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Abstract Concurrency bugs are becoming widespread with the emerging ubiquity of multicore processors

and multithreaded software. They manifest during production runs and lead to severe losses. Many effective

concurrency-bug detection tools have been built. However, the dependability of multi-threaded software does

not improve until these bugs are handled statically or dynamically. This article discusses our recent progresses

on fixing, preventing, and recovering from concurrency bugs.
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1 Introduction

Concurrency bugs are caused by unsynchronized or incorrectly synchronized memory accesses in multi-

threaded programs. They are triggered when multiple threads access shared variables in some failure-

inducing orders (i.e., under buggy interleavings). They exist widely in production-run software, causing

severe failures in the field with huge financial losses1)2) [5]. When they finally get noticed by developers,

fixing them takes substantial manual effort [6,7] and yet about 40% of released patches are incorrect [8].

Therefore, it is critical for end-users and developers to automatically handle production-run failures

caused by concurrency bugs.

*Corresponding author (email: shanlu@uchicago.edu)
Authors are listed in alphabetical order. This article is based on the authors’ previous papers [1–4], which were done when
Marc de Kruijf, Shan Lu, and Wei Zhang were at University of Wisconsin-Madison, and Shanxiang Qi was at University of
Illinois at Urbana-Champaign.

1) PCWorld. Nasdaq’s Facebook Glitch Came From Race Conditions. http://www.pcworld.com/businesscenter/article

/255911/ nasdaqs facebook glitch came from race conditions.html.
2) SecurityFocus. Software bug contributed to blackout. http://www.securityfocus.com/news/8016.
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In the past, much research has focused on detecting concurrency bugs, including data races [9–13],

atomicity violations [14–19], order violations [20–23], deadlocks [24–26], and others [27–30]. Although

these tools are helpful in discovering concurrency bugs, software dependability does not improve until

these bugs are handled. That is, we have to deal with these bugs so that they will not lead to production-

run failures that affect end-users.

We have tackled this problem along two directions in the past few years.

1. For detected concurrency bugs, our tool, called CFix [1,2], statically patches the software to com-

pletely eliminate these bugs.

2. For undetected concurrency bugs, our tool dynamically adjusts the software execution to prevent

these bugs from causing externally visible failures. Along this direction, we have explored two approaches:

(1) a proactive approach, called AI [3], that prevents the failure-triggering interleavings from happening;

(2) a reactive approach, called ConAir [4], that transparently recovers software right after a failure is

triggered by concurrency bugs.

The above work is among the first to automatically fix concurrency bugs statically, and among the

first to automatically prevent and recover from a wide variety of concurrency bugs with low overhead

on commodity systems. Our evaluations using representative open-source multithreaded software and

real-world concurrency bugs have shown that our tools can effectively help fix, prevent, and recover from

concurrency bugs, and hence improve the dependability of multithreaded software. We will discuss each

of these three approaches below.

2 Statically fixing concurrency bugs

2.1 High-level ideas

Goals & Challenges. As mentioned in Section 1, finding bugs is just a start. Software dependability

does not improve until bugs are actually fixed. Unfortunately, fixing concurrency bugs is not trivial.

Without end-to-end tool support from bug detection to bug fixing, developers are left to themselves to

face the enormous pressure of fixing ever-so-many concurrency bugs, and concurrency-bug fixing remains

time-consuming [6,7] and error-prone [8].

Our goal here is to statically fix concurrency bugs that are found by various bug detectors with-

out programmer intervention. Specifically, we want to automatically generate patches that can achieve

correctness, performance, and simplicity goals simultaneously: the patches should fix the bugs without

introducing new functionality problems, degrading performance excessively, or being needlessly complex.

Achieving this goal is challenging for several reasons.

• The bug fixing tool needs to automatically and accurately understand the root cause of a bug without

programmers’ help. We could get root-cause hints from automated bug-detection tools. However, existing

bug detectors are not designed to work with bug fixing tools. As a result, they may merely report bugs’

side effects, instead of their root causes. This can easily lead to incorrect or incomplete patches. See

Subsection 2.3 for examples.

• The bug fixing tool needs to deal with a variety of concurrency bugs and different types of syn-

chronization demands. Many different types of concurrency bugs exist in real world, such as data races,

atomicity violations, order violations, communication pattern errors, and others. A good bug fixing tool

should be able to handle different types of bugs using different types of synchronization primitives, such

as locks and condition variables.

