
Enforcing Murphy’s Law for Advance Identification of Run-time Failures∗

Zach Miller
zmiller@cs.wisc.edu

University of Wisconsin–Madison

Todd Tannenbaum
tannenba@cs.wisc.edu

University of Wisconsin–Madison

Ben Liblit
liblit@cs.wisc.edu

University of Wisconsin–Madison

Abstract
Applications do not typically view the kernel as a source
of bad input. However, the kernel can behave in unusual
(yet permissible) ways for which applications are badly
unprepared. We present Murphy, a language-agnostic tool
that helps developers discover and isolate run-time fail-
ures in their programs by simulating difficult-to-reproduce
but completely-legitimate interactions between the appli-
cation and the kernel. Murphy makes it easy to enable
or disable sets of kernel interactions, called gremlins, so
developers can focus on the failure scenarios that are im-
portant to them. Gremlins are implemented using the
ptrace interface, intercepting and potentially modify-
ing an application’s system call invocation while requiring
no invasive changes to the host machine.

We show how to use Murphy in a variety of modes to
find different classes of errors, present examples of the
kernel interactions that are tested, and explain how to ap-
ply delta debugging techniques to isolate the code causing
the failure. While our primary goal was the development
of a tool to assist in new software development, we suc-
cessfully demonstrate that Murphy also has the capability
to find bugs in hardened, widely-deployed software.

1 Introduction

1.1 Motivation

Despite extensive in-house regression testing, buggy soft-
ware is still released for a variety of reasons including
incomplete test coverage, unexpected user inputs, and dif-
ferent run-time environments. Software developers want
to systematically discover, identify, and fix application
run-time failures before they affect users in the field. One

∗Supported in part by DoE contract DE-SC0002153, LLNL contract
B580360, and NSF grant CCF-0953478. Opinions, findings, conclu-
sions, or recommendations expressed herein are those of the authors and
do not necessarily reflect the views of NSF or other institutions.

challenge towards accomplishing this lofty goal is non-
deterministic behavior at the level between the application
and the kernel. A typical application makes thousands
of calls into the kernel, and most of the time these calls
respond in a repeatable manner. However, under certain
run-time environment conditions, system calls into the
kernel that typically succeed may return with legitimate
but unexpected values.

A simple example is the write() system call: it
usually succeeds when given valid input parameters, but
fails if the disk is full. Does a given program behave in
an acceptable and predictable manner in the event of a
full disk? Often development teams only learn the answer
when users report failures in the field. Another example
is the read() system call, which can legitimately return
fewer bytes than requested by the caller. This may happen
if an interrupt occurs or if a slow device does not have
all requested data immediately available. Do programs
always check the number of bytes returned by a read()
and react appropriately?

Complicating the situation is the fact that environmen-
tal conditions which bring about unexpected return values
from the kernel are often hard to replicate in a typical
automated testing environment. For instance, how should
a regression test suite validate proper behavior in the
event of a full disk? Actually filling the disk to capac-
ity causes problems for other processes on the machine.
Mounting a loopback device volume requires superuser
privileges [12]. Even creating a virtual machine with a
full disk may not solve the problem, as this could cause
faults in the test harness itself. Other environmental con-
ditions can be even more challenging to reproduce. The
consequence is that developers fail to perform continuous
integration testing under these conditions.

Across many imperfect human endeavors, Murphy’s
Law pessimistically predicts that “If anything can go
wrong, it will.” Unfortunately, this does not apply when
testing software. Testing would find more bugs sooner if
Murphy’s Law were more strictly enforced.

mailto:zmiller@cs.wisc.edu
mailto:tannenba@cs.wisc.edu
mailto:liblit@cs.wisc.edu


1.2 Approach
Given the observation that a program ultimately interacts
with its environment via the kernel interface, we offer a
tool, called Murphy, to serve as an interposition agent be-
tween the application being tested and the kernel interface.
Interposing at the kernel interface allows us to simulate a
wide variety of environmental events. We allow enabling
and disabling different sets of system call transformations,
or gremlins, so developers can focus on the failure sce-
narios that are important to them. For example, when
the application requests bytes from a file descriptor, the
readone gremlin rewrites the system call to ask for and
return one byte at a time.

