
Public Deployment of Cooperative Bug Isolation∗

Ben Liblit †

liblit@cs.berkeley.edu

Mayur Naik§

mhn@cs.stanford.edu

Alice X. Zheng†

alicez@cs.berkeley.edu

Alex Aiken §

aiken@cs.stanford.edu

Michael I. Jordan†, ‡

jordan@cs.berkeley.edu

†Department of Electrical
Engineering and Computer Science

‡Department of Statistics
University of California, Berkeley

Berkeley, CA 94720-1776

§Computer Science Department
353 Serra Mall

Stanford University
Stanford CA 94305-9025

Abstract

As part of our work on Cooperative Bug Isolation (CBI)
we have undertaken to instrument and distribute binaries
for a number of large open source projects. This public de-
ployment is an important step toward a large experiment in-
volving (we hope) hundreds or thousands of users that will
measure the effectiveness of CBI. This paper describes sev-
eral of the significant engineering issues that arise in in-
strumenting the source code of realistic applications.

1. Introduction

Cooperative Bug Isolation (CBI) seeks to leverage the
huge amount of computation done by the end users of soft-
ware. By gathering a little bit of information from every run
of a program performed by its user community, we should
be able to make inferences automatically about the causes
of bugs experienced in the field.

Our approach to CBI is based upon compile-time instru-
mentation of the program’s source code. We insert instru-
mentation to test a large number of predicates on program
values during execution and to count how many times each
predicate is observed to be true or false. On termination of
the program the list of predicate counters is uploaded to a
central server together with a record of whether the program

∗This research was supported in part by NASA Grant No. NAG2-1210;
NSF Grant Nos. EIA-9802069, CCR-0085949, ACI-9619020, and IIS-
9988642; DOE Prime Contract No. W-7405-ENG-48 through Memoran-
dum Agreement No. B504962 with LLNL; and DARPA ARO-MURI AC-
CLIMATE DAAD-19-02-1-0383. The information presented here does
not necessarily reflect the position or the policy of the Government and no
official endorsement should be inferred.

terminated successfully or not. Subsequent statistical anal-
ysis of which predicates are correlated with program failure
can then indicate to engineers which values and what parts
of the program are the sources of crashes; in at least some
cases even the exact line of code that is at fault can be iden-
tified [3, 4, 5].

We believe that CBI and related research efforts have
great potential to make software development more respon-
sive and efficient by giving developers accurate data about
how software is actually used in deployment. However, test-
ing this idea requires significant experimentation with real,
and preferably large, user communities using real applica-
tions.

This paper reports on our experience in preparing for just
such an experiment. We have instrumented a number of
large open source applications, listed in Table 1, with a to-
tal of about 1.8 million lines of code. We have made these
instrumented programs available to the public and are in the
process of collecting feedback reports. As a result, we have
demonstrated a complete CBI system and feel comfortable
in claiming that our approach is technically feasible; while
aspects of our system could certainly be improved, at this
point all components are good enough to support the de-
ployment of realistic instrumented applications and the col-
lection of feedback reports from a large user community.

The design of a CBI system involves interesting chal-
lenges, both technical and social. In this paper, we focus on
the solutions to technical problems most likely to be useful
to the designers of similar systems and experiments: deal-
ing with existing native compilers, shared libraries, plugins,
and threads. We also briefly discuss how users interact with
our system, as well as give some static and dynamic mea-
sures of the applications we instrument.

mailto:liblit@cs.berkeley.edu
mailto:mhn@cs.stanford.edu
mailto:alicez@cs.berkeley.edu
mailto:aiken@cs.stanford.edu
mailto:jordan@cs.berkeley.edu

Application Lines of Code Shared Libraries Plugins Threads
Evolution 460,912 X X X
Gaim 160,435 X
The GIMP 650,660 X X
Gnumeric 319,137 X
Nautilus 124,679 X X X
Rhythmbox 56,442 X

Table 1. Instrumented applications

2. Native Compiler Integration

The system as a whole looks and behaves like GCC with
a few extra command line flags. No manual annotation
of source code is required, and all existing configuration
scripts and makefiles work transparently. This lets us instru-
ment 1.8 million lines of open source code and keep up with
new releases with very short turnaround. Simply changing
an environment variable ($CC) builds an application with
our instrumenting compiler instead of the standard one.

