
Defective Error/Pointer Interactions in the Linux Kernel∗

Cindy Rubio-González Ben Liblit
Computer Sciences Department, University of Wisconsin–Madison
1210 W Dayton St., Madison, Wisconsin, United States of America

{crubio, liblit}@cs.wisc.edu

ABSTRACT
Linux run-time errors are represented by integer values referred
to as error codes. These values propagate across long function-
call chains before being handled. As these error codes propagate,
they are often temporarily or permanently encoded into pointer
values. Error-valued pointers are not valid memory addresses, and
therefore require special care by programmers. Misuse of pointer
variables that store error codes can lead to serious problems such
as system crashes, data corruption, unexpected results, etc. We
use static program analysis to find three classes of bugs relating
to error-valued pointers: bad dereferences, bad pointer arithmetic,
and bad overwrites. Our tool finds 56 true bugs among 52 different
Linux file system implementations, the virtual file system (VFS),
the memory management module (mm), and 4 drivers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, reliability, validation; D.2.5 [Software Engineer-
ing]: Testing and Debugging—error handling and recovery; D.4.3
[Operating Systems]: File Systems Management

General Terms
Algorithms, Languages, Reliability, Verification

Keywords
Static program analysis, interprocedural dataflow analysis, weighted
pushdown systems, systems programming, pointers

∗Supported in part by AFOSR grant FA9550-07-1-0210; DoE con-
tract DE-SC0002153; LLNL contract B580360; NSF grants CCF-
0621487, CCF-0701957, and CCF-0953478; and a generous gift
from the Mozilla Corporation. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the sponsoring
institutions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17–21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

1. INTRODUCTION
Most Linux run-time errors are represented as simple integer

codes. Each integer code corresponds to a different kind of error,
and macros give these mnemonic names. For example, the integer
code 12 represents the out-of-memory error, defined by the macro
ENOMEM. Linux defines a set of 34 basic error codes, which are
negated by convention. Because Linux is written in C, there is no
mechanism to throw or raise error codes as exceptions. Instead, error
codes are propagated through function return values and variable
assignments. This is also known as the return-code idiom [9], and is
widely used in large C programs, including other operating systems.

Due to the size and complexity of systems such as Linux, error
propagation can quickly become very complex, effort-demanding,
and error-prone. Prior work [6, 20, 21] has described static analyses
that determine how error codes are propagated. These analyses have
identified hundreds of dropped/overwritten errors and documenta-
tion flaws in numerous Linux file systems.

As they propagate, error codes may be cast into other types such
as pointers. This brings up additional problems particular to pointer
values. For example, an error-valued pointer should never be deref-
erenced. Improper use of pointer values in systems code can have
serious consequences such as system crashes, data corruption, and
unexpected results. Prior work [6, 20, 21] did not take error/pointer
interaction into consideration, making it impossible to detect such
pointer-related problems.

The contributions of this paper are as follows:

• We characterize error transformation in the Linux kernel (Sec-
tion 2) and show how these transformations can lead to bugs
due to defective error/pointer interaction (Section 3).

• We extend an error-propagation analysis to properly model
the effects of error/pointer transformation on Linux error
propagation (Section 4).

• We apply this analysis to find program points at which error-
valued pointers are dereferenced, used in pointer arithmetic,
or overwritten (Section 5).

• We report results for 52 different Linux file system implemen-
tations, the virtual file system (VFS), the memory manage-
ment module (mm), and 4 drivers (Section 6).

2. ERROR TRANSFORMATION IN THE
LINUX KERNEL

Error transformation refers to changes in error representation as
errors propagate across software layers. Integer error codes may
be cast into other types. In particular, integer error codes are often
cast to pointer values. To be clear, these are not pointers that refer

mailto:crubio@cs.wisc.edu
mailto:liblit@cs.wisc.edu

1 struct dentry ∗open_xa_dir(...) {
2 struct dentry ∗xaroot;
3 ...
4 xaroot = ...;
5

6 if (IS_ERR(xaroot))
7 return xaroot;
8 ...
9 int err;

10

11 if (...) {
12 err = ...;
13

14 if (err) {
15 ...
16 return ERR_PTR(err);
17 }
18 }
19

20 if (...) {
21 ...
22 return ERR_PTR(−ENODATA);
23 }
24

25 ...
26 return ...;
27 }

(a) int-to-pointer

1 int reiserfs_listxattr(...) {
2 struct dentry ∗dir;
3 int err = 0;
4

5 if (...)
6 return −EINVAL;
7

8 ...
9 dir = open_xa_dir(...);

10 ...
11

12 if (IS_ERR(dir)) {
13 err = PTR_ERR(dir);
14

15 if (err == −ENODATA) {
16 ...
17 err = ...;
18 }
19

20 goto out;
21 }
22 ...
23

24 out:
25 ...
26 return err;
27 }

(b) pointer-to-int
Figure 1: Examples of error transformation in ReiserFS

to the locations of error codes. Rather, the numeric value of the
pointer itself is actually a small integer error code rather than a
proper memory address. As offensive as this may seem from a
type-system perspective, it is nevertheless a well-accepted practice
found throughout the Linux kernel. Linux introduces two functions
to convert (cast) error codes from integers to pointers and vice versa:
ERR_PTR and PTR_ERR. The Boolean function IS_ERR is used
to determine whether a pointer variable contains an error code.

Figure 1a shows an example of integer-to-pointer error transfor-
mation. Function open_xa_dir returns a pointer value. Variable
xaroot may receive an error-valued pointer from a function call on
line 4. Function IS_ERR on line 6 tests the return value. If it is an
error, the error-valued pointer is returned. Additionally, function
ERR_PTR is called on lines 16 and 22 to transform integer error
codes into pointers.

Figure 1b illustrates the opposite transformation, from pointer
to integer. Function reiserfs_listxattr returns an integer value. An
error constant is returned on line 6. Also, variable dir may receive
an error-valued pointer from a call to function open_xa_dir (shown
in Figure 1a). If it is an error, then function PTR_ERR transforms
the error from a pointer to an integer on line 13.

The preceding examples, though simplified for this paper, already
illustrate how tricky it can be to follow error flows. Errors prop-
agate through long call chains, transforming several times before
being handled. This makes error tracking quite challenging in large
systems such as the Linux kernel. Thus, supporting error transfor-
mation is crucial to building a more complete understanding of error
propagation and how the system recovers from run-time errors.

3. ERROR-VALUED POINTER BUGS
We concentrate on finding bugs due to the improper use of error-

holding pointers. The following subsections present three kinds of
pointer-related bugs: bad pointer dereferences, bad pointer arith-
metic, and bad overwrites.

1 static int fill_super(...) {
2 int err;
3 inode ∗root = ...;
4 ...
5 err = cnode_make(&root,...); // err and root may get error
6

7 if (err || !root) {
8 printk("... error %d\n", err);
9 goto fail;

10 }
11 ...
12 fail:
13 ...
14 if (root) // root may contain an error
15 iput(root);
16 ...
17 }
18

19 void iput(inode ∗inode) {
20 if (inode) {
21 BUG_ON(inode−>i_state == ...); // bad pointer deref
22 ...
23 }
24 }

Figure 2: Example of a bad pointer dereference. The Coda
file system propagates an error-valued pointer which is derefer-
enced by the VFS (function iput).

