
Automated Concurrency-Bug Fixing

Guoliang Jin Wei Zhang Dongdong Deng Ben Liblit Shan Lu
University of Wisconsin–Madison

{aliang,wzh,dongdong,liblit,shanlu}@cs.wisc.edu

Abstract
Concurrency bugs are widespread in multithreaded pro-
grams. Fixing them is time-consuming and error-prone.
We present CFix, a system that automates the repair of
concurrency bugs. CFix works with a wide variety of
concurrency-bug detectors. For each failure-inducing inter-
leaving reported by a bug detector, CFix first determines a
combination of mutual-exclusion and order relationships
that, once enforced, can prevent the buggy interleaving.
CFix then uses static analysis and testing to determine
where to insert what synchronization operations to force
the desired mutual-exclusion and order relationships, with
a best effort to avoid deadlocks and excessive performance
losses. CFix also simplifies its own patches by merging
fixes for related bugs.

Evaluation using four different types of bug detectors
and thirteen real-world concurrency-bug cases shows that
CFix can successfully patch these cases without causing
deadlocks or excessive performance degradation. Patches
automatically generated by CFix are of similar quality to
those manually written by developers.

1 Introduction

1.1 Motivation

Concurrency bugs in multithreaded programs have already
caused real-world disasters [27, 46] and are a growing
threat to software reliability in the multi-core era. Tools
to detect data races [12, 50, 68], atomicity violations
[7, 13, 30, 31], order violations [16, 33, 66, 69], and ab-
normal inter-thread data dependencies [53, 70] have been
proposed. However, finding bugs is just a start. Software
reliability does not improve until bugs are actually fixed.

Bug fixing is time-consuming [38] and error-prone [54].
Concurrency bugs in particular bring unique challenges,
such as understanding synchronization problems, selecting
and using the right synchronization primitives in the right
way, and maintaining performance and readability while
adding synchronization into multi-threaded software. A
previous study of open-source software [32] finds that it
takes 73 days on average to correctly fix a concurrency
bug. A study of operating-system patches [65] shows that
among common bug types, concurrency bugs are the most

difficult to fix correctly. 39% of patches to concurrency
bugs in released operating system code are incorrect, a
ratio 4 – 6 times higher than that of memory-bug patches.

Fortunately, concurrency bugs may be more amenable to
automated repair than sequential bugs. Most concurrency
bugs only cause software to fail rarely and nondetermin-
istically. The correct behavior is already present as some
safe subset of all possible executions. Thus, such bugs
can be fixed by systematically adding synchronization into
software and disabling failure-inducing interleavings.

Prior work on AFix demonstrates that this strategy is
feasible [20]. AFix uses static analysis and code transfor-
mation to insert locks and fix atomicity violations detected
by CTrigger [43]. Although promising, AFix only looks at
one type of synchronization primitive (mutex locks) and
can fix only one type of concurrency bug (atomicity vio-
lations) reported by one specific bug detector (CTrigger).
In addition, AFix cannot fix a bug when CTrigger reports
bug side effects instead of bug root causes.

1.2 Contributions

CFix aims to automate the entire process of fixing a wide
variety of concurrency bugs, without introducing new func-
tionality problems, degrading performance excessively,
or making patches needlessly complex. Guided by these
goals, CFix system automates a developer’s typical bug
fixing process in five steps, shown in Figure 1.

The first step is bug understanding. CFix works
with a wide variety of concurrency-bug detectors, such
as atomicity-violation detectors, order-violation detec-
tors, data race detectors, and abnormal inter-thread data-
dependence detectors. These detectors report failure-
inducing interleavings that bootstrap the fixing process.

The second step is fix-strategy design (Section 2). CFix
designs a set of fix strategies for each type of bug re-
port. Each fix strategy includes mutual-exclusion/order
relationships1 that, once enforced, can disable the failure-
inducing interleaving. By decomposing every bug report
into mutual-exclusion and order problems, CFix addresses
the diversity challenge of concurrency bugs and bug de-
tectors. To extend CFix for a new type of bugs, one only

1A mutual-exclusion relationship requires one code region to be mu-
tually exclusive with another code region. An order relationship requires
that some operation always execute before some other operation.

mailto:aliang@cs.wisc.edu
mailto:wzh@cs.wisc.edu
mailto:dongdong@cs.wisc.edu
mailto:liblit@cs.wisc.edu
mailto:shanlu@cs.wisc.edu

Bug
Understanding

Fix-Strategy
Design

Synchronization
Enforcement

Patch Testing
& Selection

Patch
Merging

Final Patches
& Feedback

Figure 1: CFix bug fixing process

needs to design new fix strategies and simply reuses other
CFix components.

The third step is synchronization enforcement (Sec-
tion 3). Based on the fix strategies provided above, CFix
uses static analysis to decide where and how to synchro-
nize program actions using locks and condition variables,
and then generates patches using static code transforma-
tion. Specifically, CFix uses the existing AFix tool to
enforce mutual exclusion, and a new tool OFix to enforce
order relationships. To our knowledge, OFix is the first
tool that enforces basic order relationships to fix bugs with
correctness, performance, and patch simplicity issues all
considered. This lets CFix use more synchronization prim-
itives and fix more types of bugs than previous work.

The fourth step is patch testing and selection (Section 4).
CFix tests patches generated using different fix strategies,
and selects the best one considering correctness, perfor-
mance, and patch simplicity. In this step, CFix addresses
the challenge of multi-threaded software testing by lever-
aging the testing framework of bug detectors and taking
advantage of multiple patch candidates, as the testing result
of one patch can sometimes imply problems of another.
This step also addresses the challenge of bug detectors
reporting inaccurate root causes: patches fixing the real
root cause are recognizable during testing as having the
best correctness and performance.

The fifth step is patch merging (Section 5). CFix ana-
lyzes and merges related patches. We propose a new merg-
ing algorithm for order synchronization operations (i.e.,
condition-variable signal/wait), and use AFix to merge
mutual-exclusion synchronizations (i.e., locks). This step
reduces the number of synchronization variables and oper-
ations, significantly improving patch simplicity.

Finally, the CFix run-time monitors program execution
with negligible overhead and reports deadlocks caused by
the patches, if they exist, to guide further patch refinement.

We evaluate CFix using ten software projects, including
thirteen different versions of buggy software. Four differ-
ent concurrency-bug detectors have reported 90 concur-
rency bugs in total. CFix correctly fixes 88 of these, with-
out introducing new bugs. This corresponds to correctly
patching either twelve or all thirteen of the buggy soft-
ware versions, depending on the bug detectors used. CFix
patches have excellent performance: software patched by
CFix is at most 1% slower than the original buggy software.
Additionally, manual inspection shows that CFix patches
are fairly simple, with only a few new synchronization
operations added in just the right places.

Overall, this paper makes two major contributions:
Firstly, we design and implement OFix, a tool that en-

forces two common types of order relationship between
two operations identified by call stacks tailored for fixing
concurrency bugs. Specifically, OFix focuses on two basic
order relationships: either (1) an operation B cannot exe-
cute until all instances of operation A have executed; or
(2) an operation B cannot execute until at least one instance
of operation A has executed, if operation A executes in this
run at all. We refer to these respectively as allA–B and
firstA–B relationships. See Sections 3 and 5 for details.

Secondly, we design and implement CFix, a system
that assembles a set of bug detecting, synchronization en-
forcing, and testing techniques to automate the process of
concurrency-bug fixing. Our evaluation shows that CFix is
effective for a wide variety of concurrency bugs.

2 Fix Strategy Design
The focus of CFix is bug fixing; we explicitly do not pro-
pose new bug-detection algorithms. Rather, CFix relies
on any of several existing detectors to guide bug fixing.
We refer to these detectors as CFix’s front end. We re-
quire that the front end provide information about the
failure-inducing interleaving (i.e., a specific execution or-
der among bug-related instructions). We do not require
that the bug detector accurately report bug root causes,
which we will demonstrate using real-world examples in
Section 6.

2.1 Mutual Exclusion and Ordering

To effectively handle different types of concurrency bugs
and bug detectors, CFix decomposes every bug into a com-
bination of mutual-exclusion and order problems. The
rationale is that most synchronization primitives either en-
force mutual exclusion, such as locks and transactional
memories [17, 18, 48], or enforce strict order between two
operations, such as condition-variable signals and waits.
Lu et al. [32] have shown that atomicity violations and
order violations contribute to the root causes of 97% of
real-world non-deadlock concurrency bugs.

In this paper, a mutual-exclusion relationship refers to
the basic relationship as being enforced by AFix [20]
among three instructions p, c, and r. Once mutual ex-
clusion is enforced, code between p and c forms a critical
section which prevents r from executing at the same time.

An order relationship requires that an operation A al-
ways execute before another operation B. Note that A
and B may each have multiple dynamic instances at run

Table 1: Bug reports and fix strategies. Rectangles denote mutual exclusion regions, wide arrows denote enforced order,
and circles illustrate instructions. Vertical lines represent threads 1 and 2. An is the nth dynamic instance of A.

(a) Atomicity (b) Order Violation (c) Race (d) Def-Use

Violation allA–B firstA–B Remote-is-Bad Local-is-Bad

Reports:
p r
c

B
A1

An

…
 good B

A1

An

…
 I1 I2

Wb

R Wg

Wb

R
Wg

bad

Strategy (1):
p r B

A1

An

…
 B

A1

An

…
 I1 I2

R Wg

Wb

R
Wg

Strategy (2):
c

r N/A N/A
?