• The bug fixing tool needs to avoid introducing new bugs while adding new synchronization into

the program. Patches to concurrency bugs often involve synchronization operations that have non-local

impact. As a result, these patches can easily introduce additional bugs, such as deadlocks, lock-without-

unlock, and unlock-without-lock, or cause unexpected and unnecessary performance degradation. See

Subsection 2.3 for examples.

• The bug fixing tool needs to consider not only correctness, but also performance and code simplicity.
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Figure 1 CFix bug fixing process.

CFix ideas. CFix is a system that automates the repair of concurrency bugs. The key observation

we leverage is that concurrency bugs may be more amenable to automated repair than sequential bugs.

Most concurrency bugs only cause software to fail rarely and nondeterministically. The correct behavior

is already present as some safe subset of all possible execution interleavings. Thus, CFix fixes concurrency

bugs by systematically adding synchronization into software and to disable failure-inducing interleavings.

We first decide to handle the wide variety of real-world concurrency bugs by focusing on enforcing

two types of synchronization relationship: mutual-exclusion and pair-wise ordering. The rationale is

that most synchronization primitives either enforce mutual-exclusion, such as locks and transactional

memories [31–33], or enforce strict order between two operations, such as condition-variable signals and

waits. Furthermore, Lu et al. [6] have shown that atomicity violations and order violations contribute to

the root causes of 97% of real-world non-deadlock concurrency bugs.

We then design and implement two static analyses and code transformation tools: AFix [1] for mutual-

exclusion enforcement and OFix [2] for order relationship enforcement, with a best effort to avoid dead-

locks and excessive performance losses. AFix enforces the mutual-exclusion relationships among three

operations, which prevents one operation from executing in between the other two operations. OFix en-

forces two common types of order relationships between two operations: (1) allA–B where an operation

B cannot execute until all instances of operation A have executed; (2) firstA–B where an operation B

cannot execute until at least one instance of operation A has executed, if operation A executes in this

run at all.

Of course, these two synchronization-relationship enforcement tools (AFix and OFix) are only two

building blocks of CFix. The overall CFix fixing process starts by taking inputs from some existing

concurrency-bug detectors and automates the whole fixing process usually taken by developers, as shown

in Figure 1.

2.2 CFix bug fixing process

Following the high-level fix strategy of fixing concurrency bugs by disabling bad interleavings, CFix

automates a developer’s typical bug fixing process in five steps, as shown in Figure 1.

The first step is bug understanding. CFix works with a wide variety of concurrency-bug detectors,

such as atomicity-violation detectors, order-violation detectors, data race detectors, and abnormal inter-

thread data-dependence detectors. These detectors report failure-inducing interleavings that bootstrap

the fixing process.

The second step is fix-strategy design. We design a set of fix strategies for each type of bug report. Each

fix strategy includes mutual-exclusion/order relationships that, once enforced, can disable the failure-

inducing interleaving. By decomposing every bug report into mutual-exclusion and order problems, CFix

addresses the diversity challenge of concurrency bugs and bug detectors. To extend CFix for a new bug

detector, one only needs to design new fix strategies and can simply reuse other CFix components.

The third step is synchronization enforcement. Based on the fix strategies provided above, CFix

uses static analysis to decide where and how to synchronize program actions using locks and condition

variables, and then generates patches using static code transformation. Specifically, CFix uses AFix to

enforce mutual-exclusion and OFix to enforce order relationships.

The fourth step is patch testing and selection. CFix tests patches generated using different fix strategies,

and selects the best one considering correctness, performance, and patch simplicity. In this step, CFix

addresses the challenge of multithreaded software testing by leveraging the testing framework of bug

detectors and taking advantage of multiple patch candidates, as the testing result of one patch can

sometimes imply problems of another. This step also addresses the challenge of bug detectors that report
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Thread 1 Thread 2

1 void buf_write(...) {
2    int tmp = buf_len + str_len;
3    if (tmp > MAX)
4       return;
5
6    memcpy(buf[buf_len],
7                  str, str_len);
8    buf_len = tmp;
9 }

void buf_write(...) {
   int tmp = buf_len + str_len;
   if (tmp > MAX)
      return;
   
memcpy(buf[buf_len],
                 str, str_len);
   buf_len = tmp;
}

1
2
3
4
5
6
7
8
9

Figure 2 An atomicity violation simplified from Apache. Interleaving “ ” could cause crashes. Interleaving “ ”

could corrupt the Apache log.

inaccurate root causes: patches that fix the real root cause are recognizable during testing as having the

best correctness and performance.