3.1 Bad Pointer Dereferences
A bad pointer dereference occurs when a possibly–error-valued

pointer is dereferenced, since an error value is not a valid memory
address. Figure 2 shows an example. Function fill_super in the Coda
file system calls function cnode_make on line 5, which may return
the integer error code ENOMEM while storing the same error code
in the pointer variable root. The error is logged on line 8. If root is
not NULL (line 14), then function iput in the VFS is invoked with
variable root as parameter. This function dereferences the potential
error-valued pointer parameter inode on line 21.

Our goal is to find the program locations at which these bad
pointer dereferences may occur. We identify the program points
at which pointer variables are dereferenced, i.e., program points
where the indirection (∗) or arrow (−>) operators are applied. Let
us assume for now that we are able to retrieve the set of values each
pointer variable may contain at any location l in the program. Thus,
at each dereference of variable v, we retrieve the associated set of
values Nl , which corresponds to the set of values v may contain
right before the dereference at l. Let E be the finite set of all error
constants. Let OK be a single value not in E that represents all
non-error values. Let C = OK ∪E be the set of all values. Then
Nl ⊆ C , and the set of error codes that variable v contains before
the dereference is given by Nl ∩E . If Nl ∩E , /0, then we report
the bad pointer dereference.

3.2 Bad Pointer Arithmetic
Although error codes are stored in integer and pointer variables,

these codes are conceptually atomic symbols, not numbers. Error-
valued pointers should never be used to perform pointer arithmetic.
For example, incrementing or decrementing a pointer variable that
holds an error code will not result in a valid memory address. Simi-
larly, subtracting two pointer variables that may contain error val-
ues will not yield the number of elements between both pointers

1 #define virt_to_page(addr) (mem_map + (((unsigned long)
(addr)−PAGE_OFFSET) >> ...)) // addr has error

2

3 void kfree(const void ∗x) { // may be passed an error
4 struct page ∗page;
5 ...
6 page = virt_to_head_page(x); // passing error
7 ... // use page
8 }
9

10 struct page ∗virt_to_head_page(const void ∗x) {
11 struct page ∗page = virt_to_page(x); // macro from line 1
12 return compound_head(page);
13 }

Figure 3: Bad pointer arithmetic found in the mm

as it would with valid addresses. Figure 3 shows an example of
bad pointer arithmetic found in the mm. Callers of function kfree
(line 3) may pass in a pointer variable that contains the error code
ENOMEM, now in variable x. The variable is further passed to
function virt_to_head_page when it is invoked on line 6. Finally,
this function uses x to perform some pointer arithmetic on line 11,
without first checking for any errors.

We aim to identify the program points at which such bad pointer
arithmetic occurs. We find the program locations at which pointer
arithmetic operators addition (+), subtraction (−), increment (++),
or decrement (−−) are used. For each variable operand v in a given
pointer arithmetic operation at program location l, we retrieve the
set of values Nl that v may contain right before the operation. We
report a problem if Nl ∩E , /0 for any operand v.

3.3 Bad Overwrites
Bad overwrites occur when error values are overwritten before

they have been properly acknowledged by recovery/reporting code.
Our goal is to find bad overwrites of error-valued pointers or error
values stored in pointed-to variables. The latter can occur either
when the variable is assigned through a pointer dereference or when
the pointer variable is assigned a different value, which may or may
not be a valid address value.

In general, bad overwrites are more challenging to identify than
those bugs described in previous sections. Most error-valued over-
writes are safe or harmless, whereas (for example) error-valued
pointer dereferences always represent a serious problem. Also, the
consequences of a bad overwrite may not be noticed immediately:
the system may appear to continue running normally.

We do not attempt to identify or validate recovery code. Rather,
we simply look for indications that the programmer is at least check-
ing for the possibility of an error. If the check is clearly present,
then presumably error handling or recovery follows. Section 4.3.4
discusses this aspect of the analysis in greater detail. As mentioned
earlier, an error code may be safely overwritten after the error has
been handled or checked. Figure 4 shows examples in which it is
safe to overwrite errors that have been checked. In Figure 4a, err
may receive one of several error codes on line 4. If this variable
contains an error on line 6, then we continue to the next iteration of
the loop, where the error is overwritten the next time line 4 is run.
Overwriting an error code with the exact same error code is con-
sidered to be harmless, but the problem here is that different error
codes might be returned by successive calls to function get_error.
A similar pattern is illustrated in Figure 4b.

1 int ∗err;
2 ...
3 while(...) {
4 err = get_error();
5

6 if (IS_ERR(err)) {
7 continue;
8 }
9 ...

10 }

(a) Loop

1 int ∗err;
2 ...
3

4 retry:
5 ...
6 err = get_error();
7

8 if (err == ERR_PTR(−EIO))
9 goto retry;

(b) Goto
Figure 4: Two examples of safe error-overwrite patterns

In order to find bad overwrites, we identify the program points at
which assignments are made to potentially–error-carrying storage
locations. Per Rubio-González et al. [21], we recognize several
patterns in which assignments cannot possibly be bad regardless
the value contained by the receiver. These assignments are not
considered further. The remaining assignments are potentially bad,
and require closer inspection. At each such assignment to pointer
variable v at location l, we retrieve the set of values Nl that variable
v may contain. If Nl ∩ E , /0, then we report the bad overwrite.
A generalization of this strategy also allows us to check indirect
assignments across pointers, as in “∗v = . . .”; we give further details
on this extension in Section 4.2.1.

4. ERROR PROPAGATION AND
TRANSFORMATION

We assumed in Section 3 that we are able to retrieve the set
of values that pointer variables may contain before being deref-
erenced, used in pointer arithmetic, or assigned. To provide this
information, we adapt the error-propagation framework described
by Rubio-González et al. [21], which performs an interprocedural,
flow- and context-sensitive static program analysis to track errors
until they are overwritten, dropped, or handled. The goal is to find
the set of values that each variable may contain at each program
point. This problem resembles an over-approximating analogue of
copy constant propagation [22].

Rubio-González et al. track how integer error codes propagate.
However, the analysis does not support error transformation, which
is necessary to find the bugs described in Section 3. For example, it
assumes that error propagation ends if the error is transformed into
a pointer. In Figure 1a, even though an error may be assigned on
line 4, the analysis does not actually track error flow into variable
xaroot because it is a pointer variable. Similarly, no pointer error
value is recognized as being returned at lines 16 and 22 because the
analysis always clears the actual argument to any calls to function
IS_ERR. Thus, no pointer error value is identified as returned by
function open_xa_dir on line 9 in Figure 1b.

We extend the error-propagation framework to support error trans-
formation. The analysis is encoded as a path problem over weighted
pushdown systems (WPDSs) [19]. A WPDS is a useful engine for
problems that can be encoded as meet-over-all-paths dataflow anal-
yses. The following subsections describe the WPDS components:
(1) a pushdown system, (2) a bounded idempotent semiring, and
(3) transfer functions. In order to support error transformation, we
modify one of the elements of the bounded idempotent semiring, de-
scribed in Section 4.2.1. In Section 4.3 we also replace the transfer
functions of Rubio-González et al. with a new suite of functions that
take into consideration pointer variables and error transformation.
Section 4.4 explains how the dataflow problem is solved.

