
Reflections on the Role of Static Analysis
in Cooperative Bug Isolation�

Ben Liblit

Computer Sciences Department
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract. Cooperative Bug Isolation (CBI) is a feedback-directed approach to
improving software quality. Developers provide instrumented applications to the
general public, and then use statistical methods to mine returned data for informa-
tion about the root causes of failure. Thus, users and developers form a feedback
loop of continuous software improvement. Given CBI’s focus on statistical meth-
ods and dynamic data collection, it is not clear how static program analysis can
most profitably be employed. We discuss current uses of static analysis during
CBI instrumentation and failure modeling. We propose novel ways in which static
analysis could be applied at various points along the CBI feedback loop, from
fairly concrete low-level optimization opportunities to hybrid failure-modeling
approaches that may cut across current static/dynamic/statistical boundaries.

1 Introduction

A complete Cooperative Bug Isolation (CBI) system constitutes a feedback loop be-
tween developers and users. Developers provide software to users, and users respond
with data about that software’s behavior in the deployed environment. Developers then
use this data to improve the software in future releases, guided largely by sophisticated
statistical models of program misbehavior. The goal is not to produce perfect first re-
leases, but rather to improve software continuously over time guided by the needs of
real user communities [1]. It is non-obvious how formal static analysis should interact
with CBI’s dynamic/statistical approach to software quality. This paper explores how
static analysis is currently used within CBI, and how it could most beneficially be used
in the future.

1.1 Overview of Cooperative Bug Isolation

We start with a conceptual overview of CBI’s feedback loop in Fig. 1. The process be-
gins at the top left, with program source and a small set of configuration choices (made
by the developer) that will steer a CBI instrumenting compiler. Configuration choices

� Supported in part by AFOSR Grant FA9550-07-1-0210 and NSF Grants CCF-0621487, CCF-
0701957, and CNS-0720565. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of
AFOSR, NSF, or other institutions.

M. Alpuente and G. Vidal (Eds.): SAS 2008, LNCS 5079, pp. 18–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

mailto:liblit@cs.wisc.edu


Reflections on the Role of Static Analysis 19

Instrumentor
Configuration

Program 
Source

Unconditional 
Instrumentation

Sampling 
Transformation

Native
Compiler

Top Bugs &
Likely Causes

Shipping Application

Diverse User C
ommunity

`
Feedback
Database

Installed by End Users

Feedback Reports

Fig. 1. Conceptual overview of Cooperative Bug Isolation system

are simple and few in number, while program source is absolutely free of any man-
ual, CBI-specific annotation. This minimizes the up-front cost to developers wishing to
adopt CBI.

The boxed tool chain at the top center of Fig. 1 represents a CBI instrumenting com-
piler. This appears to the developer to be a standard compiler augmented with a few
additional high-level configuration options, and therefore is easily incorporated into ex-
isting build environments. Internally, CBI-instrumented compilation consists of three
distinct steps: (1) insertion of unconditional instrumentation; (2) transformation of in-
strumentation to be sampled instead of unconditional; and (3) native compilation to
binaries ready for distribution. The third step is treated as a black box: we accept what-
ever the native compiler gives us. But each of the first two steps represents a key point
at which static analysis could be used to good effect. We review unconditional instru-
mentation in Sect. 2, with a discussion of the ways in which static analysis is currently
used and could potentially be used in the future. Section 3 recaps the sampling trans-
formation, and again considers the current and potential roles for static analysis.

Instrumented compilation yields executable binaries (both applications and shared
libraries) capable of monitoring and reporting aspects of their own behavior at run time.
We make this instrumented software available to the general public: the “diverse user
community” in the lower right of Fig. 1. Each run of an instrumented program produces
one feedback report with information about run time behaviors instrumented during
compilation. Each feedback report also includes a binary label marking that run as



20 B. Liblit

good (successful) or bad (failed). The challenges at this stage largely fall under the
broad umbrella of “computer systems”: transmitting feedback data over the network,
warehousing it in databases, keeping user data secure throughout its lifetime, and so on.
Static program analysis plays no role here.

As runs accumulate, certain trends emerge. If we put all successful runs in one pile
and all failed runs in another, we can look for instrumented behaviors that vary between
the two piles. In particular, we can direct developers’ attention toward suspicious run
time behaviors that are strongly associated with failure. Absolute assignment of blame
(“the program crashes if and only if x is negative on line 140”) is impossible due to
the many sources of uncertainty in our feedback data. Instead, we have developed a
variety of statistical debugging techniques to identify informative trends in the differ-
ence between successful and failed runs. Statistical debugging is another key point in
the feedback loop where static program analysis can play a major role, although many
open questions remain. In Sect. 4 we review selected statistical debugging models de-
veloped both by my collaborators and by others. We consider the relatively limited use
of static program analysis in statistical debugging work thus far, and suggest future
directions in which program analysis could play a more prominent role.