Beyond the gremlins themselves, Murphy offers several
additional mechanisms to steer its behavior. A flexible
activation policy language lets developers focus gremlin
activity based on the call location, values of actual argu-
ments to the call, and various other run-time properties.
A replayable gremlin activation log allows deterministic
reproduction of failures and iterative root-cause analy-
sis via delta debugging [17]. The Murphy run-time API
lets programs under test dynamically steer Murphy’s ac-
tions based on the program’s own internal state, further
supporting automated testing and debugging.

The remainder of this paper is organized as follows.
Section 2 describes the architecture of Murphy, includ-
ing example gremlins and run-time steering mechanisms.
Section 3 provides our results running Murphy, and re-
lated work is presented in Section 4. We conclude and
suggest future work in Section 5.

2 Architecture and Implementation

Our descriptions here are necessarily brief; additional
details appear in a companion technical report [10].

2.1 System Call Interposition
We use a customized version of the Parrot Virtual File Sys-
tem tool [15] as the basis for our interposition mechanism.
Parrot handles core tasks such as intercepting I/O-related
system calls, decoding arguments, and replacing selected
calls with new functionality. All of these actions are
performed in user-space with no kernel modifications or
special administrative privileges. Most uses of Parrot con-
cern I/O virtualization for large-scale, distributed systems.
We use Parrot here to simplify building gremlins.

2.1.1 Use of ptrace

Our implementation uses the ptrace interface to option-
ally modify interactions with the kernel, essentially acting
as a “system interface interposition agent.” [7] When the

application under test invokes a system call, the kernel sus-
pends that process and passes control to Murphy, which
intercepts and inspects the call. At this point, Murphy
may decide to tamper with the program’s execution by
using the ptrace mechanism to peek (read) or poke
(write) bytes into the traced program’s address space. De-
pending upon the system call trapped and which gremlins
are configured to be active, Murphy will either

1. pass the system call to the kernel and then pass the
response back to the application without any modifi-
cation of the input or output arguments;

2. immediately return a failure to the application with-
out actually passing the request to the kernel; or

3. modify the input arguments to the system call before
passing the call to the kernel, and pass the actual
response back to the application.

Murphy is able to track and trace entire process fami-
lies by trapping fork(), clone(), getppid() and
others, and forwarding signals and process exit codes.

2.1.2 Trade-offs of ptrace Interposition

Our system call interposition approach has pros and cons.
There is great ubiquity by trapping via ptrace, and
great flexibility by interposing in user-space. One major
benefit is being language agnostic: Murphy works with
applications written in any language, including increas-
ingly popular managed languages such as Python and
Java. No source code is required, and environmental fail-
ures can be simulated without root privileges and without
impacting other processes on the system not targeted for
testing. Because Murphy supports tracing entire process
trees, it is possible to test software stacks (such as LAMP)
consisting of many different programs written in differ-
ent languages, in addition to programs that are statically
linked and/or linked with C run-times other than glibc.

This approach also has challenges. The Linux system
call interface does not necessarily correspond neatly to ap-
plication actions. For example, all of the network socket
calls are multiplexed into one (complicated) system call.
Similarly, the mapping between thread creation and co-
ordination as familiarly described by the POSIX threads
API manifests itself via a strange brew of clone() and
futex() system calls. When developing new gremlins,
figuring out how these APIs map onto the system call
interface can be a time-consuming exercise. Furthermore,
recent versions of the Linux kernel introduced vsyscall
and vDSO mechanisms to accelerate system calls that
do not require any real level of privilege to run, such
as gettimeofday() [1]. Calls that use these mecha-
nisms do not cross the user/kernel boundary and therefore
are invisible to Murphy.