I1 I2
Wb

R
N/A

Strategy (3):
p r
c N/A N/A N/A

Wb

R Wg

N/A

// Thread 1
printf("End at %f", Gend); //p
. . .
printf("Take %f", Gend-init); //c

// Thread 2
// Gend is uninitialized
// until here
Gend = time(); //r

Figure 2: Concurrency bug simplified from FFT. Making
Thread 1 mutually exclusive with Thread 2 cannot fix the
bug, because r can still execute after p and c.

time; the desired ordering among these instances could
vary in different scenarios. We focus on two basic order
relationships: allA–B and firstA–B. When bug fixing needs
to enforce an order relationship, unless specifically de-
manded by the bug report, we try allA–B first and move to
the less restrictive firstA–B later if allA–B causes deadlocks
or timeouts.

2.2 Strategies for Atomicity Violations

An atomicity violation occurs when a code region in one
thread is unserializably interleaved by accesses from an-
other thread. Many atomicity-violation detectors have
been designed [13, 15, 30, 31, 35, 43, 57, 64]. CFix uses
CTrigger [43] as an atomicity-violation-detecting front end.
Each CTrigger bug report is a triple of instructions (p,c, r)
such that software fails almost deterministically when r is
executed between p and c, as shown in Table 1(a).

Jin et al. [20] patch each CTrigger bug by making code
region p–c mutually exclusive with r. However, this patch
may not completely fix a bug: CTrigger may have reported
a side effect of a concurrency bug rather than its root cause.
Figure 2 shows an example.

// Thread 1
while (. . .) {

tmp = buffer[i]; // A
}

// Thread 2
free(buffer); // B

Figure 3: Order violation simplified from PBZIP2

Instead of relying on CTrigger to point out the root
cause, which is challenging, CFix explores all possible
ways to disable the failure-inducing interleaving, as shown
in Table 1(a): (1) enforce an order relationship, making r
always execute before p; (2) enforce an order relationship,
making r always execute after c; or (3) enforce mutual
exclusion between p–c and r.

2.3 Strategies for Order Violations

An order violation occurs when one operation A should
execute before another operation B, but this is not enforced
by the program. Order violations contribute to about one
third of real-world non-deadlock concurrency bugs [32].
Figures 2 and 3 show two examples simplified from real-
world order violations.

Many existing tools detect order violation problems and
could work with CFix. This paper uses ConMem [69] as a
representative order-violation detector. ConMem discovers
buggy interleavings that lead to two types of common or-
der violations: dangling resources and uninitialized reads.
For dangling resources, ConMem identifies a resource-use
operation A and a resource-destroy operation B, such as
those in Figure 3. The original software fails to enforce
that all uses of a resource precede all destructions of the

same resource. For uninitialized reads, ConMem finds a
read operation B and a write operation A. The original soft-
ware fails to enforce that at least one instance of A occur
before B, leading to uninitialized reads as in Figure 2.

For each of these two types of bugs, CFix has one corre-
sponding fix strategy. As shown in Table 1(b), we enforce
an allA–B order relationship to fix a dangling resource
problem, and we enforce a firstA–B order relationship to
fix an uninitialized-read problem.

2.4 Strategies for Data Races

Race detectors [8, 12, 14, 36, 41, 47, 50, 68] report unsyn-
chronized instructions, including at least one write, that
can concurrently access the same variable from different
threads. Race-guided testing [22, 39, 51] can identify a
race-instruction pair (I1, I2) such that the software fails
when I2 executes immediately after I1. For CFix we imple-
ment a widely used lock-set/happens-before hybrid race-
detection algorithm [2, 52] coupled with a RaceFuzzer-
style testing framework [51]. This front end can identify
failure-inducing interleavings as shown in Table 1(c).

Table 1(c) also illustrates two possible strategies for fix-
ing a typical data-race bug: (1) force an order relationship,
making I2 always execute before I1; or (2) force a mutual-
exclusion relationship between I2 and a code region that
starts from I1 and ends at a to-be-decided instruction. We
use the second strategy only when the front end also re-
ports a data race between I2 and a third instruction I3, I3
comes from the same thread as I1, and software fails when
I2 executes right before I3. If all of these constraints hold,
we consider both the first strategy and the second strategy
that makes I1–I3 mutually exclusive with I2. In all other
cases, we only consider the first strategy.

2.5 Strategies for Abnormal Def-Use

Some bug detectors identify abnormal inter-thread data-
dependence or data-communication patterns that are either
rarely observed [33, 53, 66] or able to cause particular
types of software failures, such as assertion failures [70].
CFix uses such a tool, ConSeq [70], as a bug-detection
front end. Each ConSeq bug report includes two pieces of
information: (1) the software fails almost deterministically
when a read instruction R uses values defined by a write
Wb; and (2) the software is observed to succeed when R
uses values defined by another write Wg. Note that ConSeq
does not guarantee Wg to be the only correct definition of
R. Therefore, CFix only uses Wg as a hint.

We refer to the case when R and Wb come from different
threads as Remote-is-Bad. Depending on where Wg comes
from, there are different ways to fix the bug by enforcing
either mutual exclusion or ordering. Table 1(d) shows one
situation that is common in practice. We refer to the case
when R and Wb come from the same thread as Local-is-

Bad. Enforcing orderings is the only strategy to fix this
case, as shown in Table 1(d).

2.6 Discussion

CFix does not aim to work with deadlock detectors now, be-
cause deadlocks have very different properties from other
concurrency bugs. Furthermore, there is already a widely
accepted way to handle deadlocks in practice: monitor the
lock-wait time and restart a thread/process when necessary.

The goal of this work is not to compare different types
of bug detectors. In practice, no one bug detector is ab-
solutely better than all others. Different detectors have
different strengths and weaknesses in terms of false neg-
atives, false positives, and performance. We leave it to
software developers and tool designers to pick bug detec-
tors. CFix simply aims to support all representative types
of detectors. CFix can also work with other bug detectors,
as long as failure-inducing interleavings and the identity of
the involved instructions are provided. We leave extending
CFix to more detectors to future work.

3 Enforcing an Order Relationship
CFix uses AFix [20] to enforce mutual exclusion during
patch generation. This section presents OFix, the static
analysis and patch-generation component of CFix that en-
forces orderings, specifically allA–B and firstA–B order-
ings. It enforces the desired ordering while making a strong
effort to avoid deadlock, excessive performance loss, or
needless complexity.

OFix expects bug detectors to describe a run-time opera-
tion using two vectors of information: (1) a call stack in the
thread that executes that instruction, and (2) a chain of call
stacks indicating how that thread has been created, which
we call a thread stack. We refer to the instruction that
performs A as an A instruction. The thread that executes
the A instruction is a signal thread. All ancestors of the
signal thread are called s-create threads. Conversely for B
we have the B instruction executed by a wait thread whose
ancestors are w-create threads. We write a call stack as
(f0, i0)→ (f1, i1)→ ··· → (fn, in). f0 is the starting func-
tion of a thread, which could be main or any function
passed to a thread creation function. Each ik before the last
is an instruction in fk that calls function fk+1. In a signal
or wait thread, the last instruction in is the A instruction or
B instruction respectively. In s-create or w-create threads,
the last instruction in calls a thread-creation function.

In Section 7 we discuss limitations of OFix and the
impact on CFix as a whole system, especially those caused
by the decision to try only allA–B and firstA–B orderings
and the choice to use call stack as operation identity.

3.1 Enforcing an allA–B Order

It is difficult to statically determine how many instances of
A will be executed by a program, and hence it is difficult to
find the right place to signal the end of A and make B wait

while (. . .) {
A;
NaïveSignal;

}
A

EE

(a) May signal any number
of times, waking the wait
thread too early or never

while (. . .) {
A;

}
OFixSignal;

A

EE

(b) OFix signals exactly
once; gray nodes are
reaching nodes

Figure 4: Naïve signals versus OFix signals for allA–B.
“

E

” marks signal operations on edges.

for all instances of A. Consider that A could be executed
an unknown number of times in each signal thread; signal
threads could be created an unknown number of times by
each s-create thread; and s-create threads could also be
created an unknown number of times. We address these
challenges in four steps: (1) locate places to insert signal
operations in signal threads, (2) locate places to insert
signal operations in s-create threads, (3) locate places to
insert wait operations, and (4) implement the signal and
wait operations to coordinate all relevant threads.

Finding Signal Locations in Signal Threads A naïve
solution that inserts signal operations right after the A
instruction could lead to many problems, as shown in Fig-
ure 4a. OFix aims to place signal operations so that each
signal thread executes exactly one signal operation as soon
as it cannot possibly execute more A.

Assume that A has call stack (f0, i0)→ ·· · → (fn, in)
where in is the A instruction. OFix analysis starts from f0.
When the program can no longer execute i0 in f0, we know
that the problematic A call stack can no longer arise, and
it is safe to signal. Thus OFix first analyzes the control
flow graph (CFG) of f0 to obtain the set of reaching nodes:
those CFG nodes that can reach i0 in zero or more steps.
OFix then inserts a signal operation on each CFG edge that
crosses from a reaching node to a non-reaching node.

