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Abstract

Cooperative Bug Isolation

by

Benjamin Robert Liblit

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alexander Aiken, Chair

Debugging does not end with deployment. Static analysis, in-house testing, and good

software engineering practices can catch or prevent many problems before software is dis-

tributed. Yet mainstream commercial software still ships with both known and unknown

bugs. Real software still fails in the hands of real users. The need remains to identify

and repair bugs that are only discovered, or whose importance is only revealed, after the

software is released. Unfortunately we know almost nothing about how software behaves

(and misbehaves) in the hands of end users. Traditional post-deployment feedback mecha-

nisms, such as technical support phone calls or hand-composed bug reports, are informal,

inconsistent, and highly dependent on manual, human intervention. This approach clouds

the view, preventing engineers from seeing a complete and truly representative picture of

how and why problems occur.

This dissertation proposes a system to support debugging based on feedback from ac-

tual users.Cooperative Bug Isolation(CBI) leverages the key strength of user communi-

ties: their overwhelming numbers. We propose a low-overhead instrumentation strategy for

gathering information from the executions experienced by large numbers of software end
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users. Our approach limits overhead using sparse random sampling rather than complete

data collection, while simultaneously ensuring that the observed data is an unbiased, rep-

resentative subset of the complete program behavior across all runs. We discuss a number

of specific instrumentation schemes that may be coupled with the general sampling trans-

formation to produce feedback data that we have found to be useful for isolating the causes

of a wide variety of bugs.

Collecting feedback from real code, especially real buggy code, is a nontrivial exercise.

This dissertation presents our approach to a number of practical challenges that arise in

building a complete, working CBI system. We discuss how the general sampling transfor-

mation scheme can be extended to deal with native compilers, libraries, dynamically loaded

code, threads, and other features of modern software. We address questions of privacy and

security as well as related issues of user interaction and informed user consent. This design

and engineering investment has allowed us to begin an actual public deployment of a CBI

system, initial results from which we report here.

Of course, feedback data is only as useful as the sense we can make of it. When data

is fair but very sparse, the noise level is high and traditional manual debugging techniques

insufficient. This dissertation presents a suite of new algorithms forstatistical debugging:

finding and fixing software errors based on statistical analysis of sparse feedback data.

The techniques vary in complexity and sophistication, from simple process of elimina-

tion strategies to regression techniques that build models of suspect program behaviors

as failure predictors. Our most advanced technique combines a number of general and

domain-specific statistical filtering and ranking techniques to separate the effects of differ-

ent bugs and identify predictors that are associated with individual bugs. These predictors

reveal both the circumstances under which bugs occur and the frequencies of failure modes,

making it easier to prioritize debugging efforts. Our algorithm is validated using several
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case studies. These case studies include examples in which the algorithm found previously

unknown, significant crashing bugs in widely used systems.

Professor Alexander Aiken
Dissertation Committee Chair
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There are no significant bugs in our
released software that any significant
number of users want fixed.

Bill Gates quoted in FOCUSMagazine

Chapter 1

Introduction

Real software is buggy. Real users can make it better. Cooperative Bug Isolation (CBI)

seeks to leverage the huge amount of computation done by the end users of software. By

gathering a little bit of information from every run of a program performed by its user com-

munity, we are able to make inferences automatically about the causes of bugs encountered

in the field.

1.1 Perfect, or Close Enough

Many computer scientists think of a program as either correct (i.e., it meets some spec-

ification) or incorrect (i.e., it does not meet some specification). But industrial software

development is as much about economics as computer science. Software quality is a mon-

etary balancing act among engineers’ salaries, time to market, user expectations, and other

business concerns. We ship software when it seems correct enough to neither embarrass us

nor alienate users. We ship software with known bugs that are not worth fixing, and users

uncover new bugs that developers never imagined. An observer in residence at the game
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development studios of Electronic Arts (EA) wrote that

The largest sin at EA is not delivering a title on time. . . . Making an outstand-
ing game, but delivering it late, is not as profitable as making an acceptable
quality game on time. EAers talk about “maximum on-time-quality.” [Pau04]

Clearly practitioners use something other than a Boolean notion of correctness, but

such a notion has been difficult to quantify. In-house testing can only guess at field usage

patterns, and poor guesses can leave users in bad shape. A seemingly obscure, low-priority

bug that was difficult to reproduce in the testing lab may turn out to affect large numbers of

users on a regular basis. Technical support channels provide one way for post-deployment

feedback to reach engineers, but traditionally these mechanisms have been informal and

overly dependent on human intervention.

1.2 Automatic Failure Reporting

Industry critics have said that many software vendors treat their customers like beta testers.

If that is so, then we are not yet using these thousands or millions of testers as effectively

as we could. Traditionally, most software failures produce a grumpy user and no diagnostic

feedback, which benefits no one.

This situation is starting to change as a result of ubiquitous Internet connectivity. KDE,

GNOME, Mozilla/Netscape, and Microsoft have all deployed automated, opt-in crash re-

porting systems. These systems gather key information about program state after a failure

has occurred: stack trace, register contents, and the like. By sending this information back

to the development organization, the user community helps developers effectively triage

bugs that cause crashes and focus on the problems experienced by the most users.

However, automatic crash reporting systems create a new problem: developers who are

overwhelmed with bug reports, many of which may be redundant, and who must prioritize
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their work in terms of which bug fixes are likely to provide the greatest net benefit in the

shortest amount of time. As of this writing, the Bugzilla bug tracking database for the open

source Mozilla web browser project shows 35,622 open bugs; an additional 81,168 have

been marked as duplicates of bugs already reported [Moz04a]. Mozilla augments manual

bug reporting with an automated crash feedback system. This system currently shows

30,844 automated crash reports for Mozilla Firefox 1.0 over a five day period, accounting

for 374,143 hours of “testing” by end users [Moz04b]. As early as 2002, Microsoft’s

Watson error reporting service had collected crash reports from half a million separate

programs. Experience with Watson has shown that one percent of software errors cause

fifty percent of user crashes [Mar02].

We believe that ubiquitous crash reporting is progress in the right direction, but we

also believe that existing approaches only scratch the surface of what is possible when

developers and users are connected by a network. For example, crash-reporting systems

in mainstream end user environments do not gather any information about what happened

before the crash. Trace information leading up to the failure may contain critical clues to

the actual problem. Also, crash reporting systems report no information for successful runs,

which makes it difficult to distinguish anomalous (crash-causing) behavior from innocuous

behavior common to all executions. In general, the information gathered by crash-reporting

systems is not very systematic, and in all feedback systems of which we are aware (crash-

reporting or otherwise) the subsequent data analysis is highly manual.

1.3 The Next Step Forward

The high level of redundancy exhibited by existing crash reporting systems suggests that

there is great potential to harness the user community as a distributed, brute force bug hunt-

ing resource. Because the most important bugs are those that happen most often to the most
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users, it is not necessary to trace program behavior in a complete, invasive, perfectly con-

trolled manner. Rather, we can use lightweight instrumentation to sample a small amount

of information about each run, and then merge this information to form an aggregate pic-

ture of how the software is working and failing in the field. Furthermore, the feedback loop

can flow in both directions: aggregate error reporting can direct engineers toward bugs,

and engineers can steer instrumentation toward code regions of interest based on observed

failure trends.

The idea of gathering data from actual user executions is not new. Large enterprise

database systems, for example, routinely produce extensive log files. The first action when

a user reports a problem is to inspect those logs. Similarly, each flight of the Boeing

777 generates logs that are subsequently combed for signs of possible problems [Esl01].

There are many other similar examples in the world of high end and safety critical systems.

However, no such feedback channels have been available to the multitudinous end users of

mainstream commercial software.

In our view, wide deployment of such an infrastructure would have several benefits:

• For deployed software systems, the number of executions in actual use dwarfs the

number of executions produced in testing by orders of magnitude. For many software

systems today, essentially all of the information from user executions is discarded,

because there is no mechanism for feedback. Retaining even a small portion of that

information could be valuable.

• Gathering information from all, or at least a representative sample, of user executions

gives an accurate picture of how the software is actually used, allowing better deci-

sions about how to spend scarce resources on modifications. In particular, bugs that

affect a large number of users are a higher priority than bugs that are very rare. This

kind of information is almost impossible to obtain from anywhere other than actual
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user executions.

• While our primary interest is in finding and fixing quality problems, information

gathered from user executions could be useful for other purposes. For example,

software authors may simply wish to know which features are most commonly used,

or we may be interested in discovering whether code not covered by in-house testing

is ever executed in practice, etc.

• Traditional user feedback about problems often consists of a call from a relatively

unsophisticated user to a perhaps only somewhat more sophisticated technical sup-

port center. In a networked world, it is simply more efficient and accurate to gather

this information automatically.

• Many bugs sit on open bug lists of products for an extended period of time before

an engineer is available to work on the bug. Automatically gathering data from user

executions allows for automated analysis without human intervention. Thus, when an

engineer is finally available to work on a problem, the results of automated analyses

done in the interim may help the engineer to identify and fix even relatively simple

problems more quickly.

1.4 Cooperative Bug Isolation

A Cooperative Bug Isolation system must meet several challenges if it is to be viable in

the real world. The first problem is that the method for gathering information must have

only a modest impact on the performance of the user’s program. Our approach, discussed

in Chapter 2, is based on fair random sampling. Classical sampling for measuring program

performance searches for the “elephant in the haystack”: it is looking for the biggest con-

sumers of time. In contrast, we are looking for needles (bugs) that may occur very rarely,
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and furthermore our sampling rates may be very low to maintain client performance. These

requirements lead us to be concerned with guaranteeing that the sampling is statistically

fair, so that we can rely on the reported frequencies of rare events. Chapter 2 presents

a general sampling transformation, applied at compile time, that converts unconditional

instrumentation into instrumentation that is sampled randomly but fairly, in a very strict

statistical sense, as the program runs.

A second problem is that information from the client must be transmitted over the

network to a central database. Gathering even a relatively small amount of data periodi-

cally from a large number of clients creates significant scalability problems. One would

like to monitor behaviors that are likely to be probative regarding a wide variety of yet-

unknown bugs while still reducing, compacting, or even discarding enough information to

keep communication and storage requirements modest. Chapter 2 continues with a discus-

sion of several instrumentation schemes that we find to be scalable and useful in practice

for distributed debugging. The remainder of Chapter 2 explores additional performance

optimizations and variations on the basic sampling strategy.

A third, perhaps more vague problem is that such a system must actually work with real

applications, on real desktops, in the hands of real users. Chapter 3 discusses our solutions

to a potpourri of issues that arise in assembling a complete, working Cooperative Bug Iso-

lation system. We discuss how the transformations of Chapter 2 interact with features of

various modern languages and software architectures; consider privacy and security con-

cerns and steps taken to address them; present a view of the system from the end user’s

perspective; and conclude the chapter with a review of the status of a large scale public

deployment of Cooperative Bug Isolation that is currently under way.

The fourth and ultimate challenge is using this randomly sampled, noisy, terribly in-

complete data to actually find and fix bugs. Why do some runs succeed and others fail?
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Figure 1.1: Conceptual overview of Cooperative Bug Isolation system

How does the sparsely observed behavior of good runs differ from that in bad runs? Our

strategy for answering these questions,statistical debugging, is based on building statisti-

cal models of program success or failure as a function of observed behaviors. Chapter 4

describes several statistical debugging techniques that we have developed from the simple

to the sophisticated. We present the results of several case studies used to evaluate our

statistical debugging algorithms.

Figure 1.1 presents an informal, conceptual overview of our system showing how its

pieces fit together to form a feedback loop of continuously improving software quality.

The process begins at left, with program source. Our system requires no manual in-

strumentation or annotation: we work directly with unmodified C code. We feel that this
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design constraint was important to facilitate rapid adoption by large, pre-existing applica-

tion code bases. Program source is fed into a tool chain that appears from the outside to

be a standard compiler augmented with some additional high-level configuration options.

Internally, however, the build process has three distinct steps: insertion of unconditional in-

strumentation, generic sampling transformation, then native compilation to binaries ready

for distribution.

End users install the shipping application, thereby forming a large, diverse user commu-

nity. Each use of an application, whether successful or failed, generates a feedback report.

The feedback report consists of a concise instrumentation dump along with a binary out-

come flag: did the run succeed or fail? “Fail” here might simply be defined as “crashed,” as

crashing is an easy outcome to detect and something that we all agree should never happen.

However, one of our case studies demonstrates that more refined, domain-specific notions

of failure are equally viable. All we require is a binary outcome label.

A central feedback database aggregates these feedback reports for analysis. Using sta-

tistical debugging techniques, we identify those behaviors that are strongly correlated with

failure along with information about how often the various failure modes occur. This in-

formation helps engineers fix individual bugs. Just as importantly, it supports bug triage

grounded in reality: engineers can immediately see which bugs are affecting the most users,

and thus focus their own attention where it will do the most good.

As engineers fix bugs the feedback loop is completed. Improvements to the program

source are re-instrumented and redistributed to users, who now see more stable software

and whose feedback reports now focus even more sharply on those problems that remain.

This process yields reality-directed debugging: software that improves over time in pre-

cisely those ways that provide the most benefit to the user community at large.
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The major difference between a thing
that might go wrong and a thing that
cannot possibly go wrong is that when
a thing that cannot possibly go wrong
goes wrong, it usually turns out to be
impossible to get at or repair.

Douglas Adams,Mostly Harmless

Chapter 2

Instrumentation Framework

This chapter describes the process of going from unmodified application source code to

native executables with sampled instrumentation. This process is managed by theinstru-

mentor: a software tool whose external behavior mimics that of the native compiler, but

that internally applies the instrumentation injection and sampling transformation steps de-

picted at the top center of Figure 1.1. Our instrumentor,sampler-cc, is implemented as

a source-to-source transformation for C using the CIL C front end [NMRW02]. Trans-

formed code then proceeds to GCC for native compilation. From the developer’s perspec-

tive, thesampler-cc command behaves exactly like thegcc command with a few extra

instrumentation-related command line flags.

Section 2.1 presents the basic strategy for managing fair, randomly sampled instrumen-

tation. This sampling transformation is quite general, with potential applications beyond

bug hunting. However, bug hunting is the focus of this dissertation, and Section 2.2 de-

scribes several instrumentation schemes that may be used with the sampling transformation

and that we have found to be helpful for bug isolation. Section 2.3 considers performance

issues and examines several optimizations that may be applied atop the basic sampling
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transformation. Section 2.4 describes an adaptive, non-uniformly sampled generalization

of the core random sampling model, while Section 2.5 closes the chapter with an informal

discussion of realistic sampling rates in truly large scale deployments.

2.1 Basic Instrumentation Strategy

This section describes our sampling framework. We begin with sampling of basic blocks

and gradually add features until we can describe how to perform sampling for entire pro-

grams. Suppose we start with the following C code:

{
check(p != NULL);
p = p->next;

check(i < max);
total += sizes[i];

}

Our sampling framework can be configured to sample arbitrary pieces of code, which

may be either portions of the original program or instrumentation predicates added sepa-

rately. Section 2.2 describes several instrumentation schemes that we have found useful.

For the remainder of this section, assume that each italicizedcheck() call is an instru-

mentation site that has been tagged for sampling. The precise behavior of an instrumenta-

tion site is of no concern to the sampling transformation itself. We require only that each

such site be removable. That is, performing somecheck() calls and skipping others must

not affect the user-visible behavior of the program.

2.1.1 Sampling the Bernoulli Way

Suppose that we wish to sample one hundredth of these checks. Maintaining a global

counter modulo one hundred is simple, but has the disadvantage of being trivially periodic.
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If the above fragment were in a loop, for example, one of the checks would execute on

every fiftieth iteration while the other would never execute. To avoid this temporal aliasing

we wish sampling to be fair and uniformly random: each check should independently have

a 1/100 chance of being sampled each time it occurs. This property is characteristic of a

so-calledBernoulli process, the most common example of which is repeatedly tossing a

coin. We wish to sample based on the outcome of tossing a coin that is biased to come up

heads only one time in a hundred.

A naïve approach would be to use a simple random number generator. Supposernd(n)

yields a random integer uniformly distributed between 0 andn− 1. Then the following

code gives us fair random sampling at the desired density:

{
if (rnd(100) == 0) check(p != NULL);
p = p->next;

if (rnd(100) == 0) check(i < max);
total += sizes[i];

}

This strategy has some practical problems. Random number generation is not free:

tossing the coin may be slower than simply doing the check unconditionally. Furthermore,

what was previously straight-line code is now dense with branches and joins, which may

impede other optimizations.

Sampling is sparse. Each of the conditionals has a99/100= 99% chance of not sampling.

On any run through this block, there is a(99/100)2 ≈ 98% chance that both instrumentation

sites are skipped. If we determine, upon reaching the top of a basic block, that no site

in that block is sampled, then we can branch into fast-path code with all conditionally-

guarded checks removed. This design requires two versions of the code: one with sampled

instrumentation, one without. It also requires that we can predict how many future sampling

opportunities are skipped before the next one is taken.
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Anticipating future samples requires a change in randomization strategy. Consider a

sequence of biased coin tosses, with “0” indicating no sample and “1” indicating that a

sample is to be taken. Temporarily increasing the sampling density to1/5, we might have:

〈0,0,0,0,0,1︸ ︷︷ ︸
6

,0,0,0,1︸ ︷︷ ︸
4

, 0,1︸︷︷︸
2

,0,0,1︸ ︷︷ ︸
3

, . . .〉

An equivalent representation counts the number of tosses until (and including) the next

sampled check:〈6,4,2,3, . . .〉. This representation is predictive: the head of the sequence

can be treated as a countdown, telling us how far away the next sample is. If we are at the

top of a basic block containing only two checks, and the next sampling countdown is 6,

we know in advance that neither of those sites is sampled on this visit. Instead, we merely

discard two tosses and proceed directly to the instrumentation-free fast path:

{
if (countdown > 2) {

/* fast path: no sample ahead */
countdown -= 2;
p = p->next;
total += sizes[i];

} else {
/* slow path: sample is imminent */
if (--countdown == 0) {

check(p != NULL);
countdown = getNextCountdown();

}
p = p->next;

if (--countdown == 0) {
check(i < max);
countdown = getNextCountdown();

}
total += sizes[i];

}
}

The instrumented code does extra work to manage the next-sample countdown, but the

fast path is much improved. The only overhead is a single compare/branch and a constant
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decrement, and this overhead is amortized over the entire block. In larger blocks with more

instrumentation sites, the initial countdown check has a larger threshold, but that one check

suffices to predict a larger number of skipped sampling opportunities.

Consider the distribution of countdown values. With a sampling density of1/100, there is

a 1/100 chance that we sample at the very next opportunity. There is a(99/100)× (1/100) that

the next chance is skipped but that the one after that is taken. A countdown of three appears

on a(99/100)2× (1/100) chance, and so on. These numbers form ageometric distribution

whose mean value is the inverse of the sampling density (that is, 100). Numbers in a geo-

metric distribution characterize the expected inter-arrival times of a Bernoulli process, such

as the number of tails before the next head, or in our case the number of instrumentation

sites skipped before the next sample is taken.

Happily, repeated tossing of a biased coin is not necessary: geometrically distributed

random numbers can be generated directly using a standard uniform random generator and

some simple floating-point operations. Letrand(0,1) be a source of random floating point

numbers on the open interval between zero and one. Let1/d be the desired sampling rate,

such as1/100. Then a new geometrically distributed countdown may be computed as

countdown=
⌊

log(rand(0,1))
log(1− 1/d)

⌋
+1.

The denominator in the above equation is fixed for a given sampling rate, so generating

one new countdown requires

• one random floating point number

– m random bits for a floating point representation with anm-bit mantissa

– discard and repeat if allm bits are 0 (exceedingly rare)

• one floating point logarithm
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• one floating point division

• one truncating conversion from floating point to integer

• one integer increment

This work is then amortized across an average ofd succeeding instrumentation sites.

Section 2.3.5 considers additional options for speeding up countdown resets.

In theory, a countdown may need to be arbitrarily large. However, the odds of a1/100

countdown exceeding 232−1 are less than one in 10107
, so storing countdowns as simple

32-bit unsigned integers is sufficient for all practical scenarios.

2.1.2 From Blocks to Functions

The scheme for blocks outlined above generalizes to an arbitrary control flow graph as

follows. Any region of acyclic code has a finite number of possible paths. Let the maximum

number of instrumented sites on any path be the region’sweight. A countdown threshold

check can be placed at the top of each acyclic region. If the next-sample countdown exceeds

the weight of an acyclic region on entry to that region, then no samples are taken on that

pass through the region.

Any cycle in a control-flow graph without instrumentation is weightless and may be

disregarded. Any cycle with instrumentation must also contain a threshold check, which

guarantees that if we start at any threshold check and execute forward, we cross only a stat-

ically bounded number of instrumentation sites before reaching the next threshold check.

Thus, we can compute a static weight for each threshold check.

There is some flexibility regarding exactly where a threshold check is placed, but com-

puting an optimal solution is NP-hard [HC01]. For simplicity, our present system places

one threshold check at function entry and one along each loop back edge. Weights may be
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computed in a single bottom-up traversal of each function’s control flow graph.

The sampling transformation produces two complete copies of the function body. One

contains full instrumentation, with each possible sample guarded by a decrement and test

of the next-sample countdown. The other copy, the fast path, merely decrements the count-

down where appropriate, but otherwise has all instrumentation removed. We stitch the two

variants together at threshold check points: at the top of each acyclic region, we decide

whether a sample is imminent. If it is, we branch into the instrumented code. If the next

sample is far off, we continue in the fast path code instead.

Figure 2.1 shows an example of code layout for a function containing one conditional

and one loop. Dotted nodes represent instrumentation sites; these are reduced to countdown

decrements in the fast path. The boxed nodes represent threshold checks; we have added

one at function entry and one along the back edge of the loop. This code layout strategy

is a variation on that used by Arnold and Ryder to reduce the cost of code instrumented

for performance profiling [AR01]. The principal change in our transformation is the use of

geometrically distributed countdowns in conjunction with acyclic region weights to choose

between the two code variants. Arnold and Ryder use fixed sampling periods (e.g., exactly

once pernopportunities, or exactly once pern instructions) and do not apply region-specific

weighting. Our approach imposes more overhead, but offers greater statistical rigor in the

resultant sampled data. Arnold and Ryder have studied several variations with different

trade-offs of code size versus overhead; the same choices apply here.