The meat of instrumentation happens as a source to
source transformation after the preprocessor and before the
real C compiler. However, we actually need to affect all
stages of compilation:

before preprocessing (cpp0): Pull in extra headers to de-
clare or define various constructs used by instrumented
code. For fixed content such as this it is easier to use
fixed headers rather than synthesizing the needed con-
structs programmatically within the instrumentor.

before compilation (cc1): Inject sampled instrumenta-
tion as a source-to-source transformation. Emit addi-
tional static site information into temporary files for
use in next step.

after assembly (asm): Fuse extra static site information
from temporary files into the assembled object file.

before linking (ld): Pull in extra libraries containing
common runtime support code and data used by in-
strumented programs.

We use GCC’s-B <path> flag to specify an alternate
directory in which to find the compiler stages. Custom
scripts in that directory namedcc1 andasm do the extra
“before compilation” and “after assembly” work and invoke
the corresponding native compiler stages as appropriate.

We also use GCC’s-specs= <file> flag to augment
(not replace) the standard option specs file with one of our
own. Anoption specs file, or simply “specfile,” determines
how GCC parses its command line arguments. We can add
flags of our own, request temporary file names, and so on.
A specfile is essentially a tiny domain-specific language for

tweaking the command lines used for the various compiler
stages. Using this facility we are able to take care of our
“before preprocessing” and “before linking” needs by aug-
menting thecpp0 andld command lines without actually
replacing those stages with custom scripts of our own.

2.1. Static Site Information

While the main “before compilation” task is to inject in-
strumentation code, that this phase also produces static ref-
erence information about each instrumentation site. This in-
cludes each site’s source file name, line number, host func-
tion, control flow graph node, and other information specific
to the instrumentation scheme being used. When decoding
feedback reports, this information is used to tie predicate
counts back to source level features understood by the pro-
grammer. Our experience is that maintaining this informa-
tion external to the corresponding object file is brittle, as ex-
isting application build scripts often move or rename object
files during the build process. Therefore, we fuse the static
site information into the assembled object file by storing it
in several custom ELF sections.

When the linker combines several object files, it pads
each unknown section out to some fixed modulus and then
concatenates all same-named sections in link order. We rep-
resent our static site information in a way that remains valid
under null-byte injection and concatenation. Thus each in-
strumented executable, shared library, or plugin is self de-
scribing, with complete static information for all of its own
instrumentation sites. Our extra sections are flagged as de-
bug information, which means that they will be stripped out
along with other debugging information during post-build
packaging. We retain a copy locally to assist in report de-
coding, but end users do not need to download and store this
extra information on their own machines.

3. Libraries and Plugins

Post-run reporting would be easy for an application that
consisted of a single object file. We would simply write out
the predicate counters in the order in which they appear in
that file, and that list would constitute a complete report.

However, as can be seen in Table 1, most applications
involve multiple object files in the form of shared libraries,
plugins, or both. Note that this table counts only those
shared libraries and plugins that are part of the source code
of the application; additionally, there generally will be other
shared libraries and plugins that are resident only on the end
user’s machine. Thus, the running environment is a mix of
code that has been instrumented by CBI and code that we
have never seen before. Shared libraries are also interesting
because they may be used by other applications that we have
not instrumented. Thus, not only must instrumented appli-
cations cope with uninstrumented code, but instrumented
code must cope with finding itself in an uninstrumented ap-
plication.

An orthogonal set of problems arises from static linking
and dynamic loading. Our system does not have control
over the linker and cannot assume that object files appear
in any particular order. Plugins may be loaded late and
unloaded at any time. If an instrumented plugin is about
to be unloaded, we must capture its part of the feedback
report immediately, because once it is unloaded its global
predicate counters vanish from the address space and can
no longer be accessed.