After placing signals in f0, we may need to continue
down the stack to f1, f2, and so on. The critical question
here is whether i0 can call f1 multiple times, i.e., whether
i0 is in a loop. If so, then f1 cannot determine when A
will be executed for the last time in the thread. Rather,
that decision needs to be made in f0, outside of the outer-
most loop that contains i0. The signal-placement algorithm
stops, without continuing down the stack.

Conversely, if f1 can be invoked at most once at i0,
we suppress the signal operation that would ordinarily be
placed on the edge from i0 to its successor. Instead, we
delegate the signaling operation down into f1 and repeat
the signal-placement analysis in f1. This process continues,
pushing signals deeper down the stack. Signal placement

stops when it reaches the end of the call stack or when it
finds a call inside a loop.

Note that a function fk could be invoked under many
different call stacks, while we only want fk to execute a
signal operation under a particular call stack. We solve this
problem using a function-cloning technique discussed in
Section 3.3. All OFix-related transformations are actually
applied to cloned functions.

The above strategy has two important properties. We
omit proofs due to space constraints. First, each termi-
nating execution of a signal thread signals exactly once,
as shown in Figure 4b, because thread execution crosses
from reaching nodes to non-reaching nodes exactly once.
Second, the signal is performed as early as possible within
each function, according to the CFG, and interprocedu-
rally, benefiting from our strategy of pushing signals down
the stack. These properties help ensure the correctness of
our patches. They also help our patches wake up waiting
threads earlier, limiting performance loss and reducing the
risk of deadlocks.

Finding Signal Locations in s-create Threads Signal
operations also need to be inserted into every s-create
thread that could spawn more signal threads. Otherwise,
we still would not know when we had safely passed be-
yond the last of all possible A instances. The procedure
for s-create threads matches that already used for signal
threads. We apply the signal-placement analysis and trans-
formation to each s-create thread in the thread-creation
ancestry sequence that eventually leads to creation of the
signal thread. This algorithm ensures that each of these
ancestral threads signals exactly once immediately when it
can no longer create new s-create threads or signal threads.

Finding Wait Locations in Wait Threads OFix must
insert wait operations that can block the execution of B.
Assuming that (fn, in) is the last level on the call stack of
B, OFix creates a clone of fn that is only invoked under the
bug-related call stack and thread stack. We then insert the
wait operation immediately before in in the clone of fn.

Implementing Wait and Signal Operations Our imple-
mentation of the signal and wait operations has three parts:

Part 1: track the number of threads that will perform
signal operations. OFix creates a global counter C in each
patch. C is initialized to 1, representing the main thread,
and atomically increases by 1 immediately before the cre-
ation of every signal thread and s-create thread.

Part 2: track how many threads have already signaled.
Each signal operation atomically decrements C by 1. Since
each signal or s-create thread executes exactly one signal
operation, each such thread decreases C exactly once. Fig-
ure 5a shows pseudo-code for the signal operation.

Part 3: allow a wait thread to proceed once all threads
that are going to signal have signaled. This is achieved by

mutex_lock(L);
if (--C == 0)

cond_broadcast(con);
mutex_unlock(L);

(a) Signal operation

mutex_lock(L);
if (C > 0)

cond_timedwait(con, L, t);
mutex_unlock(L);

(b) Wait operation

Figure 5: Pseudo-code for allA–B operations

condition-variable broadcast/wait and the checking of C,
as shown in Figure 5b.

These signal and wait operations operate on three vari-
ables: one counter, one mutex, and one condition variable.
Each of these is statically associated with the order rela-
tionship it enforces.

OFix’s synchronization operations are not merely
semaphore operations. Since we cannot know in advance
how many signal operations each wait operation should
wait for, OFix relies on a well-managed counter and a
condition variable to achieve the desired synchronization.

Correctness Assessment OFix makes a best effort to
avoid introducing deadlocks by signaling as soon as possi-
ble and starting to wait as late as possible. However, it is
impossible to statically guarantee that a synchronization
enforcement is deadlock free. To mask potential deadlocks
introduced by the patch, OFix allows every wait operation
to timeout. In fact, deadlocks mostly occur when the bug
requires a different fix strategy entirely, making them an
important hint to guide CFix patch selection (Section 4).

Barring timeouts, the wait operation guarantees that
no B executes before C reaches 0. The signal operations
guarantee that C reaches 0 only when all existing signal and
s-create threads have signaled, which implies that no more
signal or s-create threads can be created, and therefore no
more A instances can be executed. Thus, if no wait times
out, OFix patch guarantees that no instance of B executes
before any instance of A.

Simplicity Optimization We use the static number of
synchronization operations added by a patch as the metric
for patch simplicity. In the current implementation, OFix’s
patches operate on LLVM bitcode [25], but we envision
eventually using similar techniques to generate source-
code patches. The simplicity of OFix bitcode patches
would be a major factor affecting the readability of equiva-
lent source-code patches. OFix’s simplicity optimization
attempts to reduce the static number of synchronization
operations being added.

In the algorithm described above, OFix signal operations
are inserted based solely on the calling context of A. In fact,
a signal operation s is unnecessary if it never executes in
the same run as B, such as in Figure 6. Since identifying all
such s is too complicated for multi-threaded software, OFix

void main() {
if (. . .)
foo(); // i0

else
OFixSignal; // s

}

void foo() { // f1
pthread_create(Bthread, . . .); // iB1
pthread_create(Athread, . . .); // iA1

}

(a) Optimization case 1

void main() {
if (. . .) {

OFixSignal; // s
exit(1);

}
pthread_create(Bthread, . . .); // iB0
pthread_create(Athread, . . .); // iA0

}

(b) Optimization case 2

Figure 6: Removing unnecessary OFix signal operations

focuses on two cases that we find common and especially
useful in practice.

To ease our discussion, we use C = (main, i0)→ ·· · →
(fk, ik) to denote the longest common prefix of the calling
contexts of A and B where none of the call sites i0, . . . , ik is
inside a loop. When ik is a statically-bound call, the next
function along the contexts of A and B is the same, denoted
as fl . The next level of B’s context is denoted as (fl , iBl).

Case 1: OFix signal operations in C can all be removed,
because they never execute in the same run as B. To prove
this, assume s to be a signal operation inserted in fk. The
rationale for optimizing s away is as follows. First, no
instance of B will be executed any more once s is executed:
program execution cannot reach C any more once it exe-
cutes s, according to how OFix inserts signal operations.
Second, no instance of ik, and hence B, has executed yet
when s is executed. If this were not true, then the signal
thread would signal multiple times (once inside the callee
of ik and once at s). But this is impossible in OFix patches.
Therefore, when s is executed, B cannot have executed yet
and will not execute any more. Removing s does not affect
the correctness of our patch, as shown in Figure 6a.

Case 2: An OFix signal operation s in fl can be re-
moved if s cannot reach iBl and iBl cannot reach s. The
rationale of this optimization is similar to that of Case 1.
Figure 6b shows an example of applying this optimization.

3.2 Enforcing a firstA–B Order

Basic Design To guarantee that B waits for the first in-
stance of A, we insert a signal operation immediately after
the A instruction, and a wait operation immediately before
the B instruction. Figure 7 shows the code for firstA–B
synchronization operations. A Boolean flag and a condi-

if (!alreadyBroadcast) {
alreadyBroadcast = true;
mutex_lock(L);
cond_broadcast(con);
mutex_unlock(L);

}

(a) Signal operation

mutex_lock(L);
if (!alreadyBroadcast)

cond_timedwait(con, L, t);
mutex_unlock(L);

(b) Wait operation

Figure 7: Pseudo-code for firstA–B operations. It contains
a benign race on alreadyBroadcast.

tion variable work together to block the wait thread until
at least one signal operation has executed.

Safety-Net Design The basic design works if the pro-
gram guarantees to execute at least one instance of A.
However, this may not be assured, in which case forc-
ing B to wait for A could hang the wait thread. To address
this problem, OFix enhances the basic patch with a safety
net: when the program can no longer execute A, safety-net
signals release the wait thread to continue running.

OFix first checks whether A is guaranteed to execute:
specifically, whether ik post-dominates the entry block of
fk in each level (fk, ik) of the A call stack. A safety net is
needed only when this is not true.

When a safety net is needed, OFix inserts safety-net
signal operations using the allA–B algorithm of Section 3.1.
That algorithm maintains a counter C as in Figure 5a and
guarantees that C drops to 0 only when the program can no
longer execute A. To allow safety-net signal operations to
wake up the wait thread, these operations share the same
mutex L and the same condition variable con as those
used in the basic patch in Figure 7. Whichever thread
decrements C to 0 executes pthread_cond_broadcast to
unblock any thread that is blocked at con. That thread also
sets alreadyBroadcast to true so that any future instances
of B will proceed without waiting.

OFix checks whether B is post-dominated by any safety-
net signal operation. In that case, the safety net can never
help wake up B and is removed entirely. Lastly, OFix ap-
plies the two simplicity-optimization algorithms presented
in Section 3.1 to remove unnecessary safety-net signals.

Even with the safety net, OFix does not guarantee dead-
lock freedom. As for allA–B patches, OFix uses a timeout
in the firstA–B wait operation to mask potential deadlocks.