2.2 Gremlins
We implement several example gremlins within this gen-
eral framework. These include gremlins that immedi-
ately return legitimate error codes such as errno EINTR
or errno EAGAIN; gremlins that modify read() and
write() to simulate interrupted I/O; gremlins that in-
troduce different amounts of latency; and special-purpose
gremlins that span multiple system calls, for example sim-
ulating a full disk partition by returning errno ENOSPC in
situations where that would make sense. In general, grem-
lins can further be divided into two categories: halting
and non-halting. Halting gremlins typically prevent the
application from making any further progress, such as
enospc that simulates a full disk. When enabling halting
gremlins, a developer can test that an application does
not simply crash or abort, but instead correctly handles
the situation by shutting down in an acceptable manner
and reporting the error to the end-user. On the other hand,
non-halting gremlins such as readone (causes read() to
return one byte at a time) should not typically cause pro-
gram failure. If a program’s regression test suite passes
with no gremlins, it should continue to pass with any
non-halting gremlins activated.

Gremlins require defined composition and precedence
rules. For example, both the enospc and the writeone
gremlins tamper with the write() system call. If two
or more gremlins trap the same system call, can their
behaviors be combined, and if not, which one should have
priority? In our current implementation, composition and
precedence rules are hard-coded into Murphy.

2.2.1 Challenges to Writing Realistic Gremlins

Implementation of a single gremlin may require trap-
ping multiple system calls. For instance, consider the
enospc gremlin. Trapping just write() is not sufficient
to simulate a full disk. open(), mknod(), mkdir(),
rename() and over a dozen other system calls could
fail due to a full disk. Murphy traps all of these.

Other gremlins may need to trap and record data from
multiple system calls in order to correctly reconstruct ker-
nel state and keep interactions legitimate. For example,
consider the cwdlongpath gremlin that simulates execut-
ing the program with the current directory set to a very
long path. At first blush, this sounds simple: just trap the
getcwd() system call and return errno ERANGE if the
size of the caller’s buffer is smaller than the maximum
allowed POSIX path length. But what if the program
explicitly does a chdir() to /usr, and then invokes
getcwd()? If /usr is not a symbolic link, the caller
may safely assume that a smaller buffer is sufficient.

Another example is our desire for gremlins which oper-
ate on file descriptors to be conditionally activated based
on the fully qualified path name referenced by the descrip-

tor. To accomplish this, Murphy always traps open() to
maintain mappings from file descriptors to file names. At
later calls, these mappings allow “decoding” file descrip-
tors so that they can be made available as file names for
use with gremlin conditional activation (see Section 2.3).
Argument decoding requires extra care for gremlins that
operate on multiple system calls, as the meanings of argu-
ments vary from one call to another. Finally, to make this
useful in practice (for example, simulating /tmp being
full), Murphy also needs to store path names that are fully
qualified and canonicalized, meaning Murphy needs to
track the current working directory, resolve relative paths,
and expand symbolic links.

2.3 Use, Configuration, and Run-time API
To use Murphy, a developer simply invokes it with the
name of the program to debug as a command-line argu-
ment. Optional command-line switches can specify the
location of a configuration file and/or request the creation
or replay of a gremlin activation log (see Section 2.4).

Each gremlin can be independently configured to be
active, inactive, or conditionally active using a text-based
configuration file. Activation conditions can be expressed
in the ClassAd declarative policy language [14], provid-
ing great flexibility. A condition can be as simple as a
random activation probability or can be more complex
such as “activate when the file descriptor passed to this
call corresponds to a file name that matches lib*.so.”

A run-time API complements and extends static con-
figuration. By calling into this API, the application un-
der test can set arbitrary metadata, which is included
in the gremlin activation log. Metadata might include
source location information or relevant program state
variables. Additional API functions allow the configu-
ration described above to be modified dynamically for
fine-grained, program-directed control over gremlin acti-
vation. Lastly, API functions allow the program to detach
from Murphy and either suspend execution or immedi-
ately attach a debugger to the program under test. This
helps the programmer follow their code into an area where
they suspect it misbehaves. Taken together, the facilities
offered by Murphy’s run-time API help bridge the gap
between an observed failure and the real root cause.