Our solution to all of these problems is to make each ob-
ject file self-managing, with some initialization code that
runs when it is loaded, and finalization code that runs when
it is unloaded. For objects which are part of the main appli-
cation binary, the initialization code runs early in program
execution, beforemain() . The finalization code runs after
main() returns or afterexit() is called. Shared libraries
are similar. For plugins, the initialization code runs within
dlopen() after the plugin has been mapped into memory.
Plugin finalization code runs withindlclose() just be-
fore the plugin is removed from memory. Each object file
also maintains its own instrumentation state; in particular,
each object file maintains its own predicate counters.

There is one situation in which we need global knowl-
edge of the loaded object files. Finalization code does not
run after a crash. Thus if the program receives a fatal signal,
we must immediately gather the predicate counters from
each loaded object file for the feedback report. We maintain
a doubly-linked list of loaded object files, and the initializa-
tion/finalization code for each object file adds/removes that
file from this list. Thus at any moment in time the appli-
cation has a central registry of all instrumented, currently
loaded object files.

We have also given some attention to the fact that this
global registry could itself be corrupted by a buggy pro-
gram. We maintain a global count of the expected size of
the global registry. When walking the list in a signal han-
dler, we use the counter to decide when to stop even if we
have not reached the end of the list data structure. This pre-
vents an infinite loop if a memory error in the application

introduces a cycle into the doubly-linked list. The global
registry can be damaged in other ways by a misbehaving
program, of course, but avoiding cycles is the most impor-
tant case to handle.

The complications in checking for a corrupted global
registry are just an example of the general problem that it
is not possible to completely isolate program instrumenta-
tion from the program itself in unsafe languages such as C
and C++. As a result it is necessary to sanity check feed-
back reports at the central server and discard any that are
ill-formed. In practice we do receive ill-formed reports, but
the number is only a tiny fraction of all reports.

4. Threads

Our CBI system maintains three kinds of global data
that need special attention in multi-threaded applications.
In each case thread-safety can hurt performance, so we
only take this extra care if in fact the application is multi-
threaded (e.g. if the compiler’s command line contains the
GCC-pthread flag).

A key feature of our CBI system is that performance can
be improved by sampling the instrumentation code, which is
implemented by frequently skipping over some instrumen-
tation and instead executing a “fast path” with no instru-
mentation at all. We use aglobal countdownto determine
how many instrumentation sites to skip before testing one
predicate and recording its result. The countdown is chosen
randomly from a geometric distribution with a mean that is
the desired sampling rate. (This is equivalent to, but much
more efficient than, tossing a coin at each instrumentation
site to decide whether to take a sample.) In a multi-threaded
system, the global variable holding this next-sample count-
down would be a source of high contention among threads.

The simple solution to this problem is to give each thread
its own, independent countdown variable. This is equivalent
to giving each thread its own coin to toss. The behavior of
the system with per-thread countdowns is indistinguishable
from having a single global countdown, and in addition we
avoid all locking.

Enacting this plan requires compiler support. We use the
thread storage qualifier to declare thread-specific stor-

age. This is a GCC extension and also requires support from
the POSIX threading runtime, C library, and runtime loader.
We also must alter thread creation so we can initialize the
new thread’s global state. We use the--wrap flag pro-
vided by the GNU linker to replacepthread create()
with our augmented version.

The second class of data that requires special handling in
multi-threaded applications is the predicate counters. Recall
that the predicate counters keep track of how often a partic-
ular predicate at a particular line of code is observed to be
true or false. For efficiency we use low sampling rates, such

as once every hundred times (on average, randomized) that
the line of code associated with the predicate is executed.
Therefore predicates are tested rarely and any individual
counter is accessed rarely even by a single thread. There-
fore, we maintain only one copy of each predicate counter,
shared by all threads. The critical operation on these coun-
ters, an increment by one, is so basic that every CPU ar-
chitecture has some way of doing this atomically without
resorting to heavyweight locking.

Finally, the third class of data that must be protected
from concurrent access includes the global registry of com-
pilation units and the report file. Because these structures
are accessed very rarely, we guarantee exclusive access by
guarding each with its own mutual exclusion lock.

