
Type Systems for Distributed Data Structures∗

Ben Liblit
liblit@cs.berkeley.edu

Alexander Aiken
aiken@cs.berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720-1776

Abstract

Distributed-memory programs are often written using a global ad-
dress space: any process can name any memory location on any
processor. Some languages completely hide the distinction be-
tween local and remote memory, simplifying the programming
model at some performance cost. Other languages give the pro-
grammer more explicit control, offering better potential perfor-
mance but sacrificing both soundness and ease of use.

Through a series of progressively richer type systems, we for-
malize the complex issues surrounding sound computation with
explicitly distributed data structures. We then illustrate how type
inference can subsume much of this complexity, letting program-
mers work at whatever level of detail is needed. Experiments con-
ducted with the Titanium programming language show that this
can result in easier development and significant performance im-
provements over manual optimization of local and global mem-
ory.

1 Introduction

While there have been many efforts to design distributed, parallel
programming languages, none has been completely satisfactory.
Many approaches present the illusion of a single shared, global
address space. While easy for programmers to understand, this
approach hides the real structure of memory, making it difficult
to exploit locality of data. In complex applications where local
memory accesses may be orders of magnitude faster than remote
accesses, this can seriously harm performance, development time,
or both.

Another approach is to reveal the full distributed memory hi-
erarchy at the language level. A popular model is to allow a mix-
ture ofglobalandlocal pointers: the former span the entire global
address space, while the latter only address memory that is phys-
ically colocated with a given processor. This supports globally
shared data structures while still allowing efficient implementa-
tion of algorithms specifically structured for distributed parallel
execution [4,5,7,8,15,21,et al].

∗This research was supported in part by NASA Grant No. NAG2-1210, Defense
Advanced Research Projects Agency contract No. F30602-95-C-0136, National Sci-
ence Foundation Infrastructure Grant Nos. CDA-9401156 and EIA-9802069, and an
NDSEG fellowship. The information presented here does not necessarily reflect the
position or the policy of the Government and no official endorsement should be
inferred.

Historically, programming languages that expose mutable lo-
cal and global addresses have been unsound. Designing a sound
type system which allows local and global pointers turns out to
be a subtle problem. Exposing local/global also places an addi-
tional burden on the programmer, who may be forced to attend to
the details of memory layout even in sections of code that are not
performance critical.

This paper makes three principal contributions:

• Through a progression of sound type systems, we illustrate
and clarify the semantic issues surrounding local and global
pointers.

• We present a type inference system that is capable of com-
pleting a program with inferred local/global annotations,
thereby relieving the programmer from managing address
spaces in much or all of the code.

• We present experimental results showing that this infer-
ence algorithm improves program performance signifi-
cantly, simplifies development, and does a better job than
hand-optimization by humans.

The remainder of this paper is structured as follows. Section 2
offers a primer on the common terminology with which we dis-
cuss distributed address spaces and highlights some of the perfor-
mance costs of simpler models that treat distributed memory as
though it were shared memory. In Section 3 we develop a series
of small languages and type systems that codify sound comput-
ing with distributed mutable data structures. The more expressive
systems are also more complex; Section 4 shows how type infer-
ence can simplify programming while retaining the full power of
the type system. We have applied these principles to the Titanium
programming language, and report the results of our experiments
in Section 5. Section 6 reviews related work. We conclude in
Section 7 by summarizing our findings, and discussing directions
for future research.

2 Background

When describing interconnections between allocated blocks of
data, we use the termpointer, which reinforces the idea that we
are discussing very low level operations. Although pointers can
implement Standard MLref’s [29] or Java references [20], point-
ers are more primitive.

Our distributed memory model is an explicit two-level hierar-
chy with local andglobal memory. Local memory is physically
colocated with a processor. A system with sixteen processors has
sixteen distinct local memories. Alocal pointerencodes an ad-
dress within one local memory and corresponds to a pointer or
memory address in standard languages. Local pointers do not

mailto:liblit@cs.berkeley.edu
mailto:aiken@cs.berkeley.edu

if (p.processor == MyProcessor)
result = *p.address;

else
result = RemoteRead(p.processor, p.address);

Figure 1: Dereferencing a global pointer. Because “result”
may receive its value from an opaque function call, the compiler
is unlikely to be able to effectively optimize any code that uses the
resulting value.

CM-5 T3D
function 2.8µsec/edge 1.19
inline 2.0 0.71
optimized 1.3 0.66
narrow 1.15 N/A

Table 1: Costs of global pointers to local data. “Function”
uses global pointers and requires a function call for every read or
write. “Inline” inlines global pointer code directly at the point of
use. “Optimized” uses extensive manual optimization and likely
represents the theoretical best performance possible for global
references. “Narrow” uses simple pointers, and represents a level
of performance only possible with hardware support for shared
memory.

travel well; a local address formed on one processor is meaning-
less elsewhere.

Global memory is the union of all local memories. If we
assume that processors are uniquely numbered, then a global
pointer encodes a pair〈processor, address〉, with a home pro-
cessor and an address within that processor’s local memory.
Global pointers have a different representation from local point-
ers and are more costly to use. Manipulating remote memory may
involve special machine instructions, trapping into the operating
system, or function calls into a message-passing library. The ex-
act mechanism is irrelevant. What matters is that global and local
pointers have different representations and are manipulated using
different operations.

While dereferencing a global pointer to another processor’s
memory can be extremely slow, even a global pointer into local
memory generally incurs a performance penalty. As Figure 1 il-
lustrates, dereferencing a global pointer that turns out to be local
may entail comparing two values, ignoring a branch to the re-
mote fetch clause, dereferencing the local address, and branching
to the end of the entire conditional. The presence of a branch,
combined with the possibility of a function call, may make it dif-
ficult for an optimizing compiler to improve code using the result
of a statically global dereference.

Benchmarking quantifies these concerns. A Split-C [18]
benchmark was run using various strategies to implement global
pointers. The benchmark, EM3D, repeatedly walks across an ir-
regular bipartite graph performing a simple calculation. We can
estimate the cost of global pointers to local data by computing
the average time required per edge when all data is stored locally.
Table 1 shows times collected on a Thinking Machines CM-5 and
partial times collected on a Cray T3D. These findings were orig-
inally presented in [26] and [34], respectively.

The benchmark reveals that the performance cost of using
global pointers for local data is significant. Even when the code
for reading and writing through global pointers references is in-
lined, the CM-5 shows nearly a 75% slowdown compared with
simple pointers. This is largely due to lost opportunities for op-
timization. Extensive manual optimization included relocating
code into the “local” clause of the locality test to avoid a branch.
Such heroic efforts bring performance to within 13% of simple
pointers; the difference is probably due to less effective register

use and the increased time to move larger amounts of data around
in memory.

Thus, high performance parallel code must acknowledge the
distributed nature of memory. Where data structures genuinely
span processor boundaries, global pointers are entirely appropri-
ate. But when static information can prove that data is always
local, global pointers are needlessly costly.

3 A Progression of Type Systems

We present a suite of three languages and type systems that of-
fer both global and local pointers, illustrating the key soundness
issues that arise when manipulating distributed data structures.
All three systems have been reduced to essentials to more clearly
illuminate the novel issues. These are not languages in which
one would program directly. Rather, these languages should be
considered as just barely above the level of primitive machine ad-
dressing.

Our foremost concern is distributed data, not mobile code.
Therefore, none of the languages we describe containsλ expres-
sions,let bindings or any other facility for introducing new func-
tions, variables, or closures. Rather, we assume a fixed set of
named functions and variables available in an initial environment.
Functions are not first-class; function types are not data types,
and function names only appear directly applied to arguments.
In Section 7 we briefly consider extensions allowing first-class
functions; for now, we focus on data.

Similarly, we omit the details of a parallel semantics. A sin-
gle language construct, the unarytransmission operator, repre-
sents an explicit transfer of information from one processor to
another. An expression of the form “transmit e” should be read
as evaluating expression “e” on one processor, then transmitting
the result to a different processor. The result of atransmit ex-
pression is the value as seen on the receiving processor. This is
the only explicit communication primitive; all other data is ex-
changed implicitly, via global pointers. The presentation here is
deliberately somewhat informal. An operational semantics and
soundness proof for the most complex type system are presented
in the appendix.

The first language contains local and global pointers with ar-
bitrary levels of indirection but without updates. The second lan-
guage introduces an assignment operator for destructive updates.
The third language adds pairs with updatable fields, which model
the composite records, objects, or data structures of higher level
languages.

3.1 System I: Simple Pointers

Our first language contains integers, local and global pointers,
and basic pointer operations. It has neither destructive assign-
ment nor compound data types; these are added in sections 3.2
and 3.3, respectively. Expression and type grammars are given in
Figure 2. Figure 3 gives type checking rules. A type environment,
A, encapsulates information about externally defined variable and
function names.

