
Statistical Debugging of Sampled Programs

Alice X. Zheng
EE Division
UC Berkeley

alicez@cs.berkeley.edu

Michael I. Jordan
CS Division and Department of Statistics

UC Berkeley
jordan@cs.berkeley.edu

Ben Liblit
CS Division
UC Berkeley

liblit@cs.berkeley.edu

Alex Aiken
CS Division
UC Berkeley

aiken@cs.berkeley.edu

Abstract

We present a novel strategy for automatically debugging programs given
sampled data from thousands of actual user runs. Our goal is to pinpoint
those features that are most correlated with crashes. This is accomplished
by maximizing an appropriately defined utility function. It has analogies
with intuitive debugging heuristics, and, as we demonstrate, is able to
deal with various types of bugs that occur in real programs.

1 Introduction

No software is perfect, and debugging is a resource-consuming process. Most users take
software bugs for granted, and willingly run buggy programs every day with little com-
plaint. In some sense, these user runs of the program are the ideal test suite any software
engineer could hope for. In an effort to harness the information contained in these field
tests, companies like Netscape/Mozilla and Microsoft have developed automated, opt-in
feedback systems. User crash reports are used to direct debugging efforts toward those
bugs which seem to affect the most people.

However, we can do much more with the information users may provide. Even if we collect
just a little bit of information from every user run, successful or not, we may end up with
enough information to automatically pinpoint the locations of bugs. In earlier work [1] we
present a program sampling framework that collects data from users at minimal cost; the
aggregated runs are then analyzed to isolate the bugs. Specifically, we learn a classifier
on the data set, regularizing the parameters so that only the few features that are highly
predictive of the outcome have large non-zero weights.

One limitation of this earlier approach is that it uses different methods to deal with different
types of bugs. In this paper, we describe how to design a single classification utility function
that integrates the various debugging heuristics. In particular, determinism of some features
is a significant issue in this domain, and an additional penalty term for false positives is
included to deal with this aspect. Furthermore, utility levels, while subjective, are robust:
we offer simple guidelines for their selection, and demonstrate that results remain stable
and strong across a wide range of reasonable parameter settings.

We start by briefly describing the program sampling framework in Section 2, and present
the feature selection framework in Section 3. The test programs and our data set are de-
scribed in Section 4, followed by experimental results in Section 5.

2 Program Sampling Framework

Our approach relies on being able to collect information about program behavior at runtime.
To avoid paying large costs in time or space, we sparsely sample the program’s runtime
behavior. We scatter a large number of checks in the program code, but do not execute all
of them during any single run. The sampled results are aggregated into counts which no
longer contain chronology information but are much more space efficient.

To catch certain types of bugs, one asks certain types of questions. For instance, function
call return values are good sanity checks which many programmers neglect. Memory cor-
ruption is another common class of bugs, for which we may check whether pointers are
within their prescribed ranges. We add a large set of commonly useful assertions into the
code, most of which are wild guesses which may or may not capture interesting behavior.
At runtime, the program tosses a coin (with low heads probability) independently for each
assertion it encounters, and decides whether or not to execute the assertion.

However, while it is not expensive to generate a random coin toss, doing so separately for
each assertion would incur a very large overhead; the program will run even slower than
just executing every assertion. The key is to combine coin tosses. Given i.i.d. Bernoulli
random variables with success probabilityh, the number of trials it takes until the first
success is a geometric random variable with probabilityP (n) = (1 − h)n−1h. Instead of
tossing a Bernoulli coinn times, we can generate a geometric random variable to be used
as a countdown to the next sample. Each assertion decrements this countdown by1; when
it reaches0, we perform the assertion and generate another geometric random variable.1

However, checking to see if the counter has reached0 at every assertion is still an expensive
procedure. For further code optimization, we analyze each contiguous acyclic code region
(loops- and recursion-free) at compile time and count the maximum number of assertions
on any path through that region. Whenever possible, the generated code decrements in
bulk, and takes a fast path that skips over the individual checks within a contiguous code
region using just a single check against this maximum threshold.

Samples are taken in chronological order as the program runs. Useful as it might be, it
would take a huge amount of space to record this information. To save space, we instead
record only the counts of how often each assertion is found to be true or false. When the
program finishes, these counts, along with the program exit status, are sent back to the
central server for further analysis.

