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—— Abstract

Amazon Web Services (AWS) is a comprehensive and broadly adopted cloud provider. AWS SDKs
provide access to AWS services through API endpoints. However, incorrect use of these APIs can
lead to code defects, crashes, performance issues, and other problems. AWS best practices are a set
of guidelines for correct and secure use of these APIs to access cloud services, allowing conformant
clients to fully reap the benefits of cloud computing.

We present static analyses, developed in the context of a commercial service for detection of code
defects and security vulnerabilities, to identify deviations from AWS best practices. We focus on
applications that use the AWS SDK for Python, called Boto3. Precise static analysis of Python cloud
applications requires robust type inference for inferring the types of cloud service clients. However,
Boto3d’s “Pythonic” APIs pose unique challenges for type resolution, as does the interprocedural style
in which service clients are used. We offer a layered approach that combines multiple type-resolution
and tracking strategies in a staged manner: (i) general-purpose type inference augmented by type
annotations, (ii) interprocedural dataflow analysis expressed in a domain-specific language, and (iii)
name-based resolution as a low-confidence fallback. Across >3,000 popular Python GitHub repos
that make use of the AWS SDK, our layered type inference system achieves 85% precision and 100%
recall in inferring Boto3 clients in Python client code.

Additionally, we use real-world developer feedback to assess a representative sample of eight
AWS best-practice rules. These rules detect a wide range of issues including pagination, polling,
and batch operations. Developers have accepted more than 85% of the recommendations made by
five out of eight Python rules, and almost 83% of all recommendations.
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1 Introduction

Amazon Web Services (AWS) is a comprehensive and broadly adopted cloud provider. AWS
best practices are a set of guidelines for correct, secure, and performant usage of AWS cloud
SDKs. Python is used extensively to build applications on top of the AWS cloud, using
the AWS SDK for Python, called Boto3. We report on our experience developing static
analyses to enforce AWS best practices in Boto3-based Python applications. These rules are
evaluated as part of a commercial cloud service, Amazon CodeGuru Reviewer (henceforth,
CodeGuru) [9], that runs static analysis on customer code to detect security vulnerabilities,
optimization opportunities, and other defects. Figure 1 shows the CodeGuru architecture.
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Figure 1 High-level overview of CodeGuru.

CodeGuru supports Java and Python, and integrates with different code hosting platforms
including GitHub and BitBucket. CodeGuru supports three code scanning modes:

Incremental: A code review is created automatically when a pull request is raised.

Full: The entire codebase is analyzed.

CI/CD: The entire codebase is analyzed as part of CI/CD workflows.

1.1 Importance of AWS Best Practices

Deviation from AWS best practices can lead to large-scale operational failures. Consequences
include race conditions leading to service outage or auto-ticketing errors; authorization
and authentication errors; broken throttling mechanisms that impose unexpected loads on
services, thereby leading to high latency or timeouts; missing or incorrect error handling
leading to billing errors; and many other severe problems. Risks are commonly discovered by
manual inspection or testing. However, many such cases can be detected, and prevented, by
applying static analysis to clients of the AWS SDK. The AWS best practices rules that we
have developed alert developers to such defects during code review, before customer impact.

We provide lower-bound metrics to give an idea of CodeGuru’s throughput. In an average
week, CodeGuru analyzes > 10,000 pull requests (PRs) containing > 1,000,000 lines of
code across > 100, 000 files, and provides > 1,000 AWS best practices recommendations
due to > 100 different static analysis detectors.

1.2 Scope

CodeGuru supports AWS best practices for both Java and Python. We focus on Python
given its dynamic nature and lack of strict static typing. For precise enforcement of AWS
best practices, it is essential to identify function calls into the AWS SDK, and which service
in particular is used. Java reveals this information through static types, but in Python this
information is not available by default: a challenging start for our analyses.

We describe several on-demand type resolution strategies and combinations thereof.
We consider three core approaches: (1) Boto3 type stubs, in combination with general-
purpose type inference, to resolve types when processing the Python AST; (2) on-demand
interprocedural dataflow tracking, in both the forward and the backward directions, to
check whether the receiver of a function call corresponds to a given AWS service; and (3) a
lightweight over-approximation that simply checks whether the called function’s name is
compatible with a given AWS service’s API. We present the approaches themselves and more
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advanced algorithms that combine these approaches. We also provide technical details on
the underlying infrastructure that enabled us to implement these approaches: CodeGuru’s
code representation and language for rule specification.

1.3 Main Contributions

This principal contributions of this paper are as follows. (1) We offer an on-demand type
resolution strategy, which we demonstrate as effective in the case of Python clients of the
AWS SDK. (2) In support of the above-mentioned strategy, we present the intermediate
representation (IR) and query language used by the CodeGuru service. (3) We describe a
representative sample of the AWS best practices rule suite running as part of the CodeGuru
service. (4) We share our evaluation on 3,027 GitHub repositories, and real-world feedback
we received from developers, to validate our approach.

1.4 Paper Structure

The rest of the paper is organized as follows. Section 2 discusses related work. In Section 3,
we present background about the Boto3 SDK. Section 4 shows several examples that motivate
the need for advanced type inference. Sections 5 and 6 lay down the technical infrastructure
for our approach in describing, respectively, the code representation and query language
that we use to express Python AWS best practices rules. Section 7 describes the different
type inference capabilities we have developed, based both on Boto3 type stubs and data-flow

tracking. In Section 8 we examine eight representative Python AWS best practices rules.

Section 9 states our research hypotheses and reports on experiments to assess the efficacy of
our type inference strategies. Section 10 concludes and outlines future research.

2 Related Work

Different approaches have been taken to infer Python type annotations, and formalize Python
semantics more generally. We review approaches based on program analysis as well as
machine learning, and compare these approaches with CodeGuru.

2.1 Classical Program Analysis

Widely used Python type checkers include mypy [25], Pyre [15], pytype [20], and Pyright [26].

These tools rely on manual type annotations provided by developers, augmented with
varying forms of type inference. However, retrofitting type annotations onto large libraries or
applications can be tedious and error-prone. Other prior work places more emphasis on static
analysis [10,16,17,22,27,32] or dynamic analysis [34] to reduce reliance on human-authored
annotations. Our initial search for supporting infrastructure found that many published tools
have failed to keep up with recent Python releases, or omit support for key Python features
such as exceptions [16] or recursion [27]. We opted to use Pyright as our baseline, as Pyright
is both actively maintained and has a rather advanced inference engine (see Section 7.1).
In spite of these advantages, Pyright alone proved unsatisfactory for our cloud application
domain. The details, as conveyed in Section 9, may serve to highlight challenges for other
developers of general-purpose type inference engines.

When writing type annotations, Python developers often focus on function signatures:
arguments and return values. Some research tools mirror this bias, such as TypeWriter [30].
Xu et al. [36] present a probabilistic type inference system, but the accuracy of probabilistically
inferred types for Python variables is limited. Our work requires accurate types for variables,
making these two approaches unsuitable.
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Any attempt to statically analyze Python code must contend with the intricacies of the
Python language. Notable efforts to formalize Python semantics include those by Smeding [33],
Politz et al. [29] and Kohl [24]. Smeding’s work predates Python type annotations, while
neither Politz et al. nor K6hl mention them in any way. These omissions are not surprising,
as type annotations have only limited effects on runtime behavior. Thus, these codifications
of Python semantics offer little insight regarding the type-inference challenges addressed here.
Our approach is neither sound nor complete (see Section 5.4), so a standard type-soundness
theorem relating static types to runtime semantics does not apply.

In the specialized domain of machine learning, where Python is perhaps the most popular
language, WALA Ariadne [13] analyzes Python specifically to infer the dimensions and types
of tensors. Like Ariadne, our work is motivated by a specific application domain, and even a
specific framework: Ariadne focuses on machine learning using TensorFlow [1]; CodeGuru
focuses on cloud computing using Boto3. Ariadne’s solution entails both a custom type
system and an analysis to infer it. Our approach builds upon standard Python types and
type annotations. While we crafted our analysis strategy to match idiomatic Boto3 use,
these idioms are not exclusive to Boto3 client code. Therefore our layered approach may be
more broadly applicable.