To discuss pointers and pointer operations, we work with
boxed and unboxed values. As is standard, types represent un-
boxed values unless explicitly boxed. One may take a value’s ad-
dress using the “↑” indirection operator, so while “5” is a pattern
of bits representing five, “↑ 5” is a local pointer to a memory lo-
cation holding the value five. We use “boxed” to describe pointer
types, augmented with awidth qualifierto distinguish global from
local pointers. The “widen” operator widens a local pointer to

J ::= integer literals

e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e

τ ::= int | boxed ω τ

ω ::= local | global

Figure 2:Expressions and types I.Expressions are given bye,
while τ represents expression types.

A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ

A ` f e : τ ′

A ` e : τ

A ` ↑ e : boxed local τ

A ` e : boxed local τ

A ` ↓ e : τ

A ` e : boxed global τ

A ` ↓ e : expand(τ)

A ` e : boxed local τ

A ` widen e : boxed global τ

A ` e : τ

A ` transmit e : expand(τ)

Figure 3:Type checking rules I.

global. Hence:

5 : int

↑ 5 : boxed local int

↑ ↑ 5 : boxed local boxed local int

widen ↑ ↑ 5 : boxed global boxed local int

The “↓” dereferencing operatorretrieves the value addressed
by a pointer. Dereferencing a local pointer works as expected,
essentially stripping off an outer level of boxing. Dereferencing
a global pointer is more subtle.

3.1.1 Implicit Type Expansion

The difficulty with global pointer dereferencing is illustrated in
Figure 4. Dotted lines mark local memory boundaries; in this
case, we have two processors and therefore two local memo-
ries. Processor 1 has constructed a local pointer to a mem-

processor 0 processor 1

x
'/ ↑ 5

��
↓x &.

5

Figure 4:Situation requiring type expansion.

expand(boxed local τ) , boxed global τ

expand(τ) , τ otherwise

Figure 5:Type manipulating functions I.

ory location storing the value five. We indicate local point-
ers using a single arrow. Processor 0 has a variablex of type
boxed global boxed local int: a global pointer to a local
pointer to an integer. We use double arrows to indicate global
pointers. A näıve dereference ofx would simply extract the lo-
cal pointer value↑ 5. However, that local pointer is meaningless
in processor 0’s local address space. Rather, as the figure sug-
gests, the local pointer addressed byx must be widened, so that
↓x is global as well. The new global pointer’s home processor
is 1, while its address on processor 1 is the same as the address
expressed by↑ 5.

Widening is only needed when an operation could cause the
value of a local pointer to cross processor boundaries. Thus,
if y : boxed global int is a global pointer to an integer,
then ↓ y : int is the value of that integer. Similarly, ifz :
boxed global boxed global int is a global pointer to a global
pointer to an integer, then↓ z : boxed global int would tra-
verse one level of indirection, yielding a global pointer to an in-
teger. Widening is required when transmitting a local pointer:
if ↑ 5 has typeboxed local int, thentransmit ↑ 5 must have
type boxed global int, or else the receiving processor would
be left holding a local pointer into the wrong address space. But
transmit 5 requires no special manipulation, because integers
travel safely across processor boundaries.

Theexpandfunction, used in the final two type rules, is given
in Figure 5. It widens local pointers to global, but leaves other
types unchanged. Simple though this may seem, real parallel pro-
gramming languages do not necessarily get this right. Split-C, for
example, makes no effort to prevent processors from seeing each
other’s local pointers. In cases like Figure 4, the programmer
is expected to extract the processor number fromx and manu-
ally combine that with the local pointer at↓x to produce a valid
global pointer. Forgetting to do so elicits no warning from the
compiler; the program simply contains a wild pointer [17].

3.2 System II: Assignable Pointers

We now extend the language with destructive assignment through
pointers. An updated grammar appears in Figure 6. To help sup-
port assignment we have also added sequencing.

Given a pointer to some memory location and a compati-
ble value, the new “:=” assignment operatorwrites a new value
into the pointed-to location, replacing what may have been stored
there before. The pointer itself is unchanged; it merely identifies
the target of the store operation. This is a more primitive opera-
tion than, for example, assignment to an MLref, although ML
assignment could be implemented using our primitive plus an ex-
tra level of indirection. The key point is that the left hand side of
an assignment must always be a pointer, and that the new value is
placed in the location to which the pointer refers.

3.2.1 Type Expansion Versus Assignment

Type checking rules for the augmented language are given in Fig-
ure 7. As before, the interesting case is a global pointer to local
pointer, such asx in Figure 8. Suppose that global pointerx is
to receive an assignment, via “x := ↑ 6”. The types seem, su-
perficially, to match:x addresses a local pointer toint, and↑ 6

J ::= integer literals

e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e |
e ; e | e := e

τ ::= int | boxed ω τ

ω ::= local | global

Figure 6:Expressions and types II.Relative to Figure 2, expres-
sions now allow sequencing (;) and assignment (:=).

A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ

A ` f e : τ ′

A ` e : τ

A ` ↑ e : boxed local τ

A ` e : boxed local τ

A ` ↓ e : τ

A ` e : boxed global τ

A ` ↓ e : expand(τ)

A ` e : boxed local τ

A ` widen e : boxed global τ

A ` e : τ

A ` transmit e : expand(τ)
. .

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed local τ A ` e′ : τ

A ` e := e′ : τ

A ` e : boxed global τ A ` e′ : τ robust(τ)

A ` e := e′ : τ

Figure 7:Type checking rules II.Rules above the dotted line are
identical to those in Figure 3, while those below the line are new.

is also a local pointer toint. Yet that local pointer would be
meaningless if transported from processor 0 across to processor
1. Widening↑ 6 to global is no solution either, because the box to
whichx points is typed as local.

In general, then, we must forbid assignment to local pointers

processor 0 processor 1

x
'/ ↑ 5

��
bad

n n

wwn
n

6 5

Figure 8:Situation precluding assignment.

expand(boxed local τ) , boxed global τ

expand(τ) , τ otherwise

robust(boxed local τ) , false

robust(τ) , true otherwise

Figure 9:Type manipulating functions II. The expand function
is unchanged from Figure 5. The robust predicate is new.

across globals. The local pointer value can be read, subject to
expansion as seen earlier. But it can never be updated. The core
issue is that local pointers cannot travel across processor bound-
aries, and global pointers use a different and incompatible repre-
sentation. Figure 9 gives therobustpredicate that enforces these
restrictions. A robust type is one that can safely travel across a
global pointer during an assignment. Note that assignment across
local pointers requires no such test, as it is always safe providing
the source and destination types match.

3.3 System III: Assignable Tuples

Lastly, we enrich the language with tuples. For simplicity, we
only permit pairs; generaln-tuples contribute nothing novel. The
language and type grammars appear in Figure 10. We have added
a pair constructor〈 , 〉, plus two new operators for decomposing
pairs.

Given a valid pointer to a pair, the@1 and@2 pair selection
operatorsproduce offset pointers to the first and second compo-
nents of the pair. Again, this is more primitive than the#n record
selection operator from ML, and the two should not be confused.
Assuming that ML records are always boxed, ML record selec-
tion roughly corresponds to pair selection followed by derefer-
ence (↓ @n). Primitive pair selection alone, without dereference,
forms a pointer suitable for assignment, permitting in-place mu-
tation of one component of a pair while leaving the other un-
changed. The need for these atypical operators will become more
evident in Section 3.3.2.

We have also added a subtyping relation, defined in Figure 11.
The subtyping relation allows one to weaken pointer types by pro-
moting certainρ qualifiers fromvalid to invalid. This qual-
ifier subsumption is allowed at the top level or embedded any-
where within a top level pair. However, one cannot change valid-
ity qualifiers below a pointer. If this were permitted, then it would
be possible for two pointers with different types to alias the same
value, which is unsound in the presence of assignment. No im-
plicit changes to theω qualifier are permitted at all, because this
entails a change of representation, and therefore should logically
produce a new value.