3.3 Function Cloning

OFix clones functions to ensure that each OFix patch only
takes effect under the proper call stack and thread-creation
context. All patch-related transformations are applied to
cloned functions.

Consider a failure-related call chain (main, i0) →
(f1, i1)→ ··· → (fn, in), which chains together the call
stacks of all s-create and signal threads (or all w-create

and wait threads) through thread-creation function calls.
Function cloning starts from the first function fk on this
call chain that can be invoked under more than one call-
ing context. OFix creates a clone f ′k for fk and modifies
ik−1 based on the kind of invocation instruction at ik−1. If
ik−1 is a direct function call to fk, OFix simply changes
the target of that call instruction to the clone f ′k. If ik−1
calls a thread-creation function with fk as the thread-start
routine, OFix changes that parameter to f ′k. If fk is invoked
through a function pointer, OFix adds code to check the
actual value of that function pointer at run time. When
the pointer refers to fk, our modified code substitutes f ′k
instead. OFix proceeds down the stack in this manner
through each level of the call chain to finish the cloning. It
is straightforward to prove that the above cloning technique
inductively guarantees that OFix always patches under the
right context.

OFix repeatedly uses the above cloning technique in
various parts of the patching process, with one f -clone
created for each unique bug-related calling context of f .

3.4 Discussion

In the algorithms given above, we always consider the
calling context of a bug report. We believe this is necessary,
especially for bug-detection front-ends that are based on
dynamic analysis. OFix can also enforce the ordering
between two static instructions, regardless of the call stack.
This option can be used when call stacks are unavailable.

OFix achieves context-awareness by cloning functions,
which could potentially introduce too much duplicated
code. The strategy to start cloning from the first function
that can be invoked under more than one calling context
ensures that all clones are necessary to achieve context-
awareness. Our experience shows that OFix bug fixing
in practice does not introduce excessive code duplication,
affecting only a small portion of the whole program.

Our current implementation uses POSIX condition vari-
ables. We could also use other synchronization primitives,
such as pthread_join. Our function cloning technique and
the analysis to find signal/wait locations would still be
useful: by design, placement and implementation of the
synchronization operations are largely orthogonal.

4 Patch Testing and Selection
After fix strategies are selected and synchronization rela-
tions are enforced, CFix has one or more candidate patches
for each bug report. CFix tests these patches as follows.

CFix first checks the correctness of a patch through static
analysis and interleaving testing. Considering the huge in-
terleaving space, correctness testing is extremely challeng-
ing. CFix first executes the patched software once without
external perturbation, referred to as an RTest, and then
applies a guided testing where the original bug-detection

front end is used, referred to as a GTest. A patch is rejected
under any of the following scenarios:

Correctness check 1: Deadlock discovered by static
analysis. If an OFix wait operation is post-dominated by an
OFix signal operation that operates on the same condition
variable, the patch will definitely introduce deadlocks.

Correctness check 2: Failure in RTest. Since multi-
threaded software rarely fails without external perturbation,
this failure usually suggests an incorrect fix strategy. For
example, according to the CTrigger bug report shown in
Figure 2, CFix will try a patch that forces r to always
execute after c, which causes deterministic failure.

Correctness check 3: Failure in GTest. This usually
occurs when the patch disables the failure-inducing inter-
leaving among some, but not all, dynamic instances of
bug-related instructions.

Correctness check 4: Timeout in RTest. A patch time-
out could be caused by a masked deadlock or a huge per-
formance degradation of the patch; our timeout threshold
is 10 seconds. CFix rejects the patch in both cases, and
provides deadlock-detection result to developers.

Correctness check 5: Failures of related patches. In-
terestingly, we can use the correctness of one patch to infer
that of a related patch. Consider Figure 2. If an order
patch where r is forced to execute after c fails, we infer
that a patch that makes r mutually exclusive with p–c is
incorrect, because mutual exclusion does not prohibit the
interleaving encountered by the order patch.

Rarely, CFix may not find any patch that passes correct-
ness checking. We discuss this in Section 7.

When multiple patches pass correctness checking, CFix
compares performance impacts. In our current prototype,
CFix discards any patch that is at least 10% slower than
some other patch. When a bug has multiple patches passing
both correctness and performance checking, CFix picks the
patch that introduces the fewest synchronization operations.
Note that some patches can be merged and significantly im-
prove simplicity, which we discuss in Section 5. Therefore,
given two patches for the same bug report, CFix chooses
the one that can be merged with other patches.

CFix includes run-time support to determine whether a
timeout within CFix-patched code is caused by deadlock
or not. Traditional deadlock-detection algorithms cannot
discover the dependency between condition-variable wait
threads and signal threads, because they cannot predict
which thread will signal in the future. Inspired by previous
work [20, 28], CFix addresses this challenge by starting
monitoring and deadlock analysis after a timeout. By
observing which thread signals on which condition variable
as the post-timeout execution continues, CFix can discover
circular wait relationships among threads at the moment
of the timeout. This strategy imposes no overhead until a
patch times out. It can be used for both patch testing and
production-run monitoring. The general idea and much of

the detail are the same as in the run-time for AFix [20], but
we extended the run-time for AFix to support signal and
wait on condition variables. Unlike Pulse [28], CFix does
not require kernel modification, because it focuses only on
deadlocks caused by its own patches.

CFix currently only conducts RTest and GTest using
the failure-inducing inputs reported by the original bug
detectors. In practice, this is usually enough to pick a
good patch for the targeted bug, as demonstrated by our
evaluations. In theory, this may overlook some potential
problems, such as deadlock-induced timeout under other
inputs and other interleavings. In such cases, we rely on
our low-overhead run-time to provide feedback to refine
patches.

5 Patch Merging
The goals of patch merging are to combine synchronization
operations and variables, promote simplicity, and poten-
tially improve performance. Merging is especially useful
in practice, because a single synchronization mistake often
leads to multiple bug reports within a few lines of code.
Fixing these bugs one-by-one would pack many synchro-
nization operations and variables into a few lines of the
original program, harming simplicity and performance. Jin
et al. [20] presented mutual-exclusion patch merging. In
this section, we describe how OFix merges order-enforcing
patches.

5.1 Patch Merging Guidelines

Patch merging in OFix is governed by four guidelines.
Guideline 1: The merged patch must have statically and
dynamically fewer signal and wait operations than the un-
merged patches. Guideline 2: Each individual bug must
still be fixed. Guideline 3: Merging must not add new dead-
locks. Guideline 4: Merging should not cause significant
performance loss. Note that signal operations cannot be
moved earlier, per guideline 2. However, delaying signals
too long can hurt performance and introduce deadlocks.

5.2 Patch Merging for allA–B Orderings

Figure 8 shows a real-world example of merging allA–B
patches. To understand how the merging works, assume
that we have enforced two allA–B orderings, A1–B1 and
A2–B2, using patches P1 and P2.

OFix considers merging only if A1 and A2 share the
same call stack and thread stack, except for the instruction
at the last level of the call stacks, denoted as (fn, i1n) and
(fn, i2n) for A1 and A2 respectively. Our rationale is to avoid
moving signals too far away from their original locations,
as this could dramatically affect performance (guideline 4).
We do not initially consider B1 and B2: each patch includes
just one wait operation, with little simplification potential.

Next OFix determines the locations of signal operations
in the merged patch, assuming a merge will take place. To
fix the original bugs (guideline 2), a signal thread must

while (1) {
mutex_lock(L); // A1
if (. . .) {

− OFixSignal1;
mutex_unlock(L); // A2

− OFixSignal2;
+ OFixSignal∪;

return;
}
. . .

}

(a) Signal thread

+ OFixWait∪;
− OFixWait1;
− OFixWait2;

mutex_destroy(L); // B1,B2

(b) Wait thread

Figure 8: allA–B merging, simplified from PBZIP2. + and
− denote additions and removals due to patch merging.

A1
. . .

A2

exit

EE

(a) ReachSet1 and
OFixSignal1

A1
. . .

A2

exit

EE

(b) ReachSet2 and
OFixSignal2

A1
. . .

A2

exit

EE

(c) ReachSet∪ and
OFixSignal∪

Figure 9: CFG of the signal thread in Figure 8a. “

E

”
marks signal operations on edges.

execute a merged signal operation exactly once when it
can no longer execute either A1 or A2. This leads to the
same signal locations as those in patch P1 and patch P2,
except for in fn. If P1 and P2 do not actually place any
signal operations in fn, merging is done. Otherwise, we
place the merged signal operations in fn, so that fn signals
once it can no longer execute either i1n or i2n. Let ReachSet1
and ReachSet2 be the sets of nodes in fn that can reach i1n
and i2n respectively. Let ReachSet∪ be union of ReachSet1
and ReachSet2. Merged signal operations should be in-
serted on every edge that crosses from the inside to the
outside of ReachSet∪. Figure 9 shows CFGs correspond-
ing to the code in Figure 8a, with the various reaching sets
highlighted in gray.

Now that we know where signal operations would be
placed if the patches were merged, we reject a merged
patch if it cannot reduce the signal operation count, per
guideline 1. In fact, one can prove that merging improves
simplicity only when ReachSet1 overlaps with ReachSet2.