2.1.3 Interprocedural Issues

In general, a called function might cross any number of instrumentation sites before return-

ing to its caller. Barring interprocedural analysis, we cannot assign a statically bounded

weight to any control flow graph node containing a function call. Therefore, we treat each
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Figure 2.1: Example of instrumented code layout
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such call as an acyclic region boundary. A region ends before an opaque function call, and

a new region begins just after.

Language-specific mechanisms for interprocedural control transfer may be treated in

the same way. In C,setjmp and a few related functions form region boundaries. In lan-

guages with more structured exception handling, such as Java or C++, a new region forms

below thecatch point that receives a thrown exception.

If interprocedural analysis is available, then we can avoid splitting regions at some calls.

Section 2.3.2 discusses this optimization in greater detail.

2.2 Instrumentation Schemes for Distributed Debugging

Our framework for statistically fair sampling can be used for any program monitoring ap-

plication. Before examining performance and optimizations in detail, it is useful to have

specific scenarios in mind. Our primary interest here is distributed debugging, so we are

interested in data that helps engineers find bugs in deployed software. Here we briefly dis-

cuss the main problems that arise in this context and a particular solution that we adopt.

We then present a suite of instrumentation schemes. These schemes are the basis for the

performance and optimization studies that follow, and are also used in several case studies

discussed in Chapter 4.

2.2.1 Issues in Remote Sampling

Remote monitoring can harm performance in several ways. As usual the performance

penalty imposed by the extra monitoring code cannot be excessive. Disk and memory

space is limited, so we must limit the size of data retained, even temporarily, on a user’s

machine. Network bandwidth to transmit results to a central server is also a concern. The
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user’s primary goal is to use the software, not fix it, so in each of these cases we must be

frugal with the user’s resources. Any central server has limited storage and communication

resources as well, compounded by the fact that it is aggregating many runs. For example,

if we wish to retain all sampled data, then storage on the central server grows linearly with

the number of executions even if the data collected from each execution is constant size.

Our approach is to sample the value of each of a very large, but fixed, set of predicates

on program state. Some predicates are observed directly at instrumentation sites: we call

thesefundamental predicates. In general one instrumentation site may induce multiple

predicates at the same location. For example,

“x < y on line 319 ofutils.c”,

“x = y on line 319 ofutils.c”, and

“x > y on line 319 ofutils.c”

might be three fundamental predicates comparing the values of two variables at a particular

instrumentation site. When an observation is made at a site, all fundamental predicates are

observed simultaneously. Thus, a single observation of this site appearing on line 319 of

utils.c would observe one of the three predicates to be true and would observe the other

two predicates to be false.

We do not report a running stream of true/false predicate observations as execution pro-

ceeds. Rather we only count thenumberof times each fundamental predicate is observed

to be true. One global variable maintains the count for each fundamental predicate. We

refer to these global variables aspredicate countersor as simplycounters. They should not

be confused with the global next-sample countdown.

At the end of execution, all counters are serialized into a feedback report giving the

final count for each fundamental predicate. For example, we might find that on a particular

run,
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“x < y on line 319 ofutils.c” was observed to be true 25 times

“x = y on line 319 ofutils.c” was observed to be true 3 times, and

“x > y on line 319 ofutils.c” was observed to be true 1 time.

We can never know how often the predicates were actually true, but we count how often

they were observed to be true.

Maintaining a vector of global counters produces feedback reports whose size is largely

independent of the sampling density or running time. The loss of information is significant,

as the order of the observations is discarded. However, predicate counters do provide at

least a partial window into dynamic program behavior before a failure. That may be a

useful addition to the postmortem stack trace commonly used to report fatal errors today.

In some instrumentation schemes, the fundamental predicates can be augmented by a

set ofinferred predicatesderived offline. For each inferred predicate we derive an inferred

predicate counter that describes how often the inferred predicate would have been observed

to be true if it had actually been tracked during execution. Continuing the example from

the preceding paragraph, we infer that

“x ≥ y on line 319 ofutils.c” would have been observed to be true 3+ 1

times,

“x 6= y on line 319 ofutils.c” would have been observed to be true 25+ 1

times, and

“x ≤ y on line 319 ofutils.c” would have been observed to be true 25+ 3

times.

Inferred predicates have no runtime cost and can be particularly useful for distinguish-

ing certain boundary cases, such asx < y versusx ≤ y. However, they also significantly

enlarge the set of possible bug causes, making scalability of bug isolation algorithms more
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of a concern. The statistical debugging algorithms discussed in Chapter 4 use a variety of

strategies to filter out uninteresting predicates quickly before applying more computation-

ally intensive techniques.

In our running example of comparingx andy, notice that the fundamental predicates

logically partition the space of all possibilities, and that summing any two fundamental

predicate counters yields an inferred predicate counter for the disjunction. All instrumenta-

tion schemes we use have this partition property, which lets us infer one additional piece of

information. Summing all of the fundamental predicate counters at a site gives the number

of times that the site itself was observed, without regard to any specific predicate at that

site. In our running example, we know that 25+ 3+ 1 observations we made at the site

that comparesx andy on line 319 ofutils.c. The site may have been reached many

more times than that, but there were exactly 29 times when the site was reached and an

observation was made.

2.2.2 Counter-Based Instrumentation Schemes

Within the general approach of predicates and counters, we have many choices as to what

predicates are worth counting. Our current implementation offers several instrumentation

schemes that have proved useful for isolating a variety of bugs in C programs:

branches

Control flow behavior may reveal places where the program made a fateful decision. The

branches scheme considers each control flow decision to be potentially interesting. Each

if statement induces two fundamental predicates. The first fundamental predicate asserts

that the branch is false, while the second fundamental predicate asserts that the branch is

true. We treat these two predicates as a single instrumentation site: when the branch is
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reached, if a sample is due, then exactly one of the two fundamental predicates’ counters

will be incremented. There are no inferred predicates for this scheme, but we can sum the

two predicates at any site to determine how often the site itself was observed.

The branches scheme also counts behavior at many two-way branches that are implicit

in C code. The branch governing eachwhile or for loop is instrumented, as is the branch

implied by the logical (&&, ||) and conditional (?:) operators.switch statements cre-

ate multi-way branches; these would require more than two counters per site and are not

tracked by the current implementation.

function-entries

Simple function coverage information may reveal which parts of a program are implicated

in failures. The function-entries scheme induces one instrumentation site at the entry to

each function. This site has one fundamental predicate which is always true. The associated

counter, then, is merely a sampled count of the number of times the containing function is

called.

g-object-unref

The GLib Object System (GObject) provides an object oriented programming framework

for C [GNO04]. It serves as the basis for several higher-level toolkits, such as Pango,

GTK+, and GNOME, that are widely used in Linux and Open Source software. GObject

manages memory using reference counting, and expects C programmers to manage these

reference counts explicitly. We expect that mismanaged reference counts are a common

source of hard-to-find heap corruption errors.

The g_object_unref() function decrements a GObject instance’s reference count.

The g-object-unref scheme instruments each such call, inducing one instrumentation site
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with four fundamental predicates on the state of the object justbeforethe decrement:

1. zero references: the instance is already being reclaimed

2. one reference: the instance will be reclaimed within theg_object_unref() call that

follows

3. more than one reference: the instance is not about to be reclaimed

4. invalid: the argument is not a valid GObject instance

The first and last cases clearly indicate that an error has already happened. The second

and third cases, which represent nearly all behavior in practice, may or may not reveal a bug

depending on other program behavior. Note that the four fundamental predicates partition

the space of all possibilities, with exactly one being incremented per sample. Thus, as in

the case of the branches scheme, the sum of all counters at one site gives the approximate

(sampled) coverage at that site. We could add inferred predicates corresponding to the

disjunctions of the four fundamental predicates, but this has not seemed useful to date.

returns

Function return values can be interesting when used to report the success or failure of

various operations. This use is particularly common in C, which lacks exception handling.

Counting all possible return values is impractical, so the returns instrumentation scheme

induces just three fundamental predicates at each function call:

1. returned value is negative

2. returned value is zero

3. returned value is positive
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As before, each sample increments exactly one fundamental predicate counter, so the

sum of all three of a site’s fundamental predicate counters gives approximate coverage

at that site. We augment the three fundamental predicates with three inferred predicates

whose counts are derived by summing of two of the fundamental predicate counts:

1. returned value is non-negative

2. returned value is non-zero

3. returned value is non-positive

The standard C library makes extensive use of return values as success/failure indica-

tors, and it is often the sign of the returned value that distinguishes success from failure.

POSIX follows the same model, as do many programmers. Even within one library there

is little consistency as to exactly which sign indicates what. For example,open() returns

negative values for errors whilefopen() returns zero (NULL). “Unchecked return values”

are a common class of programming error; the returns scheme checks all return values,

even those that were ignored by the original program.

This scheme only instruments calls to functions returning characters, integers, and

pointers. Pointers are treated as having an unsigned integer type and therefore will only

ever be zero (NULL) or positive (non-NULL). Functions that return other types, such as float-

ing point numbers or aggregates, are not instrumented, as these are rarely used to report

errors.void-returning functions are not instrumented.

scalar-pairs

Variables within a program often have important relationships with each other or with pro-

gram constants. Work on the Daikon project has shown that it is useful to identify implicit,
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often simple invariants as an aide to program evolution [ECGN99]. When hunting for bugs,

it may be useful to identify near-invariants that are only violated when the program fails.

The scalar-pairs scheme examines possible invariants from a restricted, lightweight sub-

set of the much larger family considered by Daikon. At each assignment to a variablex,

identify all other same-typed local or global variablesy1,y2, . . . ,yn that are currently in

scope. Each pair of variables(x,yi) induces an instrumentation site that compares the new

value ofx with the existing value ofyi using three fundamental predicates:

1. x < yi

2. x = yi

3. x > yi

One sample at one site increments one counter for one of these three fundamental pred-

icates. As in the returns scheme, we can sum all three counters for coverage information or

sum any two to derive counts for three inferred predicates:

1. x≥ yi

2. x 6= yi

3. x≤ yi

The scalar-pairs scheme instruments assignments to character-, integer-, or pointer-

typed variables. Assignments of aggregates, floating point, and types are ignored.1 In its

basic form, only assignments to simple named variables are instrumented. Developers who

want more detailed instrumentation may also enable instrumenting of assignments across

pointers, into structure and union fields, and into indexed arrays. Developers may also allow

1The name “scalar-pairs” is therefore a misnomer. The C99 standard considers floating point types to be
scalar [Int99], but we do not currently instrument floating point assignments.
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comparison to constants, in which casex will be compared with every constant expression

seen in the program. This list includes, for example, enumeration constants, the element

counts of fixed-size arrays, and many other potentially important “magic numbers.”

Note that the list of same-typed in-scope variables always includesx itself. In this case,

the site is comparing the new value ofx on the left side of the comparison to the old value

of x on the right side of the comparison. This new-versus-old comparison can be useful to

detect bugs due to a failure to monotonically increase or decrease some variable. The value

0 is always included for comparison as well, even if comparison with all program constants

is not enabled.

2.2.3 Additional Instrumentation Schemes

In addition to the schemes described above, the current implementation offers several

schemes that do not report results as fundamental predicate counters.

ccured

CCured is a source-to-source translator that prevents memory safety violations in C pro-

grams [NMW02]. It attempts to prove memory accesses safe at compile time; the remain-

der are checked at runtime using a variety of assertions. Our ccured instrumentation scheme

treats each CCured runtime assertion as a sampled instrumentation site. Thus, the program

is no longer guaranteed to detect and block all memory safety violations. Instead it sim-

ply has a random chance of detecting each such error. This scheme may be thought of as

one example of a more generic instrumentation scheme that randomly samples programmer

assertions. In that sense, CCured is simply a source of unusually assertion-dense programs.
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bounds

Some bugs are associated with unusually small or large values, such as an out-of-bounds

array index or a negative number where only positive values were expected. The bounds

scheme induces an instrumentation site at each character-, integer-, or pointer-typed assign-

ment. The site records a pair of values: the minimum and maximum value ever observed

at that assignment. Calls to character-, integer-, and pointer-returning functions are instru-

mented as well, with each site recording the minimum and maximum value ever returned

from the associated call.

Unlike the counter-based schemes described earlier, it is not meaningful to add the

minimum and maximum values at a site. One can, however, check whether a given site

was ever sampled. The minimum value tracker is initialized to the maximum value repre-

sentable in the given type, while the maximum value tracker is initialized to the minimum

representable value.

time stamps

While the case studies in Chapter 4 show that one can go a long way ignoring ordering, we

expect there are interesting bugs that require ordering information. The instrumentor im-

plementation currently provides a limited facility for associating time stamps with sampled

instrumentation sites. This feature does not constitute an instrumentation scheme in its own

right, but rather offers additional information that the developer can choose to overlay on

top of any selected schemes.

Time stamping comes in two forms: first-sample and last-sample. In first-sample time

stamping, each instrumentation site from any scheme has an additional piece of information

associated with it: the time of the first sample actually taken at that site. “Time” here is

virtual. We maintain a global “clock” that starts at zero and ticks forward by one each time
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any instrumentation site is sampled. Thus first-sample time stamping yields a record of the

relative orders in which sites were first sampled.

Last-sample time stamping also gives each site a snapshot of the global clock value at

the moment a sample is taken. Here we update that snapshot on every sample of a site

rather than only the first. Thus last-sample time stamping yields a record of the relative

orders in which sites were last sampled leading up to program termination.

Clearly these time stamps form an incomplete record of program behavior. One cannot

distinguish multiple samples at one site. With sparse sampling, most sites are reached but

not sampled, so even the site with first-sample time stamp of “1” is probably not the first site

actually reached during execution. However, these time stamps do provide at least some

information. They may be particularly useful in isolating bugs due to improper ordering

of initialization or finalization logic; code handling these tasks typically runs just once per

execution, so multiple sample ambiguity is less of a problem.

One possible approach to using time stamps is to infer predicates “a first sampled be-

fore b” and “a last sampled beforeb” on all pairs of sites(a,b). (One might also write

these more formally as predicates over program traces in linear temporal logic.) Existing

algorithms, described in Chapter 4, may be applied to these predicates to discover which

ones are predictive of failure. However, it is important to note that multi-event predicates

rapidly become hard to observe: a base sampling rate of1/100 implies only a1/10,000chance

of observing any pair of independent events. It may be difficult to obtain enough time

stamp data to draw statistically significant conclusions. To date, we have not experimented

much with the time stamping facility, and so its usefulness in practice remains unknown.
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2.3 Performance and Optimizations

For ubiquitous monitoring to be practical, it must be lightweight. Users have better things

to do then wait around while an application ploddingly debugs itself. In this section we

assess the performance impact of both unconditional and sampled instrumentation. We

consider the basic strategy described above as well as a number of optimizations specially

tuned to code produced by the sampling transformation.

We have measured the performance of instrumented code using a collection of twelve

CPU-intensive benchmarks selected from the SPEC CPU95 [SPE95] and Olden [Car96]

suites. Our basis for comparison is the same code compiled with no instrumentation what-

soever. We consider a range of sampling rates, and also a special “always” configuration

in which instrumentation is added but the sampling transformation is not applied. This

configuration lets us explore whether the speed boost from having a fast path is enough

to compensate for the overhead of sampling itself, such as region checks and countdown

management.

Table 2.1 gives the overhead for each benchmark at each sampling rate. Overhead here

is measured as increase in wall clock run time as compared with instrumentation-free code.

We present results for three of the instrumentation schemes described earlier: branches, re-

turns, and scalar-pairs. The scalar-pairs scheme is used here with comparison to variables

and 0 only, not to other program constants. A fourth “all of above” pseudo-scheme simul-

taneously uses branches, returns, and scalar-pairs instrumentation in a single binary. All

measurements were taken on one CPU of a four-way 2.8 GHz Intel Xeon SMP with 3.7 GB

RAM. The host is running Fedora Core 2 with Linux kernel version 2.6.8. The C runtime

library is glibc version 2.3.3, vendor-supplied without instrumentation. All benchmarks

were compiled using GCC version 3.4.3 with “-O3” and no other special optimization flags.
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Table 2.1: Instrumentation overhead in typical configuration

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

branches bh 46% 210% 32% 16% 13%

bisort 50% 159% 19% 0% 0%

compress 134% 463% 80% 38% 31%

em3d 61% 225% 42% 23% 21%

health 18% 40% 4% 1% 0%

ijpeg 113% 406% 62% 24% 20%

mst 17% 42% 11% 7% 7%

perimeter 84% 551% 127% 83% 77%

power 8% 136% 16% 2% -2%

treeadd 15% 44% 8% 4% 4%

tsp 106% 161% 19% 5% 3%

vortex 160% 585% 100% 47% 33%
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Table 2.1: Instrumentation overhead in typical configuration (continued)

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

returns bh 9% 30% 13% 11% 12%

bisort 6% 49% 6% 0% 0%

compress 5% 39% 9% 6% 4%

em3d 1% 2% 1% -1% -1%

health 2% -1% -5% -4% -5%

ijpeg 5% 40% 7% 5% 3%

mst 23% 25% 7% 5% 5%

perimeter 61% 236% 48% 27% 24%

power 1% 0% 0% 0% 0%

treeadd 27% 49% 8% 5% 5%

tsp 9% 3% 0% -1% 0%

vortex 36% 116% 30% 23% 19%
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Table 2.1: Instrumentation overhead in typical configuration (continued)

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

scalar-pairs bh 533% 5,043% 720% 120% 22%

bisort 471% 2,112% 274% 69% 44%

compress 1,899% 8,764% 1,113% 175% 72%

em3d 164% 862% 101% 21% 12%

health 34% 173% 16% 2% 2%

ijpeg 1,322% 6,171% 799% 135% 41%

mst 74% 397% 52% 13% 8%

perimeter 105% 814% 110% 30% 22%

power -2% 239% 29% 11% 8%

treeadd 60% 412% 51% 9% 4%

tsp 42% 191% 26% 3% 1%

vortex 616% 3,987% 555% 105% 45%
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Table 2.1: Instrumentation overhead in typical configuration (continued)

Overhead For Sampling Rate

Scheme Benchmark Always 1/10 1/100 1/1,000 1/10,000

all of above bh 576% 5,205% 731% 126% 28%

bisort 570% 2,309% 301% 69% 44%

compress 2,049% 9,075% 1,202% 191% 74%

em3d 226% 1,118% 136% 35% 25%

health 41% 230% 22% 5% 1%

ijpeg 1,422% 6,627% 869% 149% 46%

mst 86% 452% 62% 15% 10%

perimeter 209% 1,565% 246% 99% 76%

power 23% 406% 55% 19% 16%

treeadd 69% 524% 62% 12% 7%

tsp 140% 359% 51% 9% 4%

vortex 804% 4,708% 679% 130% 60%
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Our instrumentor was used in its typical configuration. This configuration includes a num-

ber of default optimizations that we discuss at greater length below. Each percentage in the

table represents an average across five runs with five distinct random seeds. Repeated runs

in the same environment, or changing only the seed, show negligible variation.

First considering just the “Always” column, observe that overheads vary tremendously

between benchmarks and instrumentation schemes. If the purpose of sampling is to re-

duce overhead, we have starting overheads ranging from 2,049% (a major slowdown when

all three schemes are simultaneously applied to the compress benchmark) to -2% (a slight

speedup when scalar-pairs instrumentation is applied to the power benchmark). Instrumen-

tation schemes vary in their aggressiveness, with some adding far more sites than others.

But overhead can vary widely even within a single scheme: scalar-pairs with uncondi-

tional (“always”) instrumentation causes the compress benchmark to run 1,899% slower

but causes the power benchmark to run 2% faster. This variation shows that deployment

of any of these instrumentation schemes cannot be a mindless, purely mechanical pro-

cess. One must consider the specific properties of the code in question, identify critical

bottlenecks, and intelligently weigh the desire to collect data against the need to main-

tain acceptable performance. What constitutes “acceptable” is inherently domain specific:

a numerically intensive simulation has different requirements from a web browser or a

database transaction server. The particular example of power running 2% faster with un-

conditional scalar-pairs instrumentation also highlights the fact that any code perturbation

can randomly shift performance by a few percentage points due to measurement noise,

cache alignment changes, and other hard-to-control-for factors.

Figure 2.2 presents an alternate view of the same data, summarized to allow easier iden-

tification of trends. We choose 5%, 10%, and 15% as somewhat arbitrary overhead goals,

and count how many of the twelve benchmarks meet each of those goals. For example,
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suppose we are interested in the returns instrumentation scheme with1/100 sampling. Then

the upper-right (“returns”) graph shows that four benchmarks have 5% overhead or less;

five benchmarks have between 5% and 10% overhead; one benchmark has between 10%

and 15% overhead; and the remaining two benchmarks have more than 15% overhead.

These graphs clearly show that some schemes are more lightweight than others. The re-

turns scheme is especially cheap, with most benchmarks showing low overhead even with-

out sampling. For some applications, one might reasonably decide to deploy this scheme in

“always” mode, collecting complete data without sampling. The scalar-pairs scheme is the

most costly, due to two factors. First, scalar-pairs adds far more individual instrumentation

sites than any other scheme. This means a larger memory footprint, more observations,

more countdown management, and more time spent on the slow path. Second, scalar-pairs

instrumentation sites include many comparisons between pairs of local variables. This ar-

tificially enlarges the live ranges of local variables, increasing register pressure and making

register allocation substantially less effective.

In each scheme, a pronounced dip at1/10 reveals that this rate is too dense to be benefi-

cial. At such a high sampling rate, not enough time is spent in the fast path to overcome the

overhead of the sampling infrastructure. Thus1/10 sampling performs worse than uncon-

ditional instrumentation. Performance improves across the board as we reduce the rate to

1/100. This rate is roughly the break even point at which sampling and always-on instrumen-

tation have comparable overhead. Of course, given a choice between only these two, one

would opt for “always” as it provides more complete data. However, we can buy back even

more performance by further reducing the sampling rate.1/1,000 consistently outperforms

unconditional instrumentation. Most schemes do continue to improve at1/10,000, suggesting

that their performance ceilings reside at yet sparser sampling rates. Referring back to Ta-

ble 2.1, improvements from1/1,000 to 1/10,000are largest for exactly those benchmarks that
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perform the worst, such as bh, compress, and vortex. Sparser random sampling increases

the effective noise level of the sampled data relative to ideal, complete data. So even if

some application continues speed up at, say,1/109 sampling, that may not be practical rela-

tive to the size of that application’s user base and the time one is willing to wait in order to

find bugs. Section 2.5 considers these trade-offs in greater detail.