3.3.1 Consistent Representation of Pairs

As we have seen, when an isolated local pointer moves across
processor boundaries, it must be expanded into a global pointer.
What about moving an unboxed pair containing a local pointer?
One option would be to expand the embedded pointer as be-
fore. Thus,expand(〈boxed local τ , int〉) could be defined as
〈boxed global τ , int〉. However, this means that the expanded
pair would have a different representation than the original pair.
This approach is very unattractive in any language with named
record types (i.e., almost all languages). Suppose the program-
mer declaresEntry as a pair〈boxed local τ , int〉 for some
τ . What name would we use for the expanded pair?Entry is

J ::= integer literals

e ::= J | x | f e | ↑ e | ↓ e | widen e | transmit e |
e ; e | e := e | 〈e, e〉 | @1 e | @2 e

τ ::= int | boxed ω ρ τ | 〈τ, τ〉
ω ::= local | global
ρ ::= valid | invalid

Figure 10: Expressions and types III. Relative to Figure 6,
expressions now allow pair creation (〈 , 〉) and selection (@n).
Types include pairs, and the pointer types now carry an addi-
tional validity qualifierρ.

[p]

ρ ≤ ρ valid ≤ invalid τ ≤ τ

boxed ω ρ τ ≤ boxed ω ρ′ τ ⇐⇒ ρ ≤ ρ′

〈τ1, τ2〉 ≤ 〈τ ′1, τ ′2〉 ⇐⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2

Figure 11:Subtyping relation for type system III.

inappropriate, since the type has changed. Do we synthesize a
new name? Assume that the value belongs to some anonymous
record type? Any functions that manipulate unboxedEntry val-
ues cannot properly use the expanded pair, because its representa-
tion (and possibly size and component offsets) will have changed.
TreatingEntry as polymorphic in itsω qualifiers would entail ei-
ther generating multiple copies of code, or else inserting runtime
tests wherever polymorphic pointers are used. But code expan-
sion is undesirable and runtime pointer tests are exactly what we
wish to avoid.

Thus, we wish to ensure thatexpandnever causes a pair to
change representation. Local pointers within pairs should remain
local, even when copied between processors. Such pointers no
longer represent valid memory addresses and must never subse-
quently be used. We add a newvalidity qualifier, ρ, to mark when
an embedded local pointer has been invalidated by movement be-
tween processors. Thus, when an unboxedEntry is moved across
processor boundaries, its embedded local pointer is marked as
invalid. But the second component of the tuple, an embedded
integer, remains accessible. An embedded global pointer would
likewise arrive unscathed. Any existing function that manipulates
unboxedEntry values could still be used, provided that it only
accesses the integer, and never touches the (now invalid) local
pointer.

Figure 12 presents our final set of type checking rules. The
updatedexpandand robust functions in Figure 13 complete the
picture. A new function,pop, is responsible for traversing pairs
and invalidating any embedded local pointers. Therobustpredi-
cate, which forbids unsound assignments across global pointers,
has been relaxed slightly. Cross-global assignments to valid local
pointers are forbidden. But cross-global assignments to invalid
local pointers are allowed: if a local pointer is already invalid
on the receiving end, one can certainly replace it with a different
invalid local pointer. Therobustandpop functions have an im-
portant relationship:robust(τ) is true if and only ifpop(τ) = τ .
Intuitively, a value can be assigned across a global pointer if and
only if it will not be damaged in transit.

A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ

A ` f e : τ ′

A ` e : τ

A ` ↑ e : boxed local valid τ

A ` e : boxed local valid τ

A ` ↓ e : τ

A ` e : boxed global valid τ

A ` ↓ e : expand(τ)

A ` e : τ

A ` transmit e : expand(τ)

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed local valid τ A ` e′ : τ

A ` e := e′ : τ

A ` e : boxed global valid τ
A ` e′ : τ robust(τ)

A ` e := e′ : τ
. .

A ` e1 : τ1 A ` e2 : τ2

A ` 〈e1, e2〉 : 〈τ1, τ2〉

A ` e : boxed ω valid 〈τ1, τ2〉
A ` @n e : boxed ω valid τn

A ` e : τ τ ≤ τ ′

A ` e : τ ′

Figure 12:Type checking rules III. Rules above the dotted line
are identical to those in Figure 7, or have been changed trivially
to support theρ qualifier. Rules below the line are new.

expand(boxed local ρ τ) , boxed global ρ τ

expand(〈τ1, τ2〉) , 〈pop(τ1), pop(τ2)〉
expand(τ) , τ otherwise

pop(boxed local ρ τ) , boxed local invalid τ

pop(〈τ1, τ2〉) , 〈pop(τ1), pop(τ2)〉
pop(τ) , τ otherwise

robust(boxed local valid τ) , false

robust(〈τ1, τ2〉) , robust(τ1) ∧ robust(τ2)

robust(τ) , true otherwise

Figure 13:Type manipulating functions III.

3.3.2 Selection Without Dereference

We can now demonstrate why it is important to have pair selec-
tion operators that do not also immediately dereference. Suppose
that we are given a global pointer to〈4, 〈x, 5〉〉, wherex is some
embedded local pointer. We wish to extractx. If selection is al-
ways coupled with dereference, then selecting the second compo-
nent of the pair would produce the unboxed value〈x, 5〉. There is
no global pointer associated with this value; we have carried the
local pointerx across processors, and can no longer safely use
it. Therefore, theexpandandpop functions will have correctly
markedx asinvalid.

However, if selection and dereferencing are distinct opera-
tions, we can do better. Given a global pointer to〈4, 〈x, 5〉〉,
selecting the second component will produce a global pointer
to 〈x, 5〉. Selecting the first component of this yields a global
pointer tox. We already know how to use global pointers to local
pointers: dereferencing yields a valid global pointer equivalent to
widen x.

Thus, we find that a sequence of selection operations must
not dereference too early. Selection should be treated as simple
pointer displacement. When extracting a value deeply embedded
in nested pairs, all selection displacements must be applied first,
and only then should the final offset pointer be dereferenced.

4 From Checking to Inference

The third system provides address space management, safe point-
ers, and updatable tuples. This forms a suitable starting point
for the design of a realistic language for manipulating distributed
mutable data structures. However, it is impractical to expect
programmers to systematically annotate programs withlocal,
global, valid, andinvalid type qualifiers; it is simply too
cumbersome and time consuming (see Section 5.1).

Fortunately, the type qualifiers we have described are quite
amenable to automatic inference. Figure 14 shows a set of infer-
ence rules directly derived from the third type system. One new
rule allows implicit coercion of pointers fromlocal to global.
This is allowed at the top level only, both to keep pair types con-
sistent as well as to avoid the well-known soundness problems in
allowing distinct aliases of mutable data to have different types.
For clarity of presentation, the rules use several abbreviations:

1. Constraints are not explicitly propagated up from subex-
pressions; assume that the complete constraint set is the
simple union of the sets of constraints induced by all subex-
pressions.

2. A nontrivial rule hypothesis such as

e : boxed ω valid τ

should be read as an equality constraint

e : τ0 τ0 = boxed ω valid τ

3. All constraint variables are fresh.

The inference rules induce a set of constraints on unknown
qualifiers; for example, the operand of any dereference operator
is constrained to be qualified asvalid. Figure 15 shows support-
ing functions that generate additional constraints. Type qualifier
inference requires finding a solution to the set of all constraints
induced by a program.

Some constraints generated by thepop androbust functions
have the following general form:

ω0 = global =⇒ (ω = global ∨ ρ = invalid)

A ` J : int

A(x) = τ

A ` x : τ

A(f) = τ → τ ′ A ` e : τ

A ` f e : τ ′

A ` e : τ

A ` ↑ e : boxed local valid τ

A ` e : boxed ω valid τ expand(ω, τ, τ ′)

A ` ↓ e : τ ′

A ` e : τ expand(global, τ, τ ′)

A ` transmit e : τ ′

A ` e : τ A ` e′ : τ ′

A ` e ; e′ : τ ′

A ` e : boxed ω valid τ
A ` e′ : τ robust(ω, τ)

A ` e := e′ : τ

A ` e1 : τ1 A ` e2 : τ2

A ` 〈e1, e2〉 : 〈τ1, τ2〉

A ` e : boxed ω ρ 〈τ1, τ2〉
A ` @n e : boxed ω ρ τn

. .

A ` e : boxed local ρ τ

A ` e : boxed global ρ τ

Figure 14: Type inference rules. Rules above the dotted line
correspond directly to type checking rules in Figure 12, while the
rule below the line is new.

These conditional constraints arise whenever data crosses a (pos-
sibly global) pointer. For example, when dereferencing a pointer
to a pair, if the pointer being dereferenced is global (ω0 =
global), then either a pointer embedded in the pair must also
be global (ω = global) or else it must be marked invalid
(ρ = invalid).

In general, solving conditional disjunctive constraints is NP-
complete, by reduction from satisfiability of boolean formulae in
3-conjunctive normal form. However, we can exploit the partic-
ular structure of this inference problem to find a solution more
efficiently.

Our goal is to minimize the number ofglobal pointers. The
conditional disjunctive constraints may leave us with a choice be-
tween having aglobal valid pointer and alocal invalid one.
If either would be correct, we will always preferlocal invalid.
Of course, if that pointer is required to bevalid elsewhere, then
local invalid is not an option and we must chooseglobal
valid instead.

