
Appears in the proceedings of the Twelfth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),

San Jose, CA, October 21-25, 2006

on
Supporting Nested Transactional Memory in LogTM

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen,
Mark D. Hill, Ben Liblit, Michael M. Swift and David A. Wood

Department of Computer Sciences, University of Wisconsin–Madison
{moravan, bobba, kmoore, lyen, markhill, liblit, swift, david}@cs.wisc.edu

http://www.cs.wisc.edu/multifacet

Abstract

Nested transactional memory (TM) facilitates software 9, 11] or Java synchronized methods [4]). This paper focuses
n

e

te

y
s

i
e
t

-

r
s

g

in a
for
g
on-

ge

oid
ay
en
hat

n

.,
d
l

e
ay
.

er

r,
ng
r

This work is supported in part by the National Science Foundation (NSF), with gra

composition by letting one module invoke another without eith
knowing whether the other uses transactions.Closed nested
transactionsextend isolation of an inner transaction until the top
level transaction commits. Implementations may flatten nes
transactions into the top-level one, resulting in a complete abort
conflict, or allow partial abort of inner transactions.Open nested
transactionsallow a committing inner transaction to immediatel
release isolation, which increases parallelism and expressivene
the cost of both software and hardware complexity.

This paper extends the recently-proposed flatLog-based
Transactional Memory (LogTM)with nested transactions. Flat
LogTM saves pre-transaction values in a log, detects conflicts w
read (R) and write (W) bits per cache block, and, on abort, invok
a software handler to unroll the log. Nested LogTM suppor
nesting by segmenting the log into astack of activation recordsand
modestly replicating R/W bits. To facilitate composition with non
transactional code, such as language runtime and operating sys
services, we proposeescape actionsthat allow trusted code to run
outside the confines of the transactional memory system.

Categories and Subject DescriptorsC.1.4 [Processor Archi-
tectures] Parallel Architectures

General Terms Design Languages

Keywords Transactional Memory, Nesting, LogTM

1. Introduction
Emerging chip multiprocessors (a.k.a. multi-core chips) a
energizing interest in making multithreaded programming le
painful. One promising approach istransactional memory (TM)
[13]. A TM system lets a programmer invoke a transaction (e.
transaction_begin(); <some work>; transaction_end();) and
rely on the system to make its execution appearatomic with
intermediate dataisolated. A successful transactioncommits, while
an unsuccessful one thatconflicts with a concurrent transaction
abortsand may transparently or explicitly retry. Programmers ma
invoke transactions directly (e.g., by callingtransaction_begin()

from C) or indirectly (e.g., with statically scoped atomic blocks [8
CCF-0085949, CCR-0105721, EIA/CNS-0205286, CCR-0324878, as well as don
tions from Intel and Sun Microsystems. Bobba has an Intel Foundation Ph.D. Fello
ship and Yen a NSF Graduate Research Fellowship. Hill and Wood have significa
financial interest in Sun Microsystems. The views expressed herein are not necess
those of the NSF, Intel, or Sun Microsystems.

Permission to make digital or hard copies of all or part of this work for personal o
classroom use is granted without fee provided that copies are not made or distribu
for profit or commercial advantage and that copies bear this notice and the full citati
on the first page. To copy otherwise, or republish, to post on servers or to redistribu
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21-25, 2006, San Jose, California, USA.
Copyright © 2006 ACM 1-59593-451-0/06/0010...$5.00.

1

L
., a

tion
list

S
ons

y
her
ts
a-

w-
nt

arily

r
ted
on
te

r

-
d

on

s at

th
s

s

tem

e
s

.,

y

,

systems implemented with hardware support(HTMs) [1, 7, 13, 21,
28]; others examinesoftware-only TM (STM) systems [10, 12, 29].

1.1 Challenges

We see three major challenges to composing software modules
transactional memory system: supporting software composition
transactions, providing high concurrency for long-runnin
transactions that require contended resources, and invoking n
transactional language and operating system (OS) services.

Challenge 1: Facilitating Software Composition.Ideal software
compositionallows a module A to invoke a module B, which can
invoke C, etc., using module interfaces rather than deep knowled
of module internals [27]. The currently prevalent method oflocking
fails to provide composition, because to ensure safety and av
deadlock, programmers often need to know what locks are (or m
be) held by caller and callee implementations. Open Solaris ev
warns relatively sophisticated operating system programmers t
“Blocking on a mutex is a surprisingly delicate dance” [19].

To aid software composition, TM systems must supporttransaction
nesting [22] wherein a transaction may begin and end withi
surrounding transactions. Straightforward nesting—calledclosed
nesting—ensures atomicity and isolation until the top-level (i.e
outermost) transaction commits. Most HTMs implement close
nesting byflattening inner nested transactions into the top-leve
transaction [1, 7, 21].Transaction_begin() simply increments a
counter,transaction_end() decrements it, and commit occurs only
when the count returns to zero.

While functionally correct, flat closed nesting may degrad
performance. In particular, a conflict on an inner transaction m
cause acomplete abortto the beginning of the top-level transaction
A partial abort could improve performance, by only aborting the
inner transaction and avoiding an abort of the possibly much long
top-level transaction [6].

Challenge 2: Enhancing Concurrency.Closed nesting does not
eliminate all problems posed by modular software. In particula
closed transaction semantics limit concurrency by maintaini
isolation until the top-level transaction commits. Consider, fo
example, a long-running, low-contention top-level transaction
that frequently invokes a short-running nested transaction S (e.g
shared resource allocator). Closed nesting must maintain isola
on the resource allocator (e.g., because S updates the free
pointer) until L commits, severely restricting parallelism. Ideally,
should release the free list pointer, etc., so that other transacti
can access the allocator without conflicting with transaction L.

Open nested transactionsaddress some of the above concerns b
relaxing the atomicity guarantee and managing isolation at a hig

en
rior
ted
mit
log
in

m

n be

ing
M
les
as

em
m
the

ces
n,
O
ge

ed
e
ns,
r

y)
or

d
m
see
he
ts

ove
g

nt
by
to
and
M

level of abstraction [32]. When an open nested transaction S
commits within an enclosing transaction L, (a) the TM system
releases data read or written by S, so that other transactions can
access them without generating conflicts and (b) S may register
commitand compensating actionsto be run when transaction L
commits or aborts, respectively [9, 32]. These actions allow
programmers to raise the level of abstraction by providing higher-
level isolation and undo semantics [25]. For example, one can
compensate for amalloc() by executing afree() (or by simply
relying on garbage collection). Simply restoring the values of
memory locations modified by S (e.g., the free list pointer) is
insufficient, since subsequent open transactions may have modified
them.

Challenge 3: Escaping to Non-Transactional Systems.Many
TM systems will run on top of non-transactional base systems that
may include run-time libraries, language virtual machines (e.g.,
JVMs), operating systems (Windows, Linux, Solaris), and even
system virtual machines (VMware). TM applications may need to
escapeto such systems explicitly (e.g., system calls) or implicitly
(e.g., TLB traps or interrupts). Likeasm() statements in C, these
escapes allow access to lower-level capabilities, but they should
not be directly used by most application programmers.

STMs handle such escapes easily, because they virtualize the TM
mechanisms in user-level software. HTMs, on the other hand,
often use hardware conflict detection bits and/or speculative value
buffers. An escape to a non-transactional system must disable
these mechanisms, because such software may not operate
correctly in the presence of transaction isolation and aborts [3].

1.2 Nested LogTM

This paper explores the above challenges in the context of the
recently-proposedLog-based Transactional Memorysystem [21],
which we call Flat LogTM. Flat LogTM provides hardware
mechanisms for version management and conflict detection, which
compilers and run-time library software use to implement
language-specific transactional memory policies. Flat LogTM
performsversion managementby storing new values (for commit)
“in place” in cacheable virtual memory and old values (for abort)
in a per-thread log, also in cacheable virtual memory. Hardware
support makes commits fast, because no data must be moved,
while a (library) software handler unrolls the log on aborts. Like
many HTMs, Flat LogTM performsconflict detectionusing read
(R) and write (W) bits in caches, but also adds mechanisms to
allow cache evictions of transactional data. Flat LogTM uses a
counter to flatten closed nested transactions into the top-level
transaction.

Nested LogTMmakes three contributions by extending Flat
LogTM’s mechanisms to support nesting and escape actions.

Contribution 1: Closed Nesting with Partial Aborts. Nested
LogTM allows inner transactions to abort separately from the top-
level transaction by segmenting the undo log and replicating the
R/W bits. Each segment records old values for a single nesting
level. This makes the log resemble a standardstack of activation
records, where each frame holds the records for a given level of
nesting. Nested LogTM narrows conflict detection to a specific
nesting level by extending cache R/W bits to havek copies (e.g., 4)
and flattening transactions nested deeper thank. Nested LogTM
provides partial abort by unrolling a subset of log frames and
clearing a subset of R/W bits.