The program sampling framework is a non-trivial software analysis effort. Interested read-
ers may refer to [1] for a more thorough treatment of all the subtleties, along with detailed
analyses of performance impact at different sampling rates.

3 Classification and Feature Selection

In the hopes of catching a wide range of bugs, we add a large number of rather wild guesses
into the code. Having cast a much bigger net than what we may need, the next step is to
identify the relevant features. Let crashes be labeled with an output of1, and successes
labeled with0. Knowing the final program exit status (crashed or successful) leaves us in

1The sampling densityh controls the tradeoff between runtime overhead and data sparsity. It is
set to be small enough to have tolerable overhead, which then requires more runs in order to alleviate
the effects of sparsity. This is not a problem for large programs like Mozilla and Windows with
thousands of crash reports a day.

a classification setting. However, our primary goal is that of feature selection [2]. Good
feature selection should be corroborated by classification performance, though in our case,
we only care about features that correctly predict one of the two classes. Hence, instead of
working in the usual maximum likelihood setting for classification and regularization, we
define and maximize a more appropriate utility function. Ultimately, we will see that the
two are not wholly unrelated.

It has been noted that the goals of variable and feature selection do not always coincide
with that of classification [3]. Classification is but the means to an end. As we demonstrate
in Section 5, good classification performance assures the user that the system is working
correctly, but one still has to examine the selected features to see that they make sense.

3.1 Some characteristics of the problem

We concentrate on isolating the bugs that are caused by the occurrence of a small set of
features, i.e. assertions that are always true when a crash occurs.2 We want to identify the
predicate counts that are positively correlated with the program crashing. In contrast, we
do not care much about the features that are highly correlated with successes. This makes
our feature selection an inherently one-sided process.

Due to sampling effects, it is quite possible that a feature responsible for the ultimate crash
may not have been observed in a given run. This is especially true in the case of “quick and
painless” deaths, where a program crashes very soon after the actual bug occurs. Normally
this would be an easy bug to find, because one wouldn’t have to look very far beyond
the crashing point at the top of the stack. However, this is a challenge for our approach,
because there may be only a single opportunity to sample the buggy feature before the
program dies. Thus many crashes may have an input feature profile that is very similar to
that of a successful run. From the classification perspective, this means that false negatives
are quite likely.

At the other end of the spectrum, if we are dealing with adeterministic bug3, false positives
should have a probability of zero: if the buggy feature is observed to be true, then the
program has to crash; if the program did not crash, then the bug must not have occurred.
Therefore, for a deterministic bug, any false positives during the training process should
incur a much larger penalty compared to any false negatives.

3.2 Designing the utility function

Let (x, y) denote a data point, wherex is an input vector of non-negative integer counts, and
y ∈ {0, 1} is the output label. Letf(x; θ) denote a classifier with parameter vectorθ. There
are four possible prediction outcomes:y = 1 andf(x; θ) = 1, y = 0 andf(x; θ) = 0,
y = 1 andf(x; θ) = 0, andy = 0 andf(x; θ) = 1. The last two cases represent false
negative and false positive, respectively. In the general form of utility maximization for
classification (see, e.g., [4]), we can define separate utility functions for each of the four
cases, and maximize the sum of the expected utilities:

max
θ

EP (Y |x)U(Y, x; θ), (1)

where U(Y, x; θ) = u1(x; θ)Y I{f(x;θ)=1} + u2(x; θ)Y I{f(x;θ)=0}

+ u3(x; θ)(1− Y)I{f(x;θ)=0} + u4(x; θ)(1− Y)I{f(x;θ)=1} + v(θ), (2)

2There are bugs that are caused by non-occurrence of certain events, such as forgotten initializa-
tions. We do not focus on this type of bugs in this paper.

3A bug isdeterministicif it crashes the program every time it is observed. For example, derefer-
encing a null pointer would crash the program without exception. Note that this notion of determinism
is data-dependent: it is always predicated on the trial runs that we have seen.

and whereIW is the indicator function for eventW . Theui(x; θ) functions specify the
utility of each case.v(θ) is a regularization term, and can be interpreted as a prior over the
classifier parametersθ in the Bayesian terminology.