The subsections that follow describe and evaluate several specific optimizations that

have been implemented or proposed. Overall, we find that most of the optimizations im-

plemented to date have no significant effect on performance. With few exceptions, the

performance profile depicted in Figure 2.2 remains largely unchanged. However, it is im-

portant to keep in mind that these are CPU-intensive benchmarks. One would expect to see

worse performance here than on more realistic, complete applications. Performance has

not been an issue, at least so far, in the applications we have studied and deployed. One

would also expect that less invasive instrumentation strategies (e.g. returns) perform better

than more invasive ones (e.g. scalar-pairs), and they do. The surprise is that performance

remains slower than we would like on some benchmarks even with multiple optimizations

and with sampling rates very close to zero. This suggests the presence of tight inner loops

with little chance to amortize the cost of deciding between the fast and slow paths. In such

situations, loop unrolling may offer a way to make acyclic regions larger and amortiza-

tion more effective. We can also simply avoid instrumenting selected performance critical

sections of code. Section 2.3.7 considers this selective exclusion technique in greater detail.

2.3.1 Static Branch Prediction

As discussed in Section 2.1.1, each acyclic region of a transformed control flow graph

chooses between fast and slow variants depending on the current next sample countdown

and the threshold weight of that region. When sampling is sparse, this threshold check will



37

usually branch into the fast path. This fact creates a good opportunity for static branch

prediction. We pass a hint to the native C compiler using__builtin_expect(), a non-

standard GCC extension.

In theory, this static branch prediction helps GCC’s optimizer make better code gen-

eration and layout decisions. In practice, the effects are small. Table 2.1 and Figure 2.2

included static branch prediction. Figure 2.3 shows how overheads grow or shrink when

static branch prediction hints are omitted.

In these graphs, each circle represents a single benchmark at a single sampling rate.

Positive numbers represent increases in overhead relative to the typical instrumentor con-

figuration; negative numbers represent reductions in overhead. To take an extreme exam-

ple, Table 2.1 reports that with scalar-pairs instrumentation and1/10 sampling, the compress

benchmark exhibits 8,764% overhead in the typical instrumentor configuration. If static

branch prediction hints are omitted, this overhead shrinks to 8,611, for a net overhead re-

duction of 153 percentage points. The lower left (“scalar-pairs”) graph shows one circle at

-153 for sampling rate1/10 representing this reduction in overhead for one benchmark.

Based on this information, static branch prediction hints at the tops of acyclic regions

are not a clear benefit. Most overheads change by only a few percentage points, and as

many benchmarks speed up as slow down. Measurement noise and random effects such as

cache alignment likely account for most of these small perturbations. The perimeter bench-

mark, however, is an interesting counterexample. When run with branches instrumentation,

perimeter consistently shows between 15 and 20 percentage points lower overhead when

static branch prediction hints are disabled. This is visible as four circles running along the

bottom edge of the top left (“branches”) graph. The size of this change is fairly consistent

even though the actual overhead varies from 551% to 77% depending on the sampling rate.

It is unclear why this particular benchmark so consistently improves without static branch
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prediction hints. We suspect that the hints may be causing GCC to make heuristic code lay-

out decisions that are helpful for most code but that happen to be harmful for the perimeter

benchmark.

One can artificially construct a program with very large acyclic regions. In such a

program, acyclic region threshold weights are high and therefore the slow path is often

used. Static branch prediction hints in such a program would be more often wrong than

right, creating additional overhead unless hints are disabled. However, any such large-

region effect would be especially pronounced at dense sampling rates, and we see no such

trend in the data shown in Figure 2.3. Therefore, overly large acyclic regions do not appear

to be a problem for these benchmarks.

2.3.2 Weightless Functions

Section 2.1.3 conservatively assumed that any function call might change the next sample

countdown arbitrarily. Therefore, a new threshold check must appear immediately after

each function call. This treatment is appropriate if, e.g., the caller and callee are being

compiled separately.

However, if the callee is known and available for examination while compiling the

caller, a simple interprocedural analysis can be used to refine this conservative assumption.

Define aweightless functionas one with following properties:

• The function contains no instrumentation sites.

• The function only calls other weightless functions.

The set of weightless functions can be computed via a standard fixpoint algorithm, requir-

ing no more iterations than the depth of the longest non-recursive call chain.
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For purposes of identifying acyclic regions and introducing threshold checks, calls to

weightless functions are invisible. Acyclic regions can extend below such calls, and no

additional threshold check is required after such a call returns. A further benefit is that

the bodies of weightless functions may be compiled with no modifications. They have no

threshold checks, no instrumented code, and therefore require no cloning or transformation

of any kind.

The current instrumentor implementation performs weightless function analysis for di-

rect, statically bound calls within a single compilation unit. Dynamically bound calls across

function pointers are conservatively assumed to be non-weightless (“weighty”) pending in-

tegration of a points-to analysis. Called functions in separate compilation units are also

assumed to be weighty unless explicitly declared otherwise via a special preprocessor

pragma. As a special case, all functions in the standard C runtime libraries (libc and

libm) are assumed weightless with the exception of:

• bsearch andqsort, which may call weighty comparison predicates

• setjmp, longjmp, and a few related functions, which perform interprocedural con-

trol transfer

Table 2.1 and Figure 2.2 included weightless optimization of calls to weightless func-

tions. Figure 2.3 shows how overheads grow or shrink when this optimization is disabled

by assuming that all functions are weighty. Again, positive numbers represent larger over-

heads without this optimization. Negative numbers represent smaller overheads without

this optimization. Overall we find no consistent benefit or harm. Special treatment of calls

to weightless functions does not have an appreciable, reliable effect on performance.
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2.3.3 Empty and Singleton Regions

Two special cases arise after computing the threshold weights of acyclic regions. A region

may contain no instrumentation sites, giving it threshold weight zero. The sampling trans-

formation disregards any such regions. They require no threshold check and no slow/fast

code cloning. In effect, we generate only the fast path; the slow path would be dead code

and therefore is omitted. If a loop contains no instrumentation sites, then the instrumen-

tor need not even treat the loop as a cycle. An “acyclic” region may actually include an

arbitrary number of instrumentation-free loops.

The second special case concerns singleton regions: those with threshold weight one.

Any path through such a region crosses at most one instrumentation site. Crossing one

instrumentation site entails decrement and check of the next sample countdown. However,

even the fast path would have one check (the top-of-region threshold check) and one decre-

ment (where the instrumentation site would otherwise appear). Therefore, the fast path for

singleton regions is no faster than the slow path. Instead of generating both, we omit the

fast path, omit the top-of-region threshold check, and only generate code for the slow path.

Note that this optimization applies to any region with threshold weight one, even if multiple

sites appear within the region. A region consisting of a branch with one site on each arm is

still a singleton region, as any path through that region crosses at most one site.

Table 2.1 and Figure 2.2 included empty and singleton region specialization. Figure 2.3

shows how overheads grow or shrink when this optimization is disabled and empty and sin-

gleton regions are cloned into fast and slow paths like all other regions. Positive numbers

indicate that disabling region specialization makes code slower. In the branches and re-

turns schemes we see a general trend toward larger overheads without this optimization.

Inversely, special treatment of empty and singleton regions shrinks overhead by roughly

three to five percentage points with these schemes. The effect, while small, is consistent
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across multiple benchmarks and sampling rates and therefore appears to be genuine.

The scalar-pairs scheme adds a very large amount of instrumentation. Almost any frag-

ment of realistic code will induce multiple instrumentation sites, so empty and singleton

regions are rare when the scalar-pairs scheme is in use. This is visible as a lack of a clear

positive or negative trend in the lower left (“scalar-pairs”) and lower right (“branches + re-

turns + scalar-pairs”) graphs of Figure 2.3. The optimization does no harm in these cases;

it is merely inapplicable.

2.3.4 Local Countdown Caching

Careful examination of the assembly code produced for instrumented applications reveals

that having the next-site countdown in a global variable can be expensive. Our native

C compiler, GCC, treats the many “--countdown” decrements along the fast path quite

poorly. It will not, for example, coalesce a sequence of five such decrements into a single

“countdown -= 5” adjustment. This lack of optimization apparently stems from conser-

vative assumptions about aliasing of global variables.

Efficient countdown management requires that the native C compiler take greater lib-

erties when optimizing these decrements. We assist the native compiler by caching the

countdown in a local variable within each function:

1. At function entry,import the current global countdown into a local variable.

2. Use this locally cached countdown for all decrements, threshold checks, and sam-

pling decisions.

3. Just before function exit,exportthe locally cached countdown back out to the global.

To maintain agreement across all functions, we must also export just before each func-

tion call and import again after each call returns. Again, though, calls to weightless func-
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tions may simply be ignored, as they do not change or even inspect the countdown. Simi-

larly, the bodies of weightless functions need not import and export at entry and exit, since

they always leave the countdown unchanged. With this change, the conventional native C

compiler can coalesce decrements, store the cached countdown in a register, and perform

other standard optimizations.

Table 2.1 and Figure 2.2 cached the next sample countdown in local variables. Fig-

ure 2.3 shows how overheads grow or shrink when a local variable cache is not used, and

the next sample countdown is accessed directly as a global variable. Positive numbers

indicate that disabling countdown caching makes code slower.

In the lower left and lower right graphs, where the scalar-pairs scheme is active, we

find large increases in overhead without the local countdown cache. Because scalar-pairs

adds so many instrumentation sites, the next sample countdown is accessed very frequently.

Even straight line code may cross multiple instrumentation sites, so decrement coalescing

is important here too. The beneficial effect of using a local cache is pronounced at dense

sampling rates, such as1/10 and1/100, but extends to sparser rates as well.

The benefits of this optimization come at a cost: extra import operations are required

to keep the local and global countdowns consistent across function calls. When calls to

weighty functions are common, and acyclic regions small, this additional bookkeeping may

overwhelm the benefits of using the local cache. The branches and returns schemes show

no clear benefit to local countdown caching, possibly due to these import/export costs. If

further study confirms that these costs are a problem, alternate approaches are possible.

For example, one might pass the countdown from caller to callee as an additional function

argument or store the countdown in a dedicated global register. Care must be taken to apply

such a coordinated change in a way that does not break non-instrumented callers or callees

in a mixed-code environment.
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numbers indicate larger overhead relative to typical configuration.
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2.3.5 Random Countdown Generation

Section 2.1.1 enumerated the operations required to reset the next sample countdown after

each measurement. Amortization helps share the cost of these operations. For an additional

performance boost, one might instead generate a bank of random countdowns offline, be-

fore starting the instrumented application. An instrumented application consumes them

from first to last, and may wrap around to the first again if too few were provided.

Our implementation supports this alternate strategy. Banks of 1,021 random count-

downs may be generated offline and stored in binary form. At runtime a bank is mapped

into memory usingmmap() and accessed efficiently as an array. On our reference platform,

the Intel IA-32 (a.k.a.x86), one countdown occupies four bytes, so 1,021 countdowns fit

within a single four kilobyte virtual memory page. Furthermore, 1,021 is prime, reducing

the chance of bad temporal aliasing with any periodic behavior within the application. With

a typical sampling rate of1/100, a bank of 1,021 random countdowns covers an average of

102,100 site crossings before repeating.

An even faster approach eschews randomization entirely, and always resets the next

sample countdown to a fixed value, such as 100 for a sampling rate of1/100. As discussed

in Section 2.1.1, this approach runs a high risk of creating temporal aliasing with periodic

program behaviors. The data collected may no longer be a truly fair, representative sample

of complete program behavior. However, fixed-period sampling may be a useful strategy

to consider when performance is so important as to trump strict statistical correctness.

Extremely common, repeating program behaviors will still be visible, which made periodic

sampling reasonable for Arnold and Ryder to use when hunting performance bottlenecks

[AR01]. However, rare bugs, or bugs caused by rare behaviors, risk being systematically

lost due to temporal aliasing.

Table 2.1 and Figure 2.2 used online generation of random countdowns as needed.
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Figure 2.7: Change in overhead with offline random countdown generation. Positive num-

bers indicate larger overhead relative to typical configuration.
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Figure 2.8: Change in overhead with fixed, non-random countdown. Positive numbers

indicate larger overhead relative to typical configuration.
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Figure 2.7 shows how overheads grow or shrink when countdowns are generated offline.

Figure 2.8 shows how overheads grow or shrink when countdowns are not random at all,

but instead use a fixed reset value ofd for sampling rate1/d. High sampling rates consume

random countdowns more rapidly, and these results show that random countdown genera-

tion is indeed a major source of overhead when sampling is dense. The scalar-pairs scheme

magnifies this same effect: speeding up countdown generation is critical when using this

instrumentation-intensive scheme at high sampling rates.

For sparse sampling rates, a single countdown lasts longer and therefore the cost of

generating the next countdown is less significant. No consistent performance boost is seen

at 1/1,000and1/10,000for either offline or fixed countdowns. This result suggests that the cost

of true statistical fairness is not excessive in cases such as bug hunting, where rare events

may carry great significance.

2.3.6 Path Balancing

When the fast path consists of simple, straight-line code, the C compiler may be able to co-

alesce multiple countdown decrements into a single larger adjustment. For example, GCC

performs this optimization provided that the countdown is cached in a local variable per

Section 2.3.4. However, decrement coalescing cannot extend across branches, because the

multiple forward paths may contain different numbers of instrumentation sites and there-

fore require different net adjustments to the countdown.

Path balancing generalizes decrement coalescing to arbitrary acyclic regions. The key

is to ensure that all forward paths through an acyclic region cross the same number of

instrumentation sites. Imbalances occur at branches. When a control flow graph node has

multiple successor paths with different weights, extra “dummy” sites are added to the start

of those successor paths that have fewer “real” sites than their siblings, thereby creating
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(b) After balancing

Figure 2.9: Example of path balancing

balance. When all branches in a region are balanced, the entire region is balanced as well.

Figure 2.9(a) gives an example of an acyclic region before balancing. Nodes with

instrumentation sites have dotted outlines. Notes are lettered for ease of reference, and

the number in each node gives the maximum weight of all paths forward from that node.

The entire region has threshold weight 2 but individual paths cross 0 (abe), 1 (adh), or 2

(abc f g, abc f h) sites. Branch nodesa, b, and f may require balancing. Brancha does have

imbalanced successors: one dummy site must be added on thead edge. Branchb is also

imbalanced: two dummy sites must be added on thebeedge. Branchf is already balanced:

both successors already have matching weights.

Figure 2.9(b) shows the same acyclic region after balancing. Three unlettered dummy

sites have been added. The threshold weight for the entire region (2) is now the exact

number of sites crossed on each of the four paths through the region starting from entry
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nodea.

Balancing is not an optimization in and of itself. Rather, it actually adds instrumenta-

tion in the form of dummy sites. However, once a site is balanced, we can optimize the

code as follows. Just before the first node of the fast path, decrement the next sample count-

down by the threshold weight of the entire region (for example, “countdown -= 2” just

before nodea in Figure 2.9(b)). This increment accounts for exactly the number of unary

decrements that would have occurred in this region. Elsewhere in the fast path, wherever

a real or dummy instrumentation site would have appeared, do nothing. The decrements

have already been accounted for and there is no other work to do.

The slow path must decrement and check the countdown at each instrumentation site

as before, because on the slow path we do need to know exactly when a site should be

sampled. Furthermore, even dummy sites must decrement the countdown and reset it if it

reaches zero. This requirement ensures that both the fast and slow paths behave the same

with respect to counting down to the next sample, at the expense of making the slow path

even slower. Also, adding dummy instrumentation sites means that the countdown will

need to be reset more often, so a slow random number generator will be more of a liability

here.

In total, path balancing makes the fast path faster and the slow path slower. The path

balancing algorithm has not yet been implemented. Evaluating its net effect on performance

is left as future work.

2.3.7 Statically Selective Sampling

It is not necessary to put all instrumentation into a single executable; one can easily create

multiple executables where each contains a subset of the complete instrumentation. Parti-

tioning instrumentation by site, by module, by function, or by object file are all reasonable
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strategies. Any individual executable contains less instrumentation and therefore incurs a

smaller performance penalty. Fewer sites mean more weightless functions, and therefore

better interprocedural optimization per Section 2.3.2. Functions without instrumentation

sites require no code duplication, which limits executable growth. Known trusted code

can be exempted from instrumentation, or especially suspect code can be “farmed out” to

a larger proportion of users for more intensive study. Given a suitable dynamic instru-

mentation infrastructure, sites can be added or removed over time as debugging needs and

intermediate results warrant.

We have experimented with benchmarks in which only a single function is instrumented

at a time, using the CCured instrumentation scheme. Whereas fully instrumented exe-

cutables range from 13%-149% larger than their non-sampling counterparts, average code

growth for single-function instrumented executables is just 12% for the small Olden bench-

marks and 6% for the larger SPEC CPU95 applications. Performance is uniformly good:

at 1/1,000 sampling, 94% of site-containing functions incur less than 5% slowdown versus

instrumentation-free code, while even the worst single function has less than a 12% penalty.

Instead of instrumenting one function at a time, we might start with a fully instrumented

application and then selectively exclude high-traffic functions from instrumentation. We

can exclude functions in this manner, one at a time, until performance reaches desired

levels on some test suite believed to be representative of real world usage patterns. The set

of high-traffic functions can itself be refined over time using coverage information derived

from feedback reports as suggested in Section 2.2.2. The same process could be applied at

a finer-grained level, such as basic blocks or even individual statements or instrumentation

sites. Function exclusion is sufficient here to demonstrate the technique.

Figure 2.2 showed that many benchmarks fail to reach a performance goal of 15% maxi-

mum overhead when all functions are instrumented. We have iteratively excluded functions
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Table 2.2: Number and percentage of functions excluded to achieve 15% performance goals

Instrumentation Scheme

Benchmark branches returns scalar-pairs all of above

bh 1 (2%) - 3 (7%) 5 (12%)

bisort - - 4 (25%) 4 (25%)

compress 3 (13%) - 6 (26%) 7 (30%)

em3d 1 (7%) - 1 (7%) 2 (13%)

health - - - -

ijpeg 4 (1%) - 10 (2%) 11 (2%)

mst 2 (14%) - - 1 (7%)

perimeter 3 (38%) 1 (13%) 1 (13%) 3 (38%)

power - - - 4 (24%)

treeadd - - - 1 (11%)

tsp 1 (8%) - - -

vortex 35 (4%) 12 (1%) 53 (6%) 88 (10%)
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in each benchmark, for each instrumentation scheme, until the overhead at1/1,000sampling

was no greater than 15%. Table 2.2 shows how many functions had to be excluded in each

case, as an absolute count of functions and as a percentage of all non-library functions

in the benchmark. Benchmark and scheme configurations that met the 15% goal with no

exclusion at all are listed as “-”. In general we find that the absolute number of excluded

functions is small in the small benchmarks, although the percentage may appear large. Con-

versely, the percentage of excluded functions is small in the larger benchmarks, although

the absolute count may appear large. These results suggest that for CPU intensive appli-

cations it is a reasonable compromise to identify and exclude a small performance-critical

kernel to achieve low overheads while retaining the benefits of sampled instrumentation

elsewhere in the application.

2.3.8 Optimization Recap

The experiments of this section show that we can instrument and sample code with reason-

able performance, although we may have to resort to excluding some performance critical

code to achieve that with our current implementation. Two remaining sources of overhead

that we have identified are the instrumentation code left on the fast path and suboptimal

code due to being forced to rely on the whims of the native compiler’s optimizer. Im-

provements to the instrumentation algorithm, such as path balancing, can solve the first

problem. Binary rewriting techniques can address the second, as demonstrated in recent

work by Chilimbi et al. (see Section 5.2). We have not explored either avenue further to

date because the performance of our existing implementation has thus far been more than

adequate for our experiments and public deployment. Developing a better understanding

of the performance characteristics of sampled instrumentation remains an important area

for future work.
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2.4 Adaptive Sampling

Our basic instrumentation strategy treats all sites equally. Each site is observed in linear

proportion to the number of times it is reached, modulo random sampling. However, not

all program behaviors are equally interesting, especially when looking for bugs. One might

want more detailed information about newly written code, novice code, complex code,

rarely executed code, security-sensitive code, code implementing brittle features, or code

that raises a red flag in the developer’s mind for any other reason. Nonuniform sampling

requires both a policy to decide what is interesting as well as a mechanism for translating

that interest into adjusted sampling rates.

We present here two mechanisms for varying the sampling rate across different instru-

mentation sites followed by some general notes on policy selection.

2.4.1 Nonuniformity Via Multiple Countdowns

We can implement nonuniform sampling using multiple global next sample countdowns

instead of just a single countdown. At run time, maintain several countdowns tuned to

different average sampling rates, such as1/1, 1/100 and1/10,000. (A “random” 1/1 countdown

is always reset to exactly 1, thereby sampling at every opportunity.) Each acyclic region

is bound to one of these countdowns, and the threshold weight check and all countdown

decrements use the bound countdown. In simple cases, bindings can be static. If the adap-

tation policy requires post-deployment changes, either binary patching or an extra level of

indirection can be used to change each region’s binding at program launch time or even

dynamically as the program runs.

Multiple countdowns are conceptually straightforward, though they complicate the in-

strumentation process in practice and therefore have not yet been implemented. It is easy to
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directly set the sampling rate for any acyclic region. Any desired rate may be used, though

implementations might choose to limit the total number of distinct global countdowns. Be-

cause countdowns are bound on a per-region basis, all sites within an acyclic region must

use the same sampling rate, and a site appearing in multiple regions forces rate matching on

all of them. However, acyclic regions need not be maximal. If the rate-matching restriction

is found to be problematic at instrumentation time, a large region can be subdivided into

smaller ones bound to distinct countdowns.