2.4 Reproduction of Failures
Reliably reproducing failures is essential to software test-
ing and debugging. If Murphy is to assist developers be-
yond just alerting them to the existence of a bug, it must
be able to reproduce the problem on demand. Note that
even if a program’s system call profile is deterministic,
the interleaving of system calls across multiple processes
is decidedly non-deterministic. In order to reproduce



gremlin-induced failures in multi-process code, we mini-
mize non-deterministic behavior as follows:

1. Each gremlin has a separate pseudo-random num-
ber generator (PRNG) seed and state. Invoking the
readone gremlin any number of times does not affect
the PRNG for the writeone gremlin.

2. Multiple invocations of Murphy yield the same se-
quence of pseudo-random numbers.

3. For each process spawned by the application under
test, Murphy maintains distinct system call statistics,
gremlin states, PRNG state, and metadata.

4. Because the process ID (pid) assigned by the operat-
ing system changes during each re-run, Murphy as-
signs each newly spawned processes a virtual, mono-
tonically increasing pid, or vpid. System call activity
by this process is tracked using the tuple (pid, vpid).

Murphy can log an event whenever a gremlin modifies
a system call. This log, called the gremlin activation log,
contains a record indexed by the tuple (gremlin name,
vpid) with the following fields: (1) how many times this
particular gremlin was consulted to see if it wanted to
modify the system call, (2) how many times Murphy has
actually modified the system call, (3) the total count of
all system system calls invoked by this vpid, and (4) the
current value of user-supplied metadata for this process.
Because this log uses the virtualized pid, and keeps track
of the various system call statistics per vpid, successive
runs of Murphy tracing the same program yield the same
results, provided the program itself is deterministic.

Murphy can be instructed to replay the gremlin activa-
tion log while executing the program again, which pro-
duces the same results for deterministic programs. Mur-
phy prints a warning if the count of total system calls for
a given process does not match the log when a gremlin
activation is replayed, letting the user know that things
are not replaying identically. However, this is not fatal. In
fact, it must be allowed later when minimizing the replay
log (Section 2.5): removing certain gremlin invocations
(such as readone) can affect how many subsequent system
calls (such as read()) occur.

2.5 Fixing Failures
One disadvantage of interposing at the system-call level
is a disconnect between these calls and the application
developer’s view of the operations being performed. This
disconnect could create an understanding gap when it
comes time for the developer to localize and fix errant
behavior discovered by Murphy. While we assert that the
mere existence of a tool that can discover such errors on
a multi-process and possibly multi-language application

is of value, we also support an automated strategy to help
bridge this gap.

The first step is to use delta debugging [17] to shrink the
failure-inducing gremlin activation log, thereby isolating
just a few system calls that need to be manipulated to
reproduce the failure. The second step uses Murphy to
replay the minimized gremlin activation log, but now
configured to suspend and detach from the application
immediately upon replaying the last event in the log.

Delta debugging makes it easy for the programmer to
focus their attention on the important system calls that
behaved differently under Murphy. However, while very
effective at minimizing gremlin activity, this does not
completely bridge the gap between kernel interactions and
source code. Thus, suspending after the last event leaves
the program in a state where things are just about to go
wrong. The user can attach with a debugger and directly
observe the program’s response to the manipulated system
calls. In our experiments, this often results in a stack trace
that pinpoints the exact line of buggy code.

3 Experimental Results

We applied Murphy to a variety of heavily-used open
source packages. We ran the regression test suites of these
packages primarily with non-halting gremlins enabled,
and considered failed tests as bug candidates. We applied
delta debugging per Section 2.5 to narrow down the code
to be inspected. Often the activation log shrank to just a
single system call, correlated with exactly one line of code.
For example, we found a Perl interpreter bug by starting
with an activation log containing 114,019 interleaved read
and write system calls; delta debugging reduced this to
just one vulnerable call that sufficed to cause the failure.