The fifth step is patch merging. CFix analyzes and merges related patches. We use AFix to merge

mutual-exclusion synchronizations (i.e., locks) and OFix to merge order synchronization operations (i.e.,

condition-variable signal/wait). This step reduces the number of synchronization variables and operations,

significantly improving patch simplicity.

Finally, the CFix run-time monitors program execution with negligible overhead and reports deadlocks

caused by the patches, if they exist, to guide further patch refinement.

More details about these algorithms and implementations can be found in our conference papers [1,2].

2.3 How CFix works for different types of concurrency bugs

Below we use two concurrency bugs reported by an automated concurrency-bug detector, CTrigger [34],

to illustrate some challenges faced by CFix and the solutions provided by CFix.

CTrigger was designed to detect atomicity violations. An atomicity violation occurs when a code region

in one thread is unserializably interleaved by accesses from another thread. Each CTrigger bug report is a

triple of instructions (p, c, r) such that software fails almost deterministically when r is executed between p

and c. Note that CTrigger may incorrectly identify a concurrency bug’s root cause as atomicity violation,

which we will discuss below.

Case 1 (Atomicity violation root cause). Figure 2 shows an example of a real-world concurrency

bug. CTrigger can accurately report two problematic atomicity violations: (1) when line 2 and line 6

are interleaved ( ) by line 8, Apache could crash; and (2) when line 6 and line 8 are interleaved ( )

by line 8, Apache could corrupt its log. A natural strategy for fixing these two atomicity violations is

enforcing mutual-exclusion. Unfortunately, even with accurate root cause understanding, bug fixing is

still nontrivial:

• To fix the first report, if we simply lock before line 2 and unlock after line 6, the program could

deadlock after buf write exits at line 4. Our mutual-exclusion enforcement tool AFix will also add an

unlock before line 4 to avoid the potential new deadlock.

• To fix the second report, we should not simply put line 6 to 8 and line 8 each into one critical region.

As line 8 is part of the critical region for line 6 to 8, this would lead to deadlock again. AFix will recognize

this and create just one critical region.

• Two patches that separately fix the above two atomicity violations could deadlock with each other:

one thread acquires the first patch’s lock at line 2 and waits for the second patch’s lock before line 6; a

different thread acquires the second patch’s lock at line 6 and waits for the first patch’s lock before line 8.

AFix will heuristically merge these two patches and pick the merged patch after testing.

Case 2 (Order violation root cause). However, not all bugs reported by an atomicity-violation

detector can be fixed by enforcing mutual-exclusion. CTrigger may have reported a side effect of a

concurrency bug that dose not reflect its root cause. Figure 3 shows an order violation example, where

the global variable Gend should be initialized before the two printf statements, but such an order is
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// Thread 1

printf(“End at %f”, Gend); //p

...

printf(“Take %f”, Gend − init); //c

// Thread 2

// Gend is uninitialized

// until here

Gend = time(); //r

Figure 3 An order violation simplified from FFT, a SPLASH2 benchmark [35]. Making Thread 1 mutually exclusive

with Thread 2 cannot fix the bug, because r can still execute after p and c.

not enforced. CTrigger reports p, c, and r as shown in the figure, and it is indeed a failure-inducing

interleaving when r executes between p and c. However, the root cause here is missed order-relationship

enforcement.

Instead of relying on CTrigger to point out the root cause, which is challenging, CFix explores multiple

possible ways to disable the failure-inducing interleaving: (1) enforce an order relationship, making r

always execute before p; (2) enforce an order relationship, making r always execute after c; or (3) enforce

mutual-exclusion between p-c and r. Later on, the first patch will be picked after testing.

2.4 Results and discussion

We evaluate CFix using 10 software projects, including 13 different versions of buggy software. Four

different concurrency-bug detectors have reported 90 concurrency bugs in total. CFix correctly fixes 88

of these, without introducing new bugs. This corresponds to correctly patching either 12 or all 13 of the

buggy software versions, depending on the bug detectors used. CFix patches have excellent performance:

software patched by CFix is at most 1% slower than the original buggy software. Additionally, manual

inspection shows that CFix patches are fairly simple, with only a few new synchronization operations

added in just the right places.

Overall, our CFix work makes two major contributions. First, we design and implement tools for

mutual-exclusion and order relationship enforcement which our evaluation suggests that they are effec-

tive for real-world non-deadlock concurrency-bug fixing. Second, we assemble a set of bug detecting,

synchronization enforcing, and testing techniques to automate the process of concurrency-bug fixing.

The main drawback of CFix is that it relies on automated concurrency-bug detectors to report failure-

inducing buggy interleavings.