2.4.2 Nonuniformity Via Non-Unit Site Weights

Throughout Section 2.1 we assumed that each site had identical, unit weight. The threshold

weight of a region is the largest total weight of sites crossed on any one path through

that region. However, we need not restrict ourselves to unit weights. We might select an

arbitrary site of interest and assign it weight two. Upon reaching that site, we decrement the

next sample countdown twice, and take a sample if either decrement drives the countdown

to zero. When computing acyclic region threshold weights, any path crossing this “heavier”

site adds a weight of two instead of one. The effect is as though we had two copies of the

site in sequence. A site with weight three will be observed even more frequently. In general,

if the core, underlying sampling rate is1/d, and execution reaches an instrumentation site

with weightw, then the probability of making an observation is

1− (1− 1/d)w. (2.1)

This formula gives the probability of seeing at least one success (equivalently, not see-

ing w failures) inw trials of a 1/d Bernoulli process. Weights must be natural numbers,

so a given core rate defines a discrete family of derived sampling rates. Ford = 10, the

available sampling rates include{0.1,0.19,0.271,0.3439, . . .}. For d = 1,000, the avail-

able sampling rates include{0.001,0.001999,0.002997,0.003994, . . .}. Sparser core rates
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yield smaller steps between derived rates. In all cases, the least sampling probability is1/d

whenw = 1, while the sampling probability asymptotically approaches 1 asw increases

without bound. (In practice, if the countdown is stored as a 32-bit unsigned integer, then

settingw to 232−1 guarantees that every possible sample will be taken.)

This approach offers both benefits and drawbacks compared to using multiple count-

downs. Implementation is simpler, and this approach is already available for use in the

instrumentor. Weights need not be uniform within an acyclic region. A much larger family

of sampling rates is available. On the other hand, one does not have truly arbitrary rates,

only those derived from the core sampling rate. The hyperbolic curve defined by Equa-

tion 2.1 has some inconvenient properties. Doubling a site’s weight does not double its

sampling rate. Doubling the core sampling rate does not uniformly double the sampling

rates for all sites: the actual rate increase depends on each site’s weight. If one wants to

maintain certain proportions between the sampling rates of different sites, site weights must

be changed with any change to the core rate, and certain proportions may be impossible to

achieve exactly. Both schemes allow for adaptive sampling: weights can be patched in at a

binary level or else read from an external manifest. One does need to recompute regions’

threshold weights, though, based on the weights assigned to their contained sites. This

calculation requires some extra bookkeeping that the multiple countdowns scheme avoids.

In principle, these two mechanisms can coexist. One can provide multiple countdowns,

with each region bound to one countdown and each site within that region assigned its

own weight. This hybrid approach offers maximum flexibility at a price of maximum

engineering complexity.
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2.4.3 Policy Notes

At present we have only limited experience with different policies for deciding which sites

are worth closer attention. We note, however, that nonuniform sampling for bug isola-

tion is especially well matched to a policy based on code coverage. Empirical studies

show that rarely executed code exhibits higher defect density than frequently used code

[HC94, Hol01], an effect that is even more pronounced post-deployment [HHW97]. Denser

sampling of rarely executed code, even as high as1/1 (complete data), should have a rel-

atively small impact on performance, while sparser sampling of heavily used code will

improve performance. Thus nonuniform sampling based on code coverage should provide

useful debugging information while simultaneously reducing overhead. Section 4.4.1 and

Section 4.6 define and use one such coverage-guided policy.

2.5 Realistic Sampling Rates

From the benchmarks of Section 2.3 and the case studies in Chapter 4, we conclude that

realistic deployments will use sampling densities between1/100and1/1,000. But how effective

is 1/1,000 sampling at observing rare program behavior? Suppose we are interested in an

event occurring once per hundred executions. To achieve 90% confidence of observing this

event in at least one run, we need at least

log(1−0.90)

log
(

1− 1
100×

1
1,000

) = 230,257 runs.

While 230,257 is a large number of runs, consider that sixty million Office XP licenses

were sold in its first year on the market [Mic02]. Assuming that the average licensee runs

Microsoft Word twice per week, then this user base produces 230,257 runs every nineteen

minutes. Achieving 99% confidence of observing an event that occurs on one in a thousand



60

runs requires 4,605,170 runs, which takes less than seven hours to gather.

For smaller deployments, we must either wait longer for sufficient data or increase the

sampling density. As we will see in Section 4.2 and Section 4.3, at least for restricted

classes of bugs we can perform useful analysis with a few thousand executions. Thus, our

techniques are likely most suited to applications where it is possible to gather data with at

least1/1,000sampling from thousands of executions per day.
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It compiles. Ship it.

Bart Schaefer, Vice President of
Engineering, Z-Code Software

Corporation

Chapter 3

Practical Considerations

We believe that CBI and related research efforts have great potential to make software

development more responsive and efficient by giving developers accurate data about how

software is actually used in deployment. However, testing this idea requires significant

experimentation with real, and preferably large, user communities using real applications.

This chapter reports on our experience in preparing for such experiments.

We have selected several large open source applications, listed in Table 3.1, comprising

some two million lines of code before instrumentation. We have built instrumented pack-

ages using the strategy described in Chapter 2, made these packages available to the public,

and are now in the process of collecting feedback reports. We have not yet identified any

bugs using these reports: our user base is still too small, and does not provide reports in the

quantities needed by our statistical debugging techniques. However, we have demonstrated

an end-to-end complete CBI system and feel comfortable in claiming that our approach

is technically feasible. While aspects of our system could certainly be improved, at this

point all components are good enough to support the deployment of realistic instrumented

applications and the collection of feedback reports from a large user community.
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Table 3.1: Applications from the public deployment

Application Lines of Code Shared Libraries Plugins Threads

EVOLUTION 574,224 X X X

GAIM 209,639 X

THE GIMP 657,156 X X

GNUMERIC 319,137 X

NAUTILUS 129,439 X X X

RHYTHMBOX 59,569 X X

SPIM 20,300

The design of a CBI system involves interesting challenges, both technical and social.

In the next several sections, we focus on the solutions to technical problems most likely

to be useful to the designers of similar systems and experiments: integration with existing

native compilers (Section 3.1), management of static and dynamic linkage (Section 3.2),

and correct execution in the presence of threads (Section 3.3).

Moving toward the social domain, Section 3.4 discusses the privacy and security facets

of widespread monitoring of deployed software. Section 3.5 considers CBI from the user’s

perspective, and presents our approach to ensuring that users remain fully informed about

and fully in control of their participation in the CBI system.

Lastly, Section 3.6 briefly reviews the current status of our public deployment, and

offers general information about the state of this experiment under way.
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3.1 Native Compiler Integration

The instrumentor as a whole looks and behaves like a C compiler with a few extra com-

mand line flags. It specifically emulates GCC, giving us easy access to a large corpus

of open source applications. No manual annotation of source code is required, and all

existing configuration scripts and makefiles work transparently. This design lets us instru-

ment millions of lines of open source code and keep up with new releases with very short

turnaround. Simply changing an environment variable ($CC) builds an application with our

instrumenting compiler instead of the standard one.

The meat of instrumentation happens as a source to source transformation after the

preprocessor and before the real C compiler. However, we actually need to affect all stages

of compilation:

before preprocessing (cpp0 ): Pull in extra headers to declare or define various constructs

used by instrumented code. For fixed content it is easier to use fixed headers rather

than synthesizing the needed constructs programmatically within the instrumentor.

before compilation (cc1 ): Inject sampled instrumentation as a source-to-source transfor-

mation. Emit additional static site information into temporary files for use in next

step.

after assembly (asm): Fuse extra static site information from temporary files into the as-

sembled object file.

before linking (ld ): Pull in extra libraries containing common runtime support code and

data used by instrumented programs.

We use GCC’s-B <path> flag to specify an alternate directory in which to find the

compiler stages. Custom scripts in that directory namedcc1 andasm do the extra “before
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compilation” and “after assembly” work and invoke the corresponding native compiler

stages as appropriate.

We also use GCC’s-specs=<file> flag to augment (but not replace) the standard

option specs file with one of our own. Anoption specs file, or simply “specfile,” deter-

mines how GCC parses its command line arguments. We can add flags of our own, request

temporary file names, and so on. A specfile is essentially a tiny domain-specific language

for tweaking the command lines used for the various compiler stages. Using this facility we

are able to take care of our “before preprocessing” and “before linking” needs by augment-

ing thecpp0 andld command lines without actually replacing those stages with custom

scripts of our own.

Starting in release 3.3, GCC has moved away from having a standalonecpp0 prepro-

cessor stage. Instead the preprocessor is integrated into the maincc1 C compiler. On

platforms without acpp0, our replacementcc1 script invokes the realcc1 twice: once to

preprocess the original source code and a second time to compile the transformed source

after instrumentation has been added.

3.1.1 Static Site Information

While the main “before compilation” task is to inject instrumentation code, this phase also

produces static reference information about each instrumentation site. This information

includes each site’s source file name, line number, host function, control flow graph node,

and other properties specific to the instrumentation scheme being used. When decoding

feedback reports, this information is used to tie predicate counts back to source level fea-

tures understood by the programmer. Our experience is that maintaining this information

external to the corresponding object file is brittle, as existing application build scripts often

move or rename object files during the build process. Therefore, we fuse the static site



65

information into the assembled object file by storing it in several custom ELF sections.

When the linker combines several object files, it pads each unknown section out to

some fixed modulus and then concatenates all same-named sections in link order. We

represent our static site information in a way that remains valid under null-byte injection

and concatenation. Thus each instrumented executable, shared library, or plugin is self

describing, with complete static information for all of its own instrumentation sites. Our

extra sections are flagged as debug information, which means that they will be stripped

out along with other debugging information during post-build packaging. We retain a copy

locally to assist in report decoding, but end users do not need to download and store this

extra information on their own machines.

3.2 Libraries and Plugins

Post-run reporting would be easy for an application that consisted of a single object file.

We would simply write out the predicate counters in the order in which they appear in that

file, and that list would constitute a complete report.

However, as seen in Table 3.1, many applications involve multiple object files in the

form of shared libraries, plugins, or both. Note that this table counts only those shared

libraries and plugins that are part of the source code of the application; additionally, there

generally will be other shared libraries and plugins that are resident only on the end user’s

machine. Thus, the running environment is a mix of code that has been instrumented

by CBI and code that we have never seen before. Shared libraries are also interesting

because they may be used by other applications that we have not instrumented. Thus,

not only must instrumented applications cope with uninstrumented code, but instrumented

code must cope with finding itself in an uninstrumented application.

An orthogonal set of problems arises from static linking and dynamic loading. Our sys-
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tem does not have control over the linker and cannot assume that object files appear in any

particular order. Plugins may be loaded late and unloaded at any time. If an instrumented

plugin is about to be unloaded, we must capture its part of the feedback report immediately,

because once it is unloaded its global predicate counters vanish from the address space and

can no longer be accessed.

Our solution to all of these problems is to make each object file self-managing, with

some initialization code that runs when it is loaded, and finalization code that runs when

it is unloaded. For objects that are part of the main application binary, the initialization

code runs early in program execution, beforemain(). The finalization code runs after

main() returns or afterexit() is called. Shared libraries are similar. For plugins, the

initialization code runs withindlopen() after the plugin has been mapped into memory.

Plugin finalization code runs withindlclose() just before the plugin is removed from

memory. Each object file also maintains its own instrumentation state; in particular, each

object file maintains its own predicate counters.

All instrumented code shares a small amount of global state, such as the next-sample

countdown and a random number generator. This state is initialized using the same early-

execution facilities just before any instrumented object file is initialized. If the first piece

of instrumented code is an external plugin, then the global shared state will be initialized

when that plugin is first loaded. Thus, instrumented code still behaves as intended even

when loaded up by an otherwise uninstrumented host application.

Self-management works well, but there is one situation in which we need global knowl-

edge of the loaded object files. Finalization code does not run after a crash. Thus if the

program receives a fatal signal, we must immediately gather the predicate counters from

each loaded object file for the feedback report. We maintain a doubly-linked list of loaded

object files, and the initialization/finalization code for each object file adds/removes that
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file from this list. Thus at any moment in time the application has a central registry of all

instrumented, currently loaded object files.

We have also given some attention to the fact that this global registry could itself be

corrupted by a buggy program. We maintain a global count of the expected size of the

global registry. When walking the list in a signal handler, we use the counter to decide

when to stop even if we have not reached the end of the list data structure. This extra check

prevents an infinite loop if a memory error in the application introduces a cycle into the

doubly-linked list. The global registry can be damaged in other ways by a misbehaving

program, of course, but avoiding cycles is the most important case to handle.

The complications in checking for a corrupted global registry are just an example of the

general problem that it is not possible to completely isolate program instrumentation from

the program itself in unsafe languages such as C and C++. As a result it is necessary to

sanity check feedback reports at the central server and discard any that are ill-formed. We

do actually receive ill-formed reports, but the number is only a tiny fraction of all reports.

3.3 Threads

Nearly half of the applications listed in Table 3.1 are multi-threaded. Our CBI system

maintains three kinds of global runtime data that need special attention in such software.

In each case thread-safety can hurt performance, so we only take these extra measures if

in fact the application is multi-threaded (e.g., if the compiler’s command line contains the

GCC-pthread flag).
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3.3.1 Next-Sample Countdown

The most obvious piece of shared state is the next-sample countdown. In a multi-threaded

system, the global variable holding this next-sample countdown would be a source of high

contention among threads. Furthermore, our practice of caching the global countdown in

local variables can easily lead to the same sort of coordination complications present in any

multiprocessing system with per-processor caches.

A simple solution to this problem is to give each thread its own, independent count-

down variable. This duplication is equivalent to giving each thread its own coin to toss.

The behavior of the system with per-thread countdowns is indistinguishable from having a

single global countdown, but avoids locking.

Enacting this plan requires compiler support. We use the__thread storage qualifier to

declare thread-specific storage. This qualifier is a GCC extension and also requires support

from the POSIX threading runtime, C library, and runtime loader. We also must alter thread

creation so we can initialize the new thread’s global state. We use the--wrap flag provided

by the GNU linker to replacepthread_create() with our augmented version.

3.3.2 Predicate Counters

The second class of data that requires special handling in multi-threaded applications is the

predicate counters. Recall that the predicate counters keep track of how often a particular

predicate at a particular line of code is observed to be true or false. For efficiency we use

low sampling rates, such as once every hundred times (on average, randomized) that the

line of code associated with the predicate is executed. Therefore predicates are tested rarely

and any individual counter is accessed rarely even by a single thread. Consequently, we

maintain only one copy of each predicate counter, shared by all threads. The critical oper-
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ation on these counters, an increment by one, is so basic that every CPU architecture has

some way of doing it atomically without resorting to heavyweight locking. For example,

on the popular Intel IA-32 (a.k.a.x86) architecture, aLOCK-prefixedINC instruction gives

exactly the desired behavior [Int01].

3.3.3 Compilation Unit Registry and Report File

The third class of data that must be protected from concurrent access includes the global

registry of compilation units and the report file. These structures are only accessed when

instrumented code is loaded or unloaded from the program’s address space. Contention

is expected to be low, and the performance impact of any reasonable solution small. We

guarantee exclusive access by guarding each of these structures with its own conventional

mutual exclusion lock.

3.3.4 Time Stamp Clock

The global clock used when time stamping samples (Section 2.2.3) is accessed every time a

sample is taken, not every time a site is reached. Thus contention, while high, is lower than

it would be for a shared global next-sample countdown. Our current implementation guards

the clock with a conventional mutual exclusion lock. This design has the unfortunate effect

of putting lock operations into the main sequence of program operations. The positive

effect is that we retain a single, globally agreed upon clock for all samples in all threads.

A possible alternative approach would be to use per-thread clocks akin to the per-thread

next-sample countdowns discussed earlier. This design removes locks but sacrifices global

ordering. Techniques for creating partially or totally ordered logical clocks in asynchronous

distributed systems may also be applicable here.
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3.3.5 Performance Evaluation

Table 2.1 and Figure 2.2 used non-thread-safe instrumentation. Figure 3.1 shows how over-

heads grow or shrink when thread-safe instrumentation is used. (The underlying bench-

marks used here are still single-threaded.) We note considerable increase in overhead

at dense sampling rates and with the aggressive scalar-pairs instrumentation scheme. At

sparser rates the effect is smaller but the trend remains. Thread-safe instrumentation does

incur a performance cost. The fact that the cost is largest for the densest sampling rates

suggests that the atomic increment instructions are a bottleneck. The problem may not be

with the instructions themselves, but rather with the C compiler’s ability to optimize code

around them. We inject the increments using GCC extensions for inline assembly language.

There are limits to how much information we can provide to the GCC optimizer about the

behavior of these assembly fragments. To the extent that GCC treats the fragments as se-

mantically opaque, GCC’s optimizer must be more conservative than it would be if given

pure C code. An instrumentor implementation based on binary rewriting would avoid this

problem and therefore should be able to substantially reduce the cost of thread safety.

3.4 Privacy and Security

We have argued that the most important program behaviors are those exhibited by de-

ployed software in the hands of users. However, any scheme for monitoring software post-

deployment necessarily raises privacy and security concerns. The issues are complex and

as much social as technical. However, our approach can only succeed if users feel safe

contributing to the shared data pool. Thus, addressing these concerns is both a moral and a

practical imperative.

The experiences of Mozilla and Netscape with crash feedback systems may be illus-
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Figure 3.1: Change in overhead with thread-safe instrumentation. Positive numbers indi-

cate larger overhead relative to typical configuration.
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The Netscape Quality Feedback Agent is a feature that gathers predefined technical in-

formation about Communicator and sends it back to the Netscape software development team

so they can improve future versions of Communicator.

. . .

No information is sent until you can examine exactly what is being sent.

. . .

Information gathered by this agent is limited to information about the state of Commu-

nicator when it has an error. Other sensitive information such as web sites visited, email

messages, email addresses, passwords, and profiles will not be collected.

All information Netscape collects via this agent will be used only for the purposes of

fixing product defects and improving the quality of Netscape Communicator. This data is for

internal diagnostic purposes only and will not be shared with third parties.

For more information on Netscape’s general privacy policy, go to:<http://home.

netscape.com/legal_notices/privacy.html>

Communicator activates the agent dialog box when a problem occurs, or when it has

gathered information that Netscape needs to improve future versions of Communicator.

. . .

If you prefer to disable the agent, you may do so here:

Figure 3.2: Privacy assurances as used in Netscape Quality Feedback Agent

http://home.netscape.com/legal_notices/privacy.html
http://home.netscape.com/legal_notices/privacy.html
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trative. We have met with members of the Netscape Talkback Team, a group of quality

assurance engineers who manage crash reports from the automated feedback system. Con-

siderable effort has gone into designing the client side of this system so that users are fully

informed. The system is strictly opt-in on a per-failure basis, or may be disabled entirely.

The user may optionally examine the contents of the crash report, and no information is

ever sent to Netscape without explicit authorization. Figure 3.2 shows the sort of informa-

tion presented each time Netscape or Mozilla has crash data to submit.

Not all users will read or understand these assurances. Even so, there are some technical

measures we can take to protect the privacy of even non-technically savvy users. The very

nature of the sampling process itself affords a degree of anonymity. We collect a small bit

of information from many, many users; any single run has little revelatory power.

Some data, or some parts of execution, may be so sensitive that even this diffuse in-

formation leakage is unacceptable. Several type-based analyses under the broad heading

of secure information flow [BHS03, VS97, ZZNM01] may be helpful here. Such systems

statically identify parts of a program that manipulate sensitive data; we can avoid inserting

instrumentation that reveals such values. Of course, this blacklisting will make it difficult to

track bugs in security-sensitive parts of an application, but that trade-off is always present:

one can only fix bugs about which the customer is willing to provide useful information.

A statistical approach designed to cope with noise offers some protection against mali-

cious users who might try to poison the central database with bogus data, or overwhelm it

with data representing the particular bugs they wish to see fixed. Recent work on protect-

ing privacy and preventing abuse in collaborative filtering systems may also be applicable

[Can02, Del00].
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3.5 User Interaction

When a user launches an instrumented application, he does not run the instrumented bi-

nary directly. Instead, we install a wrapper script in the expected location (e.g.,/usr/bin)

and put the instrumented binary elsewhere. The wrapper script has several responsibilities:

it performs all user interaction that goes beyond what the underlying application would

normally do, and it collects the raw feedback report from the instrumented application,

packages it for transit, and sends it to the report collection server along with other infor-

mation such as program outcome. In this way we avoid adding GUI infrastructure and

encrypted networking support to the applications themselves. Also, the script can be in a

different language, Python, which has excellent library support for both networking and

desktop interaction.

When the wrapper script starts up, it checks whether the user has run an instrumented

version of any application before. If not, it presents the first-time opt-in dialog box shown

in Figure 3.3. The dialog box briefly describes the goals of the project and the consequences

of participating or not, and lets the user decide what to do. The logo icon and highlighting

of the yes/no explanatory text change to reflect the user’s current choice. A hyperlink

button links to the project web site for more information [Lib]. This dialog box is initially

presented in the background, and the real application launched without waiting for a reply.

On this first run, the application reports no data. Once the user has selected yes or no, that

preference is remembered and the first-time opt-in dialog box is not shown on subsequent

runs, though it is possible to change the preference later using a distinct sampler control

panel.

Also in the background, the wrapper posts a small status icon in the desktop status bar

notification area. This icon provides a visual reminder that an instrumented application
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Figure 3.3: First-time opt-in dialog box
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(a) Status icon, enabled

and disabled

(b) Status icon popup menu

(c) Preferences control panel

Figure 3.4: Additional graphical user interface elements

is currently running. It provides a simple pop-up menu with a toggle to globally disable

or enable sampling. The status icon changes depending on whether sampling is enabled

or disabled globally, and remains present as long as at least one instrumented application

is running. A second menu item launches the sampler control panel that allows for more

detailed customization of data collection preferences. These additional graphical user in-

terface elements are shown in Figure 3.4.