We can approximate the distributionP (Y |x) simply by its empirical distribution,P (Y =
1|x; θ) := P̂ (Y = 1|x) = y. The actual distribution of input featuresX is determined by
the software under examination, hence it is difficult to specify and highly non-Gaussian.
Thus we need a discriminative classifier. Letz = θT x, where thex vector is now aug-
mented by a trailing1 to represent the intercept term.4 We use the logistic functionµ(z) to
model the class conditional probability:

P (Y = 1|x) := µ(z) = 1/(1 + e−z). (3)

The decision boundary is set to1/2, so thatf(x; θ) = 1 if µ(z) > 1/2, andf(x; θ) = 0
if µ(z) ≤ 1/2. The regularization term is chosen to be the`1 norm of θ, which has the
effect of driving mostθi’s to zero:v(θ) := −λ|θ|11 = −λ

∑
i |θi|. To slightly simplify the

formula, we choose the same functional form foru1 andu2, but add an extra penalty term
for false positives:

u1(x; θ) := u2(x; θ) := δ1(log2 µ(x; θ) + 1) (4)

u3(x; θ) := δ2(log2(1− µ(x; θ)) + 1) (5)

u4(x; θ) := δ2(log2(1− µ(x; θ)) + 1)− δ3θ
T x . (6)

Note that the additive constants do not affect the outcome of the optimization; they merely
ensure that utility at the decision boundary is zero. Also, we can fold any multiplicative
constants of the utility functions intoδi, so the base of thelog function is freely exchange-
able. We find that the expected utility function is equivalent to:

E U = δ1y log µ + δ2(1− y) log(1− µ)− δ3θ
T x(1− y)I{µ>1/2} − λ‖θ‖1

1 . (7)

Whenδ1 = δ2 = 1 andδ3 = 0, Eqn. (7) is akin to the Lasso [5] (standard logistic regression
with ML parameter estimation and̀1-norm regularization). In general, this expected utility
function weighs each class separately usingδi, and has an additional penalty term for false
positives.

Parameter learning is done using stochastic (sub)gradient ascent on the objective function.
Besides having desirable properties like fast convergence rate and space efficiency, such
on-line methods also improve user privacy. Once the sufficient statistics are collected, the
trial run can be discarded, thus obviating the need to permanently store any user’s private
data on a central server.

Eqn. (7) is concave inθ, but the`1 norm and the indicator function are non-differentiable
atθi = 0 andθT x = 0, respectively. This can be handled by subgradient ascent methods5.
In practice, we jitter the solution away from the point of non-differentiability by taking a
very small step along any subgradient. This means that none of theθi’s will ever be exactly
zero. But this does not matter since weights close enough to zero are essentially taken as
zero. Only the few features with the most positive weights are selected at the end.

3.3 Interpretation of the utility functions

Let us closely examine the utility functions defined in Eqns. (4)–(6). For the case ofY = 1,
Fig. 1(a) plots the functionlog2 µ(z) + 1. It is positive whenz is positive, and approaches

4Assuming that the more abnormalities there are, the more likely it is for the program to crash, it
is reasonable to use a classifier based on a linear combination of features.

5Subgradients are a generalization of gradients that are also defined at non-differentiable points.
A subgradient for a convex function is any sublinear function pivoted at that point, and minorizing
the entire convex function. For convex (concave) optimization, any subgradient is a feasible descent
(ascent) direction. For more details, see, e.g., [6].

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1
{z>0}

log
2
µ(z)+1

z
u(

z)

(a) Y = 1

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

log
2
(1−µ(z))+1

1
{z<0}

−z/ln2

−z/2ln2

z

u(
z)

(b) Y = 0

Figure 1: (a) Plot of the true positive indicator function and the utility functionlog2 µ(z)+
1. (b) Plot of the true negative indicator function, utility functionlog2(1− µ(z)) + 1, and
its asymptotic slopes−z/ log 2 and−z/2 log 2.