Contribution 2: Open Nesting.Nested LogTM supports access
to highly contended resources within a transaction with op
nested transactions, which may commit and release isolation p
to the top-level transaction's commit. When an open nes
transaction commits, the inner log segment is removed and com
and compensating action records are added to the parent’s
segment. In addition, the inner transaction's R/W bits are cleared
the cache.

Contribution 3: Escape Actions.Nested LogTM supports calls
to a lower-level non-transactional system, including the OS, fro
within a transaction withescape actions, which bypass transaction
version management and conflict detection. Escape actions ca
invoked explicitly via new instructions or implicitly as part of a
trap. An escape action may register commit and compensat
actions like an open nested transaction. Nested LogT
implements escape actions with a per-thread flag, which disab
logging and conflict detection when set. We view escape actions
an enabling mechanism for supporting non-transactional syst
activity in HTMs. For example, trap handlers and many syste
calls can execute within escape actions, which both increases
variety of code that can execute within transactions and redu
the need to abort a transaction due to OS activity. In additio
escape actions are a key building block for implementing I/
within transactions and for supporting debuggers and garba
collectors.

Other recent HTM proposals have also explored support for clos
nesting with partial aborts and open nesting [18, 24, 26]. W
extend this work several ways, including proposing escape actio
implementing nesting in LogTM, and defining a condition fo
mitigating subtle open nesting semantic issues in TM systems.

We evaluate Nested LogTM versus Flat LogTM running (mostl
TM microbenchmarks on Solaris 9 on a 32-way multiprocess
simulated with an extension of Wisconsin GEMS [17]. TheSorted
List andB-Treemicrobenchmarks show little benefit from close
nesting and partial abort, but show significant improvement fro
the increased concurrency provided by open nesting. We also
little performance benefit from nesting running a subset of t
SPLASH-2 benchmarks, in part due to the lack of conflic
between transactions in those workloads. Thestrided array
microbenchmark demonstrates that escape actions impr
performance in the presence of TLB miss traps by allowin
transactions to continue after a trap.

2. A Transactional Memory Model
This section informally describes an implementation-independe
model of closed nested transactional memory implemented
flattening; the remainder of this paper evolves this model
support partial aborts, open nesting, and escape actions
describes how the model maps to the Flat and Nested LogT
implementations.

Let a TM system be represented by a memoryM that maps
addressesa to valuesv and a set of threads. Each threadi has a
transaction levelleveli, a read setRi, a write setWi, and a value
mapVi that maps addressesa to updated valuesv. Let block(a)be a
function that maps an addressa to a possibly-larger aligned
granularity (e.g., a memory block). Initially,M maps initial values,
all leveli are zero, and allRi, Wi, andVi are null. Threadi begins a
transaction by incrementingleveli. Subsequent reads to addressa
add block(a) to Ri. Writing a new valuev to addressa adds
block(a) to Wi and the mapping <a, v> to Vi (replacing any
2

ced

ted

s a
vel.

s

n

el.

ly,
previous mapping <a, v’> in Vi).
1 A read of addressa generates a

conflict if block(a)is in Wk of some threadk≠i. A write of address
a generates a conflict ifblock(a)is in Rk or Wk of some threadk≠i.
Transaction commit decrementsleveli and, if leveli is now 0,
updatesM with the new mappings inVi and makesRi, Wi, andVi
null. A transaction abort discardsRi, Wi, andVi, setsleveli to 0, and
reverts execution to just before the top-level transaction’s begin.

3. Flat LogTM Background
The Log-based Transactional Memorysystem [21], referred to as
Flat LogTMand depicted in Figure 1, serves as the framework for
our nested transaction implementations.

Flat LogTM performsversion managementby storing new values
(for commit) “in place” in cacheable, virtual memory and old
values (for abort) in a per-thread log, also in cacheable, virtual
memory. The log consists of a fixed-size header containing thread
state (e.g., registers) and a variable sized body comprising undo
records. Figure 2 shows an in-depth example of a transaction’s
execution. After step➋, for example, the log header contains
threadi’s register state (including the program counter for step➊)
and the log body contains an undo record <old-block-value,
block(a)>, whereold-block-valuecontains the value ofblock(a)
prior to thetransaction_begin() in step➊ (including the old value
2 for a) and block(a) is the block’s aligned virtual address. The
processor maintains pointers to the log header and the log end. On
the first write to a block (i.e., W bit not set—see below), Flat
LogTM writes an undo record to the end of the log. On commit,
Flat LogTM discards the log, resetting the log end pointer. On
abort, Flat LogTM invokes a runtime software handler to unroll the
log—processing the undo records in last-in-first-out order (i.e.,
starting with the log end pointer) and restoring thread state from
the header. Flat LogTM implements closed transactional nesting
by using a counter to flatten all nested transactions into the top-
level transaction.

Like several other HTMs, Flat LogTM performsconflict detection
using read (R) and write (W) bits in caches. Both commit and abort
flash cleartheseRandWbits. Flat LogTM handles cache evictions
of transactional data with an extended directory protocol (i.e., the
sticky-S andsticky-Mstates [21]).

Flat LogTM implements Section 2’s transactional memory model
not as a forward-value map, but instead as a backward-value map.
It replaces memoryM with update-to-date memoryM+ and each
“forward” value mapVi with a “backward” value mapVi

+ that has
old mappings, e.g.,<a, v’> . Because Flat LogTM updates memory
in place,M+ always equalsM ⊕ Unioni{ Vi}, whereA ⊕ B means
that mappings<a,v> in A are replaced with corresponding
mappings<a,v’> in B. Conflict detection ensures that theVi are
disjoint sets. Flat LogTM can always revert memoryM+ back to
memoryM, sinceM = M+ ⊕ Unioni{ Vi

+}. For example, to abort
threadi’s transaction, Flat LogTM uses the backward mapVi

+ to
undo only threadi’s changes (M+⊕= Vi

+). We omit a proof here,
since the equivalence of backward and forward logs is well
understood in the database literature [20]. Finally, Flat LogTM’s R
and W bits directly maintain the model’s read and write sets,Ri
and Wi, for blocks in the cache, while thesticky-Sand sticky-M

states conservatively overestimate set membership for repla
blocks.

4. Closed Nesting With Partial Abort
This section presents requirements for closed nesting implemen
with partial abort and an example.

4.1 Requirements

To extend the model with partial aborts, each thread maintain
separate read set, write set, and value map for each nesting le
For nesting levelj, threadi maintains a read setRi(j), write set
Wi(j), and value mapVi(j). Transaction begins, reads, and write
are similar to the base model in Section 2. Threadi begins a
transaction by incrementingleveli. Reading addressa adds
block(a) to Ri(leveli). Writing a new valuev to addressa adds
block(a) to Wi(leveli) and the mapping <a, v> to Vi (leveli).
Reading addressa generates a conflict ifblock(a) is in Wk(j) of
some threadk≠i and some levelj. Writing addressa generates a
conflict if block(a)is in Rk(j) or Wk(j) of some threadk≠i and some
level j.

Transaction commit changes more significantly with the additio
of partial aborts. Atop-levelcommit (leveli = 1) remains the same:
decrementleveli to zero, updateM with the new mappings inVi(1),
and clearRi(1), Wi(1), andVi(1). A closed nested commit(i.e., a
commit when leveli > 1) instead promotes the committed
transaction’s state to the parent transaction’s nesting lev
Specifically, a closed nested commit atleveli maintains isolation at
leveli-1 by taking the union of the read and write sets:Ri(leveli-1)
∪= Ri(leveli) and Wi(leveli-1) ∪= Wi(leveli), where ‘A ∪= B’
means that set A is assigned the set union of A and B. Similar
the commit merges the value maps ofleveli and leveli-1: Vi(leveli-
1) ⊕= Vi(leveli), where ‘A ⊕= B’ is the same as ‘A∪= B’ except
that a mapping<a,v> in B replaces a mapping<a, v’> in A.

1. The model assumes the same granularity for read and write conflicts, but
could be generalized for systems with different granularities, like TCC [7].

Figure 1: LogTM Node
Circles denote the architectural state additions to Flat LogTM
[21] required to support Nested LogTM (with k=2).

Tag State .R1W1 R2W2 . Data

CPU

L1 D

L2

Directory

Cache Controller Timestamp

 Possible_Cycle
 Overflow

Nested LogTM-specific state

Tag State Sharer List

Tag State .R1W1 R2W2 . Data

 Log Frame
 Log End
 TMCount

 PC Begin PC
 Handler PC

Registers
User

 Escape (for escape actions)

 ExceptionMask
3

rts
e 1
de.