3.1 Ability to Detect and Pinpoint Bugs
Practically everything we tested failed with the eagain
and eintr gremlins enabled. We could not run a single
regression test suite with these gremlins active, as many
test harnesses rely on tools like make that failed under the
influence of these gremlins. The man pages for various
system calls clearly document that they may return errnos
EAGAIN or EINTR. Yet it seems that almost nothing ac-
tually checks for them. We also decided to forgo system-
atic testing with the latency-introducing gremlins given
the limited time available for experimentation, because
these obviously make the test suites run much slower.

Given the above, we focused our efforts primarily on
testing with the readone and writeone gremlins. We found
that even widely-used software failed to check for (or retry
after) short reads or writes. Bash and Perl failed with short
writes, while the widely-used OpenSSL library failed with
short reads. The ubiquitous glibc also failed with short



reads: the Linux dynamic loader failed if it could not
read an executable or shared library’s ELF header in one
read(). Even the trivial /bin/true program failed
in this manner. This is a sobering sign that the problems
Murphy targets are truly endemic, affecting even the most
basic functionality of the system.

Problems were by no means limited to C code, or even
to compiled code in general: short writes caused failures
in both the Perl and Python regression test suites. The Perl
and Python interpreters propagated Murphy-induced un-
usual behavior up into scripts. This is consistent with both
interpreters’ documented behavior, but the scripts them-
selves were unprepared for the consequences. Across a
variety of application domains and languages, the method-
ology discussed in Section 2.5 allowed us to quickly and
easily pinpoint each bug in the source code. We have
reported some bugs to upstream developers and expect to
report more in the future.1

3.2 Performance
Instrumenting a Linux process through ptrace incurred
overhead due to the nature of trapping every system call:
this requires several context switches between user and
kernel space even if Murphy leaves the call unchanged. To
get a feel for this overhead, we measured the wall-clock
time of running the OpenSSL test suite with and without
Murphy instrumentation. First we ran the test suite with
no gremlins enabled. This measured the ptrace over-
head exclusive of any repercussions from manipulating
the system calls. This took 34 seconds instead of the non-
Murphy baseline of 6 seconds, for a slowdown of about
5.7×. Next we ran the test suite with the non-halting
gremlins enabled. This incurred significant overhead:
325 seconds, or a 54× slowdown from the baseline. This
was primarily due to readone and writeone: these grem-
lins dramatically increased the number of system calls
that are actually invoked over the lifetime of a process.

To mitigate the performance impact of adding sys-
tem calls, we added stateful gremlins similar to readone
and writeone, called readone_s and writeone_s. These
read/write one byte on the first invocation, and also re-
member the count of bytes that were requested but not
read/written. If the next dynamic invocation asks to trans-
mit exactly that remainder, then this suggests that the
program under test is noticing the incomplete read/write
and looping accordingly. It is likely that the program will
continue to do so until its original request is fully satisfied.
Therefore, when we see such a compensating invocation,
we pass that second call into the kernel unmolested and
reset the gremlin state for the next call.

1http://lists.gnu.org/archive/html/bug-bash/
2012-01/msg00066.html, http://sourceware.org/
bugzilla/show_bug.cgi?id=13601

3.3 Validity

A bug candidate can be a false positive if Murphy sim-
ulates behavior which is truly impossible, not merely
unusual. This may be due to platform-specific semantics
of certain I/O devices or other POSIX mechanisms not
reflected in Murphy gremlin logic. For example, Linux
pipes are explicitly documented as atomic for small writes
(i.e. smaller than PIPE_BUF). Therefore the writeone
gremlin is overly pessimistic for writes to Linux pipes.

Another example is reading from the pseudo-random
number source, /dev/urandom. Some specifications
require that reads from this pseudo-device block until
enough system entropy is available to satisfy the entire
request. This is not a settled matter, however, and has
been debated among highly knowledgeable developers [3].
We suggest that the mere existence of this debate argues
in favor of programming defensively, regardless of what
the developers may eventually decide.