The constraints have two important properties. First, the con-
straints on types can induce constraints on qualifiers, but con-
straints on qualifiers do not introduce constraints on types. Thus,
we can resolve the type constraints to obtain the complete set of
qualifier constraints. Second, the conditional qualifier constraints
mention onlyglobal/local qualifiers in the antecedents. This
observation suggests the following procedure for selecting a best
solution of the constraints:

1. Assume that initially we have an unqualified static typing
for the program. That is, we know what is a pointer, pair, or

expand(ω0, boxed ω ρ τ, boxed ω′ ρ′ τ ′) , {ω0 ≤ ω′, ω ≤ ω′, ρ = ρ′, τ = τ ′}
expand(ω0, 〈τ1, τ2〉, 〈τ ′1, τ ′2〉) , pop(ω0, τ1, τ

′
1) ∪ pop(ω0, τ2, τ

′
2)

expand(ω0, τ, τ ′) , {τ = τ ′} otherwise

pop(ω0, boxed ω ρ τ, boxed ω′ ρ′ τ ′) , {ω0 = global⇒ (ω = global ∨ ρ′ = invalid),

ω = ω′, ρ ≤ ρ′, τ = τ ′}
pop(ω0, 〈τ1, τ2〉, 〈τ ′1, τ ′2〉) , pop(ω0, τ1, τ

′
1) ∪ pop(ω0, τ2, τ

′
2)

pop(ω0, τ, τ ′) , {τ = τ ′} otherwise

robust(ω0, boxed ω ρ τ) , {ω0 = global =⇒ (ω = global ∨ ρ = invalid)}
robust(ω0, 〈τ1, τ2〉) , robust(ω0, τ1) ∪ robust(ω0, τ2)

robust(ω0, τ) , ∅ otherwise

Figure 15:Constraint generating functions.

integer, but we do not know which pointers are local, global,
valid, or invalid.

2. Using the equivalences in Figure 11, expand the type con-
straintsτ = τ ′ andτ ≤ τ ′ to obtain the complete set of
qualifier constraints.

3. Solve the unconditional equality and inclusion constraints
onρ variables. Set anyρ variable not required to bevalid
to invalid. At this point allρ variables are resolved.

4. Remove conditional constraints of the form

ω0 = global⇒ (ω = global ∨ invalid = invalid)

These are always satisfied.

5. Replace conditional constraints of the form

ω0 = global⇒ (ω = global ∨ valid = invalid)

by simplyω0 ≤ ω.

6. Resolve the conditional and unconditional constraints onω
variables. Set anyω variables not required to beglobal
to local. Note that the conditional constraints no longer
mentionρ variables, so this step cannot introduce an incon-
sistency. It is easy to show that there is a unique solution
minimizing the number ofω variables resolved toglobal.
This devolves to graph reachability, computable in time lin-
ear with respect to the number ofglobal qualifiers in the
solution [19,23].

7. Complete the program by adding a minimal set of explicit
widen operators wherever the newlocal-to-global coer-
cion rule has been used. This is similar to Henglein’smin-
imal completions[22], but with neither induced coercions
nor projections, and requiring only a linear-time pass across
the derivation tree.

We note that setting all possible variables toglobal and
valid will always produce one legitimate solution to the con-
straints. Thus, languages that require all pointers to beglobal
are safe, albeit overly conservative.

5 Experimental Implementation

5.1 A Practical Need for Sound Inference

Titanium is an experimental language for high-performance par-
allel computing. Titanium has the syntax and semantics of Java,
although it compiles to native machine code rather than virtual
machine bytecodes. Titanium extends Java with a distributed
global address space, where processes can address, read, and
write each other’s data across physical machine boundaries [24].

By default, all references in a Titanium program are assumed
to be global. This makes it easy to build simple programs that
work. It is also a suitable choice for architectures with true shared
memory (SMP’s), which Titanium also supports. However, when
tuning a program for speed, programmers may selectively declare
some references as local (e.g.within inner loops). If the program-
mer knows that a large array is always local, alocal declara-
tion causes the Titanium compiler to produce more efficient code
to traverse the local array. The compiler checks explicitlocal
qualifiers statically, using rules similar to those presented here.
For example, if a method expects a local pointer as a parameter,
passing it a global pointer is a simple type error [35].

This design allows programmer to ignore locality issues un-
til the code is running correctly and then addlocal qualifiers to
speed things up. However, Titanium does not provide qualifier in-
ference, and experience working with application developers has
shown that addinglocal qualifiers by hand is not easy. Arrays
of arrays of arrays are bewildering; static type errors are often
reported far away from the site of the offending declaration; and
the more aggressive one is at addinglocal qualifiers, the harder
it is to maintain a valid program in the long run.

Maintenance issues become dominant when dealing with
legacy code. Titanium incorporates a large portion of the stan-
dard Java class library into its own runtime environment. The
complete contents of thejava.io, java.lang, andjava.util
packages are available in Titanium. The Titanium compiler pro-
duces native code directly from Sun’s Java source code for these
packages. Incorporating the standard Java libraries is very de-
sirable: the libraries represent an enormous amount of work that
does not need to be repeated.

However, this large body of existing code was written for
Java, not Titanium. The three packages comprise sixteen thou-
sand lines of source code withoutlocal qualifiers. None of this
code uses Titanium’s cross-processor communication; but in the

absence of explicit qualifiers, every variable, field, and method
parameter defaults to a global reference. Methods are assumed
to return global references, making it even more difficult for pro-
grammers to use local references in their own code. Manually
annotating this large body of legacy Java code would be very te-
dious and would need to be redone with each new release from
Sun. Yet without reducing these global references to local, it may
be impossible to achieve acceptable performance.

Practicallocal qualification has proven unexpectedly dif-
ficult for programmers. Furthermore, formally defining how
local qualification may be used in a sound manner has been an
ongoing source of bugs in the Titanium language design. For
these reasons, we have implemented alocal qualification infer-
ence engine,LQI, and made it available as an optimization within
the Titanium compiler.

5.2 Accommodating Titanium Features

Titanium contains many features not present in the languages pre-
sented earlier. However, these may all be handled without diffi-
culty; the core issues of type expansion and pointer validity can
be extended to accommodate a realistic language. We briefly de-
scribe the highlights.

Titanium is object-oriented, with methods, inheritance, and
class- and interface-based polymorphism. A method’s actual ar-
guments must match its formals; thus, if a method is observed
to receive a global argument in any context, the corresponding
formal parameter is constrained to be global within the method
body. Titanium permits implicit coercion from local to global, so
a method can receive a local argument in one context and a global
elsewhere. The local argument is widened at the point of the call.

Native methods, which are implemented by external C code,
are treated conservatively. Because the compiler has no access
to the implementation, it is never safe to change either the for-
mal parameter types or the return type of a native method. This
conservative approach can be taken in any situation where only
partial information is available. For example, while the analysis
is currently whole-program, it could be made to accommodate
separate compilation by forcing conservative analysis at module
boundaries.

Inheritance simply induces additional constraints between
parent and child classes. A subclass is constrained to use iden-
tical types for any fields inherited from its parent. Interfaces and
overridden methods are handled in the same manner.

Arrays are treated similarly to references. An array of refer-
ences is akin to a pointer to ann-tuple of homogeneously-typed
pointers. A particularly tricky issue is handling type casts involv-
ing arrays. When an array is implicitly cast toObject, we forbid
changes to any “forgotten” qualifiers below the topmost level of
the array type. When anObject is dynamically cast back to an
array type, we also forbid changes to any “remembered” quali-
fiers below the topmost level. By holding the qualifiers fixed in
both cases, we ensure that any dynamic casts will behave identi-
cally in the original and optimized programs. Otherwise, if qual-
ifiers were changed in the array declaration but not the explicit
cast, or vice versa, dynamic cast failures would occur where none
existed in the original program.

5.3 Local Qualification Inference for Titanium

As implemented in the Titanium compiler, the LQI optimization
is slightly less powerful than the inference system presented in
Section 4. The initial pass, which identifies references that must
remainvalid, is omitted. Instead, it is assumed that all refer-
ences must be valid at all times. This is safe, if overly conser-
vative. In some cases, when data is copied across processors but

never subsequently used, the validity assumption may force refer-
ences to beglobal when they could have beenlocal invalid.