4.1 Pushdown System
A pushdown system (P,Γ,∆) is used to model the control flow of

the program, using the approach of Lal et al. [12]. Let P contain a
single state {p}. Γ corresponds to program statements, and ∆ is a
set of stack-rewrite rules corresponding to edges of the interproce-
dural control flow graph (CFG). Control flow is encoded into these
pushdown system (PDS) rules as follows:

〈p,a〉 ↪→ 〈p,b〉 Intraprocedural flow from a to b

〈p,c〉 ↪→ 〈p, fenterr〉 Call from c to procedure entry fenter,
eventually returning to r

〈p, fexit〉 ↪→ 〈p,ε〉 Return from procedure exit fexit

4.2 Bounded Idempotent Semiring
Let S = (D,⊕,⊗, 0̄, 1̄) be a bounded idempotent semiring as

defined by Reps et al. [19].

4.2.1 Set D
D is a set whose elements are drawn from V ∪C → 2V ∪C , where

V is the set of program variables, and C is the set of constant
values. Constants include error codes, the special value OK (used
to represent all non-error values) and the special value uninitialized
(used to represent uninitialized variables). Each element in D is
called a weight and is a mapping from variables and constants to
sets of variables and/or constants. The mapping for a variable v ∈ V
gives the possible values of that variable following execution of a
given program statement in terms of the values of constants and
variables immediately before that statement. For example, if some
weight maps v to {v,x,EIO}, then the corresponding statement must
be one that causes v to receive either its own previous value, the old
value of x, or the constant EIO. By design, all statement’s weights
always map every constant c ∈ C to the set {c}. In other words,
statements never change the values of constants.

The error propagation analysis of Rubio-González et al. [21] does
not allow for errors to be stored in pointer variables. Even in the
special case of integer pointer parameters, error codes are stored
in the integer variable pointed to, not in the pointer variable itself.
We permit pointer variables of any type to store error values. This
uncovers a new requirement: distinguishing between an error code
stored in a pointer variable v and an error stored in ∗v. We introduce
a dereference variable ∗v for each pointer variable v. This allows us
to distinguish and track error codes stored in either “level.”

We replace dereference expressions with the corresponding deref-
erence variables before performing the error-propagation analysis.
Thus, the set V now also includes dereference variables. Even
though the number of variables can increase considerably due to
dereference variables, this does not represent a problem in prac-
tice. We apply a preliminary flow- and context-insensitive analysis
introduced by Rubio-González and Liblit [20], which filters out
irrelevant variables that cannot possibly contain error codes before
applying the error-propagation analysis. Thus, we only keep those
variables that are truly relevant to our analysis.

4.2.2 Operators Combine and Extend
The combine operator (⊕) is applied when conditional branches

join. It summarizes the weights of a set of paths that merge. Com-
bine is applied component-wise, where a component is a variable or
constant. For all w1,w2 ∈ D and e ∈ V ∪C :

(w1⊕w2)(e)≡ w1(e)∪w2(e)

In other words, combine is defined as the union of the sets of values
a variable or constant is mapped to in each of the paths being merged.
In the case of constants, the result is always the set containing itself.

The extend operator (⊗) calculates the weight of a path. It is also
applied component-wise. For all w1,w2 ∈ D and e ∈ V ∪C :

(w1⊗w2)(e)≡
⋃

e′∈w2(e)

w1(e′)

The extend operator is essentially composition generalized to the
power set of variables and constants rather than just single variables.

4.2.3 Weights 0̄ and 1̄
The weights 0̄ and 1̄ are both elements of the set D. The annihila-

tor weight 0̄ maps each variable and constant to the empty set and
is the identity for the combine operator. The neutral weight 1̄ maps
each variable and constant to the set containing itself: a power-set
generalization of the identity function. The weight 1̄ is the identity
for the extend operator.

0̄≡ {(e, /0) |e ∈ V ∪C } 1̄≡ {(e,{e}) |e ∈ V ∪C }

4.3 Transfer Functions
Transfer functions define the new state of the program as a func-

tion of the old state. As discussed in Section 4.1, PDS rules cor-
respond to edges in the CFG. Each PDS rule is associated with a
weight or transfer function. Although here we describe weights as
being associated with specific program statements, they are in fact
associated with the edges from a statement to its successors.

The analysis has two chief modes of operation: copy mode and
transfer mode. Consider an assignment t = s where t,s ∈ V are
distinct and s might contain an error code. In copy mode, the assign-
ment t = s copies the error value to t, also leaving an error value in s.
In contrast, transfer mode leaves an error in t but removes the error
from s, transferring ownership of error values across assignments.
The transfer functions described here correspond to copy mode.

All transfer functions share one key assumption: that pointer
variables have no aliases inside a function. This makes our approach
to pointers both unsound and incomplete, however it is simple and
gives good results in practice.

4.3.1 Assignments
Table 1 shows the transfer functions for assignments. For the

purpose of this discussion, we classify these into three groups. First
consider assignments of the form v = e, where e ∈ V ∪C and v is
of type int. Let Ident be the function that maps each variable and
constant to the set containing itself, which is identical to 1̄. The
transfer function for such an assignment is Ident[v 7→ {e}]. In other
words, v must have the value of e after this assignment, while all
other variables retain whatever values they contained before the
assignment, including e.

Next consider assignments that involve pointer or dereference
variables. In either case, we need to update mappings at two levels.
For example, for assignments of the form ∗v = e, where ∗v is the
dereference variable corresponding to pointer variable v and e∈V ∪
C , the transfer function is Ident[v 7→ {OK}][∗v 7→ {e}]. We map
the dereference variable to any values e may contain. At the same
time, we assume that the corresponding pointer variable contains a
valid address, i.e. v is mapped to the OK value. The opposite occurs
with assignments of the form v = e, where v is of some pointer type
and e ∈ V ∪C and not a pointer variable. In this case, variable
v is mapped to whatever values e may contain, which must be
non-address values. We assume that the corresponding dereference
variable ∗v does not contain an error since v does not hold a valid
address. Transfer functions for pointer-related assignments of the
form v1 = v2 and v1 = &v2 can also be found in Table 1.

Lastly, consider assignments of the form v = e1 op e2, where
e1,e2 ∈ V ∪C and op is a binary arithmetic, bitwise, or logical

Table 1: Transfer functions for assignments in copy mode
Pattern Where Transfer Function

v = e e ∈ V ∪C and v is of type int Ident[v 7→ {e}]
v = e e ∈ V ∪C and v is of pointer type but e is not Ident[v 7→ {e}][∗v 7→ {OK}]
∗v = e ∗v ∈ V and e ∈ V ∪C Ident[v 7→ {OK}][∗v 7→ {e}]
v1 = v2 v1,v2 ∈ V and v1 and v2 are of pointer type Ident[v1 7→ {v2}][∗v1 7→ {∗v2}]
v1 = &v2 v1,v2 ∈ V and v1 is of pointer type Ident[v1 7→ {OK}][∗v1 7→ {v2}]
v = e1 op e2 e1,e2 ∈ V ∪C and op is a binary arithmetic, bitwise or logical operator Ident[v 7→ {OK}]
v = op e e ∈ V ∪C and op is a unary arithmetic, bitwise, or logical operator Ident[v 7→ {OK}]

operator. The program is converted into three-address form, with
no more than one operator on the right side of each assignment. As
noted earlier, error codes should be treated as atomic symbols, not
numbers. Thus, we assume that the result of those operations is a
non-error value. The transfer function is Ident[v 7→ {OK}], which
maps the receiver variable v to the OK non-error value. The same
transfer function applies for assignments of the form v = op e, where
op is a unary arithmetic, bitwise, or logical operator.