2.2 Machine Learning

PYInfer [12] uses deep learning to generate type annotations for Python. PYlInfer fuses
deep learning with static analysis such as PySonar2 to infer types for variables as well as
function-level types in Python. All of these techniques either require labelled type annotations
or employ a static analyzer to generate the initial annotations from Python repositories in
order to train the deep neural network. However, type resolution for Boto3 service clients is
non-trivial due to the reasons mentioned above.

JSNice [31], DeepTyper [23], and LambdaNet [35] use deep learning to generate type
annotations for JavaScript and/or TypeScript. LambdaNet’s authors note that TypeScript
is an inviting target because “plenty of training data is available in terms of type-annotated
programs.” In principle, similar strategies may be applicable to Python. However, it is
unclear whether the available corpus of type-annotated Python Boto3 client programs is
large enough for effective training in practice.

3 Background on Boto3: the AWS SDK for Python

This section describes the AWS service clients in the AWS SDK for Python, also called
“Boto3”. [4]

3.1 Clients and Resources: Low- and High-Level APIs

Boto3 has two distinct levels of APIs:

Client (or “low-level”) APIs provide one-to-one mappings to the underlying HTTP API
operations.

Resource APIs hide explicit network calls but instead provide resource objects and collections
to access attributes and perform actions. Resources represent an object-oriented interface
to AWS. They provide a higher-level abstraction than the raw, low-level calls made by
service clients.
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A low-level service client can be created by passing the name of service as an argument
to the boto3.client method. [7] For example, the Python statement, s3_client = boto3.client('s3"),
creates a low-level client for the Amazon Simple Storage Service (S3). Conversely, a service
resource can be created by passing the name of service as an argument to the SDK boto3.resource
method. [8] For example, the Python statement, s3_client = boto3.resource('s3'), creates an
Amazon S3 service resource. It is also possible to access the low-level client from an existing
resource, as in:

s3_resource = boto3.resource('s3")
s3_ client = s3_resource.meta.client

Alternatively, to use service resources, one can invoke the resource() method of a Session and
pass in a service name. For example, one can create an Amazon S3 service resource using;:

session = boto3.session.Session()
s3__resource = session.resource('s3")

Service clients give access to service operations by calling methods on a client. For example,
suppose s3_client is an S3 client. Then one can create an S3 bucket, with the bucket name
passed via an argument, using:

response = s3_client.create_bucket(Bucket=bucket_name)

3.2 Boto3 Type Stubs

Boto3-stubs provides full type annotations for Boto3. [14] In particular, Boto3-stubs provides
annotations for a Client type, ServiceResource, and Resource type for each AWS service. It also
provides annotations for a Waiter type, and a Paginator type for each service. With help from
Boto3-stubs, several Python type-checking tools can discover types for multiple flavors of
client construction calls such as boto3.client, boto3.session, session.client, and session.session.

3.3 API Specifications From Boto3

Some of the AWS best practice rules that are presented in this paper use an external
configuration that provides a specification of some service-specific fragment of the complete
Boto3 API. This specification includes an API name, type, the service name the API
belongs to, and few other attributes that are relevant for the rule. We refer to these external
configurations as API specifications. One such example is presented in Section 9. API
specifications are automatically extracted from Boto3 API models. [6] These API models
have specific traits, such as, Pagination, Batch, Deprecated, Waiters, or mutual-exclusion,
which help determine the characteristics of the API. We extract relevant API traits from

API models across Boto3 services to construct the complete API specification to enforce.

These API specifications are then used by the best practice rules for analyzing client code.

4 Motivating Examples

This section presents an example that motivate the need for sophisticated type inference
to recover the types of AWS service clients in real-world Python applications. The type
annotations in Figure 2 are obtained from Pyright with Boto3 type stubs, which are on lines
with the prefix “#—".
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import boto3

class Example(object):
def get_sns_client():
return boto3.resource("sns"

def M1():
sns_arn = os.environ['PUBLISH']
client = get_sns_client()
#— client: SNSServiceResource
M2(client, topic, subscription)
return client. Topic(sns_arn)

def M2(client, topic, subscription):
topic = client.topic(topic)
#— (variable) client: Any

Figure 2 Example of a Python application code using Boto3.

» Example 1. Consider the Python code snippet in Figure 2. Here, the Boto3 client is
returned by get_sns_client(). Its type is SNSServiceResource, marked in bold in method M1. This
type correctly identifies client as a client for the Amazon Simple Notification Service (SNS).
Figure 2 creates client using the boto3.resource() API which gives an object-oriented interface
to SNS. [8]. The client flows into M2 via a function parameter. M2 uses client to make API
call, topic(). Unfortunately, Pyright was unable to assign client a precise type, leaving it
typed simply as the generic Any inside M2. Inference falls short here because Pyright cannot
guarantee that client must always be an SNSServiceResource in every possible call to M2. This
is safe but, for our purposes, unfortunate: an untyped client cascades into untyped topic and
subscription, leaving us with nothing useful to analyze for any of the API calls in M2.

Type resolution of the variable client requires sophisticated type inference coupled with a
domain-aware preference for finding Boto3 clients wherever they might arise and be used for
API interaction. In this paper, we present a technique that combines Pyright’s type inference
with a custom interprocedural dataflow analysis to infer types in such cases.

Furthermore, these API names are exactly the same in Google’s Pub/Sub cloud service [19]
and AWS’s SNS service. Our study shows that the names of some cloud service APIs are
exactly the same for cloud services from different commercial cloud vendors (AWS, Google,
Tencent, etc.). Thus, precise resolution of service clients’ types is extremely important for
static analysis of Python applications that use these cloud SDKs.

5 Program Representation

Our analysis represents each program as a collection of per-function graphs called MU
graphs.® A MU graph roughly corresponds to a data-dependence graph overlaid with a
control-flow (not control-dependence) graph (CFG). As in prior work that used similar
representations [2,3], we find this representation useful for finding APT misuse defects where
both the data flowing into an operation and the order of operations are important.

L «“MU” originally stood for “misuse”, and is pronounced as the name of the Greek letter 7
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5.1 MU-Graph Nodes

MU graphs contain five kinds of nodes. Entry nodes represent the start of a function’s
execution: one per MU graph. Exit nodes represent the end of a function’s execution:
one per MU graph. Control nodes represent branched control flow, such as a conditional
statement or loop. Action nodes represent individual execution steps, such as multiplying
two values or calling a function. Data nodes represent local variables or synthetic temporary
values within compound expressions.

Per-node metadata identifies specific uses of these general categories. For example, we
distinguish a multiplication action from a function-call action, or an if-statement control
node from a while-statement control node.

Multiple assignments to the same local variable use multiple data nodes, as in static
single assignment (SSA) form. ¢ action nodes are added as needed to represent converging
data flows, such as when both branches of an if statement modify the same variable.

5.2 MU-Graph Edges

Control edges order execution among entry, exit, control, and action nodes. No data node
is ever the source or target of a control edge. Thus, discarding all data nodes and non-control
edges would reduce a MU graph to a traditional CFG. Data edges represent movement of
data among control and action nodes, and are further categorized as follows:

Condition edges flow from a data node into a control node, representing the information
used to decide how execution continues. For example, a condition edge flows from the value
of an if statement’s predicate to the control node for the statement itself. Definition edges
flow from an action to a data node defined by that action. For example, a definition edge
from a multiplication action to a data node d indicates that d receives the result of that
multiplication. Parameter edges flow from a data node into an action node. For example,
a binary multiplication action is the target of two parameter edges, one for each operand. A
function call action is the target of one parameter edge for each actual argument. Receiver
edges flow from a data node into a method-calling action node. These highlight the special
role of implicit self or this arguments. Callee edges flow from a data node into a call action
node, identifying the function to be called. For example, in handlers[event](), an indexing
action to fetch handlers[event] would define some temporary data node holding the function to
call. A callee edge would then flow from that data node to the call action.