The opt-in dialog box, status icon, and control panel work together to keep the user

fully informed and fully in control. Additional configuration management hooks let system

administrators change both defaults as well as mandatory, locked-down settings. These

settings can include the sampling density, the address of the report collection server, and

whether reporting is enabled for all or selected applications. Tracking of user behavior is a

delicate matter, so users and their system administrators must be able to adapt the system

to local needs and concerns.
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Table 3.2: Feedback report sizes

Size in Bytes

Application Min Mean Max

EVOLUTION 704 17,674 39,863

GAIM 1,786 12,072 27,809

THE GIMP 13,316 18,913 32,050

GNUMERIC 6,661 8,786 15,876

NAUTILUS 2,426 4,330 11,572

RHYTHMBOX 332 2,296 8,273

SPIM 198 833 2,184

Because the wrapper script launches the instrumented binary as a subprocess, it can also

check that subprocess’s exit status (either a result code or a fatal signal), which is included

in the report uploaded to our feedback collection server. The wrapper script compresses

the raw feedback report for transit usinggzip-compatible compression. Compression is a

huge benefit, as reports are mostly zeros and compress very well. The average compression

of the reports we have received is 96%; Table 3.2 shows the range of report sizes we have

received by application. The largest reports are less than forty kilobytes, which can be

uploaded over even a slow modem connection in seconds.

Before submitting a report, the wrapper checks once more whether sampling is enabled

both globally and for this application. If the user changed his or her mind after program

launch, this second check gives the user a second chance to quash an unwanted feedback

report before it reaches the collection server.

A report is submitted using an HTTP POST request across an encrypted SSL connec-
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tion. Each HTTP request can also have a response from the server. Ordinarily the collection

server does not give any response beyond a success code. However, if the server does give

a response, the wrapper script receives it and presents it to the user as an HTML page.

This feature might be used, for example, if a critical security issue were found requiring

immediate upgrades.

The HTTP reply can also include a few special reply headers that update the local sam-

pling configuration on the client. We have the ability to promote a different destination

URL for future reports, which may be useful if we need to relocate the collection server.

We can change the sampling density from its default of1/100, which may be useful if perfor-

mance problems arise. We can also issue a “poison pill” that turns off sampling for future

runs of the application. This facility is intended as a shutoff should the Cooperative Bug

Isolation project be discontinued at some future date (a feature we learned would be useful

from the prior experience of Elbaum and Hardojo [EH03]), and it might also be used to

suppress future reports from individual misbehaving users. So far we have not needed any

of these facilities.

3.6 Status of the Public Deployment

We conclude with some discussion of our experience thus far with our public deployment

of the applications listed earlier.

3.6.1 Resource Requirements

One concern is that our approach adds a great deal of new code to an application; in fact,

binaries will often be at least twice as large as the original, uninstrumented program. How-

ever, the growth in disk footprint is considerably smaller if one considers the entire package
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that comes with a typical large application, and in fact the executable code is often a rela-

tively small percentage of the total distribution. For the applications we have instrumented,

downloaded packages are between 13% and 49% larger and the installed footprint on disk

grows between 13% and 71%. The actual application binaries are between 74% and 304%

larger than in the original distribution. Thus far we have received no complaints about

package sizes, either downloaded or as expanded onto disk.

Another potential issue is application performance, but thus far we have received no

complaints about the performance of any of our instrumented applications. We use1/100

sampling, which apparently is sparse enough; we probably could have sampled even more

densely for interactive applications that spend most of their time waiting for the user to do

something. However, even these applications do have CPU-intensive phases, such as when

RHYTHMBOX is loading up a library with thousands of music files or when GNUMERIC is

recalculating a very large spreadsheet.

3.6.2 Reporting Trends

Table 3.3 summarizes the current state of the feedback data for each of our instrumented

applications. Thetotal number of valid feedback reports received so far is broken out

into good runs, runs that exited with a non-zeroerror status, and runs that ended in a

crashdue to a fatal signal. Note the large variation in crash rates, from 0% (SPIM) to

8% (RHYTHMBOX ). These overall failure rates may seem high, but they are well in line

with rates observed in commercial software. A study of 1.3 million business computers

found that 8% of Microsoft Windows sessions ended in failures requiring system reboots.

Newer may not be better: the overall 8% rate breaks down as 3% for Windows NT, 4% for

Windows 2000, and 12% for Windows XP [Nau04].

There is both good news and bad news in the figures of Table 3.3. The bad news is
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Table 3.3: Number of reports received to date

Application Total Good Error Crash

EVOLUTION 1,889 1,780 65 44 (2%)

GAIM 858 730 77 51 (6%)

THE GIMP 219 213 3 3 (1%)

GNUMERIC 294 275 2 17 (6%)

NAUTILUS 1,635 1,404 217 14 (1%)

RHYTHMBOX 1,520 1,326 69 125 (8%)

SPIM 1,066 393 670 3 (0%)

that we have not yet received enough reports to carry out statistically significant analysis

of the results, based on our previous experience with studies done “in the lab” running

applications on synthetic data to simulate a large user community. Based on case studies in

given in Chapter 4, we need tens of thousands of runs with our current methods to achieve

accurate analysis of the results. This is at least ten times the number of reports we have

received to date for any of these applications. Our situation here reflects an inherent aspect

of CBI and similar approaches, which is that these methods work well only beyond a certain

minimum scale.

The good news is that these applications do crash, indicating to us that there is potential

to improve the state of the software given enough users participating in CBI. In addition,

we have enough data to demonstrate that the complete system works, from instrumenting

code through gathering of reports, and we continue to receive new feedback reports daily.

We are only at the beginning of this experiment and have not yet invested much effort in

attracting users. The next step in our experiment will be to find ways to recruit enough

users to test the advantages of CBI for large user communities of complex applications.
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Figure 3.5: Reports received per month and application

Popularity of Applications

Figure 3.5 shows how many reports have been received each month for each application

since the public deployment began. The public deployment began with just four applica-

tions: EVOLUTION, GAIM , THE GIMP, and NAUTILUS. Other applications have been

added over time. RHYTHMBOX was first made available in October of 2003 and quickly

became one of our most heavily used (and most unstable) offerings. We attribute this pop-

ularity to several related factors:

• As is common in the open source community, the RHYTHMBOX developers do not
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make binaries available directly. They only provide source.

• RHYTHMBOX has many dependencies on external shared libraries. In practice, this

complexity makes RHYTHMBOX difficult for novice users to build from source.

• RHYTHMBOX is a fairly high profile project. It is under very active development and

fills a longstanding need for music library management on the Linux desktop.

• Until recently, the popular Red Hat Linux distributions did not include RHYTHMBOX

binaries.

• At our request, the RHYTHMBOX web site suggests that users seeking binaries use

those available from our Cooperative Bug Isolation project page.

These factors combine to create demand for RHYTHMBOX binaries that our project is

uniquely well positioned to fill. Several people have mentioned to us that they use our

RHYTHMBOX builds simply because that is the most convenient way to stay current with

new releases. In short, we found a niche.

EVOLUTION and NAUTILUS are an interesting counterpoint. These applications are

standard parts of nearly all modern Linux distributions. Our instrumented rebuilds provide

no direct benefit to the user in the form of newer code or added functionality. Yet these are

our two most heavily reported applications.

EVOLUTION and NAUTILUS are distinctive in being what we might call “session” ap-

plications: each typically starts when the user logs in and remains running until the user

logs out. We only receive reports from session applications when users log out or when

those applications crash. Therefore we had expected to see fewer EVOLUTION and NAU-

TILUS reports, and to see higher crash rates in the reports we did receive. In fact, the

opposite is the case. What these two applications lack in start/stop cycles they make up for
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in ubiquity. A user might never run GNUMERIC during a given session, but if the user has

logged in at all, then wewill get one NAUTILUS report at the end of that session.

SPIM is the most recent addition to the application pool, first posted in September

2004. The sharp spike at the right edge of Figure 3.5 shows that it has recently become

extremely popular. This sudden popularity seems odd for such a specialized application.

SPIM is a MIPS32 simulator: not the sort of thing most users need on a daily basis. By

design we do not know who our users are; we do not even record the originating IP address

of each report. However, the HTTPS server that receives reports keeps a rotating four-

week access log. Inspection of this log, along with a few web searches, strongly suggests

that our SPIM spike is associated with multiple students at the University of Innsbruck

in Austria taking a class in computer architecture (Rechnerarchitektur). SPIM is used in

this class, and the main SPIM web page directs Linux users to our project page for SPIM

binary downloads. Thus we see again that referrals from developers’ project pages are an

important source of users for our public deployment.

Popularity of Distributions

Unlike Windows or MacOS, Linux is packaged and released by multiple distributors. Fig-

ure 3.6 shows how many reports we have received each month for each supported distribu-

tion since the public deployment began.

The public deployment initially provided binaries only for Red Hat Linux 9. We se-

lected this distribution because of its large user base and because of this author’s familiarity

with the technical particulars of that platform. In May 2004 we switched development to

Fedora Core 1 and announced that Red Hat Linux 9 would no longer be updated.1 We do

still receive a significant number of Red Hat Linux 9 reports, presumably from users who

1Names and numbers are deceiving: Fedora Core 1 is actually the direct successor to Red Hat Linux 9.
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decided to stop upgrading and stay with this well-regarded, fairly stable distribution.

While Fedora Core 1 saw rapid adoption in May and April of 2004, Red Hat Linux

9 reports dropped off at the same time. This shift suggests that most of the Fedora Core

1 users were existing Red Hat Linux 9 users who upgraded rather than new users joining

our project for the first time. We observe as well that the sharp rise in Fedora Core 1

reports in July 2004 coincides with a drop-off of RHYTHMBOX reports. Fedora Core 1

includes RHYTHMBOX binaries. Although our builds are newer and more feature rich,

easy availability of vendor-supplied binaries clearly shrank demand for our rebuilds.

In October 2004 we added support for Fedora Core 2, though we continue to support

Fedora Core 1 as well. The Fedora Core 2 spike at the right edge of Figure 3.6 coincides

with the SPIM spike in Figure 3.5, so apparently the Austrian computer architecture stu-

dents are using Fedora Core 2. It is too early to tell whether other users are switching or

whether new users are arriving. One challenge when adding new distributions is that it is

difficult to stir up as much interest as we got with the first public releases. Our August

2003 launch saw articles in Slashdot, Linux Weekly News, CNET News.com, and other

high profile online technology news fora. Subsequent new distribution announcements

have been limited to mailing lists for the relevant distributions and applications, which are

much smaller audiences.
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What is luck? Luck is probability taken
personally. It is the excitement of bad
math.

Penn Jillette

Chapter 4

Techniques for Statistical Debugging

Thus far we have focused on techniques for collecting sparsely sampled data from large

numbers of users. However, this data is only as good as the sense we can make of it. This

chapter presents several techniques for using sparsely sampled data to isolate the causes of

bugs.

Sampled data is terribly incomplete. With1/100 sampling, 99% of everything that hap-

pens is not even seen. Thus, we do not give strict causes and effects as one might look for

using a symbolic debugger. Instead we use statistical models to identify those behaviors

that tend to be strongly predictive of failure over many runs. We refer to this body of tech-

niques asstatistical debugging. Statistical debugging reaps the benefits of the Bernoulli

sampling transformation developed in Section 2.1.1. While the data is incomplete, it is

incomplete in a fair, statistically unbiased way. Thus the observed data is a noisy but rep-

resentative sample of the complete behavior, and failure trends identified in the former are

equally applicable to the later.

Section 4.1 defines some basic notation and terminology that we will use throughout

the remainder of this chapter. In Section 4.2 we describe an algorithm for isolating sin-
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gle, deterministic bugs using a process of elimination. Section 4.3 extends our scope to

non-deterministic bugs using a general-purpose statistical regression model. This approach

has certain limitations, which we discuss in greater depth in Section 4.3.4 and Section 4.4.

Better understanding of these limitations leads us to develop an improved algorithm in

Section 4.5 that combines statistical ranking techniques with an iterative bug elimination

process to manage multiple unknown deterministic and non-deterministic bugs. The rank-

ing and iterative elimination is our best known algorithm to date. Section 4.6 offers several

case studies demonstrating how the algorithm has been used to successfully isolate both

known and previously unknown bugs in real applications.

4.1 Notation and Terminology

Let P represent the set of all fundamental and inferred predicates for a given program. A

feedback reportRconsists of one bit indicating whether a run of the program succeeded or

failed, as well as a vector with one counter for each predicateP∈ P . Let R(P) represent

the counter value forP in R. If P is observed to be true during at least once runR, then

R(P) > 0; if P is never observed to be true during runR, thenR(P) = 0.

Predicates arise from instrumentation sites. LetSbe an instrumentation site. As a nota-

tional shorthand, define the count of a siteR(S) to be the sum of the counts of its constituent

fundamental predicates. Note that for all of the instrumentation schemes described in Sec-

tion 2.2, the set of fundamental predicates arising from a site form a partition of the set of

all possible program states at that site. Thus, one observation at a siteS entails one true

observation of exactly one fundamental predicateP∈ S. Conversely, ifR(S) = 0, then site

Smust never have been observed.

Let B denote a bug (i.e., something that causes incorrect behavior in a program). We

useB to denote abug profile, i.e., a set of failing runs (feedback reports) that share a cause



88

of failure. The meaning becomes clear in context. The union of all bug profiles is exactly

the set of failing runs, but note thatBi ∩B j 6= /0 in general; more than one bug can occur in

some runs.

A predicateP is abug predictor(or simply apredictor) of bugB if wheneverR(P) > 0

then it is statistically likely thatR∈B (see Section 4.5.1). The goal of statistical debugging

is to select a small subsetA ⊆ P such thatA has predictors of all bugs. Ideally we would

also like to rank the predictors inA from the most to least important according to some

reasonable definition of “importance.” The setA and associated metrics are then available

to engineers to help speed the process of finding and fixing the most serious bugs.

It is occasionally useful to distinguish deterministic from non-deterministic bugs. A

bug is deterministicwith respect to a predicateP if wheneverP is true, the program is

guaranteed to crash at some future point. A bug isnon-deterministicwith respect to a set

of program predicates if it is not deterministic for any predicate in the set (i.e., none of the

considered predicates perfectly predicts program crashes).

4.2 Predicate Elimination

We begin with automatic isolation of deterministic bugs with the additional simplifying

assumption that each program under analysis has only one bug. Deterministic bugs are

quite common, though they are generally easier to find and fix using any method than non-

deterministic bugs (see Section 4.3).

4.2.1 Instrumentation Strategy

As a case study in finding deterministic bugs we take release 1.2 of theCCRYPTencryption

tool. This version is known to contain a bug that involves overwriting existing files. If the
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user responds to a confirmation prompt withEOF rather thanyes or no, CCRYPTcrashes.

TheEOF sensitivity suggests that the problem has something to do withCCRYPT’s in-

teractions with standard file operations. In C, these functions commonly return values to

indicate success or failure. We therefore choose to instrumentCCRYPT using the returns

instrumentation scheme discussed in Section 2.2.2. Thus, when an instrumented run termi-

nates, we can examine any function call of interest and ask how often that call was observed

to return a negative, zero, or positive value.

For CCRYPT, there are 570 call sites of interest, for 570×3 = 1,710 counters. Each

counter corresponds to a single predicate that is hypothesized to behave differently in suc-

cessful versus crashed runs. Specifically, we pose the problem as follows:

Assume that predicates capture incorrect behavior. That is, assume that each
predicateP should always be false during correct execution. WhenP is true,
the program either fails (a deterministic bug) or is at increased risk of failing
(a non-deterministic bug).

If we eliminate all predicates for which this hypothesis is disproved by observed run-

time behavior, then the predicates that remain describe the conditions under which the

program fails.

4.2.2 Elimination Strategies

We make no effort to restrict instrumentation to known system or library calls, nor do we

distinguish functions that return status codes from those that do not. Most of those 1,710

predicates, then, have no bearing on program success or failure. Given a set of runs, we

can discard irrelevant predicates using a set ofelimination strategies:

〈Elimination by universal falsehood 〉: Disregard any predicateP such thatR(P) = 0 on

all runsR. P likely represents a predicate that can never be true.
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〈Elimination by lack of failing coverage 〉: Disregard all predicates for a siteSif R(S) = 0

on all failed runsR. Because one counter in each triple must always be true for any

sample, these predicates likely arise from an instrumentation site that is not even

reached in failing executions.

〈Elimination by lack of failing example 〉: Disregard any predicateP such thatR(P) = 0

on all failed runsR. P likely represents a predicate that need not be true for a failure

to occur.

〈Elimination by successful counterexample 〉: Disregard any predicateP such that

R(P) > 0 on at least one successful runR. P must represent a predicate that can

be true without causing a subsequent program failure.

We characterize these as strategies because they are subject to noise from random sam-

pling, and also because not all are equally applicable to all bugs. For example, elimination

by 〈successful counterexample〉 assumes that the bug is deterministic. The other three

strategies do not make this assumption, but do require enough runs so that any predicate

that is ever true is likely to have been observed true at least once. Note that these strategies

are also not independent:〈universal falsehood〉 and〈lack of failing coverage〉 each eliminate

a subset of the counters identified by〈lack of failing example〉. Elimination strategies also

vary in which kinds of runs they exploit:〈successful counterexample〉 considers only suc-

cessful runs;〈lack of failing example〉 and〈lack of failing coverage〉 consider only failures;

〈universal falsehood〉 uses both.

4.2.3 Data Collection and Analysis

In lieu of a large user community, we generate many runs artificially in the spirit of the

Fuzz project [MKL+95]. Each run uses a randomly selected set of present or absent files,
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randomized command line flags, and randomized responses toCCRYPTprompts including

the occasionalEOF.

We have collected 2,990 trial runs at a sampling rate of1/1,000; 88 of these end in a crash.

Applying each elimination strategy independently to the counter traces:

〈Universal falsehood 〉 discards 1,569 counters that are zero on all runs, leaving 141

candidate predicates.

〈Lack of failing coverage 〉 discards 526 counter triples that are all zero on all crashes,

leaving 132 candidate predicates.

〈Lack of failing example 〉 discards 1,665 counters that are zero on all crashes, leaving 45

candidate predicates.

〈Successful counterexample 〉 discards 139 counters that are non-zero on any successful

run, leaving 1,571 candidate predicates.

Several factors conspire to drive most counters to zero: the naïve nature of our guesses,

the limited coverage of our automated test suite, and the filtering effect of sparse sampling.

Thus, elimination by〈universal falsehood〉 looks quite effective at first glance, while elim-

ination by〈successful counterexample〉 seems rather poor. However, these two strategies

test disjoint properties and can be combined to good effect. The combination leaves only

those predicates that are sometimes observed to be true in failed runs but never observed to

be true in successful runs. For ourCCRYPT trials, only two predicates meet these criteria:

1. traverse.c:320: file_exists() return value > 0

2. traverse.c:122: xreadline() return value == 0

Examining the corresponding code shows that these predicates are consistent with the

circumstances under which the bug is reported to occur. This call tofile_exists() re-

turns “1” when an output file already exists. A confirmation prompt is presented, and this
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call toxreadline() returns the user’s reply, or null if the input terminal is atEOF. Inspec-

tion of the code immediately following thexreadline() call shows that the programmer

forgot to check for theEOF case: he assumes thatxreadline() returns a non-null string,

and immediately inspects its contents. We have successfully isolated this (known) bug in

CCRYPT, and the fix is clear.

While the file_exists() predicate is not itself the cause of the bug, the fact that

it appears on our list is useful information. It represents a necessary condition under

which crashes occur. That may be helpful, for example, if the engineer wishes to re-

produce the bug in-house for further study. Of course, there should be some runs where

file_exists() reports that the file exists butxreadline() returns a valid response from

the user and therefore the program does not crash. If thefile_exists() call is sampled

on any such run, elimination by〈successful counterexample〉 correctly determines that this

predicate does not imply failure. It will be eliminated from further consideration, and only

the true “smoking gun,” the call toxreadline(), will remain. Thus we have the ability

to identify not only the direct cause of a bug but also related behaviors that are strongly

but imperfectly correlated with failure. We further explore this idea of broad correlation in

Section 4.3, where even the buggy line of code itself does not always cause a crash.

As previously noted, the first three elimination strategies partially overlap, whereas the

last,〈successful counterexample〉, is distinct.〈Universal falsehood〉 and〈successful coun-

terexample〉 only look at successful runs, hence are easily analyzed together.〈Lack of failing

example〉 in general eliminates the most features, and therefore is also a good candidate to

combine with〈successful counterexample〉. Doing so in the case ofCCRYPTleaves us with

exactly the same two features, though in general one might find different results. Elimina-

tion by 〈lack of failing coverage〉, on the other hand, is an inherently weaker strategy: when

combined with〈successful counterexample〉, we are still left with 86 features.
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4.2.4 Refinement over time

In order to gain a better understanding of how the elimination strategies benefit from in-

creasing the number of runs, we have experimented with randomized subsets of our com-

plete run suite. We have seen that elimination by〈successful counterexample〉 is quite

effective when given a few thousand successful runs; how well does it perform with a

smaller suite? We start with the 141 candidate predicates that are ever nonzero on any

run. We assemble a random subset of fifty successful runs and filter the predicate set using

elimination by〈successful counterexample〉. We then add another fifty runs, and another

fifty, and so on in steps up to the full set of 2,902 successful runs. We repeat this entire

process one hundred times to gauge how rapidly one can expect the predicate set to shrink

as more runs arrive over time.

Figure 4.1 shows the results. The crosses mark the mean number of predicates remain-

ing, while the vertical bars extend one standard deviation above and below the mean. The

short vertical bars in this case tells us that there is relatively little diversity in each of the

hundred random subsets at any given size. The results show that, on average, 1,750 runs

are enough to isolate twenty candidate features, another 500 runs reduces that count by

half, and a total of 2,600 runs is enough to narrow the set of good features down to just

five. One would expect more variety in runs collected from real users rather than an auto-

mated script. Greater diversity can only benefit the analysis, as it would provide more novel

counterexamples and therefore may eliminate more uninteresting predicates more rapidly.

4.2.5 Performance Impact

Instrumenting function return values confounds several of the optimizations proposed in

Section 2.3. If most function calls are instrumentation sites, and if most function calls
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terminate acyclic regions, then most acyclic regions contain only a single site and we have

poor amortization of sampling overhead. Furthermore,CCRYPT is built one object file

at a time, and we must conservatively assume that any cross-object function call is not

weightless. Thus, for much ofCCRYPT, our sampling transformation devolves to a simpler

but slower pattern of checking the next-sample countdown at each and every site.