Certain recurring challenges span all of the contexts in which we consider adding
static analysis to CBI. Section 5 vents some steam about problems that have put many
attractive static analyses out of CBI’s reach. For the stout-hearted reader who is not so
offended as to discard the paper following this rant, Sect. 6 concludes.

2 Unconditional Instrumentation

The first step in compiling an application for use with CBI is to inject extra monitoring
code at selected program points of interest. We call this code unconditional instrumen-
tation to contrast it with the sampled instrumentation that results from later transforma-
tions (see Sect. 3). Unconditional instrumentation casts a broad net across the program,
adding code to record a wide variety of run time behaviors that could potentially be of
interest later when tracking down a bug. This is not the place to be stingy: we regularly
add many hundreds of thousands of monitoring points to medium-sized programs.

Obviously we do not expect the programmer to insert this code by hand. Rather,
the developer selects among a small collection of broad instrumentation schemes. Each
scheme matches specific fragments of program syntax at specific locations in code. We
call such matches instrumentation sites. For example, the branches scheme places one
instrumentation site at each if statement, while the returns scheme creates one site at
each function call. Possible behaviors at each site are strictly partitioned into a small
set of predicates on program state. For example, a branch site tests two predicates:
the if condition is either true or false. We create one global predicate counter for
each predicate, which records how often that predicate was true during a run. When
execution reaches the location of an instrumentation site, a single observation is made:
exactly one of the predicates at the site must be true, and the injected code makes this
determination and increments the corresponding predicate counter. The feedback report
for an entire run, then, consists primarily of the final counter values for all predicates.



Reflections on the Role of Static Analysis 21

sampler-cc is our CBI instrumenting compiler for C. It is not the only instrumen-
tor that has been created [2,3,4], but it is the most mature and widely-used.
sampler-cc currently offers seven instrumentation schemes; developers may acti-
vate as many or as few as desired [5]. Some schemes, such as the branches scheme,
are quite broad-based and stand a decent chance of detecting something of interest
for a wide variety of coding mistakes. Other schemes are more specialized, such as
the g-object-unref scheme which focuses on reference count mismanagement bugs in a
specific widely-used open source library. Specialized schemes are less likely to trigger
for any given bug, but if they do correlate strongly with failure, the guidance they offer
the developer is more specific and therefore more useful. We generally recommend a
mixture of broad-spectrum and narrowly-focused schemes.

2.1 Static Analysis as Currently Used

sampler-cc performs almost no interesting static analysis during the unconditional
instrumentation stage. This is a somewhat embarrassing admission. Unconditional in-
strumentation relies on the popular CIL C front end for parsing, type checking, and
name resolution [6], and arguably that constitutes program analysis of a sort. But be-
yond these standard front-end tasks, initial instrumentation is essentially a matter of lo-
cal pattern-matching against syntactic structures (e.g., finding every conditional branch)
and insertion of appropriate monitoring code (e.g., to count how often the branch con-
dition is true versus false). We rarely look at more than one small abstract syntax tree
fragment at a time.

The one exception is a relatively recent feature that drops instrumentation sites that
examine the values of uninitialized variables. The motivation is not that looking at
such values is dangerous or forbidden. After all, this is C: everything is dangerous, and
nothing is forbidden. Rather, we find that developers cannot easily make sense of in-
strumented predicates that involve uninitialized variables. Therefore, considering such
predicates when hunting for bugs is not ultimately useful, even if some may be strong
failure predictors. So sampler-cc uses an intraprocedural forward dataflow analysis
to identify and avoid definitely-uninitialized variables.

2.2 Static Analysis Potential

Historically, we have claimed that deep analysis of buggy C programs is foolhardy. How
many static analyses give truthful results for C programs that overrun buffers or read
uninitialized memory? In a world of wild pointers and corrupted heaps, what points-to
analysis can possibly be trusted? The execution semantics of such programs are very
different from the formal semantics assumed by most analyses, which means that static
analyses can no longer offer guarantees across all possible runs.