4.3.2 Function Calls
We primarily focus on parameter passing and value return for the

case of non-void functions. Note that we transform the interproce-
dural CFG so that each function has a dummy entry node just before
the first statement. We refer to the edge from the function call to
this entry node as the call-to-enter edge. Each function also has a
unique exit node. The edge from this node back to the call site is
referred to as the exit-to-return edge.

Parameter Passing. This is modeled as a two-step process:
first the caller exports its arguments into global exchange variables,
then the callee imports these exchange variables into its formal
parameters. Exchange variables are global variables introduced for
the sole purpose of value passing between callers and callees. There
is one exchange variable for each function formal parameter.

Suppose function F has formal parameters f1, f2, . . . , fn, where
some formal parameters may be of pointer type. Let F(a1,a2, . . .an)
be a function call to F with actual parameters ai ∈ V ∪C . We intro-
duce a global exchange variable F$i for each formal parameter. We
also introduce a global dereference exchange variable F$∗i for each
formal parameter of pointer type. The interprocedural call-to-enter
edge is given the transfer function for a group of n simultaneous
assignments F$i = ai, exporting each actual argument into the cor-
responding global exchange variable. Rules for assignment transfer
functions apply. This means that, in the case of pointer arguments,
we pass in the values of dereference variables when applicable.

The edge from the callee’s entry node to the first actual statement
in the callee is given the transfer function for a group of n simulta-
neous assignments fi = F$i. Note that since the transfer functions
for assignments are applied, this group additionally includes an as-
signment of the form ∗ fi = F$∗i for each parameter of pointer type,
where ∗ fi is a dereference local variable corresponding to pointer
formal parameter fi. This step initializes each formal argument with
a value from the corresponding exchange variable. For pointer vari-
ables, both the pointer and the corresponding dereference variable
are initialized.

Figure 5 shows an example illustrating the idea behind pointer
parameter passing. Consider the code fragment in Figure 5a as
though it is transformed into the code fragment in Figure 5b. The
goal is to make parameter passing explicit. Function foo has one
pointer parameter. We declare the corresponding pointer exchange
and dereference exchange variables on lines 1 and 2, respectively. A
dereference variable corresponding to the original pointer parameter

1

2

3

4 void foo(int ∗a) {
5

6

7 ∗a = −5;
8

9 return;
10 }
11

12 int main() {
13 int x = 0;
14

15

16 foo(&x);
17

18

19 x = 6;
20 return 0;
21 }

(a) Original

1 int∗ foo$1;
2 int foo$∗1;
3

4 void foo(int∗ a) {
5 int ∗a;
6 a = foo$1; ∗a = foo$∗1;
7 ∗a = −5;
8 foo$1 = a; foo$∗1 = ∗a;
9 return;

10 }
11

12 int main() {
13 int x = 0;
14

15 foo$1 = OK; foo$∗1 = x;
16 foo(&x);
17 x = foo$∗1;
18

19 x = 6;
20 return 0;
21 }

(b) Transformed
Figure 5: Example making parameter and return value passing
explicit. Highlighted assignments emulate transfer functions.

is also declared on line 5. Exchange-variable assignments on lines 6
and 15 emulate the effects of the corresponding parameter-passing
transfer functions.

Return Value Passing. We also introduce a global re-
turn exchange variable F$ret for any non-void function F . This
variable is used to pass the function result value from the callee
to the caller. Thus, for non-void functions, the edges from the
callee’s last statements to the exit node are given the transfer func-
tion Ident[F$ret 7→ {e}], where e is the return expression. The
interprocedural exit-to-return edge is given the transfer function
Ident[r 7→ {F$ret}], where r ∈ V is the variable in which the caller
stores the result of the call, if any.

In addition, we copy back certain other values upon function
return. Many functions take a pointer to a caller-local variable
where (at any of the two levels) an error code, if any, should be
written. In particular, formal dereference variables are copied back
into their corresponding dereference exchange variables. The edges
from the callee’s last statements to the exit node are additionally
given the transfer function for a group of at most n simultaneous
assignments F$∗i = ∗ fi. Finally, dereference exchange variable
values are copied back to any actual variables at the caller’s side.
The interprocedural exit-to-return edge is given the transfer function
for a group of at most n simultaneous assignments ∗ai = F$∗i,

where ai is a pointer variable or ai = F$∗i, where ai is an address-of
expression. The idea is illustrated on lines 8 and 17 in Figure 5b.

4.3.3 Error Transformation Functions
We attribute a special meaning to calls to the function IS_ERR.

As mentioned earlier, this Boolean function is used to test whether
a variable contains a pointer error value. Typically, such calls are
part of a conditional expression. Depending on the branch taken,
we can deduce what the outcome is. If the true branch is selected,
then we know that the pointer definitely contained an error value.
Conversely, when the false branch is chosen, the pointer cannot
possibly contain an error. Therefore, we map this pointer to OK in
the false branch.

Since our analysis supports error-valued pointers, calls to error-
transformation functions ERR_PTR and PTR_ERR are treated as
regular function calls, i.e., we apply the transfer functions for pa-
rameter passing and value return as discussed in Section 4.3.2.

4.3.4 Error Handling
We preserve the special treatment of error-handling functions of

Rubio-González et al. [21]. The analysis identifies a set of functions
that are assumed to handle any errors contained in variables passed
as their arguments. An example is the function printk: a variadic
function that logs errors. While logging alone does not correct any
problems, it clearly expresses programmer awareness that a problem
has occurred; presumably it is being handled as well. In general,
after errors are handled by these functions, they no longer need to be
tracked. The transfer function for calls to such functions is Ident[v 7→
{OK}], where v ∈ V is an actual argument. We also include any
corresponding dereference variables in the case of pointer actual
arguments. The safe-overwrite patterns described in Section 3.3 are
also considered as error-handling patterns here.

4.4 Solving the Dataflow Problem
We perform a poststar query [19] on the WPDS, with the begin-

ning of the program as the starting configuration. We then read
weights out from the resulting weighted automaton applying the
path_summary algorithm of Lal et al. [11]. We use this algorithm to
find the set of values that each variable may contain at each program
point, including pointer and dereference variables. Moreover, we
can retrieve the witness set associated with any given weight w. A
witness set is a subset of the paths inspected, whose combine is w.
This can be used to justify weight w. We use witness sets exten-
sively to provide the programmer with useful and detailed diagnostic
information (see Section 5).

Unlike prior work, our analysis tracks error codes even when
transformed as discussed in Section 2. For example, error propaga-
tion no longer ends when an error is transformed into a pointer value.
Error codes can now flow into and through pointer variables. In
Figure 1a, a pointer error value may be assigned to variable xaroot
on line 4, which is checked for errors on line 6. If it is an error value,
then the error is further propagated to any callers of this function, in-
cluding reiserfs_listxattr (line 9 in Figure 1b). The error is assigned
to variable dir in Figure 1b, which is checked for errors on line 12,
transformed into an integer value on line 13 and further propagated
to any callers if the error code is ENODATA.

5. FINDING AND REPORTING BUGS
We run the error-propagation and transformation analysis in two

different configurations depending on the bugs to be found. The first
configuration operates in copy mode with error-handling pattern
recognition disabled; this finds bad pointer dereferences and bad
pointer arithmetic. We use copy mode because dereferencing (or

performing pointer arithmetic using) any copy of a pointer error
value is equally bad. Thus, all copies of an error must be considered.
Likewise, we disable error-handling pattern recognition because
even after handling, an error code remains an invalid address which
must not be dereferenced or used in pointer arithmetic.