3 Proactively preventing concurrency-bug failures

3.1 High-level ideas

Goals. Although our CFix [2] work can ease the pain of lengthy patch releasing period, it heavily relies

on automated bug-detection tools and cannot handle failures caused by bugs that have not been detected

yet (i.e., unknown bugs). Thus, we also explore techniques that can proactively prevent the manifestation

of unknown bugs during production runs.

An ideal production-run failure-prevention tool should satisfy requirements from two aspects.

• Generality. The tool should be able to handle a wide variety of concurrency bugs that are hidden in

deployed applications, never been detected, including both atomicity violations and order violations: the

two most common types of concurrency bugs based on a previous empirical study [6]);

• Performance. The tool should only incur small overhead on commodity machines.

To the best of our knowledge, none of the existing concurrency-bug failure prevention techniques can

satisfy these requirements simultaneously.

AI ideas. AI achieves both the above requirements by anticipating the manifestation of concurrency

bugs at run time and preventing the manifestation through temporarily stalling the execution of one

thread, which incurs much smaller overhead than checkpointing and rollback.

The key observation behind AI is that there exists a turning point t during the manifestation of a

concurrency bug: before t, the manifestation is non-deterministic; after t, the manifestation becomes



Deng D D, et al. Sci China Inf Sci May 2015 Vol. 58 052105:6

(a)
Correct run                        Incorrect run

Read X

Thread 1

Write X
Read X
Write X

Thread 2

Read X

Thread 1

Write X
Read X

Write X

Thread 2

(b)
Correct run                        Incorrect run

Thread 1

Write X
Read X

Thread 2 Thread 1

Write X
Read X

Thread 2

The turning point of the bug’s manifestation.

Figure 4 Illustrations of bugs’ turning points.

deterministic. Thus, if a concurrency bug can be anticipated before its turning point, its manifestation

can be prevented by temporarily stalling a thread, which incurs little overhead.

Challenges. Anticipating bugs right before the turning point is critical to failure prevention. Antic-

ipating too early will lead to many false positives, causing unnecessary thread stalling and performance

losses. Anticipating too late will miss the chance of lightweight bug toleration: only heavy weight check-

point–rollback can restore correct states after the turning points.

Anticipating bugs right before the turning point is also challenging. Previous concurrency-bug-detection

tools did not consider bug anticipation and would indeed detect many bugs after the turning points. Be-

low, we simply demonstrate how two straw-man ideas do not work for bug anticipation.

Straw man 1. Anticipating a bug right before the execution of buggy writes. Intuitively, one

might think that it should be early enough to prevent the manifestation of a bug, if no buggy write

has happened. Unfortunately, this is not true. Figure 4(a) shows a typical atomicity violation pattern,

where the expected atomicity of write-after-read is violated. Many real-world concurrency bugs follow

this pattern [6]. Here, the turning point is actually right before the second read instruction, as circled

in Figure 4(a). Once that read happens, although no bug-related write has been executed, the atomicity

violation is inevitable.

Straw man 2. Anticipating a bug right before the execution of the second buggy thread. Suppose a

bug involves two threads. Even if only one thread’s buggy code region has been executed, it could still be

too late to prevent the bug manifestation. Figure 4(b) illustrates a typical order violation pattern, where

a read in Thread 2 unexpectedly executes before a write in Thread 1. Many real-world concurrency bugs

follow this pattern and lead to problems like uninitialized reads [6]. The turning point in this example

is right before the read in Thread 2, as circled in Figure 4(b). Once that read is executed, although the

buggy code region in Thread 1 has not been executed yet, the order violation is inevitable.

3.2 How AI works for different types of concurrency bugs

Anticipating invariant. Through investigating many real-world bugs, we find that the manifestations

of most concurrency bugs involve an instruction I1 preceded by an unexpected instruction I2 from a

different thread, where I1 and I2 access the same variable. Also, postponing the execution of I2 can often

prevent the bug (i.e., the execution of I2 is the turning point). Following this observation, we propose

the Anticipating Invariant (AI) as the central concept of our failure prevention system.

To ease the discussion, in the rest of this section we will use Sy to indicate a static instruction in the

source code (a line of code that can be differentiated by its program counter), and IxSy to represent

that the dynamic instruction Ix observed at run time is derived from static instruction Sy. Here, the

“dynamic instruction” means an execution instance of a static instruction. Thus, a static instruction in

loops or recursions can have many dynamic instructions that are derived from it.

The concept of Anticipating