Furthermore, many of the facts that static analysis could offer are much easier to
derive empirically by examination of dynamic feedback reports. Ernst’s Daikon work
shows that empirical invariant discovery can be quite effective [7]. Why try to prove
that z must always be zero on line 490 when we can simply check whether it was ever
observed to be nonzero across a hundred thousand user runs? Of course the later does



22 B. Liblit

not provide any guarantees, but given the loose semantics of buggy C programs, it’s not
clear that any static analysis could offer guarantees either.

However, this may be prematurely dismissive. Static analysis could go a long way
toward streamlining instrumentation by eliminating redundancy. A static proof that one
predicate implies another means that the later need not be monitored at run time. For
example:

1 const int result = fetch();
2 if (result) ...

The returns instrumentation scheme will check whether result is negative, zero,
or positive on line 1. The branches scheme will check whether the conditional on line
2 is true or false. Is later redundant with respect to the former? Probably. If we as-
sume that no other thread can change result between lines 1 and 2 (including by
storing across a corrupted pointer), then instrumenting the branch is redundant. Should
we make this assumption? Arguably, yes. It may cause us to miss certain bugs if we
are wrong. But CBI never promised perfection. Reducing the instrumentation load by
eliminating redundant or invariant predicates would have several benefits:

1. Less instrumentation means less code, for a smaller executable footprint on instal-
lation media, hard drives, and memory.

2. If sampling (discussed below) is not changed, then less instrumentation means more
streamlined code and therefore better performance.

3. Conversely, if run time performance is held at a constant level, then less time wasted
on uninteresting instrumentation sites allows more intensive sampling of other code
that may be more informative.

4. Although statistical analysis of feedback reports can discover likely invariants and
redundancies in observed data, this is not free. Advanced statistical debugging al-
gorithms can have difficulty scaling up to massive datasets, and eliminating junk in-
strumentation earlier leaves the statistical methods with smaller problems to solve.

3 From Unconditional Instrumentation to Sampling

Here we detail CBI’s instrumentation sampling transformation, which sacrifices feed-
back completeness for privacy and performance. We review static analyses currently
used during the sampling transformation, and consider possible deeper analyses that
could be employed in the future.

3.1 The CBI Sampling Transformation

Complete monitoring of all instrumentation predicates may be impractical or undesir-
able for reasons of performance or user privacy. We have developed a generic instru-
mentation sampling transformation to address these concerns [8]. CBI’s sampling trans-
formation is a statistically rigorous variant on a performance profiling transformation
developed by Arnold and Ryder [9]. The sampling transformation reduces instrumenta-
tion overhead while maintaining a very strict statistical fairness guarantee: the behaviors



Reflections on the Role of Static Analysis 23

observed and tallied in site counters represent a sparse but statistically unbiased random
sample with respect to the complete (but unobserved) dynamic behavior of the program.
This fairness guarantee is necessary to ensure that the statistical debugging algorithms
to be applied later have a sound mathematical footing.

At run time, each thread in an instrumented application maintains a countdown that
represents the number of instrumentation opportunities that should be skipped before the
next observation is taken. The countdown is set randomly using a geometric distribution,
which is mathematically equivalent to counting how many times a tail-biased coin comes
up tails before the next head is seen. A geometric distribution with mean 100 corresponds
to counting tails while tossing a coin that has a 1/100 chance of coming up heads. This
countdown yields a statistically fair random sample of about 1/100 of complete program
behavior, as though the biased coin were being tossed at each instrumentation site.

The sampling transformation leverages this countdown by avoiding most instrumen-
tation until an observation is imminent. The transformation begins by splitting each
function’s control flow graph into a collection of single-entry acyclic subgraphs. Doing
this optimally is NP-hard [10], but placing acyclic subgraph entry points at loop back
edges and the tops of functions works well in practice. An acyclic graph contains only
a finite number of paths, each of which is of finite length. Therefore, there is a finite
maximum number of instrumentation sites that could be crossed along any single exe-
cution through each acyclic subgraph. We call this maximum instrumentation site count
the threshold weight of a given subgraph.

An instrumenting compiler now clones each acyclic subgraph. In the fast clone, we re-
place each instrumentation site with a simple decrement of the global next-sample count-
down. In the slow clone, we decrement the countdown and check whether it has reached
zero. If the countdown is zero, then we make a single observation at the current instru-
mentation site and reset the counter to a new geometrically-distributed random num-
ber. Entry into the fast and slow clones is guarded by a conditional branch that checks
whether the global countdown is below the subgraph’s threshold weight. If the countdown
is larger than this threshold, then the decrements cannot possibly drive it to zero on this
pass through the subgraph, and so the branch selects the fast clone. If the countdown is
smaller than the threshold, then a sample might be imminent, and the instrumented slow
clone is selected instead. If sampling is sparse (1/100 or 1/1000 is typical), then execution
will usually proceed in the fast clone of each subgraph, switching to the slow clone only
occasionally when a sampled observation is about to be made. In this way we improve
performance by exploiting periods between samples as the fast, common case.