Edges carry additional role-specific metadata. For example, the two control edges that
depart from an if statement’s control node are marked to distinguish the true and false
branches. Multiple parameter edges leading to the same action node are ordered, thereby
distinguishing an action’s first parameter from its second, third, and so on.

5.3 Overall Properties

In the MU representation, data can only flow from data nodes to control/action nodes, and
vice versa. Data edges never connect pairs of data nodes directly. Informally, each action
node receives zero or more data nodes as inputs, and may provide an output that flows across
a definition edge into some other data node. In x + y * z, the multiplication action defines an
anonymous data node, which in turn flows into the addition action as a parameter.

Figure 3 illustrates several MU-graph features in the representation of x *=x — 1, or
equivalently x = x * (x — 1). Solid control edges establish evaluation order as in a CFG:
subtraction before multiplication, each represented as a rectangular action node. Elliptic
data nodes represent two versions of x: x; before the assignment and xo after. Additional
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Figure 3 The MU-graph representation of x *= x — 1. Entry and exit nodes are trapezoidal;
action nodes are rectangular; data nodes are elliptic. Control edges are solid; data edges are dashed.

data nodes represent the literal 1 and a temporary value. The initial value x; is a parameter
to both mathematical operations, and is distinct from the final value x5. The “temp” data
node is defined by the subtraction and is also a parameter to the multiplication. Notice that
data and non-data nodes strictly alternate along data paths: data nodes provide inputs to
action or control nodes, and action nodes’ outputs define data nodes.

5.4 Using Pyright for Best-Effort Graph Construction

Pyright is “a fast type checker meant for large Python source bases.” [26] Pyright is primarily
used behind-the-scenes by Python IDEs, or as a command-line linter/checker. However,
Pyright’s sophisticated type inference and robust handling of incomplete or incorrect programs
make it ideally suited for our purposes as well. MU graph construction begins with a parsed
abstract syntax tree (AST) provided by Pyright. We traverse the AST, synthesizing and
combining MU graph fragments in a roughly bottom-up manner.

For data nodes, we rely on Pyright to provide static type information and name resolution.
Given Python’s dynamic nature, these are both best-effort. Inferred static types can be
imprecise, absent, or wrong; names can be aliased or accessed covertly via reflection. We
attempt no alias analysis or points-to analysis beyond that implicitly performed by Pyright
itself. Pyright’s best-effort types are available on data nodes that represent named variables
as well as those that represent intermediate values, such as the “temp” node in Figure 3.

We flatten data node types to their string representations, such as "int" or "MyClass" or
"(int, str) —> tuple[int, str]". Stringification discards internal structure, but allows MU graphs
to accommodate essentially any type grammar, even from non-Python languages. Types as
strings are also forgiving of incomplete programs: we might know that a piece of data is an
instance of MyClass even if we know nothing about MyClass’s internal structure or provenance.

The entire process of building MU graphs proceeds, best-effort, even when confronted with
imports of missing modules, calls to unknown functions, etc. We represent each questionable
operation as some reasonable fallback (e.g., as an empty statement), and move on. Python
also contains syntactically ambiguous constructs, such as overloaded operators or the myriad
uses of “.”. We disambiguate these using types whenever possible, or heuristics when necessary.
These approximations mean that we are neither sound nor complete in general. However,
these same approximations allow us to provide a representation that is useful in practice
when absolute guarantees are not required.
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CustomRule rule = new CustomRule.Builder()
.withName("MathExp")
.withComment("For small floats “x", the subtraction in “exp(x) — 1° can result in a loss of precision.")
WithAIIOf(
b —> b.withMethodCallFilter(".xmath\\.exp").withDefinition Transform().as("MathExpResult"),
b —> b.withConstantDataFilter("1").as("ConstantOne")

.check()

.withActionFilter("\\—")
.withDirectDataFroml|dFilter("MathExpResult")
.withDirectDataFromIdFilter("ConstantOne")
.build();

Figure 4 GQL rule for identifying suboptimal use of the math.exp function.

5.5 From Functions to Programs

The construction process described in Section 5.4 yields one MU graph for each named (def)
or anonymous (lambda) function. For each script, also create MU graph that represents
execution of that script’s top-level statements.

We aggregate these per-function MU graphs to reflect static program structure. Each
Python class contains a dictionary of named methods; each script contains a dictionary of
named top-level classes and functions; and so on. We do not build a static call graph, since
not all downstream consumers of MU graphs require one. However, we organize and manage
the MU graph collection in such a way as to facilitate callee resolution later, if needed.

6 Query Language

Working directly atop the MU representation in authoring analysis rules misses important
reuse opportunities. We have therefore designed and implemented an API, dubbed the Guru
Query Language (GQL), to enable encapsulation, optimization and reuse of a wide variety
of analysis constructs. GQL is implemented as a Java library whose main interface with
the analysis builder is the CustomRule class. CustomRule instances are created using the fluent
builder pattern [18], where builder calls correspond to reasoning steps in the rule. A rule
object can be evaluated at different scopes, from entire code bases to single functions. This
is an important source of flexibility, which owes to the MU representation and its support
for partial programs. (See Section 5.4.) Rule evaluation yields a RuleEvaluationResult for every
type and function that the rule visits, which includes rich information on whether, and if
relevant where and how, rule evaluation has failed.

As an illustration of GQL syntax, we refer the reader to Figure 4, where a rule that
identifies suboptimal use of the math.exp function is shown. Here is a simple example of what
the rule checks for:

def foo():

import math
return math.exp(le—10) — 1

Rule definition begins by setting the rule’s name and user-facing comment text. The

following steps, up to the check statement, are preconditions that the rule checks for.

Specifically, the withAllOf statement ensures that all the subrules nested within it evaluate
successfully, where these check for math.exp calls as well as the presence of the constant value
1. The matches are stored into variables (or IDs), to enable downstream reuse thereof, using

the as operation. The actual check, or postcondition, is the rule section after the check step.
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It establishes whether there is a subtraction operation that the node defined by math.exp,
along with the constant 1, flow into directly (that is, without the mediation of any other
action).

6.1 Rule Evaluation

In what follows, we use standard notation, G = (V, E), when referring to MU graphs. Unless
stated otherwise, the graphs we mention are specifically MU graphs.

As illustrated above, a GQL rule is an implication relation, pre = post. As such, rule
evaluation is satisfied either when pre is not satisfied or when both pre and post are satisfied.
pre and post are both sequences [op] of operations.

An operation op: P(V) — P(V) is a function whose domain and codomain are both node
sets: V ={n: 3G = (V,E). n € V}. As an example, a filter operation that matches against
calls to a function named “foo” evaluates to foo call nodes within the incoming node set, if
any, or else (.

Given node n, let GG,, denote the graph containing n, and G,,.V the complete set of nodes
that G,, contains. Operations op satisfy the following two invariants:

1. VN C V. op(N) € U,,cy Gn-V. That is, application of an operation to a node set N

cannot “exceed” the set of nodes due to the graphs containing the nodes in N.

2. op(0) = (. That is, application of an operation to the empty node set yields the empty
node set.

Given rule r = [opy,...,0pp] = [0pri1,---,0p,] and input graph G = (V, E), we
denote the node set flowing into 0p; as 0j_1. The node sets are defined as follows:

\%4 ifi=0
o — 0 ifi:k/\opk(ak,l):@
’ 1% ifi =kAopr(og_1) #0

opi(oi—1) otherwise

Per the first case, precondition evaluation starts from the complete set of graph nodes
(V). Per the second and third cases, the transition from precondition to postcondition is
either trivial if the precondition has not been satisfied (second case), or — analogously to
precondition evaluation — postcondition evaluation starts from V' (third case). Any other
transition along the operation sequence is simply an application of the operation to its
incoming node set.

Rule evaluation is successful if and only if (i) a prefix of pre evaluates to () (in which case
the precondition is not satisfied); or (ii) both pre and post evaluate to non-empty node sets
(in which case the precondition and postcondition are both satisfied).