1 asz approaches+∞. It is a crude but smooth approximation of the indicator function
for a true positive,yI{µ>1/2}. On the other hand, whenz is negative, the utility function
is negative, acting as a penalty for false negatives. Similarly, Fig. 1(b) plots the utility
functions forY = 0. In both cases, the utilify function has an upper bound of1, so that the
effect of correct classifications is limited. On the other hand, incorrect classifications are
undesirable, thus their penalty is an unbounded (but slowly deceasing) negative number.

Taking the derivatived
dz log2(1−µ(z)+1) = −µ(z)/ log 2, we see that, whenz is positive,

−1 ≤ −µ(z) ≤ −1/2, solog2(1− µ(z)) + 1 is sandwiched between two linear functions
−z/ log 2 and−z/2 log 2. It starts off being closer to−z/2 log 2, but approaches−z/ log 2
asymptotically (see Fig. 1(b)). Hence, when the false positive is close to the decision
boundary, the additional penalty ofθT x = z in Eqn. (6) is larger than the default false
positive penalty, though the two are asymptotically equivalent.

Let us turn to the roles of the multiplicative weights.δ1 andδ2 weigh the relative impor-
tance of the two classes, and can be used to deal with imbalanced training sets where one
class is disproportionately larger than the other [7]. Most of the time a program exits suc-
cessfully without crashing, so we have to deal with having many more successful runs than
crashed runs (see Section 5). Furthermore, since we really only care about predicting class
1, increasingδ1 beyond an equal balance of the two data sets could be beneficial for feature
selection performance. Finally,δ3 is the knob of determinism: if the bug is deterministic,
then settingδ3 to a large value will severely penalize false positives; if the bug is not deter-
ministic, then a small value forδ3 affords the necessary slack to accommodate runs which
should have failed but did not. As we shall see in Section 5, if the bug is truly deterministic,
then the quality of the final features selected will be higher for largeδ3 values.

In a previous paper [1], we outlined some simple feature elimination heuristics that can be
used in the case of a deterministic bug.〈Elimination by universal falsehood〉 discards
any counter that is always zero, because it likely represents an assertion that can never
be true. This is a very common data preprocessing step.〈Elimination by lack of failing
example〉 discards any counter that is zero on all crashes, because what never happens
cannot have caused the crash.〈Elimination by successful counterexample〉 discards
any counter that is non-zero on any successful run, because these are assertions that can be
true without a subsequent program failure. In our model, if a featurexi is never positive
for any crashes, then its associated weightθi will only decrease in the maximization pro-
cess. Thus it will not be selected as a crash-predictive feature. This handles〈elimination
by lack of failing example〉. Also, if a heavily weighted featurexi is positive on a suc-
cessful run in the training set, then the classifier is more likely to result in a false positive.
The false positive penalty term will then decrease the weightθi, so that such a feature is
unlikely to be chosen at the end. Thus utility maximization also handles〈elimination by
successful counterexample〉. The model we derive here, then, neatly subsumes the ad
hoc elimination heuristics used in our earlier work.

4 Two Case Studies

As examples, we present two cases studies of C programs with bugs that are at the op-
posite ends of the determinism spectrum. Our deterministic example isccrypt , a small
encryption utility.ccrypt -1.2 is known to contain a bug that involves overwriting exist-
ing files. If the user responds to a confirmation prompt withEOFrather thanyes or no ,
ccrypt consistently crashes. Our non-deterministic example is GNUbc -1.06, the Unix
command line calculator tool. We find that feedingbc nine megabytes of random input
causes it to crash roughly one time in four while callingmalloc() — a strong indication
of heap corruption. Such bugs are inherently difficult to fix because they are inherently
non-deterministic: there is no guarantee that a mangled heap will cause a crash soon or
indeed at all.

ccrypt ’s sensitivity toEOFinputs suggests that the problem has something to do with its
interactions with standard file operations. Thus, randomly sampling function return values
may identify key operations close to the bug. Our instrumented program adds instrumen-
tation after each function call to sample and record the number of times the return value is
negative, zero, or positive. There are570 call sites of interest, for570 × 3 = 1710 coun-
ters. In lieu of a large user community, we generate many runs artificially using reasonable
inputs. Each run uses a randomly selected set of present or absent files, randomized com-
mand line flags, and randomized responses toccrypt prompts including the occasional
EOF. We have collected7204 trial runs at a sampling rate of1/100, 1162 of which result
in a crash. 6516 (≈ 90%) of these trial runs are randomly selected for training, and the
remaining688 held aside for cross-validation. Out of the1710 counter features,1542 are
constant across all runs, leaving168 counters to be considered in the training process.