A final check rejects merging if it delays signal opera-
tions so much that deadlocks could be introduced (guide-

if (. . .) {
Gend = end; // A1,A2

− OFixSignal1; // i1

− OFixSignal2; // i2

+ OFixSignal∪; // i∪

}

(a) Signal thread

+ OFixWait∪;
− OFixWait1;

printf("%d\n", Gend); // B1
− OFixWait2;

printf("%d\n", Gend-init); // B2

(b) Wait thread

Figure 10: firstA–B merging, simplified from FFT. + and −
denote additions and removals due to patch merging.

line 3). OFix merges only when there is no blocking oper-
ation on any path from where unmerged signal operations
are to where merged signal operations would be, thereby
guaranteeing not to introduce new deadlocks. Our im-
plementation considers blocking function calls (such as
lock acquisitions) and loops conditioned by heap or global
variables as blocking operations. To determine whether
a function call may block, CFix keeps a whitelist of non-
blocking function calls.

OFix merges P1 and P2, when all of the above checks
pass. OFix removes the original signal operations in P1
and P2, and inserts merged signal operations into locations
selected above. The simplicity optimizations described in
Section 3.1 are reapplied: a merged signal is removed if
neither B1 nor B2 would execute whenever it executes.

To merge wait operations, OFix changes the two wait
operations, OFixWait1 and OFixWait2, in P1 and P2 to
operate on the same synchronization variables as those
in the merged signal operations. OFix also has the op-
tion to replace OFixWait1 and OFixWait2 with a single
wait, OFixWait∪, located at their nearest common dom-
inator. This option is taken only when OFixWait1 and
OFixWait2 share the same call stack and thread stack, and
when this replacement will not introduce deadlocks. For
example, OFixWait1 and OFixWait2 in Figure 8 pass the
above checks and are merged into OFixWait∪.

This ends the merging process for a single pair of allA–B
patches. The merged patch may itself be a candidate for
merging with other patches. Merging continues until no
suitable merging candidates remain.

5.3 Patch Merging for firstA–B Orderings

Figure 10 provides a real-world example of merging firstA–
B patches, highlighting the changes made by merging.

Given two firstA–B orderings, A1–B1 and A2–B2, OFix
considers merging their patches only if A1 and A2 share
the same call stack and thread stack, except for the last
instruction on the call stack. This reflects the same perfor-
mance concern discussed for allA–B merging. We denote
the basic signal operations used to separately enforce these
two orderings as i1 and i2, as shown in Figure 10a.

Table 2: CFix Benchmarks. Not all benchmarks have a report ID. A report ID could be a bug report ID in their
corresponding bug database, which is the case for Apache, cherokee, Mozilla, MySQL and Transmission, or a forum
post ID, which is the case for HTTrack and ZSNES.

ID App.[-ReportID] LoC Description

Root Cause: Order Violations
OB1 PBZIP2 2.0K Several variables are used in one thread after being destroyed/nullified/freed by main.
OB2 x264 30K One file is read in one thread after being closed by main.
OB3 FFT 1.2K Several statistical variables are accessed in main before being initialized by another thread.
OB4 HTTrack-20247 55K One pointer is dereferenced in main before being initialized by another thread.
OB5 Mozilla-61369 192K One pointer is dereferenced in one thread before being initialized by main.
OB6 Transmission-1818 95K One variable is used in one thread before being initialized by main.
OB7 ZSNES-10918 37K One mutex variable is used in one thread before being initialized by main.

Root Cause: Atomicity Violations
AB1 Apache-25520 333K Threads write to the same log buffer concurrently, resulting in corrupted logs or crashes.
AB2 MySQL-791 681K The call to create a new log file is not mutually exclusive with the checking of file status.
AB3 MySQL-3596 693K The checking and dereference of two pointers are not mutually exclusive with the NULL assignments.
AB4 Mozilla-142651 87K One memory region could be deallocated by one thread between another thread’s two dereferences.
AB5 Cherokee-326 83K Threads write to the same time string concurrently, resulting in corrupted time strings.
AB6 Mozilla-18025 108K The checking and dereference of one pointer are not mutually exclusive with the NULL assignment.

To maintain the A1–B1 and A2–B2 orderings (guide-
line 2), we should guarantee that the merged basic signal
executes when both A1 and A2 have executed. This loca-
tion, denoted as i∪, is the nearest common post-dominator
of i1 and i2 that is also dominated by i1 and i2. OFix
abandons the merge if this location i∪ does not exist.

After locating i∪, OFix checks whether merging could
cause new deadlocks, checks whether the wait operations
can also be merged, inserts safety-net signal operations for
a merged patch, and continues merging until no suitable
merging candidates remain.

6 Experimental Evaluation

6.1 Methodology

CFix includes two static analysis and patching components:
(1) AFix by Jin et al. [20]; and (2) OFix, newly presented in
this paper. Both AFix and OFix are built using LLVM [25].
They apply patches by modifying the buggy program’s
LLVM bitcode, then compiling this to a native, patched
binary executable.

We evaluate CFix on 13 real-world bug cases, represent-
ing different types of root causes, from 10 open-source
C/C++ server and client applications, as shown in Table 2.
We collect similar numbers of bug cases from two cate-
gories: (1) bug cases that require atomicity enforcement
and (2) bug cases that require order enforcement. For the
first category, we use exactly the same set of bug cases as
in the AFix [20] evaluation. For the second category, we
gather bug cases that have been used in previous papers on
ConMem [69], ConSeq [70], and DUI [53]. These three
previous papers altogether contain nine bug cases that re-
quire order enforcement; we randomly select seven out
of these nine. We believe that our bug case set is repre-

sentative to some extent, although we cannot claim that it
represents all concurrency bugs in the real world.

To patch these buggy applications, we follow the five
steps described in Section 1. We first apply the four bug-
detection front-ends discussed in Section 2 to these ap-
plications using the bug-triggering inputs described in
the original reports. We refer to these four detectors as
the atomicity-violation front end (AV), the order-violation
front end (OV), the data-race front end (RA), and the
definition-use front end (DU). In each case, at least one
front-end detects bugs that lead to the failures described in
the original reports. CFix then generates, tests, and selects
patches for each of the 90 bug reports generated by AV,
OV, RA, and DU. It also tries patch merging for cases with
multiple bug reports before generating the final patches.

Our experiments evaluate the correctness, performance,
and simplicity of CFix’s final patches. Our experiments
also look at the original buggy program and the program
manually fixed by software developers, referred to as orig-
inal and manual respectively. For fair comparison, all
binaries are generated using identical LLVM settings. All
experiments use an eight-core Intel Xeon machine running
Red Hat Enterprise Linux 5.

6.2 Overall Results

The “Number of Bug Reports” columns of Table 3 show
the number of reports from different bug detectors. The
reports for each case from each detector are mostly very
different from each other and are not just multiple stack
traces of the same static instructions.

The “Overall Patch Quality” columns of Table 3 summa-
rize our experimental results. In this table, “X” indicates
clear and complete success: the original concurrency-bug
problem is completely fixed, no new bug is observed, and
performance degradation is negligible. “-” indicates that

Table 3: Results of OFix patches. The a and f subscripts indicate allA–B and firstA–B bug reports respectively. The L
and R subscripts indicate Local-is-Bad and Remote-is-Bad definition-use bug reports respectively. X a good patch; -
good patch is not generated; blank: not applicable.

Number of Bug Reports Overall Patch Quality Failure Rates Overhead

ID AV OV RA DU AV OV RA DU CFix Manual Original CFix CFix Manual
of CFix
Sync Ops

OB1 2 5a 4 X X X X X 43% 0% -0.3% 1.6% 5
OB2 1a X X X 65% 0% -0.1% 3.6% 7
OB3 7 4 f 10 4L X X X X X X 100% 0% 0.2% 0.0% 5
OB4 1 1 f 2 X X X X 97% 0% 0.5% 2
OB5 1 1 X X X X 64% 0% 0.0% 0.0% 2
OB6 1 1 f 2 1L X X X X X X 93% 0% 0.3% -0.3% 2
OB7 1 f X X X 97% 0% 0.2% 3
AB1 6 6 X X X X 52% 0% -0.9% -0.4% 3
AB2 1 2 1R X X X X X 39% 0% 0.7% 0.5% 5
AB3 2 4 2R X X - X - 53% 0% -0.0% 1.0% 9
AB4 1 2 X X X - 55% 0% -0.5% 0.0% 3
AB5 4 5 1R X X X X X 68% 0% -0.2% 0.4% 2
AB6 1 2 1R X X X X X 42% 0% 0.7% 0.5% 5

CFix fails to generate a patch that passes its own internal
testing. Blanks are cases where no bug is reported by the
corresponding front end. For manual patches, “-” means
developers submitted intermediate patches that were later
found to be incomplete by developers or testers (i.e., the
original software failure can still occur with the patch ap-
plied); blanks mark cases where developers have not yet
provided any patch for the corresponding bug.

Overall, CFix is highly effective. Across all four bug-
detection front ends and all 13 benchmarks, CFix suc-
cessfully fixes all bugs except two reports for one case
(AB3) under one front end (DU). CFix’s final patches are
all of high quality regarding correctness, performance and
simplicity, comparable with the final patches designed by
software developers. In several cases, CFix patches are
even better than the first few patches generated by devel-
opers. In the case of HTTrack, CFix creates good patches
while the developers have yet to propose any patches at
all. Note that Jin et al.’s work on automated atomicity-bug
fixing [20] only works with the AV front end and can only
fix 6 cases, AB1 through AB6.