Figure 2 shows an example of an acyclic control flow subgraph after cloning and
the insertion of the countdown threshold check. This subgraph has a threshold of four,
because there is one path through the subgraph that crosses four instrumentation sites.

3.2 Static Analysis as Currently Used

Some static analyses are implied by the description of the sampling transformation
given above. We require control flow graphs for each function, with loop back edges
identified. The threshold weight of each single-entry acyclic subgraph is computed in
a simple bottom-up pass. While this all constitutes analysis, it has nothing beyond the
basics that any reasonable compiler would provide.



24 B. Liblit

�������	

��
�������	

����
��

��
��

���
��

��
��

�

����
��

��
��

��

��
�������	

���
��

��
��

�

��

����
��

��
��

��


� �

�� ��
> 4 ?

true

��������������
false

��������������

���
��

��
��

�

�������	

��
�������	

����
��

��
��

�������	��������

���
��

��
��

�

����
��

��
��

�������	��������

��

�������	��������

��
�������	

���
��

��
��

�

��

����
��

��
��

�������	��������

��

�������	��������

���
��

��
��

�

Fig. 2. Example of instrumented code layout. The slow clone is on the left; double-outlined nodes
contain countdown decrements and instrumentation site code. The fast clone is on the right;
dotted-outline nodes contain only countdown decrements. Single-outlined nodes contain no in-
strumentation sites.

Several other minor optimizations can be applied within each acyclic subgraph or
instrumented function. For example, we add a static branch prediction hints to advise
the native code generator that most threshold checks will choose the fast clone. Acyclic
subgraphs containing zero or one instrumentation site require no cloning or threshold
check at all. The global next-sample countdown is cached in a local variable while an
instrumented function executes; this helps the native compiler coalesce decrements into
fast register operations for a significant performance boost.

The only analysis that spans procedure boundaries is our identification of weight-
less functions. We define a weightless function as one that contains no instrumentation
sites and that only calls other weightless functions. Weightless functions allow several
optimizations in global countdown management, so we identify these using a fix-point
computation over the call graph with conservative treatment of calls across pointers or
that leave the current compilation unit. (A points-to analysis is offered as an option
for resolving indirect calls. However, this is considered experimental and not recom-
mended for production use due to its insufficiently-conservative treatment of separate
compilation.)

3.3 Static Analysis Potential

Optimization of sampled instrumentation is primitive, with only very modest attempts
to analyze beyond the boundary of a single function or a single acyclic subgraph. One



Reflections on the Role of Static Analysis 25

could certainly do better, such as by optimizing across procedure boundaries or by
restructuring the fast clones for even greater speed. We propose two analysis-driven
optimizations in detail as examples of the sort of improvements that could be made.

Bounded-Weight Function Analysis. With the exception of weightless functions, we
currently treat each called function as a black box that might contain arbitrarily-many
instrumentation sites. Thus, the next-sample countdown may change arbitrarily across
any non-weightless function call. This requires splitting acyclic subgraphs at function
calls, which in turn makes the subgraphs smaller. Smaller acyclic subgraphs require
more frequent threshold checks, harming performance.

Suppose instead we were to identify a maximum threshold weight for an entire func-
tion. For some functions this may not be bounded, but for many (especially small, loop-
free leaf functions) a finite bound will exist. This information can be exploited by the
caller to compute its own acyclic subgraph thresholds, since a call to a function with
threshold weight n can only reduce the next-sample countdown by at most n from the
perspective of the caller. Weightless functions are simply a special case of the more
general class of bounded-weight functions.

Path Balancing. When the fast clone consists of simple, straight-line code, a native
compiler may be able to coalesce multiple countdown decrements into a single larger
adjustment. For example, gcc performs this optimization provided that the countdown
is cached in a local variable per Sect. 3.2. However, decrement coalescing cannot extend
across branches, because the multiple forward paths may contain different numbers of
instrumentation sites and therefore require different net adjustments to the countdown.