In the case ofbc , we are interested in the behavior of all pointers and buffers. All pointers
and array indices are scalars, hence we compare all pairs of scalar values. At any direct
assignment to a scalar variablea, we identify all other variablesb1, b2, . . . , bn of the same
type that are also in scope. We record the number of times thata is found to be greater
than, equal to, or less than eachbi. Additionally, we compare each pointer to theNULL
value. There are30150 counters in all, of which2908 are not constant across all runs. Our
bc data set consists of3051 runs with distinct random inputs at a sampling rate of1/1000.
2729 of these runs are randomly chosen as training set,322 for the hold-out set.

5 Experimental Results

We maximize the utility function in Eqn. (7) using stochastic subgradient ascent with a
learning rate of10−5. In order to make the magnitude of the weightsθi comparable to
each other, the feature values are shifted and scaled to lie between[0, 1], then normalized
to have unit variance. There are four learning parameters,δ1, δ2, δ3, andλ. Since only their
relative scale is important, the regularization parameterλ can be set to some fixed value
(we use0.1). For each setting ofδi, the model is set to run for 60 iterations through the
training set, though the process usually converges much sooner. Forbc , this takes roughly
110 seconds in MATLAB on a 1.8 GHz Pentium 4 CPU with 1 GB of RAM. The smaller
ccrypt dataset requires just under8 seconds.

The values ofδ1, δ2, andδ3 can all be set through cross-validation. However, this may
take a long time, plus we would like to leave the ultimate control of the values to the users
of this tool. The more important knobs areδ1 and δ3: the former controls the relative
importance of classification performance on crashed runs, the latter adjusts the believed
level of determinism of the bug. Here are some guidelines for settingδ1 andδ3 that we find
to work well in practice. (1) In order to counter the effects of imbalanced datasets, the ratio
of δ1/δ2 should be at least around the range of the ratio of successful to crashed runs. This
is especially crucial for theccrypt data set, which contains roughly32 successful runs
for every crash. (2)δ3 should not be higher thanδ1, because it is ultimately more important

1 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

δ
1

be
st

 s
co

re

(a) ccrypt

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

δ
3

be
st

 s
co

re

(b) ccrypt, δ
1
 = 30

1 5 10 15 20
1

1.2

1.4

1.6

1.8

2

δ
1

be
st

 s
co

re

(c) bc

0 1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

δ
3

be
st

 s
co

re

(d) bc, δ
1
 = 5

Figure 2: (a,b) Cross-validation scores for theccrypt data set; (c,d) Cross-validation
scores for thebc data set. All scores shown are the maximum over free parameters.

to correctly classify crashes than to not have any false positives.

As a performance metric, we look at the hold-out set confusion matrix and define the score
as the sum of the percentages of correctly classified data points for each class. Fig. 2(a)
shows a plot of cross-validation score (maximum over a number of settings forδ2 and
δ3) for theccrypt data set at variousδ1 values. It is apparent from the plot that anyδ1

values in the range of[10, 50] are roughly equivalent in terms of classification performance.
Specifically, for the case ofδ1 = 30 (which is around the range suggested by Guideline 1
above), Fig. 2(b) shows the cross-validation scores plotted against different values forδ3.
In this case, as long asδ3 is in the rough range of[3, 15], the classification performance
remains the same.6

Furthermore, settings forδ1 andδ3 that are safe for classification also select high quality
features for debugging. The “smoking gun” which directly indicates theccrypt bug is:

traverse.c:122: xreadline() return value == 0

This call toxreadline() returns0 if the input terminal is atEOF. In all of the above
mentioned safe settings forδ1 andδ3, this feature is returned as the top feature. The rest
of the higher ranked features are sufficient, but not necessary, conditions for a crash. The
only difference is that, in more optimal settings, the separation between the top feature and
the rest can be as large as an order of magnitude; in non-optimal settings (classification
score-wise), the separation is smaller.