-

a
g
dy
low.

ith
its

ws a
ch have
header

e
er

luding a

r
t.
o
t both

e
frame is

aversed in

ommit,

ve been

the old
Finally, a commit clearsRi(leveli), Wi(leveli), and Vi(leveli) and
decrementsleveli.

Like a top-level commit, a top-level abort with closed nesting
remains unchanged: setleveli to 0, clearRi(j), Wi(j), andVi(j) for
all levels j, and revert execution to just before the transaction
begins. Aborting a closed nested transaction at levelj, j > 1, results
in a partial abort that leaves the enclosing transactions’ states
unchanged. Specifically, an abort at levelj clearsRi(n), Wi(n), and
Vi(n) for n ≥ j, setsleveli to j-1, and reverts execution to just before
the begin transaction at levelj-1.

Figure 3 presents an extended example of closed nesting, including
top-level and nested transactions, reads and writes, a partial abort,
and eventual commit.

4.2 Closed Nesting in LogTM

We adapt Flat LogTM to support closed nesting with partial abo
by extending version management and conflict detection. Figur
depicts the architectural state added to a Nested LogTM no
Buffers used to hide the latency of log writes are not shown.

Version management.Closed nesting extends Flat LogTM’s per
thread log (header plus a series of<old-block-value, block-
address>undo records) into a stack of log frames, resembling
stack of activation records (similar to Harris et al. [11]). Each lo
frame consists of a fixed-size header and variable-size bo
containing undo records and garbage headers, described be
More specifically, Nested LogTM operates as follows. A
transaction begin allocates a new log frame and initializes it w
the thread’s current registers (e.g., program counter), saves

Figure 2: Nested LogTM Operation
This figure shows three snapshots of the log and conflict detection bits. The lower half shows the cache state. Thevar columns correspond
to the variable names from Figure 3, and theval columns show the current values in the processor local cache. The upper half sho
logical view of the log. Frames are separated by a solid black line. For instance, part (a) has two frames, while parts (b) and (c) ea
only one. A dotted line separates the header from the undo records in each frame. Only the previous frame pointer part of the
records is shown. An undo record is abbreviated <old value>, <variable name>. The logs pictured also assume thatblock(a)≠ block(b)≠
block(c).
Part (a) shows a snapshot of the log and the conflict detection bits after Figure 3’s step➐. There are several key points here. First, we se
multiple logging: there are two logged “old values” ofa, one in level 1’s frame, and one in level 2’s frame. Second, level 2’s head
includes a pointer to the beginning of level 1’s frame for restoration on commit or abort. The header also contains other data, inc
register checkpoint (not shown).
Finally, there is also “redundant” conflict detection: both levels have markedb as part of their read set. Clearly, a conflict occurs if anothe
thread tries to writeb. But a conflict also happens if another thread tries to readb. The important difference is how these bits affect abor
For instance, suppose another transaction makes a read request forb. “Redundant” conflict detection shows that it would be sufficient t
abort and roll back only the level 2 transaction to successfully resolve this conflict. Conversely, a write conflict would abor
transaction levels 1 and 2.
Part (b) shows the state after level 2 completes execution and commits (step➑ from Figure 3). The key take-away here is how the merg
operations work. The log contains the same data before and after the merge; the only difference is that what used to be level 2’s
now encompassed by level 1’s frame. Note the two sources of waste: level 2’s header and level 2’s previous value ofa. These are useless
because a subsequent abort would have to go back through level 1, so level 1’s header would be restored, and (since the log is tr
LIFO order) level 1’s old value ofa would be the final value restored before restart.
The conflict detection bits also show the result of the merge operation. A level 1 bit is still set if it had been set before the level 2 c
but it is additionally set if the corresponding level 2 bit was set. The level 2 bits have all been flash cleared. A write conflict tob would
now be attributed to level 1 (the sole writer).
Part (c) shows the post-commit state if level 2 had been open instead of closed (Section 5). Unlike part (b), level 2’s versions ha
discarded and replaced with a compensation record (abbreviated “Aopen” in the figure). The conflict bits show that the level 2 bits have
been flash cleared, but the level 1 bits remain the same as before the transaction. At this point, another transaction could readb and read or
write c . When traversing the log, an abort handler first executes the compensating action left by level 2, and only then restores
value ofa. It distinguishes the record types by examining their tags (not shown).

2, a

6, c
4, b
5, a

var R 1R2 W1W2 val

a 0 1

c 0 1
0 1
0 1

8
7
1

(a) After Step ➐

1 1

fp

ep

Log

Cache
var R 1R2 W1W2 val

a 1 0

c 1 0
1 0
1 0

8
7
1

(b) After Step ➑

1 0

Cache

var R 1R2 W1W2 val

a 0 0

c 0 0
0 0
0 0

8
7
1

(c) After Step ➑

1 0

Cache

Closed Level 2 Open Level 2

2, a

6, c
4, b
5, a

fp

ep

Log

2, a
fp

ep

Log

Aopen

b 1 1 b 1 0 b 1 0
4

R

rt

the

e

k,
e

h

e
M

ars

flict
sted
in

ed

rst,

2],
his
a

nd

the
parent’s transaction information (e.g., base of the parent’s frame),
and sets the log frame pointer to the new frame. Like Flat LogTM,
Nested LogTM reuses W bits (described below) to detect the first
write to each unique block, causing it to add an undo record to the
end of the log’s current frame body. Nested LogTM adds a two-bit
tag to each log record, indicating whether it is an undo record,
frame header, etc. Since block addresses are aligned to 64-byte
blocks, the common undo record’s tag value00 is encoded for free
in the address’s least-significant address bits.

A closed nested commit merges the current log frame with its
parent’s frame. Specifically, Nested LogTM sets the log frame
pointer back to the parent’s frame (using the value saved at
transaction begin in the committing transaction’s frame). The
committed transaction’s frame header remains in the body of the
parent as agarbage header. Garbage headers occupy space in the
parent’s frame, but have no semantic value.

An abort of the current transaction at levelj traps to a (library)
software handler that walks the body ofj’s log frame backwards to
process undo records and skip garbage headers, finally restoring
the register state saved in the header. A transaction abort through a
level m ancestor of the current transaction levelj has the software

handler undoj-m+1 log frames. This is easily implemented in a
software handler, an advantage of LogTM’s approach.

Conflict detection.Closed nesting changes each cache line’s
and W bits into an array of bits, R[1..k] and W[1..k], wherek is
small (e.g., 4—Chung et al. [5] find two levels of explicit suppo
sufficient). Reads and writes at transaction levelj set R[j] and W[j]
if j≤k, and R[k] and W[k] if j>k (i.e., flattened at levelk). Flattening
provides the correct behavior for deeper nests but removes
performance benefit of partial abort. An incoming read ofblock(a)
generates a conflict at levelj for the minimum j for which the
corresponding W[j] is set (i.e., the outermost conflicting
transaction). Similarly, an incoming write examines th
corresponding R[j] and W[j] to find the minimumj with a conflict.
When there is a possible cycle, indicating potential deadloc
Nested LogTM uses a bit per transaction level to inform th
software handler how far to rollback.

A top-level transaction commit clears R[1] and W[1] with a flas
clear. A nested transaction commit (levelj > 1) merges R[j] and
W[j] into R[j-1] and W[j-1], respectively, and flash clears R[j] and
W[j]. One implementation of the merge is aflash-ORcircuit that
calculates R[j-1] ∨= R[j] and W[j-1] ∨ = W[j] for each cache line
in parallel (where A∨ = B assigns the logical-or of A and B to A).
A flash-OR circuit adds two transistors and one “bit” line to th
seven transistors and one “word” and three “bit” lines of an SRA
cell with flash clear. A transaction abort from levelj back through
level m first undoes log frames (see above) and then flash cle
R[i] and W[i] for m ≤ i ≤ j.

Figure 2a and Figure 2b illustrate version management and con
detection with closed nested transactions. Figure 2a shows Ne
LogTM state when a nested transaction is ready to commit with
a top-level transaction (after step➐ in Figure 3). Note that the
level-1 frame records the write from step➋, while the level-2
frame records the writes from steps➍, ➏ and➐. Figure 2b shows
Nested LogTM state after the inner transaction performs a clos
commit, leaving only the top-level transaction active.

