EARLY (the right side of Figure 7), closed nesting with uhiprocessor [35], which will certainly be the case for chip
. : : multiprocessors.

partial aborts offers no performance improvement, while open . .

nesting provides dramatic improvement. Closed does not help T"€ Pottom two lines of Figure 8, labeled Flat-1 and Closed-1,

since either (a) the abort occurs within the level-two transaction, SOW poor speedup for Flat and Closed. Further investigation

and there is little difference between a partial abort and a complete "€vealed that insert transactions frequently contended on the
abort since the nested transaction occurs early in the outerShared free list. Because the entire insert executes within a single

transaction, or (b) the abort occurs after the level-two transaction Parent transaction, both Flat and Closed subsume the free list into
commits, forcing a complete abort since the outer transaction the parent transaction’s write set, preventing access by subsequent

subsumes the inner. Open achieves much better performance sinci'Serts until the parent transaction commits.

it releases isolation on the counter when the level-two transaction Partitioning the free list into 100 separate lists (approximating
commits, greatly increasing concurrency. thread-private allocators) eliminates this bottleneck, at the expense
These results illustrate that closed nesting with partial aborts can©f restructuring the benchmark. The lines labelled Flat-100 and
only improve performance when conflicts arise for nested Cl0sed-100 in Figure 8 show good speedup with the improved
transactions that occur late in the top-level transaction. Conversely, 2llocator, but little difference between Flat and Closed.

because open nesting releases isolation, it improves performancéAs discussed earlier, open nesting presents an appealing alternative
especially for nested transactions that occur early in the top-level for allocators. Open-1 uses an open nested transaction to access the
transaction. simple (non-partitioned) free list. Figure 9 shows that Open-1
(simple allocator) performs much better than Closed-1 (simple
allocator) and as well as Closed-100 (partitioned allocator).

The B-Tree microbenchmark represents a common class of thege results demonstrate that a programmer (or library writer)
concurrent data structures found in many applications. Results 5 choose between an open nested transaction and the complexity
show that Closed provides little benefit over Flat, and that Open ¢ parallelizing her allocator. We see considerable merit in the

represents an attractive alternative to restructuring the workload t0 ¢4 mer approach, especially for more complex allocators and other
increase concurrency. data structures
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8.3  Splash-2’'s Radiosity, Raytrace, Cholesky Handled with Escape Actions (Escape) or Aborts.

The original LogTM paper [21] converted selected SPLASH-2 array sizes. Nested LogTM with escape actions (Escape) achieves

benchmarks [34] by replacing locks with transactions and leaving oughly constant performance regardless of array size. The second
barriers and other synchronization mechanisms unchanged. Tha{_ gnly P 9 y )

study found that Flat LogTM offered good performance that was ine_(Abort) .ShOWS that W.'tho.Ut escape actions, per_formance
degrades rapidly as array size increases. Abort even fails to make
comparable to or better than locks.

forward progress for 4 MB arrays and larger, since with 8 KB

We modified the flat Fransaction versions of Ra_diosity, Raytracg, pages and a 512-entry TLB, the TLB cannot map the entire array.
and Cholesky by adding closed nested transactions. Open nesting

cannot be applied, because the data modifications cannot be8.5  Results Discussion
undone once isolation is released. The other benchmarks did notNested LogTM provides the greatest performance improvement
lend themselves easily to nested transactions. Radiosity containsover Flag LogTM when open nested transactions are used to
nested locking which we replaced with closed nested transactions.release isolation early, thereby increasing concurrency. Escape
Raytrace and Cholesky have memory allocation routines that needactions improve performance by allowing non-transactional trap
to walk a list of elements. For these programs, we use nesting tocode to execute without aborting the current transaction.
split large transactions into smaller transactions that allow partial \we did not see much improvement from closed nested
abort. The entire list access is placed within a transaction and, yransactions, which only provides a performance benefit when
additionally, the code that modifies the list is put inside a nested yansactions abort. Our SPLASH-2 results concur with Chung et
transaction. We also optimized Raytrace to prevent interactions | s [5] finding that closed nesting does not help these programs
between transactions due to false sharing. (much). In fact, not much benefit is possible with SPLASH-2 as
We ran these benchmarks with closed nesting with partial aborts Flat LogTM rarely aborts on these programs, in part because it
and confirmed Chung et al.’s [5] finding that closed nesting does stallsfirst [21].
not help these programs (much). Our result is due, in part, to the \ore recently, the TCC group has adapted workloads where aborts
rarity of aborts in SPLASH-2 on Flat and Nested LogTM. are more common and partial aborts are valuable [6, 18]. For
SPECjbb2000 on eight processors [6, Figure 3], for example,
violations dominated execution time with flattening (60% of time)
and closed nested reduced execution time substantially (40%). We
cﬂlo not (yet) know whether closed nesting will similarly help
ested LogTM on these workloads or whether stalling will
mitigate the benefit of partial aborts.

8.4  Escaping to Open Solaris

An escape action allows a control transfer from a transactional nest
to a non-transactional system (and back). Figure 7 (Table 1)
illustrates that escape actions suffice to handle almost one hundre
Open Solaris system calls [30]. This section illustrates Nested
LogTM escaping to Solaris for TLB traps, loading the TLB in the

non-transactional kernel, and resuming user-level activity. Without 9. Conclusions
escape actions, LogTM must first abort the active transaction (to

preservg user/kernel isolation), handle thg TLB trap in non- transactions with complete aborts onlffaftening or selective
transactional mode, then restart the transaction. partial aborts on nested transactionspen nestedransactions,
We exercise these two implementations of TLB traps with a single- 5nq/0r newly-proposedscape actionsThis paper expresses the
threaded microbenchmark that walks a character array with a pahavior of these alternatives in a common model.

256 B stride. Figure 10 displays the data read'rdte varying

Transactional memory (TM3ystems can suppodiosed nested

We implement the above nesting alternatives in the recently-
proposed flat.og-based Transactional Memory (LogTMNested

1. The data rate is low because each reference fetches one byte, misses ihog™ §upports (_a) closed nes_ting_ with partial aborts by
the L2 cache, and each TLB miss causes a second-level TSB miss. segmenting the log into stack of activation recordand modestly
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replicating R/W bits, (b) open nesting by allowing a committing

open transaction to release isolation and optionally save commit
and compensating actions on the log, and (c) non-transactional

escape actions, also with commit and compensating actions.
We evaluate with (mostly) TM microbenchmarks to demonstrate

closed and open nesting performance differences (sorted list),
concurrency exposed by open nesting (B-Tree), little performance
improvement from closed nesting (SPLASH-2 subset), and correct

operation for TLB traps via exposed actions (strided array).

Future work includes evaluating closed nesting with partial aborts
and open nesting using benchmarks more representative of future

TM workloads. We also plan to explore the richer semantics of

open nested transactions and escape actions to provide more

complete runtime and operating system support.
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