The second configuration uses transfer mode with error-handling
pattern recognition enabled. We use this configuration when finding
bad overwrites. It is common for an error instance to be copied into
several variables while only one copy is propagated and the rest
can be safely overwritten. Rubio-González et al. [21] found that
transfer mode leads to significantly fewer false positives when find-
ing overwritten integer error codes. We find that this also holds for
pointer error values. We enable error-handling pattern recognition
because we are only interested in finding overwrites of unhandled
error codes, thus handled errors must be identified.

We identify program locations and variables of interest as ex-
plained in Section 3 and use the analysis results to determine which
of those represent error-valued pointer bugs. Each bug report con-
sists of a sample trace that illustrates how a given error reaches a
particular program location l at which the error is dereferenced, used
in pointer arithmetic, or overwritten. We use WPDS witness sets to
construct these sample paths.

Figure 6 shows a more detailed version of the VFS bad pointer
dereference from Figure 2. The error ENOMEM is first returned by
function iget in Figure 6a and propagated through three other func-
tions (cnode_make, fill_super and iput, in that order) across two
other files (shown in Figure 6b and Figure 6c). The bad dereference
occurs on line 1325 of file fs/inode.c in Figure 6c. The sample path
produced by our tool is shown in Figure 6d. This path is automati-
cally filtered to show only program points directly relevant to the
propagation of the error. We also provide an unfiltered sample path,
not shown here, showing every single step from the program point
at which the error is generated (i.e., the error macro is used) to the
program point at which the problem occurs. We list all other error
codes, if any, that may also reach there.

6. EXPERIMENTAL EVALUATION
We use the CIL C front end [17] to apply preliminary source-to-

source transformations on Linux kernel code, such as redefining
error code macros to avoid mistaking regular constants for error
codes. We also use CIL to traverse the CFG and emit a textual
representation of the WPDS. Our analysis tool uses the WALi
WPDS library [10] to perform the interprocedural dataflow analysis
on this WPDS. We use binary decision diagrams (BDDs) [2] as
implemented by the BuDDy BDD library [14] to encode weights.

We analyze 52 file systems (including widely-used implementa-
tions such as ext3 and ReiserFS), the VFS, the mm, and 4 heavily-
used device drivers (SCSI, PCI, IDE, ATA) found in the Linux
2.6.35.4 kernel. We analyze each file system and driver separately
along with both the VFS and mm. We have reported all bugs to
Linux kernel developers.

6.1 Bad Pointer Dereferences
Our tool produces 41 error-valued pointer dereference reports,

of which 36 are true bugs. We report only the first of multiple
dereferences of each pointer variable within a function. In other
words, as soon as a variable is dereferenced in a function, any
subsequent dereferences made in this function or its callees are not
reported by the tool. Similarly, we do not report duplicate bugs
resulting from analyzing shared code (VFS and mm) multiple times.

Table 2 shows the number of error-valued pointer dereferences
found per file system, module, and driver. Note that the location
of a bad dereference sometimes differs from the location where

58 inode ∗ iget(...) {

· · ·

67 if (!inode)
68 return ERR_PTR(−ENOMEM);

· · ·

81 }

· · ·

89 int cnode_make(inode ∗∗inode, ...) {

· · ·

101 ∗inode = iget(sb, fid, &attr);}
102 if (IS_ERR(∗inode)) {
103 printk("...");
104 return PTR_ERR(∗inode);
105 }

(a) File fs/coda/cnode.c

143 static int fill_super(...) {

· · ·

194 error = cnode_make(&root, ...);
195 if (error || !root) {
196 printk("... error %d\n", error);
197 goto error;
198 }

· · ·

207 error:
208 bdi_destroy(&vc−>bdi);
209 bdi_err:
210 if (root)
211 iput(root);

· · ·

216 }

(b) File fs/coda/inode.c

1322 void iput(inode ∗inode) {
1323

1324 if (inode) {
1325 BUG_ON(inode−>i_state == ...);
1326

1327 if (...)
1328 iput_final(inode);
1329 }
1330 }

(c) File fs/inode.c

fs/coda/cnode.c:68: an unchecked error may be returned
fs/coda/cnode.c:101:"∗inode" receives an error from function "iget"
fs/coda/cnode.c:104:"∗inode" may have an unchecked error
fs/coda/inode.c:194:"root" may have an unchecked error
fs/coda/inode.c:211:"root" may have an unchecked error
fs/inode.c:1325: Dereferencing variable inode, which may contain error code ENOMEM

(d) Sample trace
Figure 6: Example of diagnostic output

Table 2: Error-valued pointer dereferences. File systems, mod-
ules, and drivers producing no diagnostic reports are omitted.

Number of Diagnostic Reports

Dereference Location True Bugs False Positives Total

AFFS 4 0 4
Coda 0 1 1
devpts 1 0 1
FAT 0 1 1
HFS+ 1 0 1
mm 15 0 15
NTFS 3 0 3
PCI 1 0 1
ReiserFS 3 0 3
SCSI 1 0 1
VFS 7 3 10

Total 36 5 41

a missing error-check ought to be added. For example, the mm
contains a dereference that is only reported when analyzing the
Coda, NTFS, and ReiserFS file systems. We count this as a single
bad dereference located in the mm. So far, Coda developers have
confirmed that this potential error-valued dereference is due to a
missing error check in a Coda function. This is likely to be the case
for the other two file systems. On the other hand, most of the other
dereferences found in shared code are reported when analyzing any
file system implementation. This suggests that the error checks
might be needed within the shared code itself.

1 struct bnode ∗bnode_split(...) {
2 struct bnode ∗node = ...;
3

4 if (IS_ERR(node))
5 return node;
6 ...
7 if (node−>next) {
8 struct bnode ∗next = bnode_find(..., node−>next);
9 next−>prev = node−>this; // bad dereference

10 ...
11 }
12 }

Figure 7: Example of a bad pointer dereference due to a miss-
ing error check in the HFS+ file system

We classify true dereference bugs into four categories depending
on their source:

6.1.1 Missing Check
We refer to a missing error check when there is no check at

all before dereferencing a potential error-valued pointer. 17 out
of 36 (47%) true dereference bugs are due to a missing check.
Figure 7 shows an example found in the HFS+ file system. Function
and variable names have been shortened for simplicity. Function
bnode_split calls function bnode_find on line 8, which is expected
to return the next node. However, function bnode_find may also
return one of two error codes: EIO or ENOMEM. Because of
this, callers of function bnode_find must check the pointer result

1 static int traverse(...) {
2 void ∗p;
3 ...
4 p = m−>op−>start(...); // may receive error
5 while (p) {
6 ...
7 if (IS_ERR(p))
8 break;
9 ...

10 }
11 m−>op−>stop(..., p); // passing error
12 ...
13 }
14

15 static void r_stop(..., void ∗v) {
16 if (v)
17 deactivate_super(v); // passing error
18 }
19

20 void deactivate_super(struct super_block ∗s) {
21 if (!atomic_add_unless(&s−>s_active, ...)) { // bad deref
22 ...
23 }
24 }

Figure 8: Example of an insufficient error check in the Reis-
erFS file system (function r_stop) leading to a bad pointer
dereference in the VFS (function deactivate_super)

value for errors before any dereferences. Nonetheless, function
bnode_split does dereference the result value immediately on line 9,
without checking for any errors.