Correctness argument.Nested LogTM with closed nesting
implements Section 4.1’s closed nesting model in two steps. Fi
its stack of log frames provides backward mapsVi

+(j) that
complement the forward mapsVi(j) in a manner similar to the way
in which Flat LogTM’sVi

+ ’s complemented itsVi’s. For example,
a partial abort of threadi from level j back through levelm must
undo the changes made by threadi in transaction levelsm through
j: M+⊕= Vi

+(j) ⊕...⊕ Vi
+(m+1). Second, cache bits R[1..k] and

W[1..k] directly implement multi-level read- and write-sets,Ri(j)
and Wi(j), for j < k, while, due to flattening, R[k] and W[k]
represent the union of allRi(j) andWi(j), for j ≤ k.

5. Open Nested Transactions
Nested LogTM also supports open nested transactions [24, 3
which provide greater concurrency and richer semantics. In t
section, some “generational” terminology is helpful. Let
transaction T be invoked by threadi at levelj. T’s parentis thread
i’s level j-1 transaction, which began T. T’sancestorsare its parent
and its parent’s ancestors. T’ssiblingsare the levelj transactions of
threadi begun by T’s parent (not including T).

5.1 Requirements

An open nested transaction releases isolation on commit a
optionally registerscommitandcompensating actionhandlers [9,
14]. To ensure consistency, open nested transactions must raise

Figure 3: Closed Nesting Example
Thread i begins execution at non-transactional level 0 and
initializes variablesa andb.
It then begins the top-level (level 1) transaction at step➊. At
step➋, the read of variableb first addsblock(b) to Ri(1) for
conflict detection. Next, the write of variablea with value 5
addsblock(a)to Wi(1) for conflict detection and<a, 5> to Vi(1)
for version management.
Threadi begins a nested (level 2) transaction at step➌. At step
➍, the read of b addsblock(b) to Ri(2), while the write ofc
with 1 addsblock(c)to Wi(2) and<c, 1> to Vi(2). At step➎,the
first try of step➏’s write of variableb encounters a read conflict
(i.e.,block(b)is in Rk(j) for somek≠i). The system resolves this
with a partial abort, which clearsRi(2), Wi(2) and Vi(2) and
restarts execution at step➌.
Assume that the retry of step➏ succeeds, addingblock(a) to
Ri(2), block(b)to Wi(2) and<b, 7> to Vi(2). Next, step➐ adds
block(c) to Ri(2), block(a) to Wi(2) and<a, 8> to Vi(2). Note
that an address may exist in the structures of more than one
transaction level. After step➐, for example,block(b)is in both
Ri(1) andRi(2), block(a)is in bothWi(1) andWi(2), and<a, 5>
is in Vi(1) and <a, 8> is in Vi(2).
At step➑, the nested (level 2) transaction commits by merging
Ri(2), Wi(2) andVi(2) into Ri(1), Wi(1) andVi(1), respectively.
Note that the merge causes the mapping<a, 8> in Vi(2) to
replace the mapping<a, 5> in Vi(1). Finally, at step➒, the top-
level transaction commits, updating memoryM with the
mappings inVi(1) before clearing Ri(1) andWi(1).

//thread i at level 0 (Non-transactional)

a = 2; b = 4; c = 6; // initialize

transaction_begin(); // top-level (level 1) ➊

a = b + 1; // a gets 5 ➋

transaction_begin(); // level 2 ➌

c = b - 3; // c gets 1 ➍

//PARTIAL ABORT: first write to b ➎

b = a + 2; // b gets 7 ➏

a = c + 7; // a gets 8 ➐

transaction_commit(); // level 2 ➑
transaction_commit(); // level 1 ➒
5

n a
e

ms
ry-

the
e-

ble
ers

n
our
O1.

ut
ted

he
the

on

list,
level of abstraction of both isolation and rollback [25]. For
example, Figure 4 illustrates an outerinsert_set() transaction that
calls insert() to add multiple entries to a B-tree data structure.
Making each insert() an open nested transaction increases
concurrency by releasing memory-level isolation on internal data
structures. But to preserve consistency, the data structure must
maintain isolation on these inserted entries—e.g., using a lock flag
as in Figure 4—until the outer transaction commits. Note that the
outer transaction must release isolation on the inserted entries by
performing the specified commit actions, e.g., by calling
unlock(key) . Similarly, the compensating actions must undo the
forward action at this higher level of abstraction, e.g., by calling
delete(key) for each B-tree entry.

An open nested transaction Topencommits by propagating its value
mapVi(j) to the nearest enclosing value map or memory, clearing
Ri(j), Wi(j), andVi(j), (optionally) registering commit action Copen
and/or compensating (or abort) action Aopen, and decrementing
leveli. For each mapping<a, v> in Vi(j), if there exists a mapping
<a, v’> in Vi(k), max k<j, then the value propagates byVi(k) ⊕=
<a, v>. Otherwise the value propagates to memory,M ⊕= Vi(j).

If thread i invokes only one open nested transaction, then when
Topen’s top-level ancestor commits, it performs the commit action
Copenas an open nested transaction (at a level no greater than Topen
used before it committed). If one of Topen’s ancestors aborts, the
system executes Aopenas an open nested transaction. Moss argues
that a compensating action should execute “in the state that held
when its forward action committed” [23], that is Aopen executes
with the sameVi(1) ⊕ Vi(2) ⊕ ... ⊕ Vi(j-1) as when Topen
committed. The top-level ancestor transaction releases isolation
only after processing all commit or compensating actions. Note
that programmers are responsible for ensuring that these actions do
not generate additional conflicts beyond the original transaction;
failure to do so may result in deadlock [31].

If threadi executes more than one open nested transaction before a
top-level transaction commits, we must specify how handlers
interact. For clarity, we first explain the semantics for the case
where threadi executesonly open nested transactions. As sibling
open transactions Topen-1... Topen-ncommit, they register commit
and compensating actions Copen-1... Copen-nand Aopen-1... Aopen-n
with their parent transaction Topen-parent. If Topen-parentcommits,
the commit actions get executed infirst-in-first-out (FIFO)order,
Copen-1... Copen-n, the compensating actions Aopen-1... Aopen-nare
discarded, and Topen-parentregisters higher-level commit and
compensating actions Copen-parentand Aopen-parent. Conversely, if
Topen-parentaborts, the compensating actions get executed inlast-
in-first-out (LIFO) order: Aopen-n... Aopen-1. The action Aopen-k
executes with Moss’s simple semantics (i.e., the same value maps
Vi(1) ⊕ Vi(2) ⊕ ... ⊕ Vi(j-1) as when Topen-kcommitted) as long as
none of the open nested transactions or compensating actions have
written to the same address as an ancestor. Section 5.2 addresses
the potential problems that arise in this case. More generally, when
threadi executes both closed and open nested transactions, these
actions are taken when the closest open ancestor transaction
commits.

To illustrate compensating actions for multiple open transactions,
suppose that Topen-parentis the insert_set() routine that calls
insert() to add multiple key/value pairs to a B-tree. If Topen-parent
aborts, the compensating actions Aopen-icall delete() to remove
the inserted keys. But once Topen-parentcommits, it registers a

higher-level delete_set() routine as Aopen-parent, replacing the
individual calls todelete() .

5.2 Interactions Between Undo and Compensating Actions

Open nested transactions can lead to strange behavior whe
transaction Topenand one or more of its ancestors write to the sam
memory location. Figure 5 gives one such example. The proble
arise because of non-obvious interactions between the memo
level undo operations of the parent and the semantic undo of
child. This problem is exacerbated because different TM impl
mentations handle these interactions differently [18, 24, 26].

To avoid making programmers reason about subtle, non-porta
implementation details, we advocate that most programm
observe the following restriction with open nested transactions.

Condition O1 (No Writes to Data Written by Ancestors):
Neither an open transaction, Topen, nor its commit and
compensating actions, Copenand Aopen, writes any data written by
Topen’s ancestors (Wi(k) for all k < j), where Topen is executed by
threadi at levelj.

We see three advantages to (usually) obeying condition O1:

• Obeying condition O1 allows many effective uses of ope
nested transactions, For example, the B-tree example and
uses of open nested transactions in Section 8 obey condition

• Obeying condition O1 frees programmers from reasoning abo
many subtle issues surrounding the leakage of uncommit
transactional state [26]. For example, if Topenand its ancestors
write datum D, does isolation on D end when Topencommits, but
its ancestors are still active?

• Obeying condition O1 avoids subtle interactions between t
recovery of the parent’s old values and the semantic undo of
child’s actions.

5.3 Open Nesting in LogTM

Open nesting in Nested LogTM requires changes to versi
management and conflict detection.