To add color to the formal description so far, rule evaluation is essentially a process of
matching against a pattern, or semantic property, where a non-empty node set is a match
frontier that feeds into the next reasoning step. Failure to maintain a non-empty match
frontier means that the given (pre or post) condition is not satisfied by the input function.

6.2 Rule Structure

While our formal presentation above of GQL rules is as logical implication relationships,
in practice a rule object has additional information and structure. A GQL rule consists
of four sections, as follows: (i) setup: the rule’s name, and the comment (or description)
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associated with the rule; (ii) function matcher: a rule can optionally define criteria when to
be evaluated, for example based on function name, attributes, annotations, containing type,
parameter types, and so on; (iii) precondition: the sequence of operations up to the check
builder step; and (iv) postcondition: the sequence of operations following the check builder
step.

Since GQL rules follow the fluent builder pattern, there is risk that users would miss,
misuse, or misorder rule constructs or sections. For example, the user might build a rule
lacking a check step; forget to set the rule’s name; or try to apply incompatible filters in
succession. To ensure rule integrity, we employ a hybrid solution that combines metadata
contributed by operations with runtime checking. Operations expose a “signature”, as
explained in Section 6.4, such that improper compositions can be detected and localized
ahead of rule evaluation.

6.3 Language- and Domain-specific Rule Constructs

Beyond the core GQL constructs, which are applicable across different programming languages

and problem domains, there are reusable albeit language- or domain-specific constructs.

As an example, constructs like withNamedArgumentsTransform or withUnpackedArgumentsTransform
are useful for Python rules, but do not apply to Java. GQL enables such constructs to be
organized into subclasses of CustomRule, such as PythonCustomRule, while containing CustomRule
to the core analysis constructs.

This approach has several important advantages. First, we avoid API bloat by distributing
analysis constructs across more than just CustomRule. Second, we avoid misuse errors due to
a construct being used outside its intended context, for example a Python analysis construct
used in a rule that targets Java programs. Finally, GQL extensions sometimes introduce
dependencies. We have implemented, for example, a CustomRule extension in the domain of
data leaks, where some of the analysis constructs rely on an ML model to predict whether
a given data access is retrieving sensitive information. These dependencies should not be
forced on GQL users outside the given domain.

6.4 GQL Operations

We now take a closer look at the different operations that comprise GQL rules. These divide
into 4 categories, discussed below in turn. Beyond the information in this section, we refer the
reader to the accompanying technical report for a more detailed description of the operation
categories as well as examples from each category [28].

For safety and fault localization, GQL requires that operations be annotated with their

signature, which states the types of nodes that they accept as input and yield as output.

(See Section 5.) The withReceiverTransform operation, for example, accepts as input action
(and more specifically, call) nodes, and outputs data nodes. If a user attempts to compose
operations incorrectly, for example by routing the output of a withDataByNameFilter operation to
withReceiverTransform, then GQL identifies the violation at runtime and generates a meaningful
failure message that localizes it and explains why rule evaluation has been terminated. We are
currently in the process of shifting the failure left to rule building time, and as a longer-term
objective, compile time.
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6.4.1 Core Operations

Core operations apply to all rules, regardless of their scope and logic. Some of the
core operations, in particular check and as, have already been explained in the context
of Figure 4. Additional core operations include the ability to reset the match frontier,
interleave instrumentation (for example, for debugging or profiling purposes), read and write
mutable auxiliary state, and so on.

6.4.2 Filter Operations

A filter operation f satisfies the invariant: YV € V. f(V) C V. That is, a filter operation
selects a subset of the input node set. Its result cannot exceed the incoming set.

GQL offers a wide selection of built-in filters. Beyond withActionFilter, withMethodCallFilter,
withConstantDataFilter and withDirectDataFromldFilter that are used in Figure 4, there are filters
for matching against control structures, constants, actions with specific arguments (like
constants or null/None), and so on.

The GQL filter operations — almost without exception — are defined using a unary
predicate ranging over nodes, and as such, filtering is done point-wise. As an example,
withMethodCallFilter is instantiated through a predicate that accepts action (and specifically,
call) nodes where the callee matches the provided regex specification. A common practice
with filter operations is to compose them, which enables refinement in pattern matching. An
example of that is the consecutive withDirectDataFromldFilter operations in the rule in Figure 4.

6.4.3 Transform Operations

Transform operations enable the transition from a given match frontier to another frontier
that derives from it. For example, a frontier that consists of function calls can be transformed
to the respective arguments or receivers, or the values defined by the calls, as illustrated
with withDefinitionTransform in Figure 4.

GQL offers many built-in transform operations. Examples include withArgumentsTransform,
which transforms an action node to its respective arguments; withControlDependenciesTransform,
which transforms a node to its set of control dependencies; withDataDependenciesTransform
(resp. withDataDependentsTransform), which transforms a node to its set of (transitive) data
dependencies (resp. dependents); and withReceiverTransform, which transforms a call node to
the receiver (if available).

6.4.4 Second-order Operations

Logical structures and operators are necessary to express certain rule logic in a precise and
concise manner. As a simple example, the user may wish to check if a given function call
"zoo" has a receiver of type either Foo or Bar. Another use case, illustrated in Figure 4, is the
need to check that several conditions are all met through withAllOf.

To enable such control and logical structures, GQL exposes second-order operations.
These are operations that are themselves parameterized by one or more rules, which we refer
to as subrules.

As an illustration, here is the GQL syntax for the above example:

.withMethodCallFilter("zoo"
.withOneOf(

b —> b.withReceiverByTypeFilter("Foo"),
b —> b.withReceiverByTypeFilter("Bar"))

The withOneOf construct evaluates to the first subrule that yields a non-empty result, or else
it evaluates to (.
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6.5 Interprocedural Analysis

As noted above, GQL provides the ability to perform interprocedural analysis through the
withInterproceduralMatch construct and several specializations thereof. The underlying call-
graph representation resolves call sites on demand, per the CHA call-graph construction
algorithm [21], based on the (i) name of the callee, (ii) number of arguments, and (iii)
argument types. Though the CHA algorithm is known to be imprecise [11], we have rarely
seen cases where that was the cause of imprecision in GQL rule evaluation. We hypothesize
that this is because (i) interprocedural analysis is run at file or package scope, but not
beyond, so there is less room for error, plus (ii) imprecision in interprocedural analysis is
potentially mitigated by other rule steps.

At a high level, the interprocedural tracking algorithm performs a fixpoint computation
starting from the seeding function graph and matched nodes therein. At each step, the
argument rule is applied to match against additional nodes. The algorithm is parametric,
enabling the user to decide the scope (intra-class, intra-file, or entire codebase) and direction
(forward or backward) for tracking. In the forward direction, the algorithm transitions from
a call site to the callees and from a function’s exit to callers. In the backward direction, the
algorithm transitions from a function’s entry to call sites and from call-site definitions (for
example, x = foo(), where x is tracked) to callee exits.

Functional summaries are utilized to avoid redundant computation. In the forward
direction, these document the relationship between a call-site argument and the definition
(if exists) plus other arguments. In the backward direction, the summary documents the
relationship between the definition and call-site arguments.

A more complete, and technical, explanation of the GQL interprocedural tracking
algorithm is available in the accompanying technical report [28]. The description there
ties into a pseudocode description of the algorithm.

6.6 Dataflow Analysis

Beyond its interprocedural capabilities, GQL also has built-in support for several flavors
of dataflow analysis, including slicing and taint tracking.? These build directly on top of
the data edges exposed by the MU representation, in conjunction with the interprocedural
matching algorithm described above.

The main feature that the GQL dataflow analysis provides beyond a standard fixpoint
algorithm over the dataflow relation is the ability to specify matchers on graph edges to tag
them with unique roles: passthrough (data flows across the call site), blocking (an edge being
either a sanitizer or a validator), side effecting (data flows into the receiver of a call), or
reading (data flows from the receiver to the definition). The user-provided specification is
then enforced as part of the fixpoint algorithm.