6.1.2 Insufficient Check
We define an insufficient check as any check that does not include

a call to function IS_ERR involving the variable being dereferenced.
This is the second-most-common scenario leading to error-valued
pointer dereferences, accounting for 11 out of 36 true bugs (31%).
We identify two variants of insufficient checks. In the first case, the
pointer dereference is preceded by a check for NULL but not for an
error code (6 bugs). In the second case, there is an error check, but
it involves an unrelated pointer variable (5 bugs).

Figure 8 shows an example of the first variant. The pointer
variable p may receive the error code ENOMEM on line 4. If so,
the while loop on line 5 is entered, then exits on line 8 since the
condition on line 7 is true. Pointer p is passed as parameter to
function r_stop on line 11, which checks it for NULL before calling
function deactivate_super with variable v as a parameter. Since
v contains an error code, the function deactivate_super is indeed
called, which then dereferences the error-valued pointer on line 21.

6.1.3 Double Error Code
First identified by Gunawi et al. [6], double error code refers to

cases in which there are two ways to report an error: by storing an
error in a pointer parameter or passing it through the function return
value. Action is often taken upon the function return value, which
may or may not be checked for errors. At the same time, a copy of
the error is left in the pointer argument and dereferenced later. This
pointer is sometimes checked, but only for the NULL value. We find
5 (14%) true error-valued dereferences due to double error codes.
An example of double error code can be found in Figure 2 (simplified
version) or Figure 6 (extended version including diagnostics).

1 int __break_lease(...) {
2 struct file_lock ∗new_fl;
3 int error = 0;
4 ...
5 new_fl = lease_alloc(...); // may receive error
6 ...
7

8 if (IS_ERR(new_fl) && !i_have_this_lease
9 && ((mode & O_NONBLOCK) == 0)) {

10 error = PTR_ERR(new_fl);
11 goto out;
12 }
13 ...
14

15 if (i_have_this_lease || (mode & O_NONBLOCK)) {
16 error = −EWOULDBLOCK;
17 goto out;
18 }
19 error = wait_event_interrupt(new_fl−>fl_wait, ...);
20 ...
21 out:
22 ...
23 return error;
24 }

Figure 9: Example of a false positive found in the VFS

6.1.4 Global Variable
This category refers to the case in which an error code is stored

in a global pointer variable. Only 3 error-valued dereferences
fall into this group. In the first situation, the global pointer vari-
able devpts_mnt (declared in the devpts file system) may be as-
signed one of two error codes: ENOMEM or ENODEV. This vari-
able is dereferenced in a function eventually called from function
devpts_kill_index, which is an entry-point function to our analysis,
i.e. no function within the analyzed code invokes it. The second and
third cases are similar and refer to the VFS global pointer variable
pipe_mnt. This variable may be assigned one of six error codes,
including ENOMEM and EIO. Variable pipe_mnt is dereferenced
in a function eventually called from the system call pipe and also
from entry-point function exit_pipe_fs.

6.1.5 False Positives
Finally, we identify 5 out of 41 reports (12%) to be false positives.

Figure 9 illustrates an example. Pointer variable new_fl may receive
an error code in line 5. There are two conditionals on lines 8
and 9 and on line 15. Variable new_fl is checked for errors in
the first conditional, but the call to function IS_ERR is part of a
compound conditional statement. Our tool correctly recognizes that
even though there is an error, the whole expression may not evaluate
to true. Nonetheless, the two conditionals are complementary: the
conditional statement on line 15 evaluates to true if that on lines 8
and 9 was false, thereby covering all possibilities. The analysis
does not detect this, so the dereference on line 19 is reported. This
scenario is found twice.

Other false positives arise when (1) the error check is not exhaus-
tive, but the missing error codes cannot possibly reach that program
point; (2) there is a double error code and one is checked before
dereferencing the other; and (3) a copy of the error is made and
checked before dereferencing the original variable. We can easily
remove (1) since we have information regarding what error codes
reach or not a given program point. Similarly, we can remove (3) by

Table 3: Bad pointer arithmetic
Number of Diagnostic Reports

Location True Bugs False Positives Total

Coda 0 1 1
mm 15 0 15
ReiserFS 1 0 1

Total 16 1 17

running the analysis in transfer mode. On the other hand, the false
positives resulting from (2) and the example described in Figure 9
would require more effort to be removed.

6.2 Bad Pointer Arithmetic
Table 3 shows the results of our analysis of pointer arithmetic

applied to pointers whose values are actually error codes, not ad-
dresses. Our tool reports 17 instances of bad pointer arithmetic. We
identify 16 true bugs: 15 from the mm and 1 from the ReiserFS file
system. Note that we only report the first instance in which an error-
valued pointer is used to perform pointer arithmetic. Subsequent
bad uses, including bad dereferences, are not reported. Similarly,
if the error-valued pointer is first dereferenced, subsequent uses in
pointer arithmetic are not reported.

As with bad pointer dereferences in Section 6.1, most of the
bad pointer-arithmetic instances are due to missing checks (75%
or 12 out of 16 reports). The remaining bad pointer operations are
surrounded by conditionals, but none of them include checks for
errors in the operands. The majority of the reports involve pointer
additions (69% or 11 out of 16 reports), while the rest involve
subtraction. We find no bad increments or decrements.

In all cases but one, the error-valued pointer is assumed to contain
a valid address that is used to calculate another address. The one
exception is a calculation involving an error-valued pointer that
determines the function return value. In all situations, the error-
valued pointer may contain the error ENOMEM. There are two
cases in which the pointer may additionally contain the EFAULT
error code, which (ironically) denotes a bad address.

Most cases, including all those in the mm, are solely triggered
by the SCSI driver. An example is shown in Figure 3. Callers of
function kfree (line 3) may pass in a pointer variable that contains
the error code ENOMEM, now in variable x. The variable is further
passed to function virt_to_head_page when it is invoked in line 6.
Finally, this function uses x to perform some pointer arithmetic in
line 11, without first checking for any errors.

A false positive is found in the Coda file system. Function
cnode_make calls a function that may return an error code and
also store it in a pointer parameter (double error code). If the return
value is any error code but ENOENT, then cnode_make further
propagates the error to its callers. Otherwise, the function proceeds
to call a function that uses the pointer parameter to perform pointer
arithmetic. This would lead to bad pointer arithmetic if the pointer
parameter could contain ENOENT, however we find that this is not
the case.

6.3 Bad Overwrites
Our tool produces 7 reports describing overwrites of error-valued

pointer variables. As with other kinds of bugs, we eliminate du-
plicated reports that belong to shared code (VFS and mm). We
identify 3 true bugs located in the mm. In 2 cases an error is stored
in a global variable, which is overwritten later without first being
checked for errors. In the remaining case, the error is stored in
a static local variable. 3 out of the 4 false positives are found to

1 struct buffer_head ∗ext3_getblk(..., int ∗errp) {
2 int err;
3 ...
4 err = ext3_get_blocks_handle(...); // may receive error
5 ...
6 ∗errp = err; // copy error
7

8 if (!err && ...) {
9 ...