Version management.When an open nested transaction Topen at
level j commits, Nested LogTM discards Topen’s frame from the
log (making Topen’s parent at levelj-1 current) and optionally
appends commit and compensating action records Copenand Aopen
to the newly exposed end of Topen’s parent’s frame. The handler
records contain a function address, a variable-length argument
and its length.

insert(int key, int value) {
open_begin();

leaf = find_leaf(key);
entry = insert_into_leaf(key, value);
// lock entry to isolate node
entry->lock = 1;

open_commit(abort_action(delete(key)),
commit_action(unlock(key)));

}
insert_set(set S) {

open_begin();
while ((key,value) = next(S))

insert(key, value);
open_commit(abort_action(delete_set(S)));

}

Figure 4: Open Nested B-Tree Example
6

ted
the
ly
nce
n.

are

s
ler
er

se,
ild

s
are

se
ese
ha-
s,

this
and

tack
rst

nd
at
n is

ep

en
e.

en

nt

ears
a

FO
the
the
nt to

heir
g
ts.

a

On transaction abort, the software abort handler uses the log to
restore values and perform compensating actions. Processing the
log in LIFO order naturally produces the correct interleaving of
restored values and compensating actions specified by Moss’
semantics. The handler undoes transactional updates to the point of
each open commit, before performing a compensating action.

Nested LogTM normally logs only the first store to a cache block
at a given transaction level. After an open nested transaction
commits, however, our semantics require that the log contain all
undo records needed to roll back to the state of memory when that
transaction committed. The run-time system ensures the presence
of all necessary log records by immediately beginning a new
implicit closed transaction at the same nesting level as the just
committed open transaction (i.e., levelj). The runtime system
commits this implicit transaction immediately before the next
begin or commit operation, promoting all conflict information to
the j-1 nesting level.

Commit and compensating actions execute as open nested
transactions (at the same (or lower) level as the corresponding
Topenthat committed). These actions may conflict, abort, and retry
like any other open transaction.

Conflict detection.Beginning an open nested transaction Topenat
level j and performing reads and writes within it behaves the same

as a closed nested transaction. When Topen commits, however,
Nested LogTM simply flash clears all R[j] and W[j] bits (instead
of employing the flash-OR used by a closed nested commit).

Nested LogTM also supports two maskable exceptions. Anopen-
level exception gets raised if Topen begins at levelk+1 which
would exceed Nested LogTM’sk levels of R/W bits. Masking this
exception supports unbounded nesting by converting deeply nes
open transactions to flattened closed transactions and ignoring
handlers registered at commit. Masking this exception is on
appropriate for open nested transactions used to enha
concurrency, but not those used for two-way communicatio
Enabling anopen-levelexception allows software (error) handling
when full open nested semantics are required, e.g., when they
used for communication between transactions.

LogTM raises a maskablecondition-O1exception if Topenwrites
data written by an ancestor (violating condition O1). If thi
exception is not raised, the execution is known to obey the simp
semantics of condition O1. Programmers may choose rich
semantics by handling or masking this exception. In that ca
memory locations modified by both the parent and the open ch
remain isolated (i.e. part ofWparent).

Condition O1 can trigger false violations when stack location
used by a parent transaction are reused by an open child. These
not true violations, because the parent implicitly deallocated tho
stack addresses by changing its stack pointer. To prevent th
unnecessary exceptions, Nested LogTM could provide a mec
nism to identify the bottom of the stack when a transaction begin
and mask O1 violations for addresses on the stack page below
address. For the common case, where a transaction begins
ends at the same language scoping level (i.e., the same s
frame), the transaction begin would specify the address of the fi
stack variable written by the child transaction.

Figure 2 (parts a and c) illustrates version management a
conflict detection with open nested transactions. Recall th
Figure 2a shows Nested LogTM state when a nested transactio
ready to commit within a top-level transaction (after step➐ in
Figure 3). Note that the level 1 frame records the write from st
➋, while the level 2 frame records the writes from steps➍, ➏ and
➐. Figure 2c shows Nested LogTM state after the inner op
transaction commits, leaving only the top-level transaction activ

Correctness argument.Here we sketch why the changes to
support open nesting in Nested LogTM are correct. An op
transaction commit by threadi at level j performs in FIFO order
any commit actions registered by committed descende
transactions, discards Topen’s frame (effectively promoting Topen’s
changes to the nearest enclosing value map or memory) and cl
Ri(j) and Wi(j) (to release isolation for data not accessed by
parent transaction). The abort handler processes the log in LI
order, performing memory undos and compensation actions in
inverse order. Thus, even if a transaction violates condition O1,
compensating action sees an ancestral memory state equivale
that which existed when the forward action committed.

6. Escape Actions
While open nested transactions promise greater concurrency, t
semantics are ill-suited for invoking a conventional operatin
system, which will not tolerate stalls or aborts due to data conflic

To this end we proposeescape actionswhich (a) are not
transactional (no atomicity or isolation), (b) may not invoke

counter = 0; // initializes ➊

transaction_begin(); // top-level ➋

counter++; // counter gets 1 ➌

open_begin(); // level 2 ➍

counter++; // counter gets 2 ➎

// commit with compensating action
open_commit(

abort_action(decr(counter))); ➏

...
// Abort and run compensating action ➐

// Expect counter to be restored to 0
...

transaction_commit(); // not executed

Figure 5: An Example Violating O1
Consider this example where threadi initializes a counter (to 0),
begins a transaction, increments the counter (to 1), begins an
open nested transaction, increments the counter again (to 2),
commits the open nested transaction with a compensating action
to decrement the counter (step➏), and later aborts the top-level
transaction (step➐). If no other thread updated the counter, one
might expect the counter to be restored to 0.
Nested LogTM (Section 5.3) would normally raise an exception
at step➎ to signal a dangerous programming practice. If the
condition-O1 exception is masked, the Nested LogTM
implementation gets the expected value for this example. This
occurs because it processes the log back to the commit point of
the open nested transaction (step➏) before running the
compensating action, then processes the rest of the log (restoring
the initial counter value).
Conversely, the McDonald, et al. TCC implementation [18] will
set the counter to +1, not 0 [Kozyrakis and Olukotun, personal
communication]. This occurs because the open transaction
commit (step➏) writes 2 into memory, which is later the input to
the compensating action’s decrement. Furthermore, because
other, more complex examples cause strange behavior in all TM
implementations, we believe that most programmers should
obey condition O1.
7

he
he
e

on
a
er
n

the
ize.
om
r
a
, in
ith

pe
ing
tion
ile
ral
ike
llow
tion

For
do-
pro-

has
tion

as
ful
g
by
.

for
on,
nd
er
an
transaction, (c) may register commit and compensating actions,
and (d) have no effect on enclosing transactions.

Escape actions are low-level escapes to software that is non-
transactional (the rest of the way down), thereby allowing
debuggers and I/O libraries to access and modify uncommitted
transactional data without aborting transactions. They provide an
interface to deal with non-transactional code, which for the
foreseeable future includes operating systems and device drivers.
Even transactional operating systems, though, may use escape
actions to interact with non-transactional I/O devices. To support
non-transactional system calls, escape actions implicitly begin
(end) when entering (exiting) kernel mode, gracefully handling
simple exceptions like software TLB fills. Theescape_begin() and
escape_end() calls provide explicit escape actions.

Similar to processor management instructions that are only
available in assembly code, we envision escape actions being used
to implement low-level functions (e.g., exception handlers,
debuggers, and other run-time support), but are hidden from high-
level language programmers. Thus, the complexity of writing
escape actions is a one-time expense for library and OS developers
but not application developers in general.

6.1 Case Study: Open Solaris Systems Calls

There are many reasons why TM applications may need to access
conventional operating system services within a transaction. Using
the memory allocator example from the introduction, transaction S
may invokesbrk() to grow the heap. But LogTM (or any other
HTM) clearly cannot continue transactional operation within a
non-transactional kernel like Open Solaris. Doing so would cede
isolation control of kernel memory to user-level code.

Escape actions provide a bridge between transactional and non-
transactional software. As summarized in Table 1, escape actions
suffice to handle almost one hundred Open Solaris system calls for
core OS services, such as processor and thread management, file
I/O, and synchronization [30]. Escape actions are trivially correct
for read-only system calls, such asgetpid() , because concurrent
callers cause no errors and thus need no isolation or compensation
on aborts. Also in this category (but not shown in the table) are
traps, such as TLB misses, that read kernel state without causing
user-visible changes (even if they cause transparent changes).