Path balancing generalizes decrement coalescing to arbitrary acyclic subgraphs. The
key is to ensure that all forward paths through an acyclic subgraph cross the same
number of instrumentation sites. Imbalances occur at branches. When a control flow
graph node has multiple successor paths with different weights, extra “dummy” sites
are added to the start of those successor paths that have fewer “real” sites than their
siblings, thereby creating balance. When all branches in a subgraph are balanced, the
entire subgraph is balanced as well.

Figure 3a gives an example of an acyclic subgraph before balancing. Nodes with
instrumentation sites have dotted outlines. Notes are lettered for ease of reference, and
the number in each node gives the maximum weight of all paths forward from that node.
The entire subgraph has threshold weight 2 but individual paths cross 0 (abe), 1 (adh),
or 2 (abcfg, abcfh) sites. Branch nodes a, b, and f may require balancing. Branch a does
have imbalanced successors: one dummy site must be added on the ad edge. Branch b
is also imbalanced: two dummy sites must be added on the be edge. Branch f is already
balanced: both successors already have matching weights.

Figure 3b shows the same acyclic subgraph after balancing. Three unlettered dummy
sites have been added. The threshold weight for the entire subgraph (2) is now the exact
number of sites crossed on each of the four paths through the subgraph starting from
entry node a.

Balancing is not an optimization in and of itself. Rather, it actually adds instrumenta-
tion in the form of dummy sites. However, once a site is balanced, we can optimize the
code as follows. Just before the first node of the fast clone, decrement the next-sample



26 B. Liblit

������ !a : 2

�����
��

��
�

���
��

��
��

��
��

��
�

������ !b : 2

��

		��
��

��
��

c : 2

��

������ !d : 1

��

������ !e : 0 ������ !f : 1

�� 				
		

		
		

g : 1 h : 1

(a) Before balancing

������ !a : 2

�����
��

��
�

��
��

��

���
��

��
�

������ !b : 2

��

		��
��

��
��

c : 2

��

������ !d : 1

��

������ !e : 0 ������ !f : 1

�� 				
		

		
		

g : 1 h : 1

(b) After balancing

Fig. 3. Example of path balancing

countdown by the threshold weight of the entire subgraph (for example, “countdown
-= 2” just before node a in Fig. 3b). This decrement accounts for exactly the number
of unary decrements that would have occurred in this subgraph. Elsewhere in the fast
clone, wherever a real or dummy instrumentation site would have appeared, do nothing.
The decrements have already been accounted for and there is no other work to do.

The slow clone must decrement and check the countdown at each instrumentation
site as before, because on the slow clone we do need to know exactly when a site should
be sampled. Furthermore, even dummy sites must decrement the countdown and reset
it if it reaches zero. This requirement ensures that both the fast and slow clones behave
the same with respect to counting down to the next sample, at the expense of making
the slow clone even slower. Also, adding dummy instrumentation sites means that the
countdown will need to be reset more often, so a slow random number generator will
be more of a liability here.

In total, path balancing makes the fast clone faster and the slow clone slower. The
idea for the path balancing algorithm arose in discussions between the author and Cor-
mac Flanagan, but has not yet been implemented or evaluated. We offer it here as an
example of leveraging the regular structure of sampled instrumentation code using an
intraprocedural analysis of quite modest complexity.

4 Statistical Debugging

Some instrumented behaviors may always occur or may never occur; these are invari-
ants in practice (and possibly in theory). Most behaviors vary from run to run. If vari-
ation in some instrumented predicate correlates with failure of runs, then we call that



Reflections on the Role of Static Analysis 27

predicate a bug predictor. The correlation may be imperfect: nondeterministic bugs can
allow apparent success even in runs that ought to have failed. Sparse sampling means
that even a completely deterministic failure predictor will not be observed on most runs
where it does occur. For this reason, we must look for broad statistical trends in program
(mis)behavior across large numbers of runs. A single run tells us virtually nothing, but
because the sampling transformation is statistically unbiased, trends over many runs
can guide developers to the root causes of recurrent problems.

Statistical debugging refers to the task of finding bug-predictive behaviors among the
feedback data collected from large numbers of instrumented runs. Members of the ma-
chine learning community have expressed considerable interest in this problem, which
can be seen as an unusual example of feature selection (finding bad behaviors) or clus-
tering (grouping failures by the bug that caused them). Statistical models considered,
either by me and my collaborators or by completely independent groups, include reg-
ularized logistic regression [8,11], probability density function comparison [12], like-
lihood ratio testing [13,14], iterative bipartite graph voting [15,16] three-valued logic
[17] support vector machines [18], random forests [18], Delta Latent Dirichlet Alloca-
tion [19], and quite possibly others of which I am shamefully unaware. We refrain from
reviewing the details of any of these algorithms here; the interested reader may read
the original papers, perhaps with a statistics textbook or colleague nearby for guidance.
The approaches vary in their ability to deal with multiple bugs, non-deterministic fail-
ures, sparsely sampled data, extremely large datasets, and other qualities. Most share
a similar structure of analysis output: a ranked list of instrumented program behaviors
that have been identified as bug predictors. Such a list can be presented to a developer
to guide further triage, diagnosis, and remediation.