We have measured the effectiveness of LQI optimization on
several numerical kernels and applications. These include:

cannon Cannon’s algorithm for dense matrix multiplication. We
multiply a pair of random256× 256 matrixes.

lu-fact LU factorization for dense matrixes. We factor a
1024× 1024 element random matrix, partitioned into sixty
four 128× 128 element blocks. No pivoting is used.

sample Sample sort, a distributed sorting algorithm. We sort220

thirty two bit integer keys, with 64 keys per sample.

gsrb The Gauss-Seidel Red Black algorithm for solving ellip-
tic partial differential equations. We solve a2048 × 128
element problem, partitioned into four512 × 128 element
patches across 100 full iterations.

pps A parallel solver for elliptic equations with infinite domain
boundary conditions, using a two-level domain decompo-
sition approach. We solve a512 × 512 element problem
partitioned into four128× 128 element patches, with a re-
finement ratio of 16 between coarse and fine grids.

In all cases, the programs were run in parallel on four nodes
of the Berkeley Network of Workstations (NOW) [1, 16]. The
Titanium runtime system implements cross-processor reads and
writes by sending messages from node to node; Active Mes-
sages II provides the lightweight fast messaging substrate [28].

Table 2 shows our experimental results. Note that forcannon
andlu-fact, two sets of measurements were taken. The “man-
ual” measurements reflect the code as originally produced by the
programmer. In bothcannon andlu-fact, the programmer had
already deployed numerous explicitlocal qualifiers in an effort
to speed up the code. Thus, the “manual” measurements reflect
the additional speedup available fromlocal qualification oppor-
tunities that the programmer missed, even in these relatively small
kernels. The “auto” variants use the same code but with all ex-
plicit local qualifications removed. These reflect the opposite
extreme, where a programmer has relied completely upon LQI.

As one would expect, the manual variants show less relative
benefit than their auto counterparts. Forlu-fact, the program-
mer has already added so many explicit qualifications as to leave
little room for further improvement. However, the same program-
mer missed a few important spots incannon, even though the en-
tire program is only 180 lines long. LQI was able to discover and
optimize these for a 5.7% net speedup.

For bothcannon andlu-fact, manual annotation plus LQI
is just slightly faster than LQI alone. Human programmers can
add explicit casts that recoverlocal qualifiers, but which are
only correct due to deep properties of the program that static
analysis cannot reveal. This affirms our hypothesis that the best
design combines selective manual annotation with aggressive,
sound inference.

The measurements as a whole show that improvement varies
widely from program to program. In a sense, LQI identifies the
portion of a calculation that takes place locally, and optimizes that
to run using fastlocal pointers. Thus, the benefit to be gained
is directly dependent upon the locality of the underlying algo-
rithms. A program that genuinely uses lots of cross-processor
data will harbor few opportunities forlocal qualification. Con-
versely, an algorithm that has been specifically designed for scal-
able distributed operation will perform most work locally, and
only communicate very rarely. Such algorithms will show larger
speedups from LQI, and the relative speedup will become greater

Effect on Speed Effect on Code Size
Benchmark

Näıve LQI Improvement Näıve LQI Improvement
cannon manual 53.4 sec 50.3 sec 5.7% 43.5 MB 23.4 MB 46.2%
cannon auto 58.1 51.3 13.2% 43.0 23.6 45.2%
lu-fact manual 131.4 130.1 < 1.0% 78.1 44.6 42.9%
lu-fact auto 227.1 131.3 42.2% 87.4 44.9 48.7%
sample 29.2 21.4 26.6% 40.5 20.3 49.8%
gsrb 16.0 15.7 1.9% 99.1 64.4 35.0%
pps 92.2 40.3 56.3% 545.0 309.8 43.2%

Table 2:Titanium benchmark performance.

when working on increasingly large problems. This is particu-
larly evident inpps, a fairly new algorithm that is specifically
designed for scalable distributed operation. It performs relatively
more local calculations thangsrb, but is thereby able to greatly
reduce the amount of cross-processor communication [3]. Be-
cause communication is so costly, this gives much better perfor-
mance in general, and meshes particularly well with LQI, for an
impressive speedup. The anecdotal experience of the programmer
who wrotepps is illuminating. When asked if he had previously
put in many explicitlocal qualifiers, he replied “Yes, but ap-
parently not anywhere that it mattered.” LQI’s analysis is more
thorough and 56.3% more effective.

The primary concern of most Titanium programmers is exe-
cution speed. However, LQI also makes code smaller. As Tita-
nium is implemented on the NOW, local pointers require many
fewer instructions to use. Table 2 shows that LQI makes the
benchmarks’ code segments 35% to 50% smaller. These sizes
exclude code for the standard Java classes, likeString or Math.
If the standard classes are included as well, the overall reduction
is smaller, from 13% to 18% for a complete executable.

6 Related Work

Nearly one hundred distributed programming languages were
identified ten years ago [2], and many more have appeared since.
We highlight some representative examples of approaches previ-
ously taken to the local/global pointer problem.

Olden adds parallelism to C, focusing on dynamic structures
augmented with compiler-directed software caching and migra-
tion [10, 11, 32]. All Olden pointers are global, so it is never
possible to see an invalid local pointer from another proces-
sor’s address space. However, pointer operations require four
extra instructions to test the processor ID and decode the ma-
chine address. Data flow analyses can eliminate some redun-
dant checks, but address decoding always adds one instruction
of overhead. The inference described in this paper could com-
plement these analyses, using a faster (unencoded) representation
for those pointers that are statically guaranteed to be local.

Emerald also focuses on fine-grained object mobility [25].
While local and global are not distinguished at the source level,
selected object fields may be declared asattached. Because an
object and its transitively attached fields always live in the same
address space, the compiler can use fast local addresses to im-
plement attached fields. This is a safe alternative to the tech-
niques presented here, but may require more data motion to keep
attached fields colocated as objects migrate.

Cid [30], Split-C, and Titanium explicitly distinguish local
and global in the source language. Cid uses a single type for
all global pointers, the distributed equivalent ofvoid *. Split-C
assumes all pointers local unless declared otherwise, while Ti-
tanium references default to global. Cid and Split-C make lit-
tle effort to enforce soundness; while this is consistent with C’s

low-level approach, the difficulty of distributed debugging com-
pounds the standard issue of wild pointers. Titanium attempts to
be as safe Java, and does address some of the issues highlighted in
Section 3. However, it does not do so consistently or completely,
and one can easily craft unsound expressions. Those remaining
holes can now be closed in light of this research.

Compositional C++ [14] also offers explicit local and global
pointers. The CC++ language definition states that “a local
pointer cannot be accessed through a global pointer.” [9] How-
ever, it is not clear whether this rule is expected to be enforced at
compile time, run time, or not at all. Our experiments with the
CC++ compiler reveal that violations of this rule elicit obscure
internal error messages from late stages of the compiler, well be-
yond the point where type checking ought to have approved or re-
jected such operations. While this may be an improvement over
Cid and Split-C’s complete lack of static checking, it conserva-
tively forbids many operations that could have been given rea-
sonable, sound semantics. At best, CC++ might be interpreted as
statically forbidding roughly the same constructs that we would
permit with type expansion.

AC [12] and Unified Parallel C [13] offer alternate models
for distributed memory. Each of these languages divides memory
into several processor-specific private address spaces plus a single
shared space. However, a shared pointer into another processor’s
private space creates problems akin to those we have previously
seen. Such dangerous constructs will pass AC and UPC’s type
checking rules, but have no defined semantics in either language.
AC’s creators state that the language “is solidly in the C tradition.
Programmers can write efficient programs because they do not
have to pay the overhead of software protections.” As we have
illustrated, efficiency and software protection need not be mutu-
ally exclusive; a rich static type system can support both sound
language design as well as performance-boosting optimization.

Certain aspects of our approach may be applicable to other
models of distributed computing, such as those based on re-
mote procedure calls [6]. Inferred type qualifications might al-
low specialized marshaling for particular recipients. For example,
Java has no global pointers, so when an object is marshaled us-
ing Java remote method invocation, all other objects transitively
reachable from it must be marshaled as well [33]. Inference of
invalid qualifiers would let the sender prune this reachability
graph if the recipient were known to never traverse certain point-
ers. Conversely, CORBA objects always reference each other
with network-aware handles [31]. Inference oflocal qualifiers
could replace some handles with simple local pointers, thereby
reducing overhead. In general, any system based on distributed
objects may be able to leverage qualification inference to simplify
representations of data that never actually span the network.

7 Conclusions and Future Work

Distributed computing environments have distinct notions of lo-
cal and remote memory. However, explicitly distinguishing be-
tween pointer types creates several opportunities for unsound-
ness. We have described a suite of type systems that clarify these
problems and demonstrate how they can be avoided. A simple,
asymptotically efficient type inference system can automatically
insert an optimal set of qualifiers, reducing the burden on the pro-
grammer. Experiments with the Titanium language show that in-
ference can greatly improve performance, particularly for codes
specifically designed for scalable distributed execution.