7 Type Inference for Boto3 Clients

As explained in Section 3.1, a Python AWS application creates an AWS service client by
passing the name of the service as an argument to one of two distinct levels of APIs. The
use of these multiple API flavors, the interactions between them, and the use of strings as
service selectors, all pose challenges for type inference.

2 GQL additionally features finite state machine (FSM) and typestate analysis, though these involve not
just dataflow but also control-flow reasoning. These capabilities are not consumed by the rules that we
discuss later in the paper, so we suffice by noting them here.
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Regardless of which API is used, AWS service clients are ultimately just data values. Like
any other data, service clients can be stored in class variables, assigned into global variables,
returned from functions, and so on. Code might use a service client locally within a single
function or globally within or even across the files that comprise the complete application.
The complexity of these definition—use chains (DU chains) further complicates type inference.

In this section, we present different type inference strategies that can be used in this
challenging application domain.

7.1 Pyright’s Type Inference With Boto3-Stubs

Pyright supports type inference for function return values, instance variables, class variables,
local variables, and global variables. Pyright’s inference engine uses several advanced type
inference techniques, such as a flexible model of “type assignability”, inferred types for self
and cls, parameterized generic types, including both polymorphic container types as well as
optional types, union types representing arbitrary sets of possible types, overloaded function
types as a special case of union types for ad hoc polymorphic functions, literal types, such
Literal["str"] as a subtype of str that represents only the string literal "s3", and few others.

A full discussion of these capabilities is outside of the scope of this paper, and in any
case Pyright is not our contribution. We treat Pyright’s type inference engine as a powerful,
featureful, but opaque black box.

If Pyright cannot infer the type of some symbol, then that symbol’s type is set to Any. This
fallback type is a useful warning marker that lets inference consumers (such as CodeGuru)
recognize cases where Pyright type inference fell short.

Type inference can incur significant computation overhead for large code bases. Also,
Pyright cannot always infer correct types without some outside help. Hence, type annotations
are a practical requirement for building a robust type inference system. We use third-party
type stubs, called Boto3-stubs [14], that provide full type annotations for Boto3. Pyright
ingests type annotations provided by Boto3-stubs to further enhance and constrain its type
inference.

Figure 2 give an examples of Pyright’s Type Inference with Boto3-stubs (denoted by the
prefix “#—"). However, in Figure 7, Pyright fails to infer a precise type for s3_client in the
method load_df_from_s3, instead giving it the fallback Any type.

7.2 Type Inference Using Custom Dataflow Rules

As an alternative to Pyright, we have used GQL to implement custom inference rules based
on dataflow analysis. These rules do not provide universal, generic type inference. Instead,
they focus on idiomatic, interprocedural Boto3 usage patterns that Pyright’s general-purpose
engine fails to address. There are a total of ten GQL-based custom dataflow rules, among
which only one is intraprocedural rule and rest nine are interprocedural rules. For illustration
purpose, we select few representative interprocedural GQL rules that have low to medium
complexity (in terms of number of operations in the rules) and that performs dataflow
analysis at file-scope or package-scope.

7.2.1 Representative Examples of Interprocedural Rules

Each GQL rule in Figures 5-6 implements some form of interprocedural dataflow analysis.
Each operates on a function graph and matching API nodes along with the receiver nodes
of calls to the corresponding APIs. For example, in Figure 7, one relevant API node is
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builder —> builder
.withInterproceduralMatch(
new InterproceduralMatchOperation.InterproceduralMatchSpec(
/* scope = #/ InterproceduralMatchOperation.Scope.FILE_ FORWARD_REACHABLE,
/* stopOnFirstMatch = x/ false,
/* visitAllNodes = x/ false),
bb —> bb.withDataDependentsTransform(
/* isTransitive = x/ true,
/* islnterprocedural = #/ true))
withOneOf(
bc —> getBoto3Client(bc, service)

Figure 5 Rule example using forward, interprocedural dataflow.

builder —> builder

.withInterproceduralMatch(
new InterproceduralMatchOperation.InterproceduralMatchSpec(
/* scope = */ InterproceduralMatchOperation.Scope.FILE_BACKWARD_REACHABLE,
/* stopOnFirstMatch = #/ false, /* visitAllNodes = */ false),
bb —> bb.withDataDependencies Transform(

/* isTransitive = %/ true, /* islnterprocedural = %/ true))
.withOneOf(bc —> getBoto3Client(bc, service))

Figure 6 Rule example using backward, interprocedural dataflow.

get_object, for which the corresponding receiver node is s3_client. Our strategy for resolving
call actions to callees is name-based: we match the name of the API entry point (callee) in
the code against API specifications that are extracted from Boto3.

Figure 5 shows one such rule. The scope of this rule’s interprocedural match operation
is FILE_FORWARD_REACHABLE, which directs GQL to track dataflow forward using a “data
dependents” transform operation that transforms from incoming nodes to nodes that are
data dependent on them, including in other functions. The result of this interprocedural
tracking is then checked to determine if it matches one of the known flavors of Boto3 clients
(low-level or object-oriented), by calling the utility methods inside the withOneOf operation.

The rule in Figure 6 implements interprocedural backward dataflow analysis, comple-
mentary to the forward analysis of Figure 5. For the backward version, tracking is specified
as FILE_BACKWARD_REACHABLE. This scope directs the interprocedural analysis to perform
backward dataflow tracking using a “data dependencies” transformer that transforms from
incoming nodes to nodes that are data dependent on them, including in other functions.
Similar to the previous rule, this rule’s withOneOf clause then checks whether the result of
backward interprocedural tracking matches one of the known flavors of Boto3 clients.

7.2.2 Example of Type Inference Using Custom Dataflow Rules

Figure 7 shows a Python code snippet with variable- and function-level type annotations
from Pyright. The type of s3_client in the method write_df_to_s3_location is correctly inferred
as S3Client: an Amazon S3 service client. This client is passed via input parameter to the
method load_df_from_s3. In absence of the type annotation for the input parameter, Pyright
could not infer the type of s3_client (denoted by Any), inside the method load_df_from_s3.

However, one of our custom dataflow rules can resolve the type of s3_client in method
load_df_from_s3. The applicable rule starts from a matching API node, s3_client.get_object,

where the type of the receiver node s3_client needs to be determined. Recall that the matching
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def write_df_to_s3_location(file_path, bucket_name, metadata, sep=None):
s3_client = create_s3_client()
#— s3_client: S3Client
load_df_from_s3(s3_client, bucket=bucket_name, path="")
s3_client.put_object(Body=file_path, Bucket=bucket_name)

def create_s3_ client():
return Boto3.client("s3")
#— create_s3_client: () —> S3Client

def load_df_from_s3(s3_client, bucket, path):
raw_data = s3_ client.get_object(Bucket=bucket, Key=object_path)
#— s3_client: Any

Figure 7 Type annotation for AWS client passed by input parameter.

API node is obtained by matching the name of the API against the API specification
extracted from Boto3. Starting from a matching API node, the rule uses a “parameter
transform” operation that transforms incoming nodes to the parameters of the respective
functions. This rule then uses a “backward data dependencies” transform that transforms
from incoming nodes to their data dependencies, including in other functions. The rule’s
result includes the node s3_client in the method write_df_to_s3_location, whose type is already
known to be S3Client. It is worth noting that the type of s3_client could also be inferred by a
stand-alone custom dataflow rule (in absence of type annotations from Pyright). However,
the rule specification would be more complex. We prefer to augment Pyright’s capabilities
rather than replace them.

7.3 Layered Type Inference

The example in Figure 7 shows that a hybrid approach for type inference can combine custom
dataflow rules with Pyright’s type inference to resolve types that Pyright cannot resolve by
itself. Each of these type inference approaches have complementary strengths. This quality
suggests a layered approach for type inference that combines these strategies in a staged
manner. Our layered approach first uses Pyright’s type inference with Boto3 stubs to infer
type annotations for at least some Boto3 clients. Per Section 5.4, data nodes in MU graphs
carry type metadata reflecting Pyright’s inference results. If the type of an API call of
interest is already known, then that may be sufficient to recognize that the API belongs to
Boto3. If the type of the API call of interest is unknown, then our layered approach deploys
custom dataflow rules to infer client types. Section 9 presents our empirical evaluation of the
strengths and limitations of this layered approach.