Given the messy, incomplete nature of sampled feedback data, one might think that
formal static program analysis has little to contribute to statistical debugging. This is
incorrect. Some of CBI’s most interesting statistical analysis work takes place at this
late stage, after the core statistical models have been built and used to identify bug
predictors. Indeed, the analysis methods used here far outstrip those found in CBI in-
strumenting compilers, both in terms of their current sophistication and in their future
potential.

4.1 Static Analysis as Currently Used

When hunting down a bug, a ranked list of bug predictors is a good start but it is not
the complete story. Developers must still understand why the highlighted misbehaviors
can lead to failure, and this is not always easy. Several static program analyses have
been used to place bug predictors back into the context of the source program and help
developers understand how they relate to failure.

One common goal is to stitch isolated bug-predictive program points together into
extended failure paths. Developers can then walk through a doomed run (or an approx-
imate reconstruction thereof) step by step to see where things fell apart. My own early
attempts at this [20] have been bested by subsequent work by Lal et al. [21]. Lal’s ap-
proach uses weighted pushdown systems, a powerful generic formalism for expressing
context-sensitive interprocedural dataflow analyses [22,23]. Propelled by this engine,
Lal’s analysis reconstructs paths that proceed from program entry through high-ranked



28 B. Liblit

bug predictors to a point of failure. Paths obey feasibility constraints imposed by any of
a variety of dataflow analyses. Jiang and Su build partial faulty-path segments using an
efficient control-flow graph traversal with backtracking [18]. The search is a static anal-
ysis, but is heuristically guided by using CBI feedback data to guess likely execution
paths at branches.

Static analysis also plays a role in comparing the quality of ranked bug predictor
lists. Cleve and Zeller [24] propose a quantitative approach that measures the distance
between the code blamed by some tool and the actual location of the bug. Distances are
measured in the program dependence graph (PDG), following a model by Renieris and
Reiss [25]. This metric is intended to simulate an idealized programmer who first ex-
amines code blamed by the tool, then proceeds outward across PDG edges until the true
flaw is found. Numerous other researches (myself included) have adopted this PDG-
distance metric metric, even though there is no experimental evidence to support the
idea that real programmers behave in this manner. Furthermore, the very notion of find-
ing the true flaw is ill-defined when the bug is a sin of omission. A forgotten conditional
branch, for example, corresponds to a PDG node that should have been present but is
not. How can we measure the distance to a node that is not there? Better models of
developer behavior are needed, and unfortunately modeling humans is well outside the
domain of static program analysis.

4.2 Static Analysis Potential

In each of the examples given above, static analyses were not being applied in iso-
lation. Rather, they were used in conjunction with statistical models built from dy-
namic data. Static and dynamic/statistical approaches have complementary strengths
and weaknesses. A static analysis may provide strong guarantees (modulo loose C se-
mantics) for a limited set of questions, while dynamic/statistical information can pro-
vide best-estimate guesses for nearly any question, but never with absolute certainty. If
we combine the two carefully, we may achieve the best of both worlds.

Dynamic data can be used as a hypothesis generator to drive deep static analyses.
Nimmer and Ernst’s fusion of Daikon and ESC/Java is a classic instance of this style
of dynamic-to-static feedback [26]. In the CBI context, bug predictors identified in dy-
namic data could suggest initial conditions on program state that warrant closer static
inspection. If failures are common when p is null on line 94, let static analysis explore
the antecedent causes or subsequent implications of that condition. Conditioned slicing,
for example, may be appropriate for pursuing such leads [27], if it can be made to work
for C programs of realistic size and complexity.