The systems presented here could be enhanced in three impor-
tant ways. First, the assumption of a two-level memory could be
generalized ton levels of partitioned address spaces. This may
become important as simple distributed uniprocessors give way
to clusters of SMP’s, clusters of clusters, and other deep paral-
lel hierarchies. Second, the model should be extended to include
mobile code, an area of growing interest. A simple approach may
be to require that onlyrobustfree variables appear in any mobile
closure, but more study is needed. Finally, polymorphic analysis
of functions could be beneficial. For example, this would let Tita-
nium’s LQI automatically produce bothlocal andglobal vari-
ants of standard container classes likeVector or Hashtable, for
potentially larger improvements to performance.

8 Acknowledgements

Titanium benchmark programs were written by Siu Man Yau, Kar
Ming Tang, and Gregory T. Balls. Chris Harrelson adapted the
IBANE constraint solver shell for use within the Titanium com-
piler. Additional support came from members of the Titanium
and BANE research groups too numerous to mention, but without
whose help this research could not have taken place.

References

[1] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler,
J. M. Hellerstein, and D. M. Patterson. Searching for the
sorting record: Experiences in tuning NOW-sort. InPro-
ceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools (SPDT-98), pages 124–133. ACM Press,
1998.

[2] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Program-
ming languages for distributed computing systems.ACM
Computing Surveys, 21(3):261–322, Sept. 1989.

[3] G. T. Balls. A Finite Difference Domain Decomposition
Method Using Local Corrections for the Solution of Pois-
son’s Equation. PhD thesis, Department of Mechanical En-
gineering, University of California at Berkeley, 1999.

[4] S. T. Barnard and H. D. Simon. A fast multilevel implemen-
tation of recursive spectral bisection. InProceedings of the
Sixth SIAM Conference on Parallel Processing for Scientific
Computing, pages 711–718, Philadelphia, 1993. SIAM.

[5] J. Barnes and P. Hut. A hierarchicalO(N logN) force-
calculation algorithm.Nature, 324(4):446–449, Dec. 1986.

[6] A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. In A. L. Ananda and B. Srinivasan, editors,
Distributed Computing Systems: Concepts and Structures,
pages 89–109. IEEE Computer Society Press, 1992.

[7] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plax-
ton, S. J. Smith, and M. Zagha. A comparison of sorting
algorithms for the Connection Machine CM-2. InProceed-
ings of the 3rd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 3–16, Hilton Head, South
Carolina, July 21–24, 1991. SIGACT/SIGARCH.

[8] W. L. Briggs. A Multigrid Tutorial. SIAM Books, Philadel-
phia, 1987.

[9] P. Carlin, K. M. Chandy, and C. Kesselman. The composi-
tional C++ language definition. Technical Report 1993.cs-
tr-92-02, California Institute of Technology, Mar. 12, 1993.

[10] M. C. Carlisle. Olden: Parallelizing Programs with Dy-
namic Data Structures on Distributed-Memory Machines.
PhD thesis, Department of Computer Science, Princeton
University, June 1996.

[11] M. C. Carlisle and A. Rogers. Software caching and com-
putation migration in Olden. InProc. 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP’95, pages 29–38, Santa Barbara, California,
July 1995. Princeton.

[12] W. W. Carlson and J. M. Draper. Distributed data access in
AC. In Proc. 5th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP’95, pages
39–47, Santa Barbara, California, July 1995. IDA Super-
computing Research Center.

[13] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and lan-
guage specification. Technical Report CCS-TR-99-157,
IDA Center for Computing Sciences, May 13 1999.

[14] K. M. Chandy and C. Kesselman. Compositional C++:
Compositional parallel programming.Lecture Notes in
Computer Science, 757:124–144, 1993.

[15] J. Choi, J. Demmel, I. Dhillon, and J. Dongarra. ScaLA-
PACK: A portable linear algebra library for distributed
memory computers — design issues and performance.Lec-
ture Notes in Computer Science, 1041, 1996.

[16] D. E. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
B. Chun, S. Lumetta, A. Mainwaring, R. Martin,
C. Yoshikawa, and F. Wong. Parallel computing on the
Berkeley NOW. In9th Joint Symposium on Parallel Pro-
cessing, Kobe, Japan, 1997.

[17] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, S. Luna, T. von Eicken, and K. Yelick.
Introduction to Split-C. Computer Science Division, De-
partment of Electrical Engineering and Computer Science,
University of California at Berkeley, Apr. 1996. Version 1.0.

[18] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishna-
murthy, S. Lumetta, T. von Eicken, and K. Yelick. Paral-
lel programming in Split-C. In IEEE, editor,Proceedings,
Supercomputing ’93: Portland, Oregon, November 15–19,
1993, pages 262–273, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1993. IEEE Computer Society
Press.

[19] J. S. Foster, M. F̈ahndrich, and A. Aiken. A Theory of Type
Qualifiers. InProceedings of the 1999 ACM SIGPLAN Con-
ference on Programming Language Design and Implemen-
tation, pages 192–203, Atlanta, Georgia, May 1999.

[20] J. Gosling, B. Joy, and G. Steele.The JavaTM Language
Specification. The JavaTM Series. Addison-Wesley, Menlo
Park, California, first edition, 1996.

[21] L. Greengard and V. Rokhlin. A fast algorithm for particle
simulations. Journal of Computational Physics, 73:325–
348, 1987.

[22] F. Henglein. Dynamic typing. In B. Krieg-Brückner, editor,
Proc. European Symp. on Programming (ESOP), Rennes,
France, pages 233–253. Springer-Verlag, Feb. 1992. Lec-
ture Notes in Computer Science, Vol. 582.

[23] F. Henglein and J. Rehof. The complexity of subtype entail-
ment for simple types. InProceedings, Twelth Annual IEEE
Symposium on Logic in Computer Science, pages 352–361,
Warsaw, Poland, 29 June–2 July 1997. IEEE Computer So-
ciety Press.

[24] P. N. Hilfinger. Titanium Language Working Sketch, June
14 1999. Draft version 0.22w.

[25] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system.ACM Transactions on
Computer Systems, 6(1):109–133, Feb. 1988.

[26] A. Krishnamurthy. Analyses and optimizations for shared
address space programs. Ph.D. qualifying examination talk,
Nov. 1995.

[27] B. Liblit and A. Aiken. Type systems for distributed data
structures. Technical Report CSD-99-1072, University of
California, Berkeley, Jan. 25, 2000.

[28] A. Mainwaring and D. Culler. Active message applications
programming interface and communication subsystem or-
ganization. Technical Report CSD-96-918, University of
California, Berkeley, Oct. 14 1996.

[29] R. Milner, M. Tofte, and R. Harper.The Definition of Stan-
dard ML. The MIT Press, Cambridge, Mass., 1990.

[30] R. S. Nikhil. Parallel symbolic computing in Cid.Lecture
Notes in Computer Science, 1068, 1996.

[31] The Object Management Group, Framingham, Mas-
sachusetts.The Common Object Request Broker: Archi-
tecture and Specification, Oct. 1999. Revision 2.3.1.

[32] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren.
Supporting dynamic data structures on distributed-memory
machines.ACM Transactions on Programming Languages
and Systems, 17(2):233–263, Mar. 1995.

[33] Sun. Java remote method invocation specification. Techni-
cal report, Sun Microsystems, 1997.

[34] K. Yelick, D. Culler, and J. Demmel. Programming support
for clusters of multiprocessors (CLUMPs). Talk presented
at Lawrence Livermore National Laboratories, Mar. 1997.

[35] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: a high-performance
Java dialect. Concurrency: Practice and Experience,
10(11–13):825–836, Sept. 1998. Special Issue: Java for
High-performance Network Computing.

A Operational Semantics and Soundness

In this appendix we prove that the type checking system presented
in Section 3.3 is sound with respect to an operational semantics.
We focus on the sequential subset of the language, which includes
everything excepttransmit expressions. Because the semantic
problems with local and global pointers are the representation and
movement of pointers between address spaces, dealing with con-
currency complicates the semantics while also obscuring the core
issues. The language subset we work with is:

e ::= J | x | f e | ↑ e | ↓ e | widen e |
e1 ; e2 | e1 := e2 | 〈e1, e2〉 | @1 e | @2 e

Furthermore, we restrict primitive functions to be mappings from
integers to integers. This simplifies the proof without hiding any
core issues.

A.1 Semantic Domains

We use the following semantic domains. The treatment of stored
pairs is unusual and is explained below.