Escape actions can also be made correct for system calls, such as
sbrk(incr) , that affect only threads in the current process. There
are two key steps to invoking such system calls: (1) isolating other
transactions from the effect of the call with a lock or sentinel, (2)

registering a compensating action to roll-back the effects of t
call on transaction abort, and (3) releasing isolation when t
enclosing transaction commits. A sentinel is a location in th
process’s virtual memory that acts as a transactional “lock”
kernel state. Writing to this sentinel location before invoking
system call in effect locks the sentinel and prevents oth
transactions from invoking the call until the outer transactio
commits. Figure 6 illustrates a transactional wrapper around
sbrk() system call, which changes the process data segment s
The wrapper first writes a sentinel that prevents other threads fr
calling sbrk(incr) until the enclosing transaction commits o
aborts. After invokingsbrk() successfully, the wrapper registers
compensating action that undoes the effect of the system call
this case by resetting the data segment back to its original size w
a call to sbrk(-incr) . The wrapper begins and ends the esca
action explicitly to ensure that the system call and compensat
action registration appear atomic (since an enclosing transac
may abort immediately after the escape action ends). Wh
sentinels are sufficient for simple system calls, more gene
locking mechanisms are necessary for more complex calls. L
open transactions, escape actions need commit actions to a
system calls to release isolation when the enclosing transac
commits.

Escape actions, however, cannot make all system calls safe.
example, calls that manipulate data in the file system are not un
able because the effects may have been observed by other
cesses. Similarly, calls such askill() or unlink() cannot be
undone, because the data associated with the process or file
been destroyed. Executing such calls safely inside a transac
may require a serialization-based technique such asunrestricted
transactions [3].

Nevertheless, escape actions allow common exceptions, such
TLB miss handlers and protection fault handlers, and many use
system calls to execute correctly without disrupting runnin
transactions. This greatly simplifies transactional programming
increasing the amount of code that may run within a transaction

6.2 Requirements

Escape actions, like open transactions, have the potential
complex interactions between compensation and undo. In additi
escape actions’ bypassing of transaction conflict detection a
version management (weak atomicity) can lead to furth
programming challenges. As a result, we recommend that
escape action X executed by threadi at transaction levelj obey the
following conditions:

Condition X1 (No Writes to Data Written by Ancestors): X
does not write any data written by its ancestors (Wi(k) for all k ≤ j).

Table 1: Escape Actions and Open Solaris System Calls

Category # Examples

Read-only calls 57 Getpid, times, stat,
access, mincore, sync,
pread, gettimeofday

Undoable calls with (at
most) per-process side
effects

40 Chdir, dup, umask,
seteuid, nice, seek,
mprotect

Undoable calls with
global side effects (not
currently handled)

27 Chmod, mkdir, link,
mknod, stime

Other callsnothandled
by escape actions

89 Write, kill, fork, exec,
umount

(void *)logtm_sbrk(int incr) {
sbrk_sentinel = 0;
escape_begin();
tmp = sbrk(incr);
if (tmp != NULL) {

escape_end(
abort_action(sbrk(-incr)));

} else escape_end(NULL);
return (tmp);

}

Figure 6: Wrapper for sbrk()
8

ior

in

ven

e
es
X2
te
nd
o
te

tion

he
. A

h-
er
ory

ng

,
ort
g

es

nce
es
8].

a)
te
Condition X2 (No Writes to Data Accessed by Others):X does
not write any data read or written by active transactions of other
threads (Rm(k) ∪ Wm(k) for m ≠ i and allk).

Condition X3 (No Reads to Data Written by Others): X does
not read any data written by active transactions of other threads
(Wm(k) for m ≠ i and allk).

Conditions X1 and X2 restrict an escape action from modifying
uncommitted updates by its ancestor transactions and other
threads’ transactions, respectively. Condition X3 restricts an
escape action from reading other threads’ uncommitted updates.

When conditions X1, X2, and X3 hold, escape action X operates as
if it were non-transactional (level 0) except that: (1) X may not
begin a transaction and (2) ending X resumes execution within
threadi’s level j transaction.

An escape action may register commit and compensating actions
Cescape and Aescape. These handlers differ from their open
transaction counterparts in that they execute as escape actions.

Escape actions that violate one or more of conditions X1, X2, and
X3 may be important for debuggers and exception handlers—e.g.,
to allow updates to erroneous values before resuming a transaction.
For this reason, the next section describes LogTM’s escape action
behavior including X1-X3 violations. However, the behavior of
these cases in other HTMs may differ in subtle implementation-
dependent ways.

When conditions X1, X2 and X3 hold, escape actions resemble
Zilles and Bauch’spause/unpause[36]. Each provides an escape
mechanism for non-isolated accesses to memory to support non-
transactional operations, but escape actions do not maintain
pause’s strong atomicity for user-mode code. Zilles now concurs
that weak atomicity [2] is necessary to prevent deadlock if paused
regions access transactionally isolated data [Zilles, personal
communication].

Escape actions also resemble theexternal actionsof Harris’s STM
system for Java [9]. However, Harris’s external actions take special
and potentially costly steps to maintain Java memory safety, such
as pre-registration of future external actions, whereas escape
actions are a lightweight low-level mechanism useful for language
design and system interactions.

6.3 Escape Actions in LogTM

Implementing escape actions in Nested LogTM is straightforward.
An escape action requires a newEscape flag per thread (see
Figure 1) that indicates whether a transaction is escaped. IfEscape

is not set, Nested LogTM behaves as before. An escape action
begin setsEscape , and an escape action end clears it. Nesting of
escape actions can be implemented in software, as there is no
hardware action required when a nested escape action ends. If an
ancestor transaction aborts while an escape action is running, the
abort is delayed until theEscape flag is cleared.

Version management.When executing escape actions, threadi
makes no changes to its log. Reads and writes always access
coherent memory to return the value from the latest, possibly
uncommitted, write (see below).

Conflict detection.When executing escape actions, threadi
makes no changes to any of its R[k] and W[k] bits. It ignores
conflicting accesses from other threads, except for the forced
writeback described below.

Correctness argument.Here we sketch why changes from Nested
LogTM to support escape actions are correct when conditions X1,

X2 and X3 hold. When not executing escape actions, no behav
is affected. When executing an escape action X on threadi invoked
from a transaction at levelj, X reads values fromM+ (i.e., written
by any transaction or from memory) and only writes data
memory M+ (and not theRm()’s and Wm()’s of any thread
including i). Thus, no transactionally-modified data is accessed.

LogTM and Violations of X1, X2 and X3.In LogTM, reads in
escape actions always return the value of the most recent, e
uncommitted, write by any thread. Reads to data modified by a
transaction in another thread (X3 violation) return th
uncommitted data as an uncacheable block [15]. Similarly, writ
to blocks read or modified by a transaction in another thread (
violation) update values immediately. Such writes invalida
remote caches—forcing modified blocks back to memory—a
leave blocks in the sticky-S or sticky-M state [21]. Writes t
memory locations modified by ancestors (X1 violation) upda
values, but do not affect ancestors’ W bits or log.

7. Methods
This section describes target system assumptions and simula
techniques for evaluating Nested LogTM versus Flat LogTM.

Table 2 summarizes the parameters of our system model. T
system has 32 processors, each with two levels of private cache
MOESI directory protocol maintains coherence over a hig
bandwidth switched interconnect. The single-issue in-ord
processor model assumes an aggressive, single-cycle non-mem
IPC. The detailed memory system model includes most timi
intricacies of the transactional memory extensions.

Our simulation framework usesVirtutech Simics [16] in
conjunction with customized memory models built onWisconsin
GEMS [17, 33]. Simics, a full-system functional simulator
accurately models the SPARC architecture but does not supp
transactional memory. Support for LogTM was added usin
Simics “magic” instructions: special no-ops that Simics catch
and passes to the memory model.

8. Experiments
This section presents four experiments that isolate the performa
differences for the different nesting alternatives. Earlier studi
have examined the benefits of transactions over locks [1, 7, 21, 2

8.1 Exercising Nesting with Sorted List

First, we use two versions of a sorted list microbenchmark to (
verify that Nested LogTM performs as expected and (b) illustra

Table 2: System Model Parameters

System Model Settings

Processors 32, 1 GHz, single-issue, in-order,
non-memory IPC=1

L1 Cache 16 kB 4-way split, 1-cycle latency

L2 Cache 4 MB 4-way unified, 12-cycle latency

Memory 4 GB 80-cycle latency

Directory Full-bit vector sharer list;
migratory sharing optimization;
Directory cache, 6-cycle latency

Interconnection
Network

Hierarchical switch topology,
14-cycle link latency
9

tree,
rt
h
el
ay
a

om
ns.
do

ee
n 31

not
are
a

p

1,
on
the
gle

into
uent

g
nse
nd
ed

ative
s the
-1
le

er)
exity
e
er
the conditions under which closed nesting with partial aborts
(Closed) and open nesting (Open) can outperform flattening (Flat).

The sorted list microbenchmark searches a shared, sorted linked-
list of complex elements. Each thread repeatedly begins a top-level
transaction that examines list elements to find a matching field
chosen at random. Both microbenchmark versions update a global,
shared counter in a level-two nested transaction, but do so at
different points in the execution. Slist-EARLY performs the update
before the search, while Slist-LATE performs it afterwards. Since
searches are read-only, all contention occurs on the counter update.
Counter updates do not require a compensating action because the
counter value must be unique but not continuous.