In spite of this extra work, the performance impact of sampled instrumentation is mini-

mal. We find that the overhead for1/1,000sampling inCCRYPT is less than 4%, and progres-

sively sparser sampling rates shrink the overhead still further. Unconditional instrumenta-

tion also performs well here, making either reasonable for this particular application. In

the next section, though, we consider a more invasive instrumentation strategy that requires

sampling to keep overhead under control.

4.2.6 Limitations and Insights

Predictor selection using predicate elimination strategies is fundamentally dependent upon

two assumptions: (1) that there is exactly one bug, and (2) that there is at least one com-

pletely deterministic predictor for this bug. If assumption (1) is untrue, then presumably

even a perfect predictor for one bug will fail to consistently predict other bugs, effectively

violating assumption (2). If assumption (2)is untrue, then even a single run in which the

predictor was observed true but the program succeeded anyway will suffice to eliminate the

predictor by〈successful counterexample〉. Thus if there is no 100% deterministic predictor

eventually all predicates will be eliminated.

Relaxing these requirements requires substantially different approaches, and we explore

other options in the sections that follow. However this algorithm is a useful starting point

because it serves to illustrate several key concepts common to all statistical debugging

approaches. Chief among these is the idea of rapidly paring down a large set of mostly
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uninteresting predicates to find a much smaller set of true bug predictors. Also, it is useful

for bug isolation algorithms to be progressive, yielding rough answers for few runs and

successively more precise or more confident information as runs accumulate. Lastly, if we

allow for less strict interpretations, the elimination strategies of Section 4.2.2 do describe

generally desirable properties of bug predictors. Predicates that differ between successful

and failing runs are interesting; those that do not differ are uninteresting. Good predictors

should be true (or should tend to be true) in failing runs and should be false (or should tend

to be false) in successful runs. Any approach to statistical debugging ultimately depends

upon identifying differences in the behaviors of successful and failed runs.

4.3 Regularized Logistic Regression

In this section we consider the automatic isolation of non-deterministic bugs. Recall from

Section 4.1 that a bug is non-deterministic with respect to a set of program predicates if

no predicate in the set is perfectly correlated with program crashes. Thus non-determinacy

is in part a function of what we choose to observe. If we treat the implementation of

malloc() et al. as opaque, then many C heap corruption bugs become non-deterministic

with respect to all observed predicates.

For this case study we use version 1.06 of the GNU implementation ofBC, a basic

command-line calculator tool. We find that feedingBC nine megabytes of random input

causes it to crash roughly one time in four from, as it turns out, a previously unknown

buffer overrun error. SinceBC sometimes terminates successfully even when it overruns

the buffer, this bug is non-deterministic.

The scalar-pairs instrumentation scheme described in Section 2.2.2 can be useful for de-

tecting boundary condition violations associated with buffer overruns. We instrumentBC

using the scalar-pairs scheme with variable-to-variable and variable-to-zero comparisons
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only. ForBC this scheme induces 10,050 sites, or 30,150 predicate counters in all. The vast

majority of these are of no interest: either they compare completely unrelated variables, or

they express relationships that behave identically in both successful and failed runs. The

challenge is to find the few predicates that matter. Because the bug is non-deterministic,

if we have enough runs no predicates will satisfy elimination by〈successful counterex-

ample〉. Therefore we set aside this elimination strategy in favor of statistical modeling to

identify behavior that is broadly correlated with failure.

4.3.1 Crash Prediction Using Logistic Regression

To find important but possibly non-deterministic predictors, we recast bug isolation as a

statistical analysis problem. Each run ofBC constitutes one sample point consisting of

30,150 observedfeatures(counters) and one binaryoutcome(0= succeeded,1= crashed).

Given numerous data points (sampled runs), we want to identify a subset of our 30,150

features that predict the outcome. This problem is equivalent to the machine learning prob-

lem of learning a binary classifier with feature selection, i.e., using as few input features as

possible.

In the classification setting, we take a set of data with known binary output (a training

set), and attempt to learn a binary classifier that gives good predictions on a test set. The

learning process usually involves additional parameters whose values can be determined

using a cross-validation set. In our case, the end goal is to narrow down the set of features.

Hence our method must balance good classification performance with aggressive feature

selection.

A binary classifier takes feature values as inputs, and outputs a prediction of either

0 or 1. Logistic regression[HTF01] is a method of learning a binary classifier where

the output function is assumed to be logistic. The logistic function is a continuous “S”-
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shaped curve approaching 0 on one end, and 1 on the other. The output can be interpreted

as a probability measure of how likely it is that the data point falls within class 0 or 1.

Quantizing the logistic function output then gives us a binary classifier: if the output is

greater than1/2, then the data point is classified as class 1 (a crash), otherwise it falls under

class 0 (a successful run). Feature selection can be achieved byregularizingthe function

parameters to ignore most input features, forcing it to form a model that predicts success or

failure using just a small selection of sampled features. Regularization is important for our

purposes because we expect that most of our features are wild guesses, but that there may

be just a few that correctly characterize the bug.

While other techniques for combined classification and feature selection exist, few of

them are particularly well-suited for this problem. Some methods [GST+99, THNC02]

calculate a univariate correlation coefficient independently for each feature; other methods,

such as decision trees [BFOS84], are more computationally intensive. In our dataset, the

features are clearly not independent of each other, and the size of the problem can poten-

tially be too large for more computationally intensive methods. Furthermore, logistic re-

gression is a discriminative classification method, and thus does not make any assumptions

about the underlying distribution of the input. This property is crucial since our features

arise from a decidedly artificial process and would be difficult to characterize using simple

distributions.

Suppose our training setD consists ofM data points(x1,y1), . . . ,(xM,yM), where each

xi ∈ R N denotes a vector of input predicate counters, and eachyi = {0,1} denotes the

corresponding output label. To learn a good classifier, we can maximize thelog likelihood

of the training set, defined as follows:

LL(D) =
M

∑
i=1

[yi logPr(Y = 1|x)

+(1−yi) log(1−Pr(Y = 1|x))].
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Here the output labelsyi are used as indicator functions to zero out exactly one of the

two terms in each summand. In logistic regression, the distributionPr(Y = 1|x) is modeled

as the logistic functionµβ̃(x) with parameters̃β = 〈β0 ∈ R ,β ∈ R N〉.

Pr(Y = 1|x) = µβ̃(x) =
1

1+exp(−β0−βTx)
.

The logistic parametersβ0 andβ take on the respective roles as the intercept and slope

of the classifier, and essentially weigh the relative importance of each feature in the final

outcome. We expect most of the input features to have no influence over the success or

failure of the program, so we place an additional constraint that forces most of theβ’s

toward zero. This constraint is implemented by subtracting a penalty term based on the`1

norm‖β̃‖1 = ∑M
j=0|β j |. We can tune the importance of thisregularization termthrough a

regularization parameterλ. The penalized log likelihood function is:

LL(β̃|D,λ) =
M

∑
i=1

[yi logµβ̃(xi)+(1−yi) log(1−µβ̃(xi))]

−λ‖β̃‖1.

An assignment ofβ coefficients that maximizes this function represents a model that

maximizes the fidelity of its predictions while still limiting itself to form those predictions

on the basis of only a small number of features from the complete feature set.

4.3.2 Data Collection and Analysis

Our BC data set consists of 4,390 runs with distinct random inputs and distinct randomized

1/1,000sampling. We randomly chose 2,729 runs for training, 322 runs for cross-validation,

and 1,339 runs for testing. Although there are 30,150 raw features, many can be discarded

immediately using elimination by〈universal falsehood〉: in the training set 27,242 features

are always zero. Hence the effective number of features used in training is 2908. (Elimi-

nation by〈lack of failing example〉 can eliminate another 647 features that are zero for all
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failed runs. However we find that the presence or absence of these 647 features does not

significantly affect the quality of the regularized logistic regression results.)

To make the magnitude of theβ parameters comparable, the feature values must be on

the same scale. Hence all the input features are shifted and scaled to lie on the interval

[0,1], then normalized to have unit sample variance. A suitable value for the regularization

parameterλ is determined through cross-validation to be 0.3. The model is then trained

using stochastic gradient ascent to reach a local maximum of the penalized log likelihood.

Using a step size of 10−5, the model usually converges within sixty iterations through the

training set. This process takes roughly thirty minutes in MATLAB on a 1.8 GHz Pentium

4 CPU with 1 GB of RAM.

Once the model has been trained, predicates with the largestβ coefficients suggest

where to begin looking for the bug. In our case, the top five ranked coefficients are well-

separated in magnitude from the rest, and show an unmistakable trend:

1. storage.c:176: in function more_arrays(): indx > scale

2. storage.c:176: in function more_arrays(): indx > use_math

3. storage.c:176: in function more_arrays(): indx > opterr

4. storage.c:176: in function more_arrays(): indx > next_func

5. storage.c:176: in function more_arrays(): indx > i_base

The source code formore_arrays() appears in Figure 4.2. A comment earlier in the

same file suggests that this function is one of a suite of “three functions for increasing

the number of functions, variables, or arrays that are needed.” The logic is a fairly clear

instance of the buffer reallocation idiom, even to one unfamiliar with the code: line 167

allocates a larger chunk of memory; line 171 is the top of a loop that copies values over

from the old, smaller array; line 176 completes the resize by zeroing out the new extra

space. As the comment suggests, there are two similar functions (more_functions() and
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152 void
153 more_arrays ()
154 {
155 int indx;
156 int old_count;
157 bc_var_array **old_ary;
158 char **old_names;
159

160 /* Save the old values. */
161 old_count = a_count;
162 old_ary = arrays;
163 old_names = a_names;
164

165 /* Increment by a fixed amount and allocate. */
166 a_count += STORE_INCR;
167 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var_arra...
168 a_names = (char **) bc_malloc (a_count*sizeof(char *));
169

170 /* Copy the old arrays. */
171 for (indx = 1; indx < old_count; indx++)
172 arrays[indx] = old_ary[indx];
173

174

175 /* Initialize the new elements. */
176 for (; indx < v_count; indx++)
177 arrays[indx] = NULL;
178

179 /* Free the old elements. */
180 if (old_count != 0)
181 {
182 free (old_ary);
183 free (old_names);
184 }
185 }

Figure 4.2: SuspectBC functionmore_arrays(). All top-ranked crash-predicting features
point to large values ofindx on line 176.
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more_variables()) nearby that do largely the same thing with different storage pools.

The text of these three functions is nearly identical, but each uses different global variables

(such asa_count versusf_count versusv_count).

The top ranked predicates seem bizarre on first examination, because the variables they

relate do not appear to have any real connection to each other or tomore_arrays(). For

example,scale tracks significant digits for floating point calculations, whileuse_math

records whether an initial math library is to be loaded. Why would crashes tend to happen

when local variableindx exceeds these seemingly unrelated globals on this particular line?

An obvious hypothesis is thatindx is simply unusually large in such cases. Ifindx is large,

then it will tend to be larger than any number of otherwise unrelated variables. Perhaps

crashes occur when the input toBC defines unusually large numbers of arrays.

Closer scrutiny ofmore_arrays() quickly reveals this hypothesis to be true. The al-

location on line 167 requests space fora_count items. The copying loop on line 171

ranges from1 throughold_count - 1. The zeroing loop on line 176 continues on from

old_count throughv_count - 1. And here we find the bug: the new storage buffer

has room fora_count elements, but the second loop is incorrectly bound byv_count

instead. After a glimpse at the neighboringmore_variables() function it is clear that

more_arrays() was created by copying and pastingmore_variables() and then chang-

ing names likev_count andv_names to a_count anda_names. The loop bound on line

176 was missed in the renaming.

The logistic regression model points us at the buggy line, the buggy variable, and even

reveals something of the conditions under which the bug appears. Having found the bug,

it is reasonable to ask whether the statistical analysis could have pointed at it even more

directly. The mistaken use ofv_count instead ofa_count on line 176 means that a buffer

overrun occurs whenindx > a_count on line 176. This condition does correspond to a
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predicate sampled by our system, but the predicate is ranked 240th in the trained model.

Why was this smoking gun not ranked first?

There are several reasons to consider. Samples are taken randomly, while the model

itself is trained using stochastic gradient ascent. Thus, a degree of noise is fundamental

to the process. Even crashing is not guaranteed: out of 320 runs in which sampling spot-

tedindx > a_count at least once, 66 did not crash. Thus, C programs can “get lucky”,

meaning that we do not have a strict overrun=⇒ crash implication. Manual inspection

of the data reveals a high degree of redundancy among many instrumentation sites within

more_arrays(), meaning that the model has several features to choose from that have

equivalent predictive power. Our counters may be too fine-grained here: we are distin-

guishing many behaviors that are in fact so tightly interrelated as to be equivalent.

This bug seems clear enough once found. However it has been present and undiscovered

at least since 1992 (the time stamp on this file in the oldest version of GNUBC that we can

find). Many bugs are obvious only once one knows where to look. The logistic regression

results directed us to one misbehaving variable on one line of code, out of 8910 lines in

BC as a whole. Our approach does not automatically find and fix bugs. But it does suggest

where to start looking, and what sort of scenarios (e.g., unusually largeindx) to consider.

Although we are still learning about the capabilities of this system and how to interpret its

results, we believe that statistically guided debugging has the potential to make the process

of finding and fixing bugs more efficient and more responsive to the needs of end users.

4.3.3 Performance Impact

Our BC instrumentation is fairly dense. The leftmost bar in Figure 4.3 shows that if this

instrumentation is added without sampling, the performance penalty is 13%. A sampling

density of1/100 cuts the penalty in half (6%). At the1/1,000 density used in our statistical
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debugging experiment, the penalty is barely measurable (0.5%). Still lower densities show

small speedups relative to uninstrumented code. This behavior is apparently due to effects

such as changes in relative code alignment, cache behavior, measurement noise, and other

unpredictable factors. Thus, we achieved an important goal: at least for this application, we

can sample program behavior at densities that allow us to isolate real bugs while imposing

an overhead on clients that is so small as to be unmeasurable in practice.

4.3.4 Limitations and Insights

Regularized logistic regression gives encouraging results forBC, a small program exhibit-

ing a single bug. However, as we worked to apply these methods to much larger programs

under realistic conditions we discovered a number of serious scalability problems:

• For large applications the set of candidate predicates numbers in the hundreds of

thousands of predicates, many of which are, or are very nearly, logically redundant.

In our experience, this redundancy causes regularized logistic regression to choose

highly redundant lists of failure predictors. Redundancy is already evident in the list

of BC failure predictors from Section 4.3.2. This problem becomes much worse for

larger programs.

• A separate difficulty is the prevalence of predicates predicting multiple bugs. For

example, for many Unix programs a bug is more likely to be encountered when many

command line flags are given, because the more options that are given non-default

settings the more likely unusual code paths are to be exercised. Thus, predicates

implying a long command line may rank near the top, even though such predicates

are useless for isolating the cause of individual bugs.

• Finally, different bugs occur at rates that differ by orders of magnitude. In reality, we
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do not know which failure is caused by which bug, so we are forced to lump all the

bugs together and try to learn a binary classifier. Thus, predictors for all but the most

common bugs have relatively little influence over the global optimum and tend to be

ranked low or not included in the selected predictor list at all.

These problems with regularized logistic regression persist in many variations we have

investigated, including approaches that use nonstandard utility functions to model the be-

havior of nondeterministic failures [ZJLA04]. Analysis of this body of experimental work

yielded some key technical insights. In addition to the bug predictors we wish to find

among the instrumented predicates, there are several other kinds of predicates. First, nearly

all predicates (often 98% or 99%) are not predictive of anything. Thesenon-predictorsare

best identified and discarded as quickly as possible. Among the remaining predicates that

can predict failure in some way, there are some bug predictors. There are alsosuper-bug

predictors: predicates that, as described above, predict failures due to a variety of bugs.

And there aresub-bug predictors: predicates that characterize a subset of the instances of

a specific bug; these are often special cases of more general problems.

4.4 MOSS: a Multiple-Bug Challenge

When a program contains multiple bugs, the difficulties created by super- and sub-bug

predictors become pronounced. To assess the viability of regularized logistic regression

in this context we performed an experiment in which we knew the set of bugs in advance.

We chose MOSS [SWA03] as our benchmark program. MOSS is a software plagiarism

detection service1. It has been available since the late 1990’s and has several thousand users

worldwide. As such, MOSShas many of the characteristics of real software: it has users

1That is, MOSS detects copying in large sets of programs. The typical MOSS user is a professor or
teaching assistant in a programming course.
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who depend on it, it is constantly undergoing revision as its purpose and the environment

in which it runs evolves, and it is complex enough to be composed of several interacting

subsystems.

The choice of how to inject bugs into software can be problematic, as the choice of bugs

to include or exclude can dramatically affect the results. Nearly all of the bugs were taken

directly from the bug logs for MOSS. In some cases the code had evolved since the original

bug was fixed, in which case we had to judge how to modify the bug to inject it into the

code. We also included three bugs that were not MOSSbugs. One of these is a known bug

from another system where there is an obviously analogous place to add that bug to MOSS

(see below). The other two are duplicates of two different buffer overrun bugs in MOSS.

In each case, we restored the original bug, and then added a second, very similar buffer

overrun in a different place, the purpose being to see if our algorithm could not only detect

the overruns, but also distinguish between them.

We briefly describe the nine bugs we added to MOSS:

1. To correctly report the location of duplicate code MOSS must track line numbers.

We introduced a bug that causes the number of lines in C-style multi-line comments

to be counted incorrectly. The bug only occurs under a special set of circumstances:

the option to match comments must be on (normally MOSSignores comments com-

pletely, and that is a separate code path with no bug), the programs involved must

have C multi-line comments, and in addition the position of these comments must

ultimately affect the output. Note that this bug is not only non-deterministic in the

sense defined in Section 4.1, it also does not cause the program to crash; the program

simply generates incorrect output.

2. MOSS has the option to dump its internal data structures in a binary file format

called adatabase. We removed the check for a nullFILE pointer in the case that
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the database cannot be opened for writing. This bug is analogous to one reported in

CCRYPT. It is a deterministic bug, and in fact the program crashes almost immedi-

ately after failing to open the file.

3. Loading a MOSSdatabase is complex, as a number of data structures must be kept

in sync. We removed an array bounds update in the database loading routine, so that

even though a database was loaded, the pointer to the end of one arrayA was not

moved to reflect that new data had been added to the end ofA. The program behaves

normally unless a second database is loaded, at which point the second database at

least partially overwrites that portion of the first database stored inA. This bug has

unpredictable effects. Depending on what files are compared and the contents of the

databases loaded, the result might be that the program terminates with correct output,

that it terminates with incorrect output, or that it crashes. This bug was particularly

difficult to find originally.

4. We removed a size check that prevented users from supplying command-line argu-

ments that could cause the program to overrun the bounds of an array. When this bug

is triggered the program may terminate with correct output, terminate with incorrect

output, or crash.

5. For historical reasons, MOSShandles Lisp programs differently from all other lan-

guages. The Lisp processing involves a standard hash table. We removed one of the

end-of-bucket checks, which causes a crash when the program scans to the end of a

hash bucket and tries to dereference aNULL pointer.

6. For efficiency MOSSpreallocates a large area of memory for its primary data struc-

ture. When this area of memory is filled, the program should fail gracefully. We

removed the out-of-memory check. The original bug was more complex, but cannot
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be reproduced exactly because this portion of the code has been revised.

7. MOSS has a routine that scans an array for multiple copies of a data value. We

removed the limit check that prevents the code from searching past the end of the

array. This bug is another buffer overrun, but of a different kind. First, whether the

overrun occurs is very data dependent and in fact it is difficult to construct a test case

by hand that triggers the bug. Second, the routine in question only reads past the end

of the array (no memory locations are written), so it is quite likely that the program

will succeed in spite of the error. This bug is synthetic (it never occurred in MOSS)

but is derived from bug #8.

8. This bug is a variant on bug #7, in another routine that deals with duplicates, but bug

#8 occurs under an even rarer set of circumstances. In fact, this bug was never known

to have caused a failure in MOSS; it was discovered by a code review.

9. This bug is a variant of bug #4, but involves a different command-line argument and

a different array.

In summary, the nine bugs are all either real bugs in MOSSor bugs closely related to

real bugs in MOSSor other programs. The bugs range from typical C coding errors (e.g.,

NULL pointer dereferences and array overruns) to high-level violations of a system’s internal

invariants (e.g., bugs #1 and #3).

To allow us to measure the accuracy of our techniques we also added code to MOSSto

log when each bug was triggered. We were careful to exclude this code from the code that

was instrumented for sampling, as predicates on the logging code would be very highly

correlated with program failures.

To determine whether a run produced correct output we compare it against the output

from a reference version of MOSSwithout reintroduced bugs. As suggested in Section 1.4,
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in practice the labeling of runs as successful or failed might be done by detecting crashes,

by noting internal assertion failures, or perhaps even by direct user feedback that the output

of the program appears incorrect. Our use of a debugged reference version of MOSS is

merely an experimental convenience: an oracle that makes it possible for us to label large

numbers of runs automatically.

4.4.1 Nonuniform Sampling

Sampling creates additional challenges that must be faced by any bug isolation algorithm.

Assume thatP1 andP2 behave identically in all possible runs, that both are sampled at a rate

of 1/100, and that both are reached once per run. Then even thoughP1 andP2 are equivalent,

there is only a1/1002 chance of both being observed to be true in a single run. These

predicates will be observed in nearly disjoint sets of runs and can easily be misinterpreted

as two distinct predictors for two distinct bugs rather than two equivalent predictors for a

single bug.

To address this problem, we conducted the MOSSexperiment with the sampling rates

of instrumentation sites set in inverse proportion to their frequency of execution. Based

on a training set of 1,000 executions, we set the sampling rate of each site so as to obtain

an expected 100 samples of each site in subsequent program executions, but never below

a minimum rate of1/100. Thus, rarely executed code has a much higher sampling rate than

very frequently executed code. A similar strategy has been pursued for similar reasons in

related work [CH04].

For reasons of experimental convenience, MOSSwas actually run with complete data

collection. Sampling was applied after the fact, as an offline postprocessing step. Sec-

tion 2.4 discussed some implementation strategies for true, dynamically nonuniform sam-

pling. For a controlled experiment, though, offline downsampling gave us greater freedom
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to experiment with different sampling options while holding the true, complete data fixed.