6.3 Patching for Different Bug Detectors

CFix generates one or more patches using the fixing strate-
gies described in Section 2. Among all front ends, OV has
the most straightforward fixing process. OV only detects
order violations. It reports six allA–B violations and seven
firstA–B violations. CFix generates one ordering patch for
each report. All of these patches pass correctness testing.

Fixing AV bug reports is much more challenging. As
shown in Table 4, AV finds 27 atomicity violations for 11
benchmarks. Among these, 12 reports from OB1 through
OB6 are side effects of order violations, akin to Figure 2.
These are examples of bug reports that are different from

Table 4: Patch testing and selection for AV front end. Sub-
scripts aO, f O, and A indicate allA–B ordering, firstA–B
ordering, and mutual exclusion patches respectively. C1–
C5 count correctness rejections as in Section 4. P and R
respectively count performance and simplicity rejections.

Rejected Patches

ID
AV
Bugs C1 C2 C3 C4 C5 P R

Final
Patch

OB1 2 0 0 0 4 0 1 1 2aO
OB3 7 0 7 0 0 7 0 0 7aO
OB4 1 1 1 0 0 1 0 0 1 f O
OB5 1 0 0 0 2 0 0 1 1aO
OB6 1 0 1 0 0 1 0 0 1aO
AB1 6 12 0 5 7 0 0 0 6A
AB2 1 2 0 1 1 0 0 0 1A
AB3 2 4 0 2 2 0 0 0 2A
AB4 1 2 0 0 2 0 0 0 1A
AB5 4 8 0 2 6 0 0 0 4A
AB6 1 0 0 0 2 0 1 0 1A

actual root cause. The software would still fail if we merely
enforced mutual exclusions based on these 12 bug reports.

CFix successfully picks patches that match the root
causes and completely fixes the 11 benchmarks. Table 4
summarizes this process. For each AV bug report, CFix
tries to generate 3–5 patches: one mutual-exclusion patch
and two allA–B ordering patches, as shown in Table 1(a).
If an allA–B patch is rejected due to timeouts or dead-
locks, the corresponding firstA–B patch is generated and
tested instead. Although testing multi-threaded software is
challenging, the static (C1) and dynamic (C2–C5) correct-
ness checks complement each other and help CFix identify
and reject bad patches. Most patches that do not reflect
root causes are rejected this way, as shown by the C1–C5
columns of Table 4. In a few cases in OB1, OB5, and AB6,
the buggy software can be fixed by either mutual-exclusion

or order synchronization. CFix generates both patches and
selects the one with the best performance and simplicity.

Fixing RA bugs is also challenging, because a data-race
report itself contains no root cause information. CFix suc-
cessfully generates final patches for RA bug reports as
follows. RA finds 19 data races for 5 benchmarks with
order-violation root causes. Following Section 2.4, CFix
decides that no mutual-exclusion patch is suitable for any
of these bugs. The ordering patches generated by OFix
all pass correctness testing and are selected as CFix’s fi-
nal patches. RA also finds data races for 6 benchmarks
that have mutual-exclusion root causes (AB1–AB6). CFix
generates mutual-exclusion patches, all of which pass cor-
rectness testing. However, all ordering patches for AB2,
AB3, AB4 and some ordering patches for AB1 and AB5
are rejected, because OFix statically determines that these
patches would cause deadlocks. Ordering patches for AB6
are rejected due to failures under guided testing. CFix does
not generate any ordering patch for 6 data-race bugs in
AB1 and AB5, because the RA front-end indicates that
software fails as long as the race instructions execute one
right after the other regardless of the order between them.

The DU patch-generation process is similar to that for
OV in the case of Local-is-Bad reports, and is similar to
that for AV in the case of Remote-is-Bad reports. However,
CFix fails to generate any patch for AB3. The problem
in AB3 is that two reads R1 and R2 should not read val-
ues defined by different write instructions. Unfortunately,
DU simply reports R1 should not read values from a par-
ticular write instruction. CFix statically determines that
disabling this data dependence, without considering R2,
causes deadlocks, and therefore does not generate a patch.

CFix’s final patches are generally identical or have only
trivial differences as we switch from one front end to an-
other. The two exceptions are in OB3 and OB4. In OB3,
CFix generates a firstA–B patch for an OV-reported bug
following the fix strategy design, but an allA–B patch for
three other front ends. In fact the program can only execute
one instance of A at run time, so these two patches only
differ in simplicity. In OB4, the final patch generated for
RA and the one generated for AV and OV both correctly
fix the reported failure without perceivable performance
differences. The RA patch also fixes unreported failures
under different inputs. Unless otherwise specified, we use
majority vote to select final patches for evaluation results
in Table 3 and Section 6.4.

6.4 Quality of CFix’s Final Patches

Correctness Results As discussed in Section 4, CFix’s
final patches have all passed the guided testing of CFix
bug-detection front end, without triggering the previously
reported failures. To further test the correctness of CFix’s
final patches, we insert random sleeps in code regions
that are involved in each bug report. The “Failure Rates”

columns of Table 3 show the failure rates of the original
buggy software and the CFix-patched software through
1,000 testing runs with the same random sleep patterns. As
we can see, CFix patches eliminate all of the failures. In
addition, the timeouts CFix inserted in its wait operations
have never fired in our experiments with these final patches.
Thus, our deadlock-avoidance heuristics, while imperfect
in theory, perform extremely well in practice.

Manual inspection confirms that these fixes are correct
and nontrivial. For example, half of the benchmarks cannot
be fixed using locks alone. In OB1 and OB2, either the
number of signal threads or the number of A instances
per thread is not statically bound. Without OFix’s careful
analyses, naïve patches could easily lead to deadlocks or
fail to fix the problem. A naïve firstA–B patch without the
safety net would cause FFT to hang nondeterministically.

Performance Results The “Overhead” columns of Ta-
ble 3 show the overheads of both CFix and manual patches
relative to the original buggy software. All CFix overheads
are below 1%, which is comparable with correct manual
patches. These results are averages across 100 non-failing
runs of each version of the software with potentially-bug-
triggering inputs.

For ordering patches, good performance stems from
OFix’s efforts to signal as soon as possible and wait as
late as possible. This leads to little or no unnecessary
delay in the program. For mutual-exclusion patches, good
performance is due to short critical sections.

The static analyses in OFix perform well, taking less
than one second to generate one patch. We anticipate no
scalability problems for larger code bases.

Simplicity Results Jin et al. [20] have shown that AFix
can provide mutual-exclusion patches with good simplicity.
OFix uses patch optimization (Section 3.1) and patch merg-
ing (Section 5) to simplify ordering patches. To evaluate
these two techniques, Table 5 presents detailed counts of
signal operations (numbers followed by “s”) and wait oper-
ations (numbers followed by “w”) in CFix’s final patches
that are generated by OFix, under different optimization
and merging strategies. In the few cases where different
final patches are generated under different front ends, we
present worst-case results for the final patch with the most
synchronization operations.

The “All Opt” column of Table 5 counts synchronization
operations with both simplicity optimizations enabled. We
find that these numbers are quite moderate when patch
merging is also enabled, highlighted in bold. Out of seven
benchmarks, six can be fixed with no more than five syn-
chronization operations. In the worst case, OB2 can be
fixed with six signal operations and one wait operation.
Manual inspection confirms that all of the synchronization
operations in these final patches are genuinely necessary
for our fixing strategy.

Table 5: Number of synchronization operations in patches

ID All Opt Only 1st Only 2nd No Opt

OB1 merged 4s, 1w 19s, 1w 4s, 1w 19s, 1w
OB1 unmerged 20s, 5w 95s, 5w 20s, 5w 95s, 5w
OB2 6s, 1w 8s, 1w 20s, 1w 22s, 1w
OB3 merged 4s, 1w 17s, 1w 4s, 1w 17s, 1w
OB3 unmerged 40s,10w 170s,10w 40s, 10w 170s,10w
OB4 merged 1s, 2w 1s, 2w 1s, 2w 1s, 2w
OB4 unmerged 2s, 2w 2s, 2w 2s, 2w 2s, 2w
OB5 1s, 1w 1s, 1w 4s, 1w 4s, 1w
OB6 merged 1s, 1w 1s, 1w 1s, 1w 10s, 1w
OB6 unmerged 2s, 2w 2s, 2w 2s, 2w 20s, 2w
OB7 2s, 1w 2s, 1w 36s, 1w 36s, 1w

OB1 and OB3 respectively have five and ten bugs re-
ported by the corresponding front-end. As a result, their
unmerged OFix patches contain twenty five and fifty syn-
chronization operations respectively, severely hurting the
code simplicity. Fortunately, only five synchronization
operations remain in the merged patches: a very modest
number considering the number of bugs fixed.