For Slist-LATE (the left side of Figure 7), Nested LogTM with
both Closed and Open improves performance relative to Flat
LogTM by about 10%. Performance improves because both avoid
complete aborts when the nested transactions conflict. The two
versions perform similarly, because the top-level transaction
commits soon after the level-two transaction commits, limiting
how long Closed and Flat extend isolation on the counter.

For Slist-EARLY (the right side of Figure 7), closed nesting with
partial aborts offers no performance improvement, while open
nesting provides dramatic improvement. Closed does not help
since either (a) the abort occurs within the level-two transaction,
and there is little difference between a partial abort and a complete
abort since the nested transaction occurs early in the outer
transaction, or (b) the abort occurs after the level-two transaction
commits, forcing a complete abort since the outer transaction
subsumes the inner. Open achieves much better performance since
it releases isolation on the counter when the level-two transaction
commits, greatly increasing concurrency.

These results illustrate that closed nesting with partial aborts can
only improve performance when conflicts arise for nested
transactions that occur late in the top-level transaction. Conversely,
because open nesting releases isolation, it improves performance
especially for nested transactions that occur early in the top-level
transaction.

8.2 B-Tree Microbenchmark

The B-Tree microbenchmark represents a common class of
concurrent data structures found in many applications. Results
show that Closed provides little benefit over Flat, and that Open
represents an attractive alternative to restructuring the workload to
increase concurrency.

In B-Tree, each thread makes repeated accesses to a shared
randomly performing a lookup (with 85% probability) or an inse
(15%). The tree is a 9-ary B-Tree, initially 6 levels deep. Each hig
level operation (insert or lookup) is executed as a top-lev
transaction. Inserts that encounter full nodes split them on the w
down the tree (preventing back propagation). Splits occur in
level-two closed nested transaction. New nodes are allocated fr
a shared free list in open or closed level-three nested transactio
We assume the presence of a garbage collector and therefore
not use a compensating action with open nested transactions.

Figure 8 illustrates the speedup of alternative versions of B-Tr
relative to sequential performance. Speedups can exceed 16 o
threads. (We use 31, not 32, threads, because Solaris does
allows threads to be bound to all processors.) Such speedups
cost-effective in multiprocessors that cost less than 16 times
uniprocessor [35], which will certainly be the case for chi
multiprocessors.

The bottom two lines of Figure 8, labeled Flat-1 and Closed-
show poor speedup for Flat and Closed. Further investigati
revealed that insert transactions frequently contended on
shared free list. Because the entire insert executes within a sin
parent transaction, both Flat and Closed subsume the free list
the parent transaction’s write set, preventing access by subseq
inserts until the parent transaction commits.

Partitioning the free list into 100 separate lists (approximatin
thread-private allocators) eliminates this bottleneck, at the expe
of restructuring the benchmark. The lines labelled Flat-100 a
Closed-100 in Figure 8 show good speedup with the improv
allocator, but little difference between Flat and Closed.

As discussed earlier, open nesting presents an appealing altern
for allocators. Open-1 uses an open nested transaction to acces
simple (non-partitioned) free list. Figure 9 shows that Open
(simple allocator) performs much better than Closed-1 (simp
allocator) and as well as Closed-100 (partitioned allocator).

These results demonstrate that a programmer (or library writ
can choose between an open nested transaction and the compl
of parallelizing her allocator. We see considerable merit in th
former approach, especially for more complex allocators and oth
data structures.

0

1

2
Sp

ee
du

p

Closed Open
Slist-LATE

Closed Open
Slate-EARLY

Figure 7: Slist Speedup of Closed Nesting with Partial Aborts
or Open Nesting (over a Flat Implementation)

10 20 30

Threads

0

5

10

15

Sp
ee

du
p

Closed-100
Flat-100
Closed-1
Flat-1

Figure 8: Scalability of B-Tree using Flat Closed Nesting and
Closed Nesting with Partial Aborts and 1 (Flat-1 and Closed-

1) or 100 (Flat-100 and Closed-100) free lists
10

ves
ond
ce
ake
B
y.

ent
to

ape
ap

ed
en
et

ms
s
it

rts
or
le,
)
We

ll

ly-

y

8.3 Splash-2’s Radiosity, Raytrace, Cholesky

The original LogTM paper [21] converted selected SPLASH-2
benchmarks [34] by replacing locks with transactions and leaving
barriers and other synchronization mechanisms unchanged. That
study found that Flat LogTM offered good performance that was
comparable to or better than locks.

We modified the flat transaction versions of Radiosity, Raytrace,
and Cholesky by adding closed nested transactions. Open nesting
cannot be applied, because the data modifications cannot be
undone once isolation is released. The other benchmarks did not
lend themselves easily to nested transactions. Radiosity contains
nested locking which we replaced with closed nested transactions.
Raytrace and Cholesky have memory allocation routines that need
to walk a list of elements. For these programs, we use nesting to
split large transactions into smaller transactions that allow partial
abort. The entire list access is placed within a transaction and,
additionally, the code that modifies the list is put inside a nested
transaction. We also optimized Raytrace to prevent interactions
between transactions due to false sharing.

We ran these benchmarks with closed nesting with partial aborts
and confirmed Chung et al.’s [5] finding that closed nesting does
not help these programs (much). Our result is due, in part, to the
rarity of aborts in SPLASH-2 on Flat and Nested LogTM.

8.4 Escaping to Open Solaris

An escape action allows a control transfer from a transactional nest
to a non-transactional system (and back). Figure 7 (Table 1)
illustrates that escape actions suffice to handle almost one hundred
Open Solaris system calls [30]. This section illustrates Nested
LogTM escaping to Solaris for TLB traps, loading the TLB in the
non-transactional kernel, and resuming user-level activity. Without
escape actions, LogTM must first abort the active transaction (to
preserve user/kernel isolation), handle the TLB trap in non-
transactional mode, then restart the transaction.

We exercise these two implementations of TLB traps with a single-
threaded microbenchmark that walks a character array with a
256 B stride. Figure 10 displays the data read rate1 for varying

array sizes. Nested LogTM with escape actions (Escape) achie
roughly constant performance regardless of array size. The sec
line (Abort) shows that without escape actions, performan
degrades rapidly as array size increases. Abort even fails to m
forward progress for 4 MB arrays and larger, since with 8 K
pages and a 512-entry TLB, the TLB cannot map the entire arra

8.5 Results Discussion

Nested LogTM provides the greatest performance improvem
over Flag LogTM when open nested transactions are used
release isolation early, thereby increasing concurrency. Esc
actions improve performance by allowing non-transactional tr
code to execute without aborting the current transaction.

We did not see much improvement from closed nest
transactions, which only provides a performance benefit wh
transactions abort. Our SPLASH-2 results concur with Chung
al.’s [5] finding that closed nesting does not help these progra
(much). In fact, not much benefit is possible with SPLASH-2 a
Flat LogTM rarely aborts on these programs, in part because
stalls first [21].

More recently, the TCC group has adapted workloads where abo
are more common and partial aborts are valuable [6, 18]. F
SPECjbb2000 on eight processors [6, Figure 3], for examp
violations dominated execution time with flattening (60% of time
and closed nested reduced execution time substantially (40%).
do not (yet) know whether closed nesting will similarly help
Nested LogTM on these workloads or whether stalling wi
mitigate the benefit of partial aborts.

9. Conclusions
Transactional memory (TM)systems can supportclosed nested
transactions with complete aborts only (flattening) or selective
partial aborts on nested transactions,open nestedtransactions,
and/or newly-proposedescape actions.This paper expresses the
behavior of these alternatives in a common model.

We implement the above nesting alternatives in the recent
proposed flatLog-based Transactional Memory (LogTM). Nested
LogTM supports (a) closed nesting with partial aborts b
segmenting the log into astack of activation recordsand modestly

1. The data rate is low because each reference fetches one byte, misses in
the L2 cache, and each TLB miss causes a second-level TSB miss.

Figure 9: Scalability of B-Tree Using Multiple Allocators or
Open Nesting.

10 20 30

Threads

0

5

10

15

Sp
ee

du
p

Open-1
Closed-100
Closed-1

1000 2000 3000 4000

Benchmark Footprint (in KB)

0

2

4

6

D
at

a
R

ea
d

(i
n

M
B

/s
ec

)

Escape
Abort

Figure 10: Strided Array Accesses Causing TLB Traps
Handled with Escape Actions (Escape) or Aborts.
11

s

l

-

. In

to

g,

16-

re
replicating R/W bits, (b) open nesting by allowing a committing
open transaction to release isolation and optionally save commit
and compensating actions on the log, and (c) non-transactional
escape actions, also with commit and compensating actions.