10 }
11 return NULL;
12 }
13

14 struct buffer_head ∗ext3_bread(..., int ∗err) {
15 struct buffer_head ∗ bh;
16 bh = ext3_getblk(..., err); // err has an error
17

18 if (!bh)
19 return bh;
20 ... // code leads to overwrites
21 }

Figure 10: Double error code in the ext3 file system, leading to
12 overwrite false positives

be duplicates but located in file-system specific code. This is due
to cloned (copied and pasted) code. We are not able to recognize
this automatically, thus we count these as multiple reports. These
overwrites are located in the ext2, System V, and UFS file systems
and are due to complex loop conditions. The other false positive is
found in the mm.

The tool reports 31 cases in which errors contained in dereference
variables are overwritten, among which we only identify 1 true bug
in the SCSI driver. The remaining false positives are associated with
the ext3 (15 reports), UDF (12 reports), and UFS (2 reports) file
systems and the SCSI (1 report) driver. There is complete overlap
between reports belonging to ext3 and UDF due to cloned code.
Double error codes, as discussed in Section 6.1.3, cause most false
positives (87%). Figure 10 shows an example. An error returned on
line 4 is copied to the formal parameter ∗errp on line 6. Function
ext3_getblk then returns NULL. The caller ext3_bread stores the
returned value in bh, which is further returned on line 19. However,
because we are tracking variable err and not variable bh, the analysis
chooses the path that skips the conditional of line 18 and eventually
leads to 12 overwrites. The same piece of code is found in file-
system–specific code for both ext3 and UDF, accounting for every
false positive in the latter. Note that we find no overwrites of error-
valued dereference variables due to assignments to pointer variables.

We find considerably fewer overwrites than Rubio-González et al.
[21], which reported 25 true overwrites of integer error codes across
five Linux file systems. One difference between integer and pointer
error values is that there is an explicit error check function for the
latter (IS_ERR). The existence of such a function may influence de-
velopers into being more aware of error checking, thus contributing
to fewer bugs. Another reason might be that although error-valued
pointers are part of many propagation chains, these errors may
ultimately end up back in int variables.

6.4 False Negatives
We identify three possible sources of false negatives: function

pointers, aliasing, and structure fields. We adopt a technique previ-
ously employed by Gunawi et al. [6], which exploits the fact that

Table 4: Analysis performance for a subset of file systems and
drivers. Sizes include 133 KLOC of shared VFS and mm
code. Configuration 1 is used to find bad dereferences and bad
pointer arithmetic while configuration 2 targets bad overwrites.

Configuration 1 Configuration 2

File System KLOC Time Mem Time Mem
(min:sec) (GB) (min:sec) (GB)

AFFS 137 2:48 0.86 3:17 0.87
Coda 136 2:54 0.83 3:15 0.84
devpts 134 2:36 0.81 3:06 0.82
FAT 140 3:06 0.88 3:21 0.90
HFS+ 143 2:54 0.86 3:31 0.87
NTFS 162 4:12 1.37 4:39 1.39
PCI 191 3:24 1.00 3:55 1.02
ReiserFS 161 4:06 1.36 4:37 1.37
SCSI 703 11:00 2.42 13:04 2.52

Avg FS - 2:54 0.87 3:16 0.89
Avg Drivers - 5:24 1.44 6:18 1.50

function pointers in Linux file systems are used in a fairly restricted
manner, allowing to identify the set of all possible implementations
of a given file-system operation. Calls across such functions point-
ers are rewritten as switch statements that choose among possible
implementations nondeterministically. This technique accounts for
approximately 80% of function pointer calls. We treat the remaining
calls as Ident. Thus, if any function that propagates errors is called
through one of these unresolved function pointers, then subsequent
error-valued pointer dereferences or other misuses are not detected.
Similarly, we do not perform a points-to analysis. If a pointer vari-
able p is assigned another pointer variable, which later receives an
error code, the analysis cannot determine that p may also contain an
error code. Finally, our analysis is not field sensitive, thus it does
not currently track errors stored in structure fields.

6.5 Performance
We use a dual 3.2 GHz Intel Pentium 4 processor workstation

with 3 GB RAM to run our experiments. We analyze 1,538,082 lines
of code, including white space and comments. Counting reanalysis
of the VFS and mm as used by multiple file systems, we process
8,875,522 lines of code in total. Table 4 shows the size (in thousands
of lines of code) for those file systems and drivers in which bugs
are found. The table also includes running time and memory usage
for the two different analysis configurations described in Section 5.
Overall, we find that the analysis scales and performs quite well
even with the added burden of tracking pointer-typed variables and
their corresponding dereference variables.

Finally, we find that an average of 42% of the variables that hold
errors at some point during execution are pointer variables. This
shows that error transformation is not merely an anomaly; it is
critical to understanding how error propagation really works.

6.6 Other Linux Versions and Code Bases
We also analyze the Linux kernel 2.6.38.3, which was released

seven months after the version discussed throughout this section.
The results show that 9 bad dereferences reported in Section 6.1 are
no longer present in the newer kernel, but 8 new bad dereferences
are introduced. We find that 6 bad pointer dereferences are fixed
by adding the appropriate error checks while code for the rest has
simply been removed. An example of a bad pointer dereference
that has been fixed is that shown in Figure 7. Bugs related to bad

pointer arithmetic and bad pointer overwrites remain the same in
both versions. This demonstrates that finding and fixing these kinds
of bugs is not a one-time operation. New bugs are introduced as
code evolves.

Inspection of several other code bases reveals that FreeBSD,
OpenSolaris, and Xen (hypervisor and guest) also define and use
functions that convert error codes between integers and pointers,
including an IS_ERR function to check for errors in pointers. Our
tool could be used to analyze these and other similar code bases.

7. RELATED WORK
Engler et al. [5] infer programmer beliefs from systems code and

check for contradictions. They offer six checkers, including a NULL-
consistency checker that reveals an error-valued pointer dereference.
They also provide an IS_ERR-consistency checker, which reveals
that NULL checks are often omitted when checking for errors. We
do not infer beliefs. Instead, we track error codes to find what
pointer variables may hold them and then report those that are used
improperly, including but not limited to pointer dereferences.

Lawall et al. [13] use Coccinelle [18] to find bugs in Linux. Their
case study identifies and classifies functions based on their known
return values: a valid pointer, NULL, ERR_PTR, or both. The tool
reports program points at which inappropriate or insufficient checks
are detected. This can reveal some error-valued dereferences. How-
ever, dereferences made at functions that cannot be classified by the
tool cannot possibly be found, and only 6% of the functions are clas-
sified as returning ERR_PTR or both ERR_PTR and NULL. Also,
dereferences of error-valued pointers that are never returned by a
function or further manipulated cannot be found. Our approach uses
an interprocedural flow- and context-sensitive dataflow analysis that
allows us to track error-pointer values regardless of their location
and whether or not they are transformed.

Although identifying missing or inappropriate checks [5, 13] can
lead to finding and fixing potential problems, our tool instead reports
the exact program location at which problems might occur due to
misuse of error-valued pointers. Our bug reports also help program-
mers find the program points at which error checks should be added
in order to fix the problems reported. These tools aim to find a
wider range of bugs; their discovery of missing or inappropriate
error checks is only an example case study of a generic capability.
Our tool is more specialized: it finds more specific kinds of bugs
than Engler et al. [5] and Lawall et al. [13], and is more precise in
finding these bugs.