Beyond validity on any one platform, one goal of Mur-
phy is to identify problematic code before it reaches an
environment in which it fails. If code is ported to a new
platform, the specialized semantics of one OS may not ap-
ply. For example, an OS for embedded devices may have
smaller buffers and may make weaker guarantees than our
reference platform. Some platforms may not support all
of POSIX.1, or may not support the most recently ratified
standard. Part of Murphy’s value is its ability to identify
these potential problems even on a platform where such
behavior is impossible. Thus Murphy is especially helpful
when cross-platform portability is a goal.

4 Related Work

Our work is closely related to software fault injection
(SFI), which traps certain calls and introduces faults [6].
Some SFI work actually corrupts memory, registers, or
returned data [4]. We return rare-but-legitimate values,
never corrupting an otherwise-valid system. SFI often
targets only specific areas of the system, using custom
device drivers [16] or operating at the boundary between
shared libraries and the application [8]. Murphy traps
at the ptrace level and can intercept all system calls,
allowing a much broader range of faults to be injected.

Fuzz testing runs programs on random inputs, often
triggering failures due to lax input validation [9]. How-
ever, programmers rarely view the kernel itself as poten-
tially disruptive; our work shows the risks of this oversight
by “fuzzing” the program from an unexpected direction.
In addition, while fuzz inputs are often invalid, Murphy
interferes in unusual but technically valid ways.

Dynamic memory-access checkers detect a narrow
class of errors relating to pointer abuse [5, 11, 13]. They
cannot expose errors that occur only rarely in adverse

http://lists.gnu.org/archive/html/bug-bash/2012-01/msg00066.html
http://lists.gnu.org/archive/html/bug-bash/2012-01/msg00066.html
http://sourceware.org/bugzilla/show_bug.cgi?id=13601
http://sourceware.org/bugzilla/show_bug.cgi?id=13601


environments unless the program is actually run in such
an adverse environment. Murphy is complementary, as it
creates exactly these adverse environments. Using Mur-
phy and a memory-access checker simultaneously may
reveal additional memory bugs that only manifest under
the unusual circumstances that Murphy brings forth.

Many testing tools require access to the program’s
source code. Our approach is purely black box, suitable
for robustness testing even of commercial, off-the-shelf
(COTS) executables. Another black-box alternative is
to add gremlins directly into an operating system, such
as by modifying the User Mode Linux (UML) virtual
machine [2]. However, this would not provide any more
information than we can get via ptrace. It could also
destabilize components not targeted for testing, making
the entire analysis less deterministic.

5 Conclusions and Future Work

Murphy helps application developers trigger, reproduce,
and diagnose bugs arising from legitimate but unexpected
kernel responses. Our approach uncovers several bugs
even in widely deployed and well-tested code. Given this,
we anticipate this approach will be even more valuable in
the hardening and testing of new software.

Clearly, additional gremlins will expose more classes
of bugs. Gremlins that simulate temporary network prob-
lems may be especially fruitful. Richer information about
system call contexts will allow finer-grained gremlin ac-
tivation and thus a more targeted hunt for some specific
bugs. Additional state tracking by existing gremlins may
reduce false positives and improve performance.

Murphy reveals pervasive bugs even in well-tested pro-
grams. Nothing we tested handled errnos EINTR or
EAGAIN without failure. This raises an important ques-
tion: is it naïve for a kernel to return these responses if
nothing is going to deal with them correctly? Perhaps in-
stead these types of failures should be squashed in the OS
or run-time libraries before returning to the application.
Our experience shows that this may be the only practical
means to ensure these cases are handled correctly.

We wish to explore the creation of a defensive software-
hardening tool that squashes exactly the sort of errors
that Murphy simulates. So many programs seem to have
problems correctly handling various responses, especially
errnos EAGAIN and EINTR. Therefore perhaps there is
a need for such a hardening tool, complete with its own
policy language describing how to handle errors (retry,
block until success, timeout, no change, etc.). A more
comprehensive survey of existing applications’ behavior
under Murphy would improve our understanding of soft-
ware’s implicit assumptions. This may motivate further
research on mitigation strategies.