5. User Interaction

When a user launches an instrumented application, he
does not run the instrumented binary directly. Instead,
we install a wrapper script in the expected location (e.g.
/usr/bin) and put the instrumented binary elsewhere.
The wrapper script has several responsibilities: it performs
all user interaction that goes beyond what the underlying
application would normally do, and it collects the raw feed-
back report from the instrumented application, packages it
for transit, and sends it to the report collection server along
with other information such as program outcome. In this
way we avoid adding GUI infrastructure and encrypted net-
working support to the applications themselves. Also, the
script can be in a different language, Python, which has
excellent library support for both networking and desktop
interaction.

When the wrapper script starts up, it checks whether
the user has run an instrumented version of this applica-
tion before. If not, it presents the first-time opt-in dialog
box shown in Figure 1. The dialog box briefly describes the
goals of the project and the consequences of participating
or not, and lets the user decide what to do. The logo icon
and highlighting of the yes/no explanatory text change to
reflect user’s current choice. A hyperlink button links to the
project web site for more information [2]. This dialog box is
initially presented in the background, and the real applica-
tion launched without waiting for a reply. On this first run,
the application reports no data. Once the user has selected
yes or no, that preference is remembered and the first-time
opt-in dialog box is not shown on subsequent runs, though
it is possible to change the preference later using a distinct
sampler control panel.

Also in the background, the wrapper posts a small status
icon in the desktop status bar notification area. This icon
provides a visual reminder that an instrumented application
is currently running. It provides a simple pop-up menu with
a toggle to globally disable or enable sampling. The status

Figure 1. First-time opt-in dialog box

Application Min Max
Evolution 830 39,863
Gaim 1,786 18,772
The GIMP 15,617 26,304
Gnumeric 6,661 15,876
Nautilus 3,252 10,638
Rhythmbox 897 5,823

Table 2. Feedback report sizes in bytes

icon changes depending on whether sampling is enabled or
disabled globally, and remains present as long as at least
one instrumented application is running. A second menu
item launches the sampler control panel which allows for
more detailed customization of data collection preferences.

The opt-in dialog box, status icon, and control panel
work together to keep the user fully informed and fully
in control. Additional configuration management hooks
let system administrators change both defaults as well as
mandatory, locked-down settings. These settings can in-
clude the sampling density, the address of the report col-
lection server, and whether reporting is enabled for all or
selected applications. Tracking of user behavior is a deli-
cate matter, so users and their system administrators must
be able to adapt the system to local needs and concerns.

Because the wrapper script launches the instrumented bi-
nary as a subprocess, it can also check that subprocess’s
exit status (either a result code or a fatal signal), which is
included in the report uploaded to our feedback collection
server. The wrapper script compresses the raw feedback re-
port for transit usinggzip -compatible compression. This

is a huge benefit, as reports are mostly zeros and compress
very well. The average compression of the reports we have
received is 96%; Table 2 shows the range of report sizes we
have received by application. The largest reports are less
than 40K bytes, which can be uploaded over even a slow
modem connection in seconds.

Before submitting a report, the wrapper checks once
more whether sampling is enabled both globally and for
this application. If the user changed his mind after program
launch, this gives a second chance to quash an unwanted
feedback report before it reaches the collection server.

A report is submitted using an HTTP POST request
across an encrypted SSL connection. Each HTTP request
can also have a response from the server. Ordinarily the
collection server does not give any response beyond a suc-
cess code. However, if the server does give a response, the
wrapper script receives it and presents it to the user as an
HTML page. This feature might be used, for example, if a
critical security issue were found requiring immediate up-
grades.

The HTTP reply can also include a few special reply
headers which update the local sampling configuration on
the client. We have the ability to promote a different des-
tination URL for future reports, which may be useful if we
need to relocate the collection server. We can change the
sampling density from its default of1/100, which may be
useful if performance problems arise. We can also issue a
“poison pill” which turns off sampling for future runs of the
application. This is intended as a shutoff should the Coop-
erative Bug Isolation project be discontinued at some future
date (a feature we learned would be useful from the prior ex-
perience of Elbaum and Hardojo [1]), and it might also be
used to suppress future reports from individual misbehaving
users. So far we have not needed any of these facilities.

6. Status of the Public Deployment

We conclude with some discussion of our experience
thus far with our public deployment of the applications
listed earlier.