For bc , the classification results are even less sensitive to the particular settings ofδ1, δ2,
andδ3. (See Fig. 2(c,d).) The classification score is roughly constant forδ1 ∈ [5, 20], and
for a particular value ofδ1, such asδ1 = 5, the value ofδ3 has little impact on classification
performance. This is to be expected: the bug inbc is non-deterministic, and therefore false
positives do indeed exist in the training set. Hence any small value forδ3 will do.

As for the feature selection results forbc , for all reasonable parameter settings (and even
those that do not have the best classification performance), the top features are a group of
correlated counters that all point to the index of an array being abnormally big. Below are
the top five features forδ1 = 10, δ2 = 2, δ3 = 1:

1. storage.c:176: more arrays(): indx > optopt
2. storage.c:176: more arrays(): indx > opterr
3. storage.c:176: more arrays(): indx > use math
4. storage.c:176: more arrays(): indx > quiet
5. storage.c:176: more arrays(): indx > f count

6In Fig. 2(b), the classification performance forδ1 = 30 andδ3 = 0 is deceptively high. In
this case, the bestδ2 value is5, which offsets the cross-validation score by increasing the number
of predicted non-crashes, at the expense of worse crash-prediction performance. The top feature
becomes a necessary but not sufficient condition for a crash – a false positive-inducing feature! Hence
the lesson is that if the bug is believed to be deterministic thenδ3 should always be positive.

These features immediately point to line 176 of the filestorage.c . They also indicate
that the variableindx seems to be abnormally big. Indeed,indx is the array index that
runs over the actual array length, which is contained in the integer variablea count .
The program may crash long after the first array bound violation, which means that there
are many opportunities for the sampling framework to observe the abnormally big value
of indx . Since there are many comparisons betweenindx and other integer variables,
there is a large set of inter-correlated counters, any subset of which may be picked by our
algorithm as the top features. In the training run shown above, the smoking gun ofindx
> a count is ranked number 8. But in general its rank could be much smaller, because
the top features already suffice for predicting crashes and pointing us to the right line in the
code.

6 Conclusions and Future Work

Our goal is a system that automatically pinpoints the location of bugs in widely deployed
software. We tackle different types of bugs using a custom-designed utility function with
a “determinism level” knob. Our methods are shown to work on two real-world programs,
and are able to locate the bugs in a range of parameter settings.

In the real world, programs contain not just one, but many bugs, which will not be distinctly
labeled in the set of crashed runs. It is difficult to tease out the different failure modes
through clustering: it relies on macro-level usage patterns, as opposed to the microscopic
difference between failures. In on-going research, we are extending our approach to deal
with the problem of multiple bugs in larger programs. We are also working on modifying
the program sampling framework to allow denser sampling in more important regions of
the code. This should alleviate the sparsity of features while reducing the number of runs
required to yield useful results.

Acknowledgments

This work was supported in part by ONR MURI Grant N00014-00-1-0637; NASA Grant
No. NAG2-1210; NSF Grant Nos. EIA-9802069, CCR-0085949, ACI-9619020, and IIS-
9988642; DOE Prime Contract No. W-7405-ENG-48 through Memorandum Agreement
No. B504962 with LLNL.

References

[1] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program sampling.
In ACM SIGPLAN PLDI 2003, 2003.

[2] A. Blum and P. Langley. Selection of relevant features and examples in machine learning.Arti-
ficial Intelligence, 97(1-2):245–271, 1997.

[3] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Journal of Machine
Learning Research, 3:1157–1182, March 2003.

[4] E. L. Lehmann.Testing Statistical Hypotheses. John Wiley & Sons, 2nd edition, 1986.

[5] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning. Springer–Verlag,
2001.

[6] J.-B. Hiriart-Urruty and C. Lemarechal.Convex Analysis and Minimization Algorithms, vol-
ume II. Springer–Verlag, 1993.

[7] N. Japkowicz and S. Stephen. The class imbalance problem: a systematic study.Intelligent Data
Analysis Journal, 6(5), November 2002.

	Introduction
	Program Sampling Framework
	Classification and Feature Selection
	Some characteristics of the problem
	Designing the utility function
	Interpretation of the utility functions

	Two Case Studies
	Experimental Results
	Conclusions and Future Work