M the set of machines

A the set of local addresses

Id the set of identifiers

T the set of all types

G = M ×A global addresses

V = J+ A + G + V × V values

SV = J+ A + G + A×A values that can be stored

Store = G→ SV

Fun = J→ J

Env = Id→ Fun + V

We use the following conventions for naming elements of the se-
mantic domains.

m, m0, m
′, . . . ∈M a machine

v, v0, v
′, . . . ∈ V a value

sv, sv0, sv
′, . . . ∈ SV a storable value

S, S0, S
′, . . . ∈ Store a store

E ∈ Env the environment

e, e0, e
′, . . . a source expression

i, i0, i
′, . . . ∈ J an integer

g, g0, g
′, . . . ∈ G a global pointer

a, a0, a
′, . . . ∈ A a local pointer

In the operational semantics, the use ofi, a, or g in a hypothesis
should be read as a constraint, not a comment. That is, a hypoth-
esise→ i means thate must evaluate to an integer for the rule to
be applicable.

We write global addresses as a pair〈m, a〉 of machine and
local address. Global addresses can be distinguished from pair
values〈v1, v2〉 by context, as machines cannot be a component
of pairs.

A store is a finite function from global addresses to values.
When a value is created a new location in the store must be allo-
cated. The function

new : Store×M → A

takes a store and a machinem and returns a fresh local address.
We also use a shorthand

newn(m, S) = 〈a1, . . . , an〉

to simultaneously obtainn distinct fresh addresses in a local
memory. By “fresh” we mean thatnew satisfies:

new(m, S) = a =⇒ a /∈ dom(λa0.S(〈m, a0〉))

In other words, the new address is not already in use on machine
m.

Our treatment of pairs is unusual. Unboxed pairs are treated
as values, but only pairs of addresses are placed in the store. Be-
cause the operations@1 and@2 take the addresses of pair com-
ponents, and because these addresses are then first-class values,
we must model the location in the store of the components of
the pair as well as the pair itself. This is done most directly by
simply storing the two components of the pair at different ad-
dresses, rather than more usual solution of representing the entire
pair value with a single address. To maintain the knowledge that
these two components represent a pair we store the pair of ad-
dresses at the address of the pair itself.

For example, consider an unboxed pair consisting of two inte-
gers〈5, 6〉. Taking the address↑〈5, 6〉 forces the pair to be placed
in the storeS. Three new locations on the local machinem are
allocated to store the pair:

S(〈m, a1〉) = 〈a2, a3〉
S(〈m, a2〉) = 5

S(〈m, a3〉) = 6

The value of↑〈5, 6〉 is the pair addressa1. Selecting the address
of the first field@1 ↑〈5, 6〉 yields the valuea2.

Nested pair values are stored recursively when boxed. Thus
the expression↑〈〈5, 6〉, 7〉 allocates five new locations in the local
store for the three integers and two pairs:

S(〈m, a0〉) = 〈a1, a4〉
S(〈m, a1〉) = 〈a2, a3〉
S(〈m, a2〉) = 5

S(〈m, a3〉) = 6

S(〈m, a4〉) = 7

In practical language implementations only the “leaf” values 5,
6, and 7 are stored and the knowledge of the grouping of the ad-
dresses into pairs is maintained implicitly inside the compiler.
The stored pair values are the semantic representation of this
compiler knowledge.

Unboxing a nested pair is the inverse of boxing a pair: any
stored address pairs are traversed recursively to recreate the un-
boxed value. In the example just given↓ ↑〈〈5, 6〉, 7〉 is the value
〈〈5, 6〉, 7〉.

A.2 Operational Semantics

Operational rules have the form:

m, S0, E ` e→ v, S1

which should be read “on a given machinem in storeS0 and envi-
ronmentE, the expressione evaluates to the valuev and produces
a new storeS1.”

The rules for integer, variable, and function application ex-
pressions are simple.

m, S, E ` i→ i, S

E(x) = v ∈ V

m, S, E ` x→ v, S

m, S0, E ` e→ i, S1

E(f) = φ ∈ Fun φ(i) = i′

m, S0, E ` f e→ i′, S1

The rules for referencing and dereferencing values are more
elaborate. We need a number of auxiliary functions. Leta ·
〈b, c〉 = 〈a, b, c〉 be a tuple append operator. Append may also
be applied on the right〈b, c〉 · a = 〈b, c, a〉 and to sets of tuples:

a ·B = {a · b | b ∈ B}

A path is a tuple with elements appearing in an order described
by the regular expression($ | %)?sv. That is, a path consists
of a sequence of$ and%, except for the last element which is a
storable value. A path describes a sequence of selections within
nested pairs (taking either the left or right component) to reach a
storable value. We writet, t0, t′, . . . to denote paths.

A pure pathis a tuple with elements appearing in an order de-
scribed by the regular expression($ | %)?. We writep, p0, p

′, . . .
to denote pure paths. Figure 16 defines a number of functions on
paths and values.

Taking the address of any value but a pair simply boxes the
value by allocating a local address on the current processor and
storing the value at that address. As described above, the compo-
nents of pairs are recursively boxed.

m, S0, E ` e→ v, S1

Paths(v) = {p1, . . . , pl, pl+1 · svl+1, . . . , pn · svn} wherep1 = 〈〉
newn(m, S1) = {a1, . . . , an}

svi = 〈aj , ak〉 wherepi· $= pj andpi· %= pk, for 1 ≤ i ≤ l
S2 = S1[〈m, a1〉 ← sv1, . . . , 〈m, an〉 ← svn]

m, S0, E ` ↑ e→ a1, S2

For dereferences there are two cases. For a dereference of
a local pointer, we use the auxiliary functionValue defined in
Figure 16 to unbox the value. For a dereference of a global
pointer we use auxiliary functionWideValue, which widens any
local pointer appearing at the top level but is otherwise identical
to Value.

m, S0, E ` e→ a, S1

m, S0, E ` ↓ e→ Value(S1, 〈m, a〉), S1

m, S0, E ` e→ g, S1

m, S0, E ` ↓ e→ WideValue(S1, g), S1

The rules for widening, sequencing, and pairing are straight-
forward.

m, S0, E ` e→ a, S1

m, S0, E ` widen e→ 〈m, a〉, S1

m, S0, E ` e1 → v1, S1

m, S1, E ` e2 → v2, S2

m, S0, E ` e1 ; e2 → v2, S2

m, S0, E ` e1 → v1, S1

m, S1, E ` e2 → v2, S2

m, S0, E ` 〈e1, e2〉 → 〈v1, v2〉, S2

The rule for assignment is complicated by the semantics of
assigning into pairs. Assumea is a boxed local pointer to a pair

Paths(v) =

{
{〈〉} ∪ ($ ·Paths(v1)) ∪ (% ·Paths(v2)) if v = 〈v1, v2〉
{〈v〉} otherwise

LeafPaths(v) = {x | x ∈ Paths(v) ∧ x = p · sv}

LeafAddresses(S, 〈m, a〉) =


($ ·LeafAddresses(S, 〈m, a1〉)) if S(〈m, a〉) = 〈a1, a2〉
∪ (% ·LeafAddresses(S, 〈m, a2〉))
{〈〈m, a〉〉} otherwise

Value(S, 〈m, a〉) =


〈Value(S, 〈m, S(〈m, a1〉)〉), if S(〈m, a〉) = 〈a1, a2〉

Value(S, 〈m, S(〈m, a2〉)〉)〉
S(〈m, a〉) otherwise

WideValue(S, 〈m, a〉) =

{
〈m, a′〉 if S(〈m, a〉) = a′

Value(S, 〈m, a〉) otherwise

Figure 16:Auxiliary functions for boxing, unboxing, and assignment.

of integers. Then the assignmenta :=〈1, 2〉 overwrites the two
integers of the pair in the store with the integers 1 and 2. This
semantics corresponds directly to the structure assignment prim-
itive in the C programming language. The auxiliary functions
LeafAddressesand LeafPathsin Figure 16 provide the mecha-
nism for matching addresses with the values to be assigned. Note
that in the case whereS(〈m, a〉) and v are not pairs, the sets
of leaf addresses and leaf values are just{〈〈m, a〉〉} and{〈v〉}
respectively. There are two cases of assignment: one for assign-
ing across a local pointer and one for assigning across a global
pointer.

m, S0, E ` e1 → a, S1

m, S1, E ` e2 → v, S2

LeafAddresses(S2, 〈m, a〉) = {p1 · g1, . . . , pn · gn}
LeafPaths(v) = {p1 · sv1, . . . , pn · svn}

S3 = S2[g1 ← sv1, . . . , gn ← svn]

m, S0, E ` e1 := e2 → v, S3

m, S0, E ` e1 → g, S1

m, S1, E ` e2 → v, S2

LeafAddresses(S2, g) = {p1 · g1, . . . , pn · gn}
LeafPaths(v) = {p1 · sv1, . . . , pn · svn}