8 AWS Best Practices Rules

In this section, we describe a representative sample of eight rules that detect different
types of defects related to usage of the Boto3 API. These rules cover approximately 200
public-facing AWS services. All Python AWS best practices rules (as well as most other
CodeGuru rules) are implemented atop GQL (see Section 6), and follow the same rule
evaluation mechanism that is discussed in Figure 4. Of the eight rules discussed in this
section, we focus in particular on two rules — concerning pagination and batchable APIs — to
enable thorough discussion of rule syntax and sample detections.
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def sync_ddb_ table(source_ddb, destination_ddb):
response = source_ddb.scan(TableName="table1")
for item in response['ltems']:
destination_ddb.put_item(TableName="table2", Item=item)

Figure 8 Non-compliant Pagination Example.

def sync_ddb_table(source_ddb, destination_ddb):
response = source_ddb.scan(TableName=="tablel")
for item in response['ltems']:
destination_ddb.put_item(TableName="table2", Item=item)
# Keeps scanning until LastEvaluatedKey is null
while "LastEvaluatedKey" in response:
response = source_ddb.scan(TableName="tablel",
ExclusiveStartKey=response["LastEvaluatedKey"])
for item in response['ltems']:
destination_ddb.put_item(TableName="table2", Item=item)

Figure 9 Correct Pagination Example.

Worthy of mention is our ability, thanks to the AWS best practices rules and their

detections, to form an effective collaboration between the CodeGuru and AWS SDK teams.

From our side, the collaboration consists of frequent feedback to the SDK team (either
conveying developer feedback or trends that we observe across multiple detections). From the
AWS SDK team’s side, our rules and detection technologies pose as a platform to promote
awareness of new features, for example the SDK V2 pagination feature.

8.1 Detecting Misuse of Paginated APIs

The pagination trait is implemented by over 1,000 APIs belonging to >150 AWS services.

This trait is commonly used when the result set due to a query is too large to fit within
a single response. For the complete set of results, a pagination token is used to perform
iterative requests and receive the response in parts. Developers who are not aware of this

trait might mistakenly suffice with a single request /response result, as illustrated in Figure 8.

Here the scan call is used to read items from an Amazon DynamoDB table, where put_item

saves those items to another DynamoDB table. The scan API implements the pagination trait.

However, the code neglects to check for additional results beyond the initial batch, which
is clearly wrong. Our pagination rule detects the missing pagination in this example, and
generates a recommendation to iterate on the complete result set through the LastEvaluatedKey
token available through response. A compliant version of the code, consistent with this
recommendation is shown in Figure 9.

8.2 Error Handling for Batch Operations

More than 20 AWS services expose batch APIs, which enable bulk request processing. Batch

operations can succeed without throwing an exception even if processing fails for some items.

Therefore, a recommended best practice is to explicitly check for failures in the response due
to the batch API call. We illustrate incorrect and correct usages of batch APIs in Figures 10
and 11, respectively.

The rule for detection of batch operations where failures are not checked is shown in
Figure 12. Like many other CodeGuru rules, in particular in the AWS best practices category,
this rule is parameterized by a configuration. (See Section 9 for an example.)
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def noncompliant():
sqs = boto3.client('sgs', 'us—west—2')
sqs.send__message__batch()

Figure 10 Incorrect Error handling for Batch Operation example.

def compliant():
sqs = boto3.client('sqs', 'us—west—2")
response = sqs.send__message_ batch()
if "Failed" in response:
raise SendMessage ToSQSFailure("Failed")

Figure 11 Correct Error handling for Batch Operation example.

The rule’s precondition searches for batch API calls per the configuration, then transforms
from the calls to their respective receivers, which are stored into variable AWS_CLIENT.
Backward propagation, in an attempt to relate these receiver nodes to applicable Boto3
services, then takes place through the getBoto3 call.

The postcondition loads the batch API call, stored as variable BATCH_API_CALL, then
checks whether the result of the call is ignored through withOutputlgnoredFilter. This filter
checks whether the call node(s) flowing into it define(s) a node that has no outgoing edges.

8.3 Other Representative Rules

We now switch to additional rules in the AWS best practices category, and provide an
explanation of what they each check for.

Use waiters in place of polling APl: Waiters are utility methods that make it easy to wait
for a resource to transition into a desired state by abstracting out the polling logic into a
simple API call. The waiters interface provides a custom delay strategy to control the
sleep time between retries, as well as a custom condition on whether polling of a resource
should be retried. Our rules detect code that appears to be waiting for a resource before
it runs. In such cases, it recommends using the waiters feature to help improve efficiency.

Detect missing None check on cached response metadata: Response metadata represents
additional information included with a response from AWS. Response metadata varies by
service, but all services return an AWS request ID that can be used in the event a service

PythonCustomRule.Builder()
.withMethodCallFilter(config.api)
.as(BATCH_API_CALL)
.withReceiverTransform()
.as(AWS_CLIENT)
.reset()
.withClosure(
/* Pre—condition: Match that the type of APl is a Boto3 client */
b —> getBoto3Client((PythonCustomRule) b, serviceld, AWS_CLIENT))
/* CHECK */
.check()
/* Post—condition: Check that the output of Boto3 API is ignored */
.withld(BATCH_API_CALL)
.withOutputlgnoredFilter()
.build();

Figure 12 Rule to check for batch APT calls sans failure checking.
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call isn’t working as expected. If the code attempts to access the response metadata,
ResponseMetadata, without performing a None check on the response object, then this might
cause a NoneType error. To prevent this, our rule recommends adding a None check on the
response object before accessing the response metadata.

Detect failed records in Kinesis PutRecords: The put_records operation in AWS Kinesis
service might fail, thereby causing loss of records. This rule detects if the code handles
the failed records from the put_records operation. In the absence of such handling of failed
records, the rule recommends checking the FailedRecordCount in the put_records response
to see if there are failed records in the response. A failed record includes ErrorCode and
ErrorMessage values. If failed records are found, the rule recommends adding them into
the next request.

Detect deprecated APIs: This rule detects usage of deprecated APIs in Python application
code. A total of 107 deprecated API specifications are extracted from Boto3, identified
from the use of deprecated trait in the API models. These API specifications are fed into
the rule for detecting deprecated APIs in real world Python code.

Detect inefficient/redundant API chains: The rule for inefficient/redundant API chains
detects usage of less performant APIs or outdated APIs, an API call chain that could be
replaced with a single API call, a manual pagination operation where the SDK provide a
Paginator API to automatically perform the pagination, and much more.

Detect expensive client object construction in Lambda handler: This rule detects a Boto3
client that is initialized from a Lambda handler. In order to speed up Boto3 client
initialization and minimize the operational cost of the Lambda function, the rule
recommends creating the client at the level of the module that contains the handler, and
then reusing it between invocations. This is stated in the best practices for the lambda
handler. [5]

9 Experimental Results

In this section, we report on experiments to validate our approach for on-demand resolution

of Python types. Our experiments are guided by the following research hypotheses:

Hypothesis 1: Skipping type inference, instead relying solely on function names and argu-
ments, is insufficient since that might lead to excessively many false positive detections.

Hypothesis 2: The dataflow-based and Pyright-with-stub-based resolution strategies have
complementary strengths.

Hypothesis 3: A staged approach that combines dataflow and stubs with name-based
resolution as a low-confidence fallback is effective.

Hypothesis 4: The AWS best practices rules, running atop the staged algorithm, are
sufficiently precise, efficient and actionable to provide value during code review.

We note that beyond type inference, once a function call is confirmed to invoke a given
AWS service, most of the rules are straightforward and do not require complex and/or
interprocedural analysis to detect incorrect or suboptimal use of the AWS API. There are
few exceptions, where the actual rule’s logic can be imprecise, but overall the correctness of
type inference is a good proxy for the correctness of a rule finding.