We simulate incomplete data by sampling values from binomial distributions on the com-

plete data with appropriate probabilities at each site. Because our runtime sampling is a

Bernoulli process, the resulting data is exactly equivalent to that which would result from

true sampling at runtime.

We also activated more instrumentation: the branches scheme, the returns scheme, and

the scalar-pairs scheme with comparison to both variables and constants. These form a

reasonably general starting set in the general case of a program whose number and kind

of bugs are not already known. We generated 32,300 randomized runs and used them to

construct a regularized logistic regression model.

4.4.2 Analysis Results

A weakness of logistic regression for our application is that it seeks to cover the set of

failing runs without regard to the orthogonality of the selected predicates (i.e., whether

they represent distinct bugs). This problem can be seen in Table 4.1, which gives the top

ten predicates selected by logistic regression for our controlled MOSS experiment. The

striking fact is that all selected predicates are either sub-bug or super-bug predictors. The

predicates beginning withp + ... are all sub-bug predictors of bug #1 (see Table 4.6).

The predicatesi > ... are super-bug predictors:i is the length of the command line

and the predicates say program crashes are more likely for long command lines (recall

Section 4.3.4).

The prevalence of super-bug predictors on the list shows the difficulty of making use of

the penalty term. Limiting the number of predicates that can be selected via a penalty has

the effect of encouraging regularized logistic regression to choose super-bug predictors,

as these cover more failing runs at the expense of poorer predictive power compared to
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Table 4.1: Results of regularized logistic regression for MOSS

β Coefficient Predicate

0.769379 (p + passage_index)->last_line < 4

0.686149 (p + passage_index)->first_line < i

0.675982 i > 20

0.671991 i > 26

0.619479 (p + passage_index)->last_line < i

0.600712 i > 23

0.591044 (p + passage_index)->last_line == next

0.567753 i > 22

0.544829 i > 25

0.536122 i > 28
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predictors of individual bugs. On the other hand, the sub-bug predictors are chosen based

on their excellent prediction power of those small subsets of failed runs. Relaxing the

penalty allows logistic regression to add more predicates to improve its prediction, but then

sub-bug predictors apparently are favored instead.

4.5 Iterative Bug Isolation and Elimination

Difficulties with logistic regression prompt us to consider a completely different analysis

strategy based on filtering and iterative ranking of failure predictors. This algorithm can be

seen as a generalization of the simpler elimination algorithm in Section 4.2. The idea is to

simulate the iterative manner in which human programmers might find and fix bugs:

1. Identify the most important bugB.

2. Fix B, and repeat.

This section presents our algorithm for automatically isolating multiple bugs. As dis-

cussed in Section 4.1, the input is a set of feedback reports from individual program runs

R, whereR(P) > 0 if predicateP is observed to be true at least once during the execution

of R.

For our purposes, identifying a bugBi means selecting a predicatePi closely correlated

with a bug profile (subset of failing runs)Bi . The difficulty is that we know the set of runs

that succeed and fail, but we do not know which set of failing runs corresponds toB, or

even how many bugs there are. In other words, we do not know the sizes or membership

of the set of bug profiles. Thus, in the first step we must infer which predicates are most

likely to correspond to individual bugs and rank those predicates in importance.

For the second step, while we cannot literally fix the bug corresponding to the chosen

predictorP, we can simulate what happens if the bug does not occur. We discard any
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run R such thatR(P) > 0 and repeat. Discarding all the runs whereR(P) > 0 reduces the

importance of other predictors ofB, allowing predicates that predict different bugs (i.e.,

corresponding to different sets of failing runs) to rise to the top in subsequent iterations.

4.5.1 Increase Scores

We now discuss the first step: how to find the cause of the most important bug. We break

this step into two sub-steps. First, we eliminate predicates that have no predictive power

at all, which typically reduces the number of predicates we need to consider by two orders

of magnitude (e.g., from hundreds of thousands to thousands). Next, we rank the surviving

predicates by importance (see Section 4.5.3).

Consider the following C code fragment:

f = ...; (a)
if (f == NULL) { (b)

x = 0; (c)
*f; (d)

}

Consider the predicatef == NULL at line(b), which would be captured by branches

instrumentation. Clearly this predicate is highly correlated with failure; in fact, whenever it

is true this program inevitably crashes.2 An important observation, however, is that there is

no one perfect predictor of failure in a program with multiple bugs. Even a “smoking gun”

such asf == NULL at line(b) has little or no predictive power for failures due to unrelated

bugs in the same program.

The bug in the code fragment above isdeterministicwith respect tof == NULL: if f

== NULL is true at line(b), the program fails. In many cases it is impossible to observe

the exact conditions causing failure; for example, buffer overrun bugs in a C program may

2We also note that this bug could be detected by a simple static analysis; this example is meant to be
concise rather than a significant application of our techniques.
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or may not cause the program to crash depending on runtime system decisions about how

data is laid out in memory. Such bugs arenon-deterministicwith respect to every predicate;

even for the best predictorP, it is possible thatP is true and still the program terminates

normally. In the example above, if we insert before line(d) a valid pointer assignment to

f controlled by a conditional that is true at least occasionally (say via a call to read input)

if (...)
f = ...some valid pointer ...;

*f;

then the bug becomes non-deterministic with respect tof == NULL.

To summarize, even for a predicateP that is truly the cause of a bug, we can neither

assume that whenP is true that the program fails nor that whenP is never observed to be

true that the program succeeds. But we can express the probability thatP being true implies

failure. LetCrashbe an atomic predicate that is true for failing runs and false for successful

runs. LetPr(A|B) denote the conditional probability function of the eventA given eventB.

We want to compute:

Fail(P)≡ Pr(Crash|P observed to be true)

for every instrumented predicateP over the set of all runs. LetS(P) be the number of

successful runs in whichP is observed to be true at least once, and letF(P) be the number

of failing runs in whichP is observed to be true at least once. We estimateFail(P) as:

Fail(P) =
F(P)

S(P)+F(P)

Notice thatFail(P) is unaffected by the set of runs in whichP is not observed to be

true. Thus, ifP is the cause of a bug, the causes of other independent bugs do not affect

Fail(P). Also note that runs in whichP is not observed at all (either because the line of

code on whichP is checked is not reached, or the line is reached butP is not sampled)
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have no effect onFail(P). The definition ofFail(P) generalizes the idea of deterministic

and non-deterministic bugs. A bug is deterministic forP if Fail(P) = 1.0, or equivalently,

P is never observed to be true in a successful run (S(P) = 0) andP is observed to be true in

at least one failing run (F(P) > 0). If Fail(P) < 1.0 then the bug is non-deterministic with

respect toP. Lower scores show weaker correlation between the predicate and program

failure.

Now Fail(P) is a useful measure, but it is not good enough for the first step of our

algorithm. To see why, consider again the code fragment given above in its original,

deterministic form. At line(b) we haveFail(f == NULL) = 1.0, so this predicate is a

good candidate for the cause of the bug. But on line(c) we have the unpleasant fact that

Fail(x == 0) = 1.0 as well. To understand why, observe that the predicatex == 0 is al-

ways true at line(c) and, in addition, only failing runs reach this line. ThusS(x == 0) = 0,

and, so long as there is at least one run that reaches line(c) at all,Fail(x == 0) at line(c)

is 1.0.

As this example shows, just becauseFail(P) is high does not meanP is the cause of a

bug. In the case ofx == 0, the decision that eventually causes the crash is made earlier,

and the highFail(x == 0) score merely reflects the fact that this predicate is checked on a

path where the program is already doomed.

A way to address this difficulty is to score a predicate not by the chance that it implies

failure, but by how much difference it makes that the predicate is observed to be true versus

simply reaching the line where the predicate is checked. That is, on line(c), the probability

of crashing is already 1.0 regardless of the value of the predicatex == 0, and thus the fact

thatx == 0 is true does not increase the probability of failure at all. This coincides with

our intuition that this predicate is irrelevant to the bug.

Recall that we write “P observed” whenP has been reached and sampled at least once,
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without regard to whetherP was actually true or false. This convention leads us to the

following definition:

Context(P)≡ Pr(Crash|P observed)

Now, it is not the case thatP is observed in every run, because the site where this predicate

occurs may not be reached, or may be reached but not sampled. Thus,Context(P) is the

probability that in the subset of runs where the site containing predicateP is reached and

sampled, the program fails. We can estimateContext(P) as follows:

Context(P) =
F(P observed)

S(P observed)+F(P observed)

The interesting quantity, then, is

Increase(P)≡ Fail(P)−Context(P)

which can be read as: How much doesP being true increase the probability of failure over

simply reaching the line whereP is sampled? For example, for the predicatex == 0 on

line (c), we have

Fail(x == 0) = Context(x == 0) = 1.0

and soIncrease(x == 0) = 0.

A predicateP with Increase(P) ≤ 0 has no predictive power. Being true does not in-

crease the probability of failure, and we can safely discard all such predicates. But because

someIncrease(P) scores may be based on few observations ofP, it is important to attach

confidence intervals to the scores. SinceIncrease(P) is a statistic, computing a confidence

interval for the underlying parameter is a well-understood problem. In our experiments we

retain a predicateP only if the 95% confidence interval based onIncrease(P) lies strictly

above zero; this practice removes predicates from consideration that have high increase

scores but very low confidence because of few observations.
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Pruning predicates based onIncrease(P) has several desirable properties. It is easy

to prove that large classes of irrelevant predicates always have scores≤ 0. For example,

any predicate that is unreachable, that is a program invariant, or that is obviously control-

dependent on a true cause is eliminated by this test. It is also worth pointing out that this

test tends to localize bugs at a point where the condition that causes the bug first becomes

true, rather than at the crash site. For example, in the code fragment given above, the bug is

attributed to the success of the conditional branch testf == NULL on line(b) rather than

the pointer dereference on line(d). Thus, the cause of the bug discovered by the algorithm

points directly to the conditions under which the crash occurs, rather than the line on which

it occurs (which is usually available anyway in the stack trace).

4.5.2 Statistical Interpretation

We have explained the testIncrease(P) > 0 using programming terminology, but it also has

a natural statistical interpretation as a simplified likelihood ratio hypothesis test. Consider

the two classes of trial runs of the program: failed runsF and successful runsS. For each

class, we can treat the predicateP as a Bernoulli random variable with heads probabilities

π f (P) andπs(P), respectively, for the two classes. The heads probability is the probability

that the predicate is observed to be true. If a predicate causes a set of crashes, thenπ f

should be much bigger thanπs. We can formulate two statistical hypotheses: the null

hypothesisH0 : π f ≤ πs, versus the alternate hypothesisH1 : π f > πs. Sinceπ f andπs are

not known, we must estimate them:

π̂ f (P) =
F(P)

F(P observed)
π̂s(P) =

S(P)
S(P observed)

Although these proportion estimates ofπ f andπs approach the actual heads probabili-

ties as we increase the number of trial runs, they still differ due to sampling. With a certain

probability, using these estimates instead of the actual values results in the wrong answer.
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A likelihood ratio testtakes this uncertainty into account, and makes use of the statistic

Z = (π̂ f−π̂s)
Vf ,s

, whereVf ,s is a sample variance term (see, e.g., [Leh86]). When the data size

is large,Z can be approximated as a standard Gaussian random variable. Performed in-

dependently for each predicateP, the test decides whether or notπ f (P) ≤ πs(P) with a

guaranteed false-positive probability (i.e., choosingH1 whenH0 is true). A necessary (but

not sufficient) condition for choosingH1 is that π̂ f (P) > π̂s(P). However, this condition

is equivalent to the condition thatIncrease(P) > 0. To see why, leta = F(P), b = S(P),

c = F(P observed), andd = S(P observed). Then

Increase(P) > 0 ⇐⇒ Fail(P) > Context(P)

⇐⇒ a
a+b

>
c

c+d
⇐⇒ a(c+d) > (a+b)c

⇐⇒ ad > bc ⇐⇒ a
c

>
b
d
⇐⇒ π̂ f (P) > π̂s(P)

4.5.3 Balancing Specificity and Sensitivity

We now turn to the question of ranking those predicates that survive pruning. Tables 4.2

through 4.4 show the top predicates under different ranking schemes (explained below) for

one of our experiments. Additional per-predicate information, such as source file and line

number, is available in an interactive version of our analysis tools.

We use a concisebug thermometerto visualize the information for each predicate. The

length of the thermometer is logarithmic in the number of runs in which the predicate

was observed, so small increases in thermometer size indicate many more runs. Each

thermometer has a sequence of bands. The black band on the left showsContext(P) as

a fraction of the entire thermometer length. The dark gray band () shows the lower

bound ofIncrease(P) with 95% confidence, also proportional to the entire thermometer

length. The light gray band () shows the size of that confidence interval. It is very
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small in most thermometers, indicating a tight interval. The white space at the right end

of the thermometer showsS(P), the number of successful runs in which the predicate was

observed to be true. The tables show the thermometer as well as the numbers for each of

the quantities that make up the thermometer.

The most important bug is the one that causes the greatest number of failed runs. This

observation suggests:

Importance(P) = F(P)

Table 4.2 shows the top predicates ranked by decreasingF(P) after predicates where

Increase(P) ≤ 0 are discarded. The predicates in Table 4.2 are, as expected, involved in

many failing runs. However, the large white band in each thermometer reveals that these

predicates are also highly non-deterministic: they are also true in many successful runs and

are weakly correlated with bugs. Furthermore, the very narrow dark gray bands () in

most thermometers indicate that mostIncreasescores are very small.

Our experience with other ranking strategies that emphasize the number of failed runs

is similar. They select predicates involved in many failing, but also many successful, runs.

The best of these predicates (the ones with highIncreasescores) are super-bug predictors:

predictors that include failures from more than one bug. Super-bug predictors account for

a very large number of failures (by combining the failures of multiple bugs) but are also

highly non-deterministic despite reasonably highIncreasescores.

Another possibility is:

Importance(P) = Increase(P)

Table 4.3 shows the top predicates ranked by decreasingIncreasescore. Thermometers

here are almost entirely dark gray (), indicatingIncreasescores that are very close to 1.0.

These predicates do a much better job of predicting failure. In fact, the program always

fails when any of these predicates is true. However, observe that the number of failing
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runs (F) is very small. These predicates aresub-bug predictors: predictors for a subset

of the failures caused by a bug. Unlike super-bug predictors, which are not useful in our

experience, sub-bug predictors that account for a significant fraction of the failures for a

bug often provide valuable clues. However, they still represent special cases and may mask

other, more fundamental, causes of the bug.

Tables 4.2 and 4.3 illustrate the difficulty of defining “importance.” We are looking for

predicates with highsensitivity, meaning predicates that account for many failed runs. But

we also want highspecificity, meaning predicates that do not mispredict failure in many

successful runs. In information retrieval, the corresponding terms arerecall andprecision.

A standard way to combine sensitivity and specificity is to compute their harmonic mean;

this measure prefers high scores in both dimensions. In our case,Increase(P) measures

specificity. For sensitivity, we have found it useful to consider a transformationφ of the

raw counts, and to form the normalized ratioφ(F(P))/φ(NumF), whereNumFis the total

number of failed runs. In our work thus farφ has been a logarithmic transformation, which

moderates the impact of very large numbers of failures. Thus our overall metric is the

following:

Importance(P) =
2

1
Increase(P) + 1

log(F(P))/log(NumF)

Table 4.4 gives results using this metric. IndividualF(P) counts are smaller than in

Table 4.2, and individualIncrease(P) scores are smaller than in Table 4.3, but the harmonic

mean has effectively balanced both of these important factors. All of the predicates on this

list indeed have both high specificity and sensitivity. Each of these predictors accurately

describes a large number of failures.
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4.5.4 Redundancy Elimination

The remaining problem with the results in Table 4.4 is that there is substantial redundancy;

it is easy to see that several of these predicates are related. This redundancy hides other,

distinct bugs that either have fewer failed runs or more non-deterministic predictors fur-

ther down the list. As discussed above, we use a simple iterative algorithm to eliminate

redundant predicates:

1. Rank predicates byImportance.

2. Remove the top-ranked predicateP and discard all runsR (feedback reports) where

R(P) > 0.

3. Repeat these steps until the set of runs is empty or the set of predicates is empty.

We can now state an easy-to-prove but important property of this algorithm.

Lemma 4.5.1 Let P1, . . . ,Pn be a set of instrumented predicates, B1, . . . ,Bm a set of bugs,

andB1, . . . ,Bm the corresponding bug profiles. Let

Z =
[

1≤i≤n

{R|R(Pi) > 0}.

If for all 1≤ j ≤m we haveB j ∩Z 6= /0, then the algorithm chooses at least one predicate

from the list P1, . . . ,Pn that predicts at least one failure due to Bj .

Thus, the elimination algorithm chooses at least one predicate predictive of each bug

represented by the input set of predicates. We are, in effect, covering the set of bugs with a

ranked subset of predicates. The other property we might like, that the algorithm chooses

exactly one predicate to represent each bug, does not hold; we shall see in Section 4.6

that the algorithm sometimes selects a strong sub-bug predictor as well as a more natural

predictor.
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Table 4.5: Summary statistics for bug isolation experiments

Runs Predicate Counts

Lines of Code Successful Failing Sites Initial Increase> 0 Elimination

MOSS 6,001 26,299 5,598 35,223 202,998 2,740 21
CCRYPT 5,276 20,684 10,316 9,948 58,720 50 2
BC 14,288 23,198 7,802 50,171 298,482 147 2
RHYTHMBOX 56,484 12,530 19,431 145,176 857,384 537 15
EXIF 10,588 30,789 2,211 27,380 156,476 272 3

Beyond always representing each bug, the algorithm works well for two other reasons.

First, two predicates are redundant if they predict the same (or nearly the same) set of failing

runs. Thus, simply removing the set of runs in which a predicate is true automatically

dramatically reduces the importance of any related predicates in the correct proportions.

Second, because elimination is iterative, it is only necessary thatImportanceselects a good

predictor at each step, and not necessarily the best one; any predicate that covers a different

set of failing runs than all higher-ranked predicates is selected eventually.

4.6 Case Studies

In this section we present the results of applying the algorithm described in Section 4.5

in five case studies. Complete analysis results for all experiments in this section may be

browsed interactively on an archival DVD accompanying this dissertation.

Table 4.5 shows summary statistics for each of the experiments. In each study we ran

the programs on about 32,000 random inputs. The number of instrumentation sites varies

with the size of the program, as does the number of predicates those instrumentation sites

yield. Our algorithm is very effective in reducing the number of predicates the user must

examine. For example, in the case of RHYTHMBOX an initial set of 857,384 predicates

is reduced to 537 by theIncrease(P) > 0 test, a reduction of 99.9%. The elimination

algorithm then yields 15 predicates, a further reduction of 97%. The other case studies
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show a similar reduction in the number of predicates by 3-4 orders of magnitude.

All results that follow are derived from sampled data collected as in Section 4.4.1:

nonuniform sampling, inversely linear in site coverage based on 1,000 training runs, set to

yield an expected 100 samples per site, with a minimum rate of1/100. We have validated

this approach by comparing the results for each experiment with results obtained with no

sampling at all (i.e., the sampling rate of all predicates set to 100%). The results are identi-

cal except for the RHYTHMBOX and MOSSexperiments, where we judge the differences to

be minor: sometimes a different but logically equivalent predicate is chosen, the ranking of

predictors of different bugs is slightly different, or one or the other version has a few extra,

weak predictors at the tail end of the list.

4.6.1 MOSS

We begin by applying the elimination algorithm to MOSS, using the same seeded bugs and

the same initial feedback data that stumped regularized logistic regression in Section 4.4.

Table 4.6 shows the results of the elimination algorithm on the same data. The predicates

listed were selected by the elimination algorithm in the order shown. The first column is the

initial bug thermometer for each predicate, showing theContextandIncreasescores before

elimination is performed. The fourth column is theeffectivebug thermometer, showing

theContextandIncreasescores for a predicateP at the timeP is selected (i.e., when it is

the top-ranked predicate). Thus the effective thermometer reflects the cumulative diluting

effect of redundancy elimination for all predicates selected before this one.

As part of the experiment we separately recorded the exact set of bugs that actually

occurred in each run. The columns at the far right of Table 4.6 show, for each selected

predicate and for each bug, the number of runs in which both the selected predicate is

observed to be true and the bug occurs. Note that while each predicate has a very strong
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spike at one bug, indicating it is a strong predictor of that bug, there are always some runs

with other bugs present. For example, the top-ranked predicate, which is overwhelmingly

a predictor of bug #5, also includes some runs where bugs #3, #4, and #9 occurred. This

situation is not the result of misclassification of failing runs by our algorithm. Rather, more

than one bug may occur in a run. It simply happens that in some runs bugs #5 and #3 both

occur (to pick just one possible combination).

A particularly interesting case of this phenomenon is bug #7, one of the buffer overruns.

Bug #7 is not strongly predicted by any predicate on the list but in fact occurs in at least a

few of the failing runs of most predicates. We have examined the runs of bug #7 in detail

and found that the bug #7 only occurs in runs that also trigger at least one other bug. That

is, even when the bug #7 overrun happens, it never causes incorrect output or a crash in any

run. Bug #8, another overrun, is not even shown because the overrun is never triggered in

our data (its column would be all zeros). There is no way our algorithm can find causes of

bugs that do not occur, but recall that part of our purpose in sampling user executions is to

get an accurate picture of the most important bugs. It is consistent with this goal that if a

bug never causes a problem, it is not only not worth fixing, it is not even worth reporting.

The other bugs all have strong predictors on the list. In fact, the top eight predicates

have exactly one predictor for each of the seven bugs that occur, with the exception of bug

#1, which has one very strong sub-bug predictor in the second spot and another predictor

in the sixth position. Notice that even the rarest bug, bug #2, which occurs more than an

order of magnitude less frequently than the most common bug, is identified immediately

after the last of the other bugs.3 Furthermore, we have verified by hand that the selected

predicates would, in our judgment, lead an engineer to the cause of the bug. Overall, the

elimination algorithm does an excellent job of listing separate causes of each of the bugs in

3The peculiar eighth predicate,f < f, says that after an assignment the new value off is less than the old
value off.
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order of priority, with very little redundancy.