The “Only 1st” and “Only 2nd” columns of Table 5 show
how many synchronization operations would be required
if each of the two simplicity optimizations of Section 3.1
were used in isolation, while “No Opt” shows the effect
of disabling both optimizations. These large numbers on
OB1 and OB3 are caused by unnecessary signal operations
before return statements as in Figure 6b. Many such state-
ments appear in the command-line option parsing code
for these two applications. OB4 is the only benchmark
that does not benefit from simplicity optimization. In fact,
OFix initially adds 103 safety-net signal operations into
OB4. Further analysis of OFix finds that the B operation
in OB4 is post-dominated by a safety-net signal. OFix
therefore removes the entire safety net before optimization
is applied, per Section 3.2. For the other benchmarks, the
optimizations are quite effective; with neither in place, our
patches would have 2.5 to 12 times as many synchroniza-
tion operations. Each of the two optimizations has its own
strengths. OB5 and OB7 benefit from the first optimiza-
tion; OB1 and OB3 benefit from the second; and OB2 and
OB6 benefit from both.

Our current CFix implementation operates directly on
LLVM bitcode, not source code. However, these simplicity
results suggest that CFix patches are a good starting point
for generating clean, readable source-level patches as well.

7 Limitations of CFix
Although CFix correctly fixes all bugs that require order
enforcement in our evaluation using OFix, OFix is not
a universal fixer for all possible bugs that require order
enforcement. OFix is restricted by the fact that it only tries
two different orderings, as well as by its use of call stacks
to identify operations. Therefore, OFix cannot fix bugs

char *buffer[10];

void child(. . .) { // child-i
. . .
buffer[i] = malloc(32); // A
. . .

}

void main() {
for (i = 0; i < 10; ++i) {

pthread_create(child, . . .);
buffer[i][0] = 'a'; // B
free(buffer[i]);

}
}

Figure 11: Example that presents a challenge to OFix

that require allA–B or firstA–B relationships between some,
but not all, instances of one call stack and some instances
of another call stack.

Figure 11 shows a bug that OFix cannot fix. Opera-
tions A and B require order enforcement, but share the
for loop in function main. The ideal way to fix this bug
is to force each dynamic instance of B (“buffer[i][0] = 'a'”
in main) to wait until after the corresponding instance of
A (“buffer[i] = malloc(32)” in child). The allA–B strategy
cannot fix this bug, because it would make the main thread
wait during the first iteration of the loop for all potential
instances of A, which causes a deadlock-induced timeout.
The firstA–B strategy cannot fix this bug either: after the
first B instance, a later instance of B could still happen
before the corresponding instance of A.

To fix the above bug requires using loop indexes as part
of operations’ identities and enforcing order relationships
accordingly. This type of code pattern is common in server
applications with dispatch loops. As a result, OFix has
certain limits in those applications.

The bug cases evaluated in Section 6 include bugs whose
buggy code regions are contained in one loop: AB1–AB6.
The patch testing and selection process of CFix has cor-
rectly judged that OFix cannot fix any of these bugs. These
six bugs happen to all require atomicity enforcement and
are correctly fixed by AFix.

The other two benchmarks in papers on ConMem [69],
ConSeq [70], and DUI [53] require order enforcement but
are not included in our evaluation. Our preliminary results
show that one of them can be patched correctly by CFix.
The other cannot, as it is a true order violation but the two
operations share a loop as discussed earlier in this section.

CFix may fail to fix a bug in several other scenarios.
First, the software may have deep design flaws and not be
fixable through synchronization enforcement alone. Sec-
ond, the bug detector may provide insufficient information
for bug fixing, such as AB3 under DU. Third, OFix makes
a best effort to avoid deadlocks, by signaling as soon as
possible in signal threads and waiting as late as possible in
wait threads. When OFix patches suffer deadlocks, CFix
concludes that the bug should not be fixed through order-
ing enforcement. However, this could be wrong in rare
cases. For example, complex branch conditions may cause
infeasible paths and prevent OFix from identifying earlier

opportunities to signal. While possible in theory, this never
occurs in our experiments: OFix successfully generates
final patches without deadlocks detected during patch test-
ing. Lastly, CFix patch testing cannot guarantee to catch
all problems in a patch, as this is infeasible for any large
multi-threaded application. The CFix run-time supports
production-run patch monitoring and could potentially be
extended to avoid deadlocks at run time [21].

Based on our experience, CFix can work with most
concurrency bug detectors that report failure inducing in-
terleavings. Adding a new detector as CFix front end
mainly requires a corresponding fix-strategy design, as
discussed in Section 2. CFix currently uses four front ends
that report no false positives. If a future front end reports
false positives or benign races, CFix may enforce some
unnecessary synchronizations in the program. This may
result in a patch with poor performance or that cannot pass
the testing stage in the first place.

In some cases, CFix patches are more complicated
than manual patches. These manual patches use non-
lock/condition-variable synchronization primitives and
sometimes leverage developers’ knowledge of special pro-
gram semantics. For example, some order violations are
fixed by swapping the order of original program statements
and some are fixed by using pthread_join. Future work
can further simplify CFix patches in this direction.

CFix’s patch currently operate in terms of LLVM bit-
code. This enables quick deployment but makes develop-
ers’ involvement difficult in the long term. Our evaluation
shows CFix can generate compact patches containing few
new synchronization operations. This lays a good founda-
tion for eventual production of simple source-level patches.
Such a transformation tool will need to consider additional
source-level syntax issues that we have not addressed here.
We leave such an extension to future work.

8 Related Work
As discussed in Section 1, many concurrency-bug detectors
have been proposed. These tools aim to identify problems,
not to fix them. Therefore, they inevitably leave many
challenges for bug fixing, such as figuring out root causes
and inserting synchronization operations correctly without
unnecessary degradation in performance or simplicity. As
a bug-fixing tool, CFix has considered and addressed these
challenges, complementing bug detectors.

Techniques have been proposed to insert lock opera-
tions into software based on annotations [37, 57], atomic
regions inferred from profiling [61], and whole-program
serialization analysis [56]. QuickStep [23] automatically
selects functions to put into critical sections based on race-
detection results during loop parallelization. Recent work
by Navabi et al. [40] parallelizes sequential software based
on future-style annotations. It automatically inserts barri-
ers to preserve sequential semantics during parallelization.

Compared with the above techniques, CFix is unique in
fixing concurrency bugs reported by a wide variety of bug
detectors and in synchronizing using both locks and con-
dition variables. CFix addresses unique challenges such
as fix-strategy design, simplicity optimization, patch merg-
ing, and patch testing. The static analysis conducted by
OFix differs from that of Navabi et al. [40] by considering
additional issues such as simplicity and performance.

Program synthesis [11, 55, 58] uses verification tech-
niques to generate synchronized programs that satisfy cer-
tain specifications. The nature of the problem makes it
hard to scale to large, real-world applications. CFix does
not try to understand all synchronizations in a program and
therefore avoids the associated scalability problems.

Hot-patching tools fix running software. ClearView [45]
patches security vulnerabilities by modifying variable val-
ues at run time. Its design is not suitable for concurrency
bugs. The LOOM system [62] provides a language for
developers to specify synchronizations they want to add
to a running software and deploys these synchronization
changes safely. Similar to CFix, LOOM also does CFG
reachability analysis for safety, and has a run-time compo-
nent to recover from deadlocks. Since LOOM has different
design goals from CFix, it does not need to consider is-
sues like working with bug detectors, fix-strategy design,
locating synchronization operations, handling statically-
unknown numbers of signals, simplicity concerns, patch
merging and testing. Tools like CFix can potentially com-
plement LOOM by automatically generating patches for
LOOM to deploy.

Run-time tools can help survive some concurrency bugs
[7, 21, 24, 26, 34, 49, 59, 66, 67]. Since CFix aims to
permanently fix bugs, it has different design constraints
and must address unique challenges, such as fixing a wide
variety of bugs completely, instead of statistically, with
unknown root causes, statically locating synchronization
operations while lowering the risk of deadlock, maintain-
ing simplicity, patch testing, and patch selection.

Many record-replay tools [1, 44, 60, 63] and production-
run bug detectors [6, 19, 36, 59] have been proposed. They
can enable CFix to fix bugs discovered in production runs.

Deterministic systems [3–5, 9, 10, 29, 42] can make
some concurrency bugs deterministically happen and some
other bugs never occur. This promising approach still faces
challenges, such as run-time overhead, integration with
system non-determinism, language design, etc. In general,
these tools address different problems than CFix. Even
for software executed inside a deterministic environment,
fixing bugs still requires manual intervention. CFix and
these tools can complement each other. Tern [9] and Pere-
grine [10] proposed precondition computation to enforce
specific interleavings for selected inputs. This technique
can potentially be used to enable or disable CFix patches
for selected inputs.

9 Conclusion

CFix is a framework for automatically fixing concurrency
bugs. For concurrency bugs reported by a wide variety of
detection tools, CFix automatically inserts synchroniza-
tion operations to enforce the desired orderings/mutual-
exclusion and fix the bugs. CFix uses testing to select the
best patch among patch candidates, and incorporates opti-
mization and merging algorithms to keep patches simple.
Experimental evaluation shows that CFix produces high-
quality patches that fix real-world bugs while exhibiting ex-
cellent performance. CFix is a significant step forward to-
ward relieving software developers of the time-consuming
and error-prone task of fixing concurrency bugs. It can be
used to generate patches or patch candidates for developers.
Its analysis, testing, and run-time monitoring results can
also provide useful feedback to both developers and bug
detection tools.