We illustrate rule dependence on identification of the Boto3 service being invoked using
the JSON snippet below, taken from our service’s production configuration. The “Missing
Pagination” rule, whose specification is described in the snippet, searches for paginated
functions like list_dataset_groups in the specific context of the forecast AWS service. Recall that
these API specifications are automatically extracted from the API models in Boto3.
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Table 1 Number of type resolutions due to each of the resolution strategies.

Strategy  Confidence Description Type Resolution Count  Precision
1 1.0 Pyright with Boto3 type stubs 2,293 100 %
2 1.0 Dataflow tracking 3,065 100 %
3 0.5 API name based resolution 5,403 54 %

"expectedPaginationMethods": |
"IsTruncated",
"NextToken"

"paginatedMethod": "list_dataset_ groups",
"resultKeys": [
"DatasetGroups"

0
"serviceld": "forecast"

We have evaluated the strategies described in Section 7 using a dataset consisting of 3,027
public GitHub repositories. These repositories were selected based on the following criteria:
(1) The repository contains Python source files (at least 3, and with a total of at least 100
lines of code). (2) The repository has an MIT or Apache license. (3) The repository has a
rating of 3 stars or more. (4) The repository makes use of the AWS SDK.

9.1 Performance of Resolution Strategies in Isolation

To examine the first two hypotheses laid out above, we begin by computing precision and
recall for the different type resolution strategies in isolation. Precision is measured as the
proportion of correct (TP) versus incorrect (FP) type resolutions, and recall is measured as
the proportion of correct (TP) versus missed (FN) type resolutions. In what follows, we use
the notation t[s] to refer to the type of SDK service client s.

9.1.1 Type-Resolution Strategies

We consider 3 different strategies for resolution of #[s]:

Strategy 1: Use Pyright’s type inference in conjunction with third-party Boto3 type stubs.
This strategy potentially recover types beyond the boundaries of a single function.

Strategy 2: Use interprocedural dataflow analysis, combining backward and forward queries.

Strategy 3: Match against the API name without attempting to resolve the type of the
receiver, which is an over-approximate yet cheap approach.

9.1.2 Results

Table 1 shows the number of resolutions due to each of the strategies when applied to the
GitHub dataset. To gain qualitative insight into the results, and how many of the type
resolutions are accurate, we manually reviewed 50 Boto3 client detections, selected at random,
for each of the three strategies for a total of 150 detections. Reviewers consisted of five senior
engineers and scientists, all expert users of the Boto3 library.
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Our qualitative analysis suggests that strategies 1 and 2 are highly precise, as reported in
the “Precision” column of Table 1. All 50 cases sampled for manual review were judged as

correct. By contrast, for strategy 3, only 54% of the samples (27 out of 50) were correct.

By definition, strategy 3 achieves 100% recall and thus establishes an upper bound on the
number of false negatives due to strategies 1 and 2.

The set of detections obtained from strategy 1 and strategy 2 are not exactly the same,
and they do not subsume each other: some strategy-1 detections are omitted by strategy 2,
and vice versa. Out of 27 true positive detections from strategy 3, 19 detections are also
obtained from strategy 1 and strategy 2 combined. The remaining 8 detections ( 30%) are
exclusive to strategy 3.

9.1.3 Discussion

We consider the pros and cons of the three strategies in light of these results.

Strategy 1 uses third-party Boto3 type stubs, together with Pyright’s type inference
to resolve AWS SDK clients. Unlike strategy 2, where type resolution occurs during rule
evaluation, strategy 1’s Pyright-derived types are available before rule evaluation, during MU
graph construction. This allows type resolution to run once rather than on every application
of every rule: a major performance boost.

On the negative side, strategy 1 suffers from low recall, as shown in the “Type Resolution
Count” column of Table 1. This is due to the different ways in which AWS SDK clients

are obtained, and in particular, the common case of passing them as function parameters.

Pyright does not search for callers of the function, thus assigning Any as the type of the
parameters unless annotations are explicitly provided.

Moving to strategy 2, the ability to perform backward dataflow tracking addresses the
challenge of passing AWS SDK clients as function parameters. Duplication of work on type
resolution is mitigated by a staged algorithm that first attempts intraprocedural resolution,
then performs tracking at the file level, and finally at the level of the entire codebase. From
our experience, and performance measurements, the staged algorithm is quite effective. Like
strategy 1, strategy 2 retains full precision, yet has much higher recall as shown in the “Type
Resolution Count” column of Table 1.

In spite of its overall effectiveness, strategy 2 — which tracks dataflow through local
variables — can miss cases where the client is stored as a field or global variable. These cases
are handled by strategy 1.

Our analysis of the gaps between strategies 1 and 2 is confirmed experimentally. In line
with hypothesis 2, we have found 60 detections that are exclusive to strategy 1 and 832
detections that are exclusive to strategy 2.

Finally, the low precision of strategy 3 (just over 50%) confirms hypothesis 1. At the
same time, the computational cost of strategy 3 is virtually zero, and thanks to its simplicity,
it is able to sometimes completely bypass complex tracking scenarios that are beyond the
power of strategies 1 and 2. An example is given in Figure 13, where neither strategy 1
nor strategy 2 is able to recognize that self._ec2_client is a Boto3 client in the body of the
ec2_client.describe_snapshots(**kwargs) method. Strategy 3 succeeds here simply by recognizing
describe_snapshots as the name of an AWS SDK client API method.

To make use of strategy 3 in spite of its approximate nature, we “penalize” detections
due to this strategy by assigning a confidence score of 0.5 to those detections compared
to 1.0 if the detection is due to strategies 1 or 2, as shown in the “Confidence” column of
Table 1. The exact value of 0.5 is arbitrary, but serves to distinguish the lower-confidence
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class AwsClient(object):
def __init___(self, *args, *xkwargs):
self.__boto3client = None
super(AwsClient, self).___init__ (*args, *xxkwargs)

def create_ec2_ client(self, context=None):
#— (method) create_ec2_ client:
(self: Self@AwsClient, context=None) —> Any
return boto3.client('ec2')

def get_aws_ client(self, context):
if not self._boto3client:
ec2_client = self.create_ec2_client(context)
#— (variable) ec2_client: Any
return self.__boto3client

def describe_snapshots(self, *xkwargs):
response = self._ec2_ client.describe_snapshots(xxkwargs)
#— (variable) _ec2_client: Any

Figure 13 Detections from Strategy 3 that strategies 1 and 2 miss.

detections of strategy 3 from the higher-confidence detections of strategies 1 or 2. This is in
line with our earlier comment that the correctness of type resolution is a good proxy for the
correctness of a detection.

9.2 Performance of Combined Resolution Strategies

The results in Section 9.1.1 suggest that there is benefit in combining the different strategies
in light of their complementary strengths. Starting from this motivation, we report here on
experiments with “hybrid” resolution strategies, which we refer to as configurations.

9.2.1 Type Resolution Configurations

We consider two configurations: High Confidence (HC) runs strategy 1, then strategy 2
where needed to complement strategy 1. Mixed Confidence (MC) runs strategies 1 and 2 in
the same fashion as HC, but rather than giving up if both fail, proceeds to strategy 3 in an
attempt to generate a low-confidence detection.

CodeGuru uses the confidence score to rank the detections as per the “Confidence” column
in Table 1. Detections from strategy 1 and strategy 2 rank higher than detections from
strategy 3 thanks to their higher confidence score. CodeGuru imposes different restrictions and
limitations on detectors, in particular with regard to the overall number of detections, which
means that in the presence of sufficiently many high-confidence detections, low-confidence
detections are suppressed. By implication, low-confidence MC detections are not always
reported to the user.

9.2.2 Results

Table 2 reports results for both configurations, running against the dataset of 3,027 GitHub
repositories. The total time for running each configuration is close to 5 hours.

In line with hypothesis 2, the HC configuration generates more detections than strategies
1 or 2 in isolation. The total number of detections due to the HC configuration is 60 more
than strategy 2: exactly the number of detections that are exclusive to strategy 1.
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Table 2 Type Inference Configurations.