Useful information can also flow from the static world to the dynamic/statistical
world. We suggested earlier that static analyses could prove some instrumentation re-
dundant, and therefore removable. A related idea would be to use static analysis to
reconstruct some of the data omitted by sparse sampling. To take one very simple
example, any observation at a given instrumentation site reveals that the control-flow
dominators of that site must also have been executed, even if sparse sampling caused
this fact to be omitted from the raw feedback data. Deeper static analysis could infer
missing information about data values as well as control flow. Recovering missing data
effectively increases the sampling rate, resulting in a less noisy dataset for statistical



Reflections on the Role of Static Analysis 29

Table 1. Applications in CBI’s public deployment, illustrating the infeasibility of whole-program
analysis. The count of plug-ins provided includes only those that are part of the main application
distribution. Any number of additional plug-ins could be provided by third parties.

Application Lines of Code Shared Libraries Used Plug-Ins Provided

Evolution 441,644 107 45
GIMP 854,530 50 188
GNOME Panel 69,164 82 0
Gnumeric 351,461 85 36
Nautilus 137,394 89 0
Pidgin 387,962 56 56
Rhythmbox 133,281 95 12
SPIM & XSPIM 28,139 4 & 18 (not extensible)

modeling. Several key questions remain unanswered about this idea. It is not clear that
available model checkers and theorem provers can scale up to the problem sizes that
arise from this sort of analysis. (Indeed, our own preliminary exploration suggests that
they do not.) Additionally, missing-data reconstruction introduces bias, as not all miss-
ing data is equally easy to infer from available evidence. Whether this bias fouls the
results of statistical models, and how it can be compensated for, remain unknown.

Lastly and most speculatively, perhaps richer statistical models could draw simulta-
neously from both static and dynamic sources of information, instead of merely feeding
one into the other. Statistical relational learning describes a broad class of methods for
building statistical models over domains with rich internal structure [28]. Programs have
rich internal structure, and research on static program analysis offers myriad strategies
for extracting that structure. Exposing that static structure in a way that allows princi-
pled integration with dynamic feedback data may allow tremendous advances in pro-
gram understanding and debugging. I will be the first to admit that I do not know how
to do this . . . yet. But I intend to find out.

5 A Closing Rant on Analysis Robustness

Invited papers should stir things up a bit. In case this paper has not already done so, I
will now indulge in a closing rant likely to agitate (if not offend) many readers.

One practical difficulty in using static analyses with CBI is that many implementa-
tions of interesting static analyses don’t actually work. They worked at one time, on a
few small examples sufficient to write a paper. But give them tens of thousands of lines
of real C code and many analysis implementations simply fall apart. The more interest-
ing the analysis in theory, the more brittle its implementation tends to be in practice.

One common and brittle assumption is that whole-program analysis works for main-
stream applications. In my subjective experience, it does not. Even if sheer code size
were not a problem, I do not have a single real application of interest where all code is
available at compilation/analysis time. Table 1 summarizes applications now in CBI’s
public deployment. Observe that every application uses numerous shared libraries, and



30 B. Liblit

that all but one (SPIM/XSPIM) can be extended at run time through plug-ins. Thus, the
idea that whole-program analysis can see all application code is simply a myth.

Even among the code that is present for analysis, real world software is not al-
ways pretty. I am no C apologist, and I look forward to C’s eventual replacement by
stricter languages that are more amenable to analysis. Until that happens, I need analy-
ses that handle the full, horrific glory that is C: pointer casting, threads, stack-unwinding
longjmp, dynamic code loading . . . the whole terrifying bag of C tricks. This is the
language as it is used in the real world, and this is the language that a static analysis
must handle if it is to be used with CBI in the near term.

6 Conclusion

Cooperative Bug Isolation operates in an messy world of unsafe languages, corrupted
heaps, non-deterministic failures, and incomplete data. Faced with such obstacles, I
rarely achieve or even seek software perfection. Rather, I describe my research as try-
ing to make software suck less. In this ugly domain, even the findings of a “sound” static
analysis may not be entirely trustworthy. Historically, CBI has shied away from deep
static analysis in favor of brute-force data collection and statistical modeling. However,
static analyses can play an important role if applied wisely. Analysis can make instru-
mentation more selective and efficient before deployment, and can augment statistical
modeling in numerous ways after feedback data arrives. I believe that the most powerful
approaches will carefully combine static, dynamic, and statistical methods to leverage
the unique strengths of each. If we can do that, then perhaps even software perfection
is not to much to hope for.