We evaluate with (mostly) TM microbenchmarks to demonstrate
closed and open nesting performance differences (sorted list),
concurrency exposed by open nesting (B-Tree), little performance
improvement from closed nesting (SPLASH-2 subset), and correct
operation for TLB traps via exposed actions (strided array).

Future work includes evaluating closed nesting with partial aborts
and open nesting using benchmarks more representative of future
TM workloads. We also plan to explore the richer semantics of
open nested transactions and escape actions to provide more
complete runtime and operating system support.

10. Acknowledgements
We thank Virtutech AB, the Wisconsin Condor group, and the
Wisconsin Computer Systems Lab for their help and support. We
thank Daniel Gibson for the flash-Or circuit. We thank Håkan
Zeffer, the UW Computer Architecture Affiliates, and the members
of the Wisconsin Multifacet project for their helpful feedback on
this work.

11. References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded Transactional Memory. InProceedings of the
Eleventh IEEE Symposium on High-Performance Computer
Architecture, Feb. 2005.

[2] C. Blundell, E. C. Lewis, and M. M. Martin. Deconstructing
Transactional Semantics: The Subtleties of Atomicity. InWorkshop
on Duplicating, Deconstructing, and Debunking (WDDD), June 2005.

[3] C. Blundell, E. C. Lewis, and M. M. Martin. Unrestricted
Transactional Memory: Supporting I/O and System Calls within
Transactions. Technical Report TR-CIS-06-09, University of
Pennsylvania, June 2006.

[4] B. D. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. C. Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun. Transactional
Execution of Java Programs. InSCOOL Workshop, Oct. 2005.

[5] J. Chung, H. Chafi, C. C. Minh, A. McDonald, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun. The Common Case Transactional
Behavior of Multithreaded Programs. InProceedings of the Twelfth
IEEE Symposium on High-Performance Computer Architecture, Feb.
2006.

[6] J. Chung, C. C. Minh, B. D. Carlstrom, and C. Kozyrakis.
Parallelizing SPECjbb2000 with Transactional Memory. InPODC
Workshop on Concurrency and Synchronization in Java Programs,
June 2006.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and Consistency. In
Proceedings of the 31st Annual International Symposium on
Computer Architecture, June 2004.

[8] T. Harris. Design Choices for Language-Based Transactions.
Technical Report UCAM-CL-TR-572, University of Cambridge,
Aug. 2003.

[9] T. Harris. Exceptions and side-effects in atomic blocks. InPODC
Workshop on Concurrency and Synchronization in Java Programs,
Jul 2004.

[10] T. Harris and K. Fraser. Language support for lightweight
transactions. InProceedings of the 18th SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Application
(OOPSLA), Oct. 2003.

[11] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
Memory Transactions. InProceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPOPP), June 1991.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer III. Software
Transactional Memory for Dynamic-Sized Data Structures. In
Twenty-Second ACM Symposium on Principles of Distributed
Computing, Boston, Massachusetts, July 2003.

[13] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. InProceedings of the 20th
Annual International Symposium on Computer Architecture, pages
289–300, May 1993.

[14] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to
recovery by compensating transactions. InProceedings of the
sixteenth international conference on Very large databases, pages 95–
106, San Francisco, CA, USA, 1990. Morgan Kaufmann Publisher
Inc.

[15] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors. In
Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 48–59, June 1995.

[16] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[17] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset.Computer Architecture News, pages 92–99, Sept.
2005.

[18] A. McDonald, J. Chung, B. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural Semantics for Practica
Transactional Memory. InProceedings of the 33nd Annual
International Symposium on Computer Architecture, June 2006.

[19] S. Microsystems. OpenSolaris: Mutex.c. http://cvs.opensolaris.org/
source/xref/on/usr/src/uts/common/os/mutex.c.

[20] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. InReadings in Database Systems, pages 251–285. Morgan
Kaufmann Publishers, 1998.

[21] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-Based Transactional Memory. InProceedings of the
Twelfth IEEE Symposium on High-Performance Computer
Architecture, Feb. 2006.

[22] J. E. B. Moss.Nested transactions: an approach to reliable
distributed computing. PhD thesis, Massachusetts Institute of
Technology, 1981.

[23] J. E. B. Moss. Nesting Transactions: Why and What Do We Need?
TRANSACT Keynote Address, June 2006.

[24] J. E. B. Moss. Open Nested Transactions: Semantics and Support
Workshop on Memory Performance Issues, Feb. 2006.

[25] J. E. B. Moss, N. D. Griffeth, and M. H. Graham. Abstraction in
recovery management. InSIGMOD ’86: Proceedings of the 1986
ACM SIGMOD international conference on Management of data,
pages 72–83, New York, NY, USA, 1986. ACM Press.

[26] J. E. B. Moss and A. L. Hosking. Nested Transactional Memory:
Model and Preliminary Architecture Sketches. InSCOOL Workshop,
Oct. 2005.

[27] D. L. Parnas. On the criteria to be used in Decomposing Systems in
Modules.Communications of the ACM, 15(12):1053–1058, Dec 1972.

[28] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. InProceedings of the 32nd Annual International
Symposium on Computer Architecture, June 2005.

[29] N. Shavit and D. Touitou. Software Transactional Memory. In
Fourteenth ACM Symposium on Principles of Distributed Computin
Ottawa, Ontario, Canada, pages 204–213, Aug. 1995.

[30] I. Sun Microsystems. Solaris 10 Reference Manual Collection: man
pages section 2: System Calls. http://docs.sun.com/app/docs/doc/8
5167.

[31] G. Weikum. A Theoretical Foundation of Multi-Level Concurrency
Control. InProceedings of the Fifth ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (PODS), pages 31–43,
Mar. 1986.

[32] G. Weikum and H.-J. Schek.Concepts and Applications of Multilevel
Transactions and Open Nested Transactions. Morgan Kaufmann,
1992.

[33] Wisconsin Multifacet GEMS Simulator.
http://www.cs.wisc.edu/gems/.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–37, June 1995.

[35] D. A. Wood and M. D. Hill. Cost-Effective Parallel Computing.IEEE
Computer, pages 69–72, Feb. 1995.

[36] C. Zilles and L. Baugh. Extending Hardware Transactional Memory
to Support Non-busy Waiting and Non-transactional Actions. InFirst
ACM SIGPLAN Workshop on Languages, Compilers, and Hardwa
Support for Transactional Computing, June 2006.
12

	1. Introduction
	1.1 Challenges
	Challenge 1: Facilitating Software Composition
	Challenge 2: Enhancing Concurrency
	Challenge 3: Escaping to Non-Transactional Systems

	1.2 Nested LogTM
	Contribution 1: Closed Nesting with Partial Aborts
	Contribution 2: Open Nesting
	Contribution 3: Escape Actions

	2. A Transactional Memory Model
	3. Flat LogTM Background
	Figure 1: LogTM Node

	4. Closed Nesting With Partial Abort
	4.1 Requirements
	4.2 Closed Nesting in LogTM
	Figure 2: Nested LogTM Operation
	Version management
	Figure 3: Closed Nesting Example

	Conflict detection
	Correctness argument

	5. Open Nested Transactions
	5.1 Requirements
	5.2 Interactions Between Undo and Compensating Actions
	Figure 4: Open Nested B-Tree Example

	5.3 Open Nesting in LogTM
	Version management
	Figure 5: An Example Violating O1

	Conflict detection
	Correctness argument

	6. Escape Actions
	6.1 Case Study: Open Solaris Systems Calls
	Table 1: Escape Actions and Open Solaris System Calls

	6.2 Requirements
	Figure 6: Wrapper for sbrk()

	6.3 Escape Actions in LogTM
	Version management
	Conflict detection
	Correctness argument
	LogTM and Violations of X1, X2 and X3
	Table 2: System Model Parameters

	7. Methods
	8. Experiments
	8.1 Exercising Nesting with Sorted List
	Figure 7: Slist Speedup of Closed Nesting with Partial Aborts or Open Nesting (over a Flat Implem...

	8.2 B-Tree Microbenchmark
	Figure 8: Scalability of B-Tree using Flat Closed Nesting and Closed Nesting with Partial Aborts ...

	8.3 Splash-2’s Radiosity, Raytrace, Cholesky
	Figure 9: Scalability of B-Tree Using Multiple Allocators or Open Nesting.

	8.4 Escaping to Open Solaris
	8.5 Results Discussion
	Figure 10: Strided Array Accesses Causing TLB Traps Handled with Escape Actions (Escape) or Aborts.

	9. Conclusions
	10. Acknowledgements
	11. References