References
[1] J. Corbet. On vsyscalls and the vDSO. http://lwn.net/

Articles/446528/, June 2011.

[2] J. Dike. User Mode Linux. Prentice Hall, Upper Saddle River, NJ,
2006. ISBN 0131865056.

[3] U. Drepper. short read from /dev/urandom. https://
lkml.org/lkml/2005/1/13/485, Jan. 2005.

[4] S. Han, K. G. Shin, and H. A. Rosenberg. DOCTOR: an
integrated software fault injection environment for distributed
real-time systems. Computer Performance and Dependabil-
ity Symposium, International, 0:0204, 1995. ISSN 1087-2191.
doi:10.1109/IPDS.1995.395831.

[5] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In In Proc. of the Winter 1992 USENIX
Conference, pages 125–138, 1991.

[6] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques
and tools. Computer, 30:75–82, Apr. 1997. ISSN 0018-9162.
doi:10.1109/2.585157.

[7] M. B. Jones. Interposition agents: Transparently interposing user
code at the system interface. In In Proceedings of the 14th ACM
Symposium on Operating Systems Principles, pages 80–93, 1993.

[8] P. D. Marinescu and G. C. LFI: A practical and general library-
level fault injector. In Proceedings of the Intl. Conference on
Dependeable Systems and Networks (DSN), Lisbon, Portugal, June
2009.

[9] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. In In Proceedings of the Workshop
of Parallel and Distributed Debugging, pages ix–xxi. Academic
Medicine, 1990.

[10] Z. Miller, T. Tannenbaum, and B. Liblit. Murphy: An environment
for advance identification of run-time failures. Technical Report
1770, Department of Computer Sciences, University of Wisconsin–
Madison, Apr. 2012.

[11] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. In In Third Workshop on Runtime Verification (RV),
2003.

[12] P. Nguyen. Loopback devices in linux. http://csulb.
pnguyen.net/loopbackDev.html, Apr. 2010.

[13] B. Perens. Electric Fence. http://perens.com/
FreeSoftware/ElectricFence/, Sept. 2010.

[14] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed
resource management for high throughput computing. In Pro-
ceedings of the Seventh IEEE International Symposium on High
Performance Distributed Computing (HPDC7), Chicago, IL, July
1998.

[15] D. Thain and M. Livny. Parrot: An application environment for
data-intensive computing. Journal of Parallel and Distributed
Computing Practices, 2004.

[16] T. Tsai and R. Iyer. Measuring fault tolerance with the FTAPE
fault injection tool. In H. Beilner and F. Bause, editors, Quan-
titative Evaluation of Computing and Communication Systems,
volume 977 of Lecture Notes in Computer Science, pages 26–40.
Springer Berlin / Heidelberg, 1995. ISBN 978-3-540-60300-9.
doi:10.1007/BFb0024305.

[17] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, 28:2002, 2002.

http://lwn.net/Articles/446528/
http://lwn.net/Articles/446528/
https://lkml.org/lkml/2005/1/13/485
https://lkml.org/lkml/2005/1/13/485
http://dx.doi.org/10.1109/IPDS.1995.395831
http://dx.doi.org/10.1109/2.585157
http://csulb.pnguyen.net/loopbackDev.html
http://csulb.pnguyen.net/loopbackDev.html
http://perens.com/FreeSoftware/ElectricFence/
http://perens.com/FreeSoftware/ElectricFence/
http://dx.doi.org/10.1007/BFb0024305

	Introduction
	Motivation
	Approach

	Architecture and Implementation
	System Call Interposition
	Use of ptrace
	Trade-offs of ptrace Interposition

	Gremlins
	Challenges to Writing Realistic Gremlins

	Use, Configuration, and Run-time API
	Reproduction of Failures
	Fixing Failures

	Experimental Results
	Ability to Detect and Pinpoint Bugs
	Performance
	Validity

	Related Work
	Conclusions and Future Work