Configuration  Strategies Description Number of Detections
HC 1,2 Pyright with stubs followed by dataflow 3,125
MC 1,2,3 All layers 5,403

Moving to the MC configuration, the number of detections that it generates is identical
to strategy 3 in isolation, which is expected. The important difference, however, is that most
(that is, 3,125) of the detections have high confidence, with only 2,278 detections relying on
strategy 3.

Projecting from the detections we sampled and triaged, we estimate that the MC
configuration has a precision score of 0.85 along with perfect recall, whereas the HC
configuration has perfect precision but a recall score of roughly 0.72 (with the assumption
that 54% of the findings found by MC but not HC are true positives). This analysis supports
hypothesis 3, which favors use of strategy 3 as part of the combined strategy rather than
relying only on the high-confidence strategies.

9.3 Real-world Feedback on the Rules

Beyond our offline study, we also report on data from the field driven by comments that

CodeGuru has left on code reviews in production. CodeGuru posts comments on code reviews

just as a human reviewer would. We have augmented the comment Ul with a feedback menu,

so that a developer can optionally rate a detection as “Useful”, “Not Useful” or “Not Sure”

and/or provide free-form textual feedback. These feedback mechanisms give the CodeGuru

team insight into the performance of different detectors and enable detector tuning over time.
For AWS best practices, each CodeGuru comment contains two key fields:

1. One or two paragraphs explain what the issue is, and why fixing it is important. For
example, in the case of a batch operation whose output is ignored, the explanation states
that even if some items are not processed successfully, the batch operation might still
complete successfully without raising an exception.

2. A “Learn More” hyperlink directs the user to the appropriate section in the Boto3 online
documentation for complete information on the API in question.

We provide lower-bound metrics to give a sense of the size of CodeGuru’s input funnel.
In the studied time period of 10 weeks, CodeGuru analyzed > 1,000, 000 lines of code. We
applied > 10 detectors, yielding > 10,000 AWS best practice recommendations, which we
reported to > 1,000 developers.

We note that by definition, the codebases involved in this study are all live (undergoing
code reviews and modifications). These are Python cloud services and applications that
make use of Boto3, where the developers are industry practitioners with Python and cloud
background. Hence we assign high weight to their feedback on CodeGuru detections.

In CodeGuru, we measure acceptance as an indication of whether or not developers have

found a given rule’s review comments useful. Given a set of “Useful” (U), “Not Useful” (NU)
U]

[CTHINU[+INS]’

|U| we mean the number of “Useful” feedback points, and analogously for NU and NS. Note,

importantly, that we conservatively treat “Not Sure” the same as “Not Useful”.

and “Not Sure” (NS) ratings, we compute acceptance as the ratio where by
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Table 3 Acceptance rate per rule from developer feedback during code review.

Rule Acceptance Rate
Detect missing Pagination 75.0 %
Data loss in Batch APIs 100.0%
Use Waiters instead of Polling APIs 52.0%
Detect failed Records in Kinesis PutRecords 100.0%
Detect deprecated APIs 88.9 %
Detect usage of ineflicient/redundant API chains 85.7%
Missing None check on cached response metadata 85.7%
Detect expensive client object construction in Lambda handler 75.8%

Table 4 Breakdown of the detections from Table 3 by confidence level.

Proportion of Detections

Detection Group High Confidence Low Confidence

All 88 % 12%
Accepted 93 % 7%
Not Accepted 84 % 16 %

Table 3 shows the acceptance data for eight of the Python AWS best practices rules for a
time period of 10 weeks. We obtained > 100 feedback points from a population of > 100
developers through the feedback UI described above. As reported in Table 3, developers
accepted over 85% of the recommendations made by five out of the eight rules, and almost
83% of the overall recommendations.

Only one of the eight rules, “Use Waiters instead of Polling APIs”, has an acceptance
rate below 75%. Our analysis of this rule’s performance, including communication with
some of the developers who left feedback on its detections, suggests that the gap between
acceptance and correctness is important. Developers often acknowledge the detection as
correct, but push back for one or more of the following reasons: (1) The intent of the PR is
different, and they prefer not to merge multiple unrelated changes into the same PR. (2)
The change is applicable, but requires upgrading the codebase to use the latest AWS Python
SDK, which again exceeds the scope of the PR. (3) The change is not applicable, since the
code in question is test code or there is no concern about polling in the given context. It is
worth adding that outside the time period reported here, we have seen multiple weeks where
acceptance rate for “Use Waiters instead of Polling APIs” was high.

Overall, acceptance data from the field supports hypothesis 3 in showing that developers
mostly find the detections by to the Python AWS best practices rules useful. These are made
using the MC configuration, which integrates all three of the resolution strategies described
in Section 9.1.1.

From our conversations with developers, the textual feedback they provided, and our own
review of some of the detections and their corresponding feedback, we have identified two
main factors that contribute to the usefulness of our rules: (1) Missed features: SDK changes
across versions, in particular new features, are sometimes missed by developers. Pagination,
retry and error handling are examples of such features, where developers not familiar with
these built-in capabilities sometimes implement “manual” mechanisms instead. Another
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example is manual polling versus the recommended use of the waiter utility. (2) Missed
expectations: Developers sometimes assume, rather than verify, the functionality of a given
APT or the role of a given parameter. An example is the QueryResponse::hasltems method, whose
(boolean) return value is sometimes incorrectly interpreted to mean that the response contains
a non-empty collection of items, where what is in fact meant is that response defines an Items
property. To make sure whether any items are contained in the response, the developer needs
to also check Items::isEmpty. Mistakes like this can lead to large-scale operational failures.

Table 4 reports the breakdown, by confidence level (high versus low), for the detections in
Table 3. In sharp contrast to the distribution due to strategy 3 from the offline study, where
approximately 45% of the detections had a low confidence score, the hybrid inference strategy
leans heavily towards high-confidence detections (88% of all detections). This is consistent
with the suppression policy described above, in Section 9.2.1, for low-confidence detections.
The tradeoff that the hybrid strategy offers in the presence of confidence-based suppression
is appealing, in that low-confidence detections are typically shadowed by high-confidence
detections, which limits the impact of such detections on precision and allows them to play an
important role in pushing coverage upwards when high-confidence detections are absent. Also
note, from Table 4, that the proportion of low-confidence detections among “Not Accepted”
detections is higher compared to “Accepted” detections (16% versus 7%), which is consistent
with the data from the offline study.

Overall, our analysis of detections from the field, and how these map back to the hybrid
strategy, are in support of hypothesis 4. Developers tend to view our AWS best practices
recommendations as useful. Most of the recommendations build on high-confidence type
inference, with some remaining cases benefiting from the low-confidence resolution strategy.

10 Conclusion and Future Work

We have presented an industrial-strength framework for precise static analysis of Python
applications that use AWS cloud services. In support of this goal, we have developed a
novel type inference system for identifying and tracking AWS service clients in real-world
Python applications. Our Python MU graph IR is suitable for building a wide range of
static analyses or best-practice rules for Python applications. Furthermore, the Guru Query
Language provides the right level of abstraction with its encapsulation, optimization and
reuse features to develop static analysis rules that can be evaluated at different scopes, from
single functions to entire applications.

Experiments on 3,027 open-source Python GitHub repositories show that individual
inference strategies have complementary strengths. The most effective solution, then, is
a layered approach that combines Pyright with Boto3 stubs, custom dataflow analysis in
GQL, and name-based resolution as a low-confidence fallback. Our layered strategy achieves
85% precision and 100% recall in typing relevant Boto3 values in Python client code. The
ultimate authorities on the value of our approach are real-world developers, with no ties to
the authors. Those developers accepted more than 85% of the recommendations made by
five out of eight rules, and roughly 83% of the recommendations on average.

In the future, we plan to extend and generalize our type inference infrastructure to other
rule suites and properties that apply to Python programs. We are also examining ways
to reuse our work on Python on-demand type inference when adding support for other
dynamically typed languages.
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