S3 = S2[g1 ← sv1, . . . , gn ← svn]

m, S0, E ` e1 := e2 → v, S3

The final four rules implement the@n operators, which return
the addresses of pair components.

m, S0, E ` e→ a, S1 S1(〈m, a〉) = 〈a1, a2〉
m, S0, E ` @1 e→ a1, S1

m, S0, E ` e→ a, S1 S1(〈m, a〉) = 〈a1, a2〉
m, S0, E ` @2 e→ a2, S1

m, S0, E ` e→ 〈m′, a〉, S1 S1(〈m′, a〉) = 〈a1, a2〉
m, S0, E ` @1 e→ 〈m′, a1〉, S1

m, S0, E ` e→ 〈m′, a〉, S1 S1(〈m′, a〉) = 〈a1, a2〉
m, S0, E ` @2 e→ 〈m′, a2〉, S1

A.3 Soundness

Before we can prove type soundness we need to state what repre-
sentation we expect the values of types to have. Figure 17 defines
a predicateConsistentthat recursively compares a type with a
value and a store to check that the value matches requirements of
the type. We say that a storeS on machinem is consistentwith
valuev and typeτ if Consistent(m, S, 〈v, τ〉) is true. We extend
consistency to apply to sets of values and types as well. IfU is
a set of value/type pairs, thenConsistent(m, S, U) if and only if
Consistent(m, S, u) for all u ∈ U .

To prove soundness, there is another issue we must address.
Our language allows pointer aliasing, and the language will be
unsound if stored pointer values can be given different types by
different aliases. In particular,

if x : boxed local valid boxed local invalid τ

and y : boxed local valid boxed local valid τ

andx andy happen to refer to the same pointer, then the type
system might permit an assignment of an invalid pointer into
x, thereby givingy a value that disagrees with its type. The
Consistentpredicate cannot detect this situation; to check this it
is necessary to compare all the different typings of each memory
address through all of its aliases to ensure they agree.

The function StoreTypein Figure 18 captures the needed
property. AStoreTypemaps mutable locations to types,⊥, or
>. The ordering of elements is⊥≤ τ ≤ >, with all typesτ be-
ing incomparable. The least upper bound of two elements is the
smallest element that is≥ to both. The least upper bound of two
functions is defined point-wise:

(f t f ′)(x) = f(x) t f ′(x)

If a store typingst has the property thatst(g) = >, then
the locationg is typed differently by two or more aliases of the
location; in this case we say the store typingst is not uniform.
If there is nog such thatst(g) = > then all of the aliases of all
mutable locations agree on the types of those locations: the store
typing isuniform. PredicateUniform in Figure 18 formalizes this
notion.

Data that is immutable need not have the same typing for ev-
ery alias.StoreTypedoes not require the top-level pointer encoun-
tered in its traversal of a value to have a uniform view everywhere.
This pointer is not itself mutable, only the data it points to is mu-
table.

U = V × T

U ∈ 2U

u, u0, u′, . . . ∈ U

Consistent : M × Store× U → boolean

Consistent(m, S, 〈i, int〉) ⇐⇒ true

Consistent(m, S, 〈a, boxed local invalid τ〉) ⇐⇒ true

Consistent(m, S, 〈g, boxed global invalid τ〉) ⇐⇒ true

Consistent(m, S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) ⇐⇒ Consistent(m, S, 〈v1, τ1〉)
∧ Consistent(m, S, 〈v2, τ2〉)

Consistent(m, S, 〈a, boxed local valid τ〉) ⇐⇒ S(〈m, a〉) is defined

∧ Consistent(m, S, 〈S(〈m, a〉), τ〉)
whereτ 6= 〈τ1, τ2〉

Consistent(m, S, 〈a, boxed local valid 〈τ1, τ2〉〉) ⇐⇒ S(〈m, a〉) = 〈a1, a2〉
∧ Consistent(m, S, 〈a1, boxed local valid τ1〉)
∧ Consistent(m, S, 〈a2, boxed local valid τ2〉)

Consistent(m, S, 〈〈m′, a〉, boxed global valid τ〉) ⇐⇒ S(〈m′, a〉) is defined

∧ Consistent(m′, S, 〈S(〈m′, a〉), τ〉)
whereτ 6= 〈τ1, τ2〉

Consistent(m, S, 〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉) ⇐⇒ S(〈m′, a〉) = 〈a1, a2〉
∧ Consistent(m, S, 〈〈m′, a1〉, boxed global valid τ1〉)
∧ Consistent(m, S, 〈〈m′, a2〉, boxed global valid τ2〉)

Consistent(m, S, U) ⇐⇒
∧

u∈U

Consistent(m, S, u)

Figure 17:Consistent stores.

Finally, the full notion of soundness we need simultaneously
confirms that the execution and type environments also agree. For
this purpose it is useful to combine the two environments pair-
wise, matching each variable’s value with its corresponding type:

E on A = {〈E(x), A(x)〉 ∈ U | x ∈ dom(E) ∩ dom(A)}

For the soundness proof we require that the execution and type
environments agree from the outset; that is,dom(E) = dom(A).

Because we do not have any iteration constructs in our small
language, all computations are terminating. We can use this fact
to sidestep the usual issues with showing type soundness even
for infinite computations. We simply show that if an expression
has any type then computation never goes wrong, provided the
computation is performed in an environment consistent with the
typing assumptions.

A.4 Main Soundness Theorem

Theorem 1. Let A ` e : τ . Assume thatm is a machine,S is
a store, andE is an environment such thatdom(E) = dom(A).
If initially

Uniform(StoreType(m, S, E on A))

then

m, S, E ` e→ v, S′

∧ Consistent(m, S′, (E on A) ∪ {〈v, τ〉})

i.e., computation succeeds and ends in a state where all values
have types consistent with the store.

The proof is omitted from this summary, but the interested
reader can find the complete version in [27].

ST = G→ (τ+ ⊥ +>)

StoreType : M × Store× U → ST

StoreType(m, S, 〈i, int〉) = λx. ⊥
StoreType(m, S, 〈a, boxed local invalid τ〉) = λx. ⊥

StoreType(m, S, 〈〈m′, a〉, boxed global invalid τ〉) = λx. ⊥

StoreType(m, S, 〈〈v1, v2〉, 〈τ1, τ2〉〉) = StoreType(m, S, 〈v1, τ1〉)
t StoreType(m, S, 〈v2, τ2〉)

StoreType(m, S, 〈a, boxed local valid τ〉) = λx. ⊥ [〈m, a〉 ← τ]

t StoreType(m, S, 〈S(〈m, a〉), τ〉)
whereτ 6= 〈τ1, τ2〉

StoreType(m, S, 〈a, boxed local valid 〈τ1, τ2〉〉) = λx. ⊥ [〈m, a〉 ← 〈τ1, τ2〉]
t StoreType(m, S, 〈a1, boxed local valid τ1〉)
t StoreType(m, S, 〈a2, boxed local valid τ2〉)

whereS(〈m, a〉) = 〈a1, a2〉

StoreType(m, S, 〈〈m′, a〉, boxed global valid τ〉) = λx. ⊥ [〈m′, a〉 ← τ]

t StoreType(m′, S, 〈S(〈m′, a〉), τ〉)
whereτ 6= 〈τ1, τ2〉

StoreType(m, S, 〈〈m′, a〉, boxed global valid 〈τ1, τ2〉〉) = λx. ⊥ [〈m′, a〉 ← 〈τ1, τ2〉]
t StoreType(m, S, 〈〈m′, a1〉, boxed global valid τ1〉)
t StoreType(m, S, 〈〈m′, a2〉, boxed global valid τ2〉)

whereS(〈m′, a〉) = 〈a1, a2〉

StoreType(m, S, U) =
⊔

u∈U

StoreType(m, S, u)

Uniform : ST → boolean

Uniform(st) ⇐⇒ @g.st(g) = >

Figure 18:Uniform store typings.

	Introduction
	Background
	A Progression of Type Systems
	System I: Simple Pointers
	Implicit Type Expansion

	System II: Assignable Pointers
	Type Expansion Versus Assignment

	System III: Assignable Tuples
	Consistent Representation of Pairs
	Selection Without Dereference

	From Checking to Inference
	Experimental Implementation
	A Practical Need for Sound Inference
	Accommodating Titanium Features
	Local Qualification Inference for Titanium

	Related Work
	Conclusions and Future Work
	Acknowledgements
	Operational Semantics and Soundness
	Semantic Domains
	Operational Semantics
	Soundness
	Main Soundness Theorem