Below the eighth position there are no new bugs to report and every predicate is corre-

lated with predicates higher on the list. Even without the columns of numbers at the right

it is easy to spot the eighth position as the natural cutoff. Keep in mind that the length

of the thermometer is on a log scale, hence changes in larger magnitudes may appear less

evident. Notice that the initial and effective thermometers for the first eight predicates

are essentially identical. Only the predicate at position six is noticeably different, indicat-

ing that this predicate is somewhat affected by a predicate listed earlier (specifically, its

companion sub-bug predictor at position two). However, all of the predicates below the

eighth line have very different initial and effective thermometers (either many fewer failing

runs, or much more non-deterministic, or both) showing that these predicates are strongly

affected by higher-ranked predicates.

The displays presented thus far have a drawback illustrated by the MOSSexperiment: It

is not easy to identify the predicates to which a predicate is closely related. Such a feature

would be useful in confirming whether two selected predicates represent different bugs or

are in fact related to the same bug. We do have a measure of how stronglyP implies another

predicateP′: How does removing the runs whereR(P) > 0 affect the importance ofP′? The

more closely relatedP andP′ are, the moreP′’s importance drops whenP’s failing runs

are removed. In the interactive version of our analysis tools, each predicateP in the final,

ranked list of predicates can zoom in to a linkedaffinity listof all predicates ranked by how

muchP causes their ranking score to decrease.

4.6.2 CCRYPT

We revisitedCCRYPT 1.2, which has a known input validation bug as discussed in Sec-

tion 4.2.1. The results are shown in Table 4.7. Our algorithm reports two predictors, both
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Table 4.7: Predictors forCCRYPT

Initial Effective Predicate

res == nl

line <= outfile

Table 4.8: Predictors forBC

Initial Effective Predicate

a_names < v_names

old_count == 32

of which point directly to the single bug. It is easy to discover that the two predictors

are for the same bug; the first predicate is listed first in the second predicate’s affinity list,

indicating the first predicate is a sub-bug predictor associated with the second predicate.

4.6.3 BC

We revisited GNUBC 1.06, which has a buffer overrun bug as discussed in Section 4.3. Our

results are shown in Table 4.8. The outcome is the same as forCCRYPT: two predicates

are retained by elimination, and the second predicate lists the first predicate at the top of

its affinity list, indicating that the first predicate is a sub-bug predictor of the second. Both

predicates point to the cause of the overrun. This bug causes a crash long after the overrun

occurs and there is no useful information on the stack at the point of the crash to assist in

isolating this bug.
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Table 4.9: Predictors forEXIF

Initial Effective Predicate

i < 0

maxlen > 1900

o + s > buf_size is TRUE

4.6.4 EXIF

Table 4.9 shows results forEXIF 0.6.9, an open source image processing program. Each

of the three predicates is a predictor of a distinct and previously unknown crashing bug. It

took less than 20 minutes of work to find and verify the cause of each of the bugs using

these predicates and the additional highly correlated predicates on their affinity lists.

To illustrate how statistical debugging is used in practice, we use the last of these three

failure predictors as an example, and describe how it enabled us to effectively isolate the

cause of one of the bugs. Failed runs exhibitingo + s > buf_size show the following

unique stack trace at the point of termination:

main()
exif_data_save_data()

exif_data_save_data_content()
exif_data_save_data_content()

exif_data_save_data_entry()
exif_mnote_data_save()

exif_mnote_data_canon_save()
memcpy()

The code in the vicinity of this crash site is as follows:

// snippet of exif_mnote_data_canon_save()
for (i = 0; i < n->count; i++) {

...
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memcpy(*buf + doff, n->entries[i].data, s); (c)
...

}

This stack trace alone provides little insight into the cause of the bug. However, our

algorithm highlightso + s > buf_size in function exif_mnote_data_canon_load()

as a strong bug predictor. Thus, a quick inspection of the source code leads us to construct

the following call sequence:

main()
exif_loader_get_data()

exif_data_load_data()
exif_mnote_data_canon_load()

exif_data_save_data()
exif_data_save_data_content()

exif_data_save_data_content()
exif_data_save_data_entry()

exif_mnote_data_save()
exif_mnote_data_canon_save()

memcpy()

The code in the vicinity of the predicateo + s > buf_size is as follows:

// snippet of exif_mnote_data_canon_load()
for (i = 0; i < c; i++) {...

n->count = i + 1;
...
if (o + s > buf_size) return; (a)
...
n->entries[i].data = malloc(s); (b)
...

}

It is apparent from the above code snippets and the call sequence that whenever the

predicateo + s > buf_size is true,

• the functionexif_mnote_data_canon_load() returns on line(a), thereby skip-

ping the call tomalloc() on line (b) and thus leavingn->entries[i]->data

uninitialized for some value ofi, and
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• the functionexif_mnote_data_canon_save() passes this uninitialized value from

n->entries[i]->data to memcpy() on line (c), which reads it and eventually

crashes.

In summary, our algorithm enabled us to effectively isolate the causes of several previ-

ously unknown bugs in source code unfamiliar to us in a small amount of time and without

any explicit specification beyond “the program shouldn’t crash.”

4.6.5 RHYTHMBOX

Table 4.10 shows our results for RHYTHMBOX 0.6.5, an interactive, graphical, open source

music player. RHYTHMBOX is a complex, multi-threaded, event-driven system, written

using a library providing object-oriented primitives in C. Event-driven systems use event

queues; each event performs some computation and possibly adds more events to some

queues. We know of no static analysis today that can analyze event-driven systems accu-

rately, because no static analysis is currently capable of analyzing the heap-allocated event

queues with sufficient precision. Crash-reporting systems are also of limited utility in an-

alyzing event-driven systems, as the stack in the main event loop is unchanging and all of

the interesting state is in the queues.

We isolated two distinct bugs in RHYTHMBOX . The first predicate in Table 4.10 led

us to the discovery of a race condition. This bug turned out to be a previously unrecog-

nized incorrect pattern of accessing the underlying object library. A simple syntactic static

analysis subsequently showed more than one hundred instances of the same unsafe pattern

throughout RHYTHMBOX . Perhaps the greatest strength of our system is its ability to auto-

matically identify the cause of many different kinds of bugs, including new classes of bugs

that we did not anticipate in building the tool. By relying only on the distinction between

good and bad executions, our analysis does not require a specification of the program prop-
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Table 4.10: Predictors for RHYTHMBOX

Initial Effective Predicate

tmp is FALSE

(mp->priv)->timer is FALSE

(view->priv)->change_sig_queued is TRUE

(hist->priv)->db is TRUE

rb_playlist_manager_signals[0] > 269

(db->priv)->thread_reaper_id >= 12

entry == entry

fn == fn

klass > klass

genre < artist

vol <= (float )0 is TRUE

(player->priv)->handling_error is TRUE

(statusbar->priv)->library_busy is TRUE

shell < shell

len < 270
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erties to be analyzed. Thus, statistical debugging provides a complementary approach to

static analyses, which generally do require specification of the properties to check. Statis-

tical debugging can identify bugs beyond the reach of static analysis techniques and even

new classes of bugs that may be amenable to static analysis if anyone thought to check for

them.

The second predicate from Table 4.10 was not useful directly, but we were able to

isolate the bug using the predicates in its affinity list. In particular, the following strongly

correlated predicate appears near the very top of that affinity list:

lib/disclosure-widget.c:77: in function cddb_source_destroy():
g_source_remove() return value > 0

This related predicate is a true “smoking gun” that directly led us to both the problem

and its solution. It tells us that RHYTHMBOX tends to fail when a particular call to

g_source_remove() returns a positive value. Library documentation [GNO04] reveals

thatg_source_remove() uses its integer return value as a success/failure code, as is com-

mon in C. Surprisingly, positive return values indicatesuccess. This function call usually

fails. In the rare case where the call succeeds, the entire program subsequently crashes. Of

course this phenomenon is exactly the opposite of how we expected the returns instrumen-

tation scheme to expose bugs, but it is just as effective. A simple syntactic static analysis

revealed a second instance of the same bad code pattern. This second instance was ul-

timately found to be the cause of an open, previously reported RHYTHMBOX bug. That

bug had gone undiagnosed and unfixed for several months due in part to the difficulty of

reproducing the problem in a controlled test environment.

RHYTHMBOX developers confirmed the problems we found and enthusiastically ap-

plied patches within a few days, in part because we could quantify the bugs as important

crashing bugs. It required several hours to isolate each of the two bugs, partly because
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RHYTHMBOX is complex and partly because the bugs were violations of subtle heap in-

variants that are not directly captured by our current instrumentation schemes. Note, how-

ever, that we could not have even begun to understand these bugs without the information

provided by our tool. Exploring schemes that track predicates on heap structure remains an

important area for future work.
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Given enough eyes, all bugs are
shallow.

Eric S. Raymond,The Cathedral and
the Bazaar

Chapter 5

Related Work

Here we discuss a cross section of related work, loosely organized into three broad topics.

We briefly visit static analyses that examine code without running it. We consider earlier

approaches to profiling and tracing running code, most of which have concentrated on

performance profiling. Lastly we review dynamic analyses that focus more directly on the

problem of debugging, including several that use statistical methods.

5.1 Static Analysis

There is currently a great deal of interest in applying specialized static analysis to improve

software quality. Static analyses can help to find bugs earlier in development when they

are cheaper to fix. Purely analytic approaches build upon such formalisms as type sys-

tems [GSD04, JW04], automated theorem proving [FLL+02], and software model check-

ing [HJMS02]. Some static analyses can guarantee that certain classes of bugs can never

occur in any run. Strong assurances of this form may be required in certain domains, and

cannot generally be obtained from dynamic schemes such as CBI.
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While we firmly believe in the use of static analysis to find and prevent bugs, our dy-

namic approach has advantages as well. A dynamic analysis can observe actual run-time

values, which is often better than either making a very conservative static assumption about

run-time values for the sake of soundness, or allowing some very simple bugs to escape

undetected. Another advantage of dynamic analysis, especially one that mines actual user

executions for its data, is the ability to assign an accurate importance to each bug. Addition-

ally, as we have shown, a dynamic analysis that does not require an explicit specification

of the properties to check can find clues to a very wide range of errors, including classes of

errors not considered in the design of the analysis.

A complementary family of static bug hunting tools places more emphasis on human

factors in software development. Static metrics of software complexity and other factors

can guide engineers to likely hiding places for bugs [OWB04]. The chronological record

captured by a source code control system can be mined to reveal areas of high code churn

or to raise warning flags when code is changed in a manner inconsistent with historical

patterns [YMNCC04, ZWDZ04]. Any of these systems might reasonably be integrated

with Cooperative Bug Isolation, such as by increasing the sampling density in code that

appears suspect.

5.2 Profiling and Tracing

Dynamic program sampling has a long history, with most applications focusing on perfor-

mance profiling and optimization. Any sampling system must define a trigger mechanism

that signals when a sample is to be taken. Typical triggers include periodic hardware timers

or interrupts [BEL+00, TSS00, Wha00], periodic software event counters (e.g., everynth

function call) [AS00], or a hardware/software mix. In most cases, the sampling interval

is strictly periodic. Periodic sampling may suffice when hunting for large performance
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bottlenecks, but may systematically miss rare events.

The Digital Continuous Profiling Infrastructure [ABD+97] is unusual in choosing sam-

pling intervals randomly. However, the random distribution is uniform, such as one sample

every 60K to 64K cycles. Samples thus extracted are not independent. If one sample

is taken, there is zero chance of taking any sample in the next 1–59,999 cycles and zero

chance ofnot taking exactly one sample in the next 60K–64K cycles. We trigger samples

based on a geometric distribution, which correctly models the interval between successful

independent coin tosses. The resulting data is a statistically rigorous fair random sample,

which in turn grants access to a large domain of powerful statistical analyses.

Recent work in trace collection has focused on program understanding. Techniques

for capturing program traces confront challenges similar to those we face here, such as

minimizing performance overhead and managing large quantities of captured data. Dy-

namic analysis in particular must encode, compress, or otherwise reduce an incoming trace

stream in real time, as the program runs [DR02, RR01]. It may be difficult to directly adapt

dynamic trace analysis techniques to a domain where the trace is sampled and therefore

incomplete.

Path profiling subsumes basic block and edge profiling to directly monitor how often

each acyclic path in a program executes. Optimizations first developed by Ball and Larus

[BL96] limit instrumentation to loop back edges and chord edges not in a special spanning

tree constructed for each acyclic region. This work relates to ours in three respects. First,

feedback reports containing path profiles may be an interesting target for bug isolation

data mining. A program may succeed on most paths but fail on some others. Second, the

acyclic regions we use for overhead amortization (Section 2.1.1) correspond well to those

used by Ball and Larus to build spanning trees. It should not be difficult to integrate the

two analyses, thereby collecting fair random samples of complete path profiles. Lastly, a
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variant of our proposed path balancing algorithm (Section 2.3.6) might be layered atop a

path profiler. Paths within an acyclic region carry unique indexes. Instead of balancing all

paths, a path-indexed table could record the exact (unbalanced) instrumentation weight for

each path. This table would then be used to find the aggregated net decrement to the global

next sample countdown for each uninstrumented traversal.

Section 2.1.2 discussed Arnold and Ryder’s framework for lightweight instrumentation

[AR01] and our adaptation of it to use strictly fair random sampling. Recent developments

by Chilimbi and others adapt Arnold and Ryder’s work in complementary ways. Hirzel

and Chilimbi [HC01] collect temporal profile “bursts” by allowing execution to remain on

the instrumented slow path for longer periods of time. This technique could augment our

own, which currently provides only rudimentary temporal information in the form of time

stamps (Section 2.2.3). Chilimbi and Hauswirth [CH04] adjust acyclic regions’ sampling

rates dynamically, within a single execution. This sort of rapid adjustment is useful when

bench testing with few test cases. It may be less important when the “test cases” are users

numbering in the thousands or millions. Performance overhead is quite small in both stud-

ies: 3-18% for the former and 3-6% for the later. We attribute this result to two factors.

First, the sampling strategy is not truly statistically fair or random as in our work. This

short cut eliminates some overhead, and in particular means that the fast path is completely

instrumentation free. Our proposed path balancing algorithm (Section 2.3.6) also yields an

instrumentation free fast path, and therefore may allow us to approach the same low over-

heads achieved by Chilimbi. Second, Chilimbi’s implementation uses a binary rewriting

system [ESV01] rather than operating on source code. While we have found source-to-

source transformation to be convenient for research, it does leave our performance subject

to the whims of the native C compiler’s optimizer. Direct binary manipulation may yield

more reliable results.



142

5.3 Dynamic Analysis

Our effort to understand and debug programs by selecting predicates is partly inspired by

Daikon [ECGN01]. Like Daikon, we begin with fairly unstructured guesses and eliminate

those that do not appear to hold. Unlike Daikon, we are concerned with gathering data

from production code, which leads us to use sampling of a large number of runs and sta-

tistical models; the Daikon experiments are done on a smaller number of complete traces.

We are also interested in detecting bugs, while Daikon focuses on the somewhat different

problem of detecting program invariants. Some initial efforts have been made to find bugs

by comparing Daikon-detected invariants in good and bad runs [PRKR03]. This work is

similar to our basic predicate elimination strategy of Section 4.2.

In a related project, Dodoo et al. [DLE03] use clustering analysis to select conditional

predicates of the formp =⇒ q that might be true and that are worth tracking dynamically

using Daikon. Our instrumentation schemes are currently quite simpleminded in how they

select what might be interesting. Performance could certainly be improved by using static

analysis to make more selective instrumentation choices up front. However, one must

exercise caution: the formal semantics of buggy programs are rarely specified [WAW90]

and difficult to codify, especially if memory safety is not assured.

The DIDUCE project [HL02] also attempts to identify bugs using analysis of execu-

tions. Unlike Daikon, most processing does take place within the client program. As in

our study, DIDUCE attempts to relate changes in predicates to the manifestation of bugs.

However, DIDUCE performs complete tracing and focuses on discrete state changes, such

as the first time a predicate transitioned from true to false. Our approach is more proba-

bilistic: we wish to identify broad trends over time that correlate predicate violations with

increased likelihood of failure.
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Software tomographyas realized through the GAMMA system [BOH02] shares our

goal of low-overhead distributed monitoring of deployed code. Applications to date have

focused on code coverage and traditional performance monitoring tasks, whereas our pri-

mary interest is bug isolation. Our strategy uses randomization within a single instrumented

binary, while GAMMA emphasizes choices in initial probe placement and iterative refine-

ment over time. Our earlier discussion of statically selective sampling (see Section 2.3.7)

suggests that these two considerations are complementary. It is also worth noting that our

predicates do indirectly yield coverage information: given fair sampling, the sum of all

predicate counters at a site converges on the true relative coverage of that site.

Efforts to directly apply statistical modeling principles to debugging have met with

mixed results. Early work in this area by Burnell and Horvitz [BH95] uses program slicing

in conjunction with Bayesian belief networks to filter and rank the possible causes for a

given bug. Empirical evaluation shows that the slicing component alone finds 65% of bug

causes, while the probabilistic model correctly identifies another 10%. This additional

payoff may seem small in light of the effort, measured in multiple man-years, required to

distill experts’ often tacit knowledge into a formal belief network. However, the approach

does illustrate one strategy for integrating information about program structure into the

statistical modeling process.

In more recent work, Podgurski et al. [PLF+03] apply statistical feature selection, clus-

tering, and multivariate visualization techniques to the task of classifying software failure

reports. The intent is to bucket each report into an equivalence group believed to share

the same underlying cause. Features are derived offline from fine-grained execution traces

without sampling; this approach reduces the noise level of the data but greatly restricts the

instrumentation schemes that are practical to deploy outside of a controlled testing envi-

ronment. As in our own earlier work, Podgurski uses logistic regression to select features
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that are highly predictive of failure. Clustering tends to identify small, tight groups of runs

that do share a single cause but that are not always maximal. That is, one cause may be

split across several clusters.

In contrast, current industrial practice uses stack traces to cluster failure reports into

equivalence classes. Two crash reports showing the same stack trace, or perhaps only

the same top-of-stack function, are presumed to be two reports of the same failure. This

heuristic works to the extent that a single cause corresponds to a single point of failure,

but our experience with MOSS, RHYTHMBOX , andEXIF suggests that this assumption may

not often hold. In MOSS, we find that only bugs #2 and #5 have truly unique “signature”

stacks: a crash location that is present if and only if the corresponding bug was actually

triggered. These bugs are also our most deterministic. Bugs #4 and #6 also have nearly

unique stack signatures. The remaining bugs are much less consistent: each stack signature

is observed after a variety of different bugs, and each triggered bug causes failure in a

variety of different stack states. RHYTHMBOX andEXIF bugs caused crashes so long after

the bad behavior that stacks were of limited use or no use at all.

For some highly available systems, even a single failure must be avoided. Once the

behaviors that predict imminent failure are known, automatic corrective measures may be

able to prevent the failure from occurring at all. The Software Dependability Framework

(SDF) [GMP+03] uses multivariate state estimation techniques to model and thereby pre-

dict impending system failures. Instrumentation is assumed to be complete and is typically

domain-specific.

Studies that attempt real-world deployment of monitored software must address a host

of practical engineering concerns, from distribution to installation to user support to data

collection and warehousing. Elbaum and Hardojo [EH03, EH04] have reported on a limited

deployment of instrumented Pine binaries. Their experiences have helped to guide our own
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design of a wide public deployment of applications with sampled instrumentation, presently

underway [LNZ+04].
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Beware of bugs in the above code; I
have only proved it correct, not tried it.

Donald Knuth, “Notes on the van Emde
Boas construction of priority deques:

An instructive use of recursion”

Chapter 6

Conclusion

It is an unfortunate fact that essentially all deployed software systems have bugs, and that

users often encounter these bugs. The resources (measured in time, money, or people)

available for improving software are always limited.

Widespread Internet connectivity makes possible a radical change to this situation. For

the first time it is feasible to directly observe the reality of a software system’s deployment.

Through sheer numbers, the user community brings far more resources to bear on exercis-

ing a piece of software than could possibly be provided by the software’s authors. Coupled

with an instrumentation, reporting, and analysis infrastructure, these users can potentially

replace guesswork with real triage, directing scarce engineering resources to those areas

that benefit the most people.

The Cooperative Bug Isolation project represents one effort to leverage the strength in

these users’ numbers. We have designed, developed, and deployed a debugging support

system that encompasses a complete feedback loop from source to users to feedback to bug

fixes.

In terms of the original goals of this research, CBI is a qualified success. Our instru-
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mentation strategy provides fair, randomly sampled data suitable for use with a wide range

of statistical analyses. The sampling transformation is quite general, and may be of in-

dependent interest in areas beyond just bug hunting. For CPU-intensive applications such

as performance benchmarks, our current implementation requires exclusion of bottleneck

code in order to limit overhead. However there is room for improvement. Similar sam-

pling schemes described in Chapter 5, especially those by Chilimbi et al., have achieved

very low overheads. The path balancing optimization, proposed in Section 2.3.6 but not yet

implemented, leaves the fast path almost entirely instrumentation free and thereby should

significantly improve performance. We have not pursued performance optimizations fur-

ther in this work because the current system is good enough for the applications we have

looked at so far, both in controlled case studies and in our public deployment.

The engineering challenge of creating a deployable system has been met. The public

deployment is, in a word, real. It includes instrumented binaries ready to download and

install, polished user interfaces, a secure feedback collection server, and a community of

end users who trust and use our code every day. This user community is not yet large

enough to drive our statistical bug isolation algorithms; research of this kind is inherently

difficult in an academic environment. Nevertheless, we feel it has been a valuable exercise

to push the entire system forward to the point where it was ready to face the public at all.

Our experience with the public deployment gives us much greater confidence that a system

like the one we propose is practical and viable.

Lastly, the statistical debugging techniques we have described show that one can ac-

tually find and fix bugs with sparsely sampled data. At the outset of this project it was

unclear just how little information one could get away with. We have successfully iso-

lated single bugs and multiple bugs; deterministic bugs and nondeterministic bugs; bugs in

batch-oriented systems and bugs in multi-threaded interactive systems; known bugs seeded
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in known code and previously unknown bugs discovered in code unfamiliar to the CBI

team. We believe that statistical debugging based on automated user feedback has the po-

tential to be a valuable addition to the software engineer’s bug hunting repertoire.
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