One concern is that our approach adds a great deal of
new code to an application; in fact, binaries will often be
at least twice as large as the original, uninstrumented pro-
gram. However, the growth in disk footprint is consider-
ably smaller if one considers the entire package that comes
with a typical large application, and in fact the executable
code is often a relatively small percentage of the total distri-
bution. For the applications we have instrumented, down-
loaded packages are between 13% and 49% larger and the
installed footprint on disk grows between 13% and 71%.
The actual application binaries are between 74% and 304%
larger than in the original distribution. Thus far we have

Application Total Good Error Crash
Evolution 916 838 55 23 (3%)
Gaim 495 417 62 16 (4%)
The GIMP 109 107 2 0 (0%)
Gnumeric 261 242 2 17 (7%)
Nautilus 747 642 96 9 (1%)
Rhythmbox 869 728 39 102 (14%)

Table 3. Number of reports received to date

received no complaints about package sizes, either down-
loaded or as expanded onto disk.

Another potential issue is application performance, but
thus far we have received no complaints about the perfor-
mance of any of our instrumented applications. We use1/100

sampling, which apparently is sparse enough; we probably
could have sampled even more densely for these interactive
applications which spend most of their time waiting for the
user to do something. Note however that these applications
do have CPU-intensive phases, such as when Rhythmbox is
loading up a library with thousands of music files or when
Gnumeric is recalculating a very large spreadsheet.

Table 3 summarizes the current state of the data for each
of our instrumented applications. Thetotal number of valid
feedback reports received so far is broken out intogood
runs, runs that exited with a non-zeroerror status, and
runs that ended in acrashdue to a fatal signal. Note the
large variation in crash rates, from 0% (The GIMP) to 14%
(Rhythmbox).

There is both good news and bad news in these figures.
The bad news is that we have not yet received enough re-
ports to carry out statistically significant analysis of the re-
sults, based on our previous experience with studies done
“in the lab” running applications on synthetic data to simu-
late a large user community. With1/100 sampling we need
between ten and twenty thousand runs with our current
methods to achieve accurate analysis of the results, which is
more than ten times the number of reports we have received
to date for any of these applications.1 Our situation here
reflects an inherent aspect of CBI and similar approaches,
which is that these methods work well only beyond a cer-
tain minimum scale.

The good news is that these applications do crash, indi-
cating to us that there is potential to improve the state of the
software given enough users participating in CBI. In addi-
tion, we have enough data to demonstrate that the complete
system works, from instrumenting code through gathering
of reports, and we continue to receive new feedback reports
daily. We are only at the beginning of this experiment and
have not yet invested much effort in attracting users. The
next step in our experiment will be to find ways to recruit

1We began collecting data from the public in October, 2003.

enough users to test the advantages of CBI for large user
communities of complex applications.

References

[1] S. Elbaum and M. Hardojo. Deploying instrumented software
to assist the testing activity. InRAMSS ’03: The 1st Inter-
national Workshop on Remote Analysis and Measurement of
Software Systems, pages 31–33, May 2003.

[2] B. Liblit. The Cooperative Bug Isolation Project.http:
//www.cs.berkeley.edu/˜liblit/sampler/ .

[3] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug iso-
lation via remote program sampling. In J. James B. Fenwick
and C. Norris, editors,Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Im-
plementation (PLDI-03), volume 38, 5 ofACM SIGPLAN No-
tices, pages 141–154. ACM Press, 2003.

[4] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Sam-
pling user executions for bug isolation. InProceedings of the
Workshop on Remote Analysis and Measurement of Software
Systems, pages 5–8, Portland, Oregon, May 9 2003.

[5] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken. Statisti-
cal debugging of sampled programs. InAdvances in Neural
Information Processing Systems 17, Vancouver and Whistler,
British Colombia, Canada, Dec. 9–11 2003.

http://www.cs.berkeley.edu/~liblit/sampler/
http://www.cs.berkeley.edu/~liblit/sampler/

	Introduction
	Native Compiler Integration
	Static Site Information

	Libraries and Plugins
	Threads
	User Interaction
	Status of the Public Deployment