Acknowledgments

We thank the anonymous reviewers for their invaluable
feedback, and our shepherd, Jason Flinn, for his guid-
ance in preparing the final version. We thank the Opera
group from UCSD for sharing with us their bug bench-
marks. This work is supported in part by DoE contract DE-
SC0002153; LLNL contract B580360; NSF grants CCF-
0701957, CCF-0953478, CCF-1018180, CCF-1054616,
and CCF-1217582; and a Claire Boothe Luce faculty fel-
lowship. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF or
other institutions.

References
[1] G. Altekar and I. Stoica. ODR: output-deterministic replay

for multicore debugging. In SOSP, 2009.
[2] C. Armour-Brown, J. Fitzhardinge, T. Hughes, N. Nether-

cote, P. Mackerras, D. Mueller, J. Seward, B. V. Ass-
che, R. Walsh, and J. Weidendorfer. Valgrind User Man-
ual. Valgrind project, 3.5.0 edition, Aug. 2009. http:
//valgrind.org/docs/manual/manual.html.

[3] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient
system-enforced deterministic parallelism. In OSDI, 2010.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Determin-
istic process groups in dOS. In OSDI, 2010.

[5] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe
multithreaded programming for C/C++. In OOPSLA, 2009.

[6] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer:
Proportional detection of data races. In PLDI, 2010.

[7] L. Chew and D. Lie. Kivati: fast detection and prevention
of atomicity violations. In EuroSys, 2010.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan. Efficient and precise datarace detection
for multithreaded object-oriented programs. In PLDI, 2002.

[9] H. Cui, J. Wu, C. che Tsai, and J. Yang. Stable deterministic
multithreading through schedule memoization. In OSDI,
2010.

[10] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
deterministic multithreading through schedule relaxation.
In SOSP, 2011.

[11] J. Deshmukh, G. Ramalingam, V. P. Ranganath, and
K. Vaswani. Logical concurrency control from sequential
proofs. In ESOP, 2010.

[12] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In OSDI, 2010.

[13] C. Flanagan and S. N. Freund. Atomizer: a dynamic atom-
icity checker for multithreaded programs. In POPL, 2004.

[14] C. Flanagan and S. N. Freund. FastTrack: efficient and
precise dynamic race detection. In PLDI, 2009.

[15] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In PLDI, 2003.

[16] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin. 2nd-
Strike: toward manifesting hidden concurrency typestate
bugs. In ASPLOS, 2011.

[17] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA, 2003.

[18] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In ISCA,
1993.

[19] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation
and sampling strategies for Cooperative Concurrency Bug
Isolation. In OOPSLA, 2010.

[20] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In PLDI, 2011.

[21] H. Jula, D. Tralamazza, C. Zamfir, and G. Candea. Dead-
lock immunity: Enabling systems to defend against dead-
locks. In OSDI, 2008.

[22] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data
race bugs: telling the difference with Portend. In ASPLOS,
2012.

[23] D. Kim, S. Misailovic, and M. Rinard. Automatic par-
allelization with statistical accuracy bounds. Technical
Report MIT-CSAIL-TR-2010-007, MIT, 2010. URL http:
//hdl.handle.net/1721.1/51680.

[24] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing
data races on-the-fly. In PADTAD, 2007.

[25] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO,
2004.

[26] Z. Letko, T. Vojnar, and B. Křena. AtomRace: data race
and atomicity violation detector and healer. In PADTAD,
2008.

[27] N. G. Leveson and C. S. Turner. An investigation of the
Therac-25 accidents. Computer, 26(7):18–41, July 1993.
ISSN 0018-9162.

[28] T. Li, C. S. Ellis, A. R. Lebeck, and D. J. Sorin. Pulse: A
dynamic deadlock detection mechanism using speculative
execution. In USENIX, 2005.

[29] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient
deterministic multithreading. In SOSP, 2011.

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html
http://hdl.handle.net/1721.1/51680
http://hdl.handle.net/1721.1/51680

[30] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
atomicity violations via access-interleaving invariants. In
ASPLOS, 2006.

[31] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa,
and Y. Zhou. MUVI: Automatically inferring multi-variable
access correlations and detecting related semantic and con-
currency bugs. In SOSP, 2007.

[32] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes
– a comprehensive study of real world concurrency bug
characteristics. In ASPLOS, 2008.

[33] B. Lucia and L. Ceze. Finding concurrency bugs with
context-aware communication graphs. In MICRO, 2009.

[34] B. Lucia, J. Devietti, L. Ceze, and K. Strauss. Atom-Aid:
Detecting and surviving atomicity violations. IEEE Micro,
29(1), 2009.

[35] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: architec-
tural support for debugging and dynamically avoiding multi-
variable atomicity violations. In ISCA, 2010.

[36] D. Marino, M. Musuvathi, and S. Narayanasamy. Effective
sampling for lightweight data-race detection. In PLDI,
2009.

[37] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker:
synchronization inference for atomic sections. In POPL,
2006.

[38] MySQL. Bug report time to close stats. http://bugs.mysql.
com/bugstats.php, Dec. 2011.

[39] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful
data races using replay analysis. In PLDI, 2007.

[40] A. Navabi, X. Zhang, and S. Jagannathan. Quasi-static
scheduling for safe futures. In PPOPP, 2008.

[41] R. H. B. Netzer and B. P. Miller. Improving the accuracy
of data race detection. In PPoPP, 1991.

[42] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: effi-
cient deterministic multithreading in software. In ASPLOS,
2009.

[43] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity
violation bugs from their hiding places. In ASPLOS, 2009.

[44] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu. PRES: probabilistic replay with execution
sketching on multiprocessors. In SOSP, 2009.

[45] J. H. Perkins, S. Kim, S. Larsen, S. P. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D.
Ernst, and M. C. Rinard. Automatically patching errors in
deployed software. In SOSP, 2009.

[46] K. Poulsen. Software bug contributed to blackout. http:
//www.securityfocus.com/news/8016, Feb. 2004.

[47] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH:
context-sensitive correlation analysis for race detection. In
PLDI, 2006.

[48] R. Rajwar and J. R. Goodman. Speculative lock elision:
Enabling highly concurrent multithreaded execution. In
MICRO, 2001.

[49] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn,
R. Nagpal, and K. Pattabiraman. Detecting and tolerating
asymmetric races. In PPoPP, 2009.

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15, 1997.

[51] K. Sen. Race directed random testing of concurrent pro-
grams. In PLDI, 2008.

[52] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer – data
race detection in practice. In WBIA, 2009.

[53] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and
W. Zheng. Do I use the wrong definition?: DefUse:
definition-use invariants for detecting concurrency and se-
quential bugs. In OOPSLA, 2010.

[54] S. Sidiroglou, S. Ioannidis, and A. D. Keromytis. Band-aid
patching. In HotDep, 2007.

[55] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching
concurrent data structures. In PLDI, 2008.

[56] G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Automatic
atomic region identification in shared memory SPMD pro-
grams. In OOPSLA, 2010.

[57] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. In
POPL, 2006.

[58] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided
synthesis of synchronization. In POPL, 2010.

[59] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Detecting and surviving data
races using complementary schedules. In SOSP, 2011.

[60] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M.
Chen, J. Flinn, and S. Narayanasamy. DoublePlay: paral-
lelizing sequential logging and replay. In ASPLOS, 2011.

[61] D. Weeratunge, X. Zhang, and S. Jagannathan. Accentu-
ating the positive: Atomicity inference and enforcement
using correct executions. In OOPSLA, 2011.

[62] J. Wu, H. Cui, and J. Yang. Bypassing races in live applica-
tions with execution filters. In OSDI, 2010.

[63] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo,
H. Guo, L. Zhou, and Z. Zhang. Language-based replay via
data flow cut. In FSE, 2010.

[64] M. Xu, R. Bodík, and M. D. Hill. A serializability violation
detector for shared-memory server programs. In PLDI,
2005.

[65] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. N. Bairava-
sundaram. How do fixes become bugs? In FSE, 2011.

[66] J. Yu and S. Narayanasamy. A case for an interleaving con-
strained shared-memory multi-processor. In ISCA, 2009.

[67] J. Yu and S. Narayanasamy. Tolerating concurrency bugs
using transactions as lifeguards. In MICRO, 2010.

[68] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[69] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe
concurrency bugs through an effect-oriented approach. In
ASPLOS, 2010.

[70] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,
S. Lu, and T. Reps. ConSeq: detecting concurrency bugs
through sequential errors. In ASPLOS, 2011.

http://bugs.mysql.com/bugstats.php
http://bugs.mysql.com/bugstats.php
http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016

	Introduction
	Motivation
	Contributions

	Fix Strategy Design
	Mutual Exclusion and Ordering
	Strategies for Atomicity Violations
	Strategies for Order Violations
	Strategies for Data Races
	Strategies for Abnormal Def-Use
	Discussion

	Enforcing an Order Relationship
	Enforcing an allA–B Order
	Enforcing a firstA–B Order
	Function Cloning
	Discussion

	Patch Testing and Selection
	Patch Merging
	Patch Merging Guidelines
	Patch Merging for allA–B Orderings
	Patch Merging for firstA–B Orderings

	Experimental Evaluation
	Methodology
	Overall Results
	Patching for Different Bug Detectors
	Quality of CFix's Final Patches

	Limitations of CFix
	Related Work
	Conclusion