Zhang et al. [24] use type inference to find violations of the
principle of complete mediation, such as the requirement that Linux
Security Modules authorization must occur before any controlled
operation is executed. IS_ERR can be thought of as a mediating
check that must appear before any potentially–error-carrying pointer
is used. We believe our technique can be adapted to find other
mediation violations as well. Our approach can be more precise as it
is context-sensitive. Furthermore, we could provide detailed sample
traces describing how such violations might occur.

Numerous efforts (e.g., [1, 3–5, 7, 8, 15, 16, 23]) have focused
on finding NULL pointer dereferences using varied approaches. Our
problem is a generalization of the NULL dereference problem, where
instead of just one invalid pointer value, we are tracking 34 of them.
However, our problem is also more complex. Error codes might
transform during propagation, which does not occur with NULL
pointers. In addition, while dereferencing and using NULL values in
pointer arithmetic is as bad as using error values, overwriting NULL
is perfectly benign. Overwriting unhandled error values, however,
may have serious consequences.

The core of the error-propagation analysis we extend in this paper
has been used for other purposes in the past. Rubio-González et al.
[21] use error-propagation analysis to find dropped or overwritten
integer error codes in Linux file systems. Rubio-González and Liblit
[20] use a similar analysis to find the set of error codes returned
by file-related Linux system calls and compare these against the
Linux manual pages, finding hundreds of error-code mismatches.
None of these support error transformation to find the kinds of
bugs described in this paper. Also, they do not analyze the mm or
any drivers. We use the new error-propagation and transformation
analysis to find error-valued pointer-related bugs instead. Beyond
revealing new types of bugs, the analysis described here could also
be used to improve all previous error-propagation work by providing
more complete tracking of errors across a variety of code.

8. CONCLUSIONS
In this paper we describe three kinds of bugs arising from defec-

tive interactions between error codes and pointers: bad dereferences,
bad pointer arithmetic, and bad overwrites. We show how to extend
an existing error-propagation analysis to account for error transfor-
mation as in the Linux kernel in order to find these bugs. We apply
the analysis to 52 Linux file system implementations, the VFS, the
mm and 4 drivers, finding a total of 56 true bugs. Hiding error codes
in pointers may seem distasteful, but it is by no means uncommon:
we find that 42% of the variables that may contain error codes are
pointer variables. Thus, understanding the behavior of error-valued
pointers is an important component to having a more complete un-
derstanding of how errors propagate in large systems such as the
Linux kernel.

9. REFERENCES

[1] D. Babic and A. J. Hu. Calysto: scalable and precise extended
static checking. In W. Schäfer, M. B. Dwyer, and V. Gruhn,
editors, ICSE, pages 211–220. ACM, 2008.

[2] R. E. Bryant. Binary decision diagrams and beyond: enabling
technologies for formal verification. In R. L. Rudell, editor,
ICCAD, pages 236–243. IEEE Computer Society, 1995.

[3] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors. Softw., Pract.
Exper., 30(7):775–802, 2000.

[4] I. Dillig, T. Dillig, and A. Aiken. Static error detection using
semantic inconsistency inference. In J. Ferrante and K. S.
McKinley, editors, PLDI, pages 435–445. ACM, 2007.

[5] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant
behavior: A general approach to inferring errors in systems
code. In SOSP, pages 57–72, 2001.

[6] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and B. Liblit. EIO: Error handling is
occasionally correct. In 6th USENIX Conference on File and
Storage Technologies (FAST ’08), San Jose, California, Feb.
2008.

[7] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In M. Das and D. Grossman, editors,
PASTE, pages 9–14. ACM, 2007.

[8] S. Karthik and H. G. Jayakumar. Static analysis: C code error
checking for reliable and secure programming. In C. Ardil,
editor, IEC (Prague), pages 434–439. Enformatika,
Çanakkale, Turkey, 2005.

[9] A. Kelley and I. Pohl. A book on C (4th ed.): programming in
C. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1998.

[10] N. Kidd, T. Reps, and A. Lal. WALi: A C++ library for
weighted pushdown systems.
http://www.cs.wisc.edu/wpis/wpds/, 2009.

[11] A. Lal, N. Kidd, T. W. Reps, and T. Touili. Abstract error
projection. In H. R. Nielson and G. Filé, editors, SAS, volume
4634 of Lecture Notes in Computer Science, pages 200–217.
Springer, 2007.

[12] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural
analysis of concurrent programs under a context bound.
Technical Report 1598, University of Wisconsin–Madison,
July 2007.

[13] J. L. Lawall, J. Brunel, N. Palix, R. R. Hansen, H. Stuart, and
G. Muller. WYSIWIB: A declarative approach to finding API
protocols and bugs in Linux code. In DSN, pages 43–52.
IEEE, 2009.

[14] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram
Package. http://sourceforge.net/projects/buddy, 2004.

[15] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and
M. G. Nanda. Verifying dereference safety via
expanding-scope analysis. In B. G. Ryder and A. Zeller,
editors, ISSTA, pages 213–224. ACM, 2008.

[16] M. G. Nanda and S. Sinha. Accurate interprocedural
null-dereference analysis for Java. In ICSE, pages 133–143.
IEEE, 2009.

[17] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and
transformation of C programs. In R. N. Horspool, editor, CC,
volume 2304 of Lecture Notes in Computer Science, pages
213–228. Springer, 2002.

[18] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in Linux
device drivers. In J. S. Sventek and S. Hand, editors, EuroSys,
pages 247–260. ACM, 2008.

[19] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted
pushdown systems and their application to interprocedural
dataflow analysis. Sci. Comput. Program., 58(1-2):206–263,
2005.

[20] C. Rubio-González and B. Liblit. Expect the unexpected:
Error code mismatches between documentation and the real
world. In S. Lerner and A. Rountev, editors, 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE 2010), Toronto,
Canada, June 2010. ACM SIGPLAN and SIGSOFT.

[21] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H.
Arpaci-Dusseau, and A. C. Arpaci-Dusseau. Error
Propagation Analysis for File Systems. In Proceedings of the
ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation, Dublin, Ireland, June 15–20
2009.

[22] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. In POPL, pages 291–299, 1985.

[23] Y. Xie, A. Chou, and D. R. Engler. Archer: using symbolic,
path-sensitive analysis to detect memory access errors. In
ESEC / SIGSOFT FSE, pages 327–336. ACM, 2003.

[24] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static
analysis of authorization hook placement. In D. Boneh, editor,
USENIX Security Symposium, pages 33–48. USENIX, 2002.

http://www.cs.wisc.edu/wpis/wpds/

	Introduction
	Error Transformation in the Linux Kernel
	Error-Valued Pointer Bugs
	Bad Pointer Dereferences
	Bad Pointer Arithmetic
	Bad Overwrites

	Error Propagation and Transformation
	Pushdown System
	Bounded Idempotent Semiring
	Set D
	Operators Combine and Extend
	Weights 0 and 1

	Transfer Functions
	Assignments
	Function Calls
	Error Transformation Functions
	Error Handling

	Solving the Dataflow Problem

	Finding and Reporting Bugs
	Experimental Evaluation
	Bad Pointer Dereferences
	Missing Check
	Insufficient Check
	Double Error Code
	Global Variable
	False Positives

	Bad Pointer Arithmetic
	Bad Overwrites
	False Negatives
	Performance
	Other Linux Versions and Code Bases

	Related Work
	Conclusions
	References