References

1. Liblit, B.:Cooperative Bug Isolation (Winning Thesis of the 2005 ACM Doctoral Dissertation
Competition). LNCS, vol. 4440. Springer, Heidelberg (2007)

2. Driscoll, E., Cooksey, G.: CBI++. CS706 class project, University of Wisconsin–Madison
(December 2006)

3. Hunter, J., Kolpin, G., Saeed, U.: CBI instrumentation for Java bytecode. CS706 class
project, University of Wisconsin–Madison (December 2005)

4. Kolpin, G.: Jikes CBI implementation details. Independent study project, University of
Wisconsin–Madison (May 2006)

5. Liblit, B.: Guide to the bug isolation sampler (January 2008),
http://www.cs.wisc.edu/cbi/developers/guide/

6. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools for
analysis and transformation of C programs. In: Horspool, R.N. (ed.) CC 2002 and ETAPS
2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002)

7. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.:
The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69(1-
3), 35–45 (2007)

8. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Bug isolation via remote program sampling.
In: PLDI, pp. 141–154. ACM, New York (2003)

9. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code. In: PLDI,
pp. 168–179 (2001)

http://www.cs.wisc.edu/cbi/developers/guide/


Reflections on the Role of Static Analysis 31

10. Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal profiling
(November 24, 2001)

11. Zheng, A.X., Jordan, M.I., Liblit, B., Aiken, A.: Statistical debugging of sampled programs.
In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) NIPS, MIT Press, Cambridge (2003)

12. Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S.P.: SOBER: statistical model-based bug local-
ization. In: Wermelinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 286–295. ACM, New
York (2005)

13. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization
technique. In: Redmiles, D.F., Ellman, T., Zisman, A. (eds.) ASE, pp. 273–282. ACM, New
York (2005)

14. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Sarkar, V., Hall, M.W. (eds.) PLDI, pp. 15–26. ACM, New York (2005)

15. Zheng, A.X., Jordan, M.I., Liblit, B., Naik, M., Aiken, A.: Statistical debugging: simultane-
ous identification of multiple bugs. In: Cohen, W.W., Moore, A. (eds.) ICML. ACM Interna-
tional Conference Proceeding Series, vol. 148, pp. 1105–1112. ACM, New York (2006)

16. Wassel, H.M.G.H.: An enhanced bi-clustering algorithm for automatic multiple software bug
isolation. Master’s thesis, Alexandria University, Egypt (September 2007)

17. Arumuga Nainar, P., Chen, T., Rosin, J., Liblit, B.: Statistical debugging using compound
Boolean predicates. In: Rosenblum, D.S., Elbaum, S.G. (eds.) ISSTA, pp. 5–15. ACM, New
York (2007)

18. Jiang, L., Su, Z.: Context-aware statistical debugging: from bug predictors to faulty control
flow paths. In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.) ASE, pp. 184–193. ACM, New
York (2007)

19. Andrzejewski, D., Mulhern, A., Liblit, B., Zhu, X.: Statistical debugging using latent topic
models. In: Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron,
A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 6–17. Springer, Heidelberg (2007)

20. Liblit, B., Aiken, A.: Building a better backtrace: Techniques for postmortem program anal-
ysis. Technical Report CSD-02-1203, University of California, Berkeley (October 2002)

21. Lal, A., Lim, J., Polishchuk, M., Liblit, B.: Path optimization in programs and its application
to debugging. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 246–
263. Springer, Heidelberg (2006)

22. Reps, T.W., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their appli-
cation to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2), 206–263 (2005)

23. Lal, A., Reps, T.W., Balakrishnan, G.: Extended weighted pushdown systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 434–448. Springer, Heidelberg
(2005)

24. Cleve, H., Zeller, A.: Locating causes of program failures. In: Roman, G.C., Griswold, W.G.,
Nuseibeh, B. (eds.) ICSE, pp. 342–351. ACM, New York (2005)

25. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE, pp. 30–
39. IEEE Computer Society, Los Alamitos (2003)

26. Nimmer, J.W., Ernst, M.D.: Static verification of dynamically detected program invariants:
Integrating Daikon and ESC/Java. Electr. Notes Theor. Comput. Sci. 55(2) (2001)

27. Canfora, G., Cimitile, A., Lucia, A.D.: Conditioned program slicing. Information & Software
Technology 40(11-12), 595–607 (1998)

28. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive Computation
and Machine Learning). MIT Press, Cambridge (2007)


	Introduction
	Overview of Cooperative Bug Isolation

	Unconditional Instrumentation
	Static Analysis as Currently Used
	Static Analysis Potential

	From Unconditional Instrumentation to Sampling
	The CBI Sampling Transformation
	Static Analysis as Currently Used
	Static Analysis Potential

	Statistical Debugging
	Static Analysis as Currently Used
	Static Analysis Potential

	A Closing Rant on Analysis Robustness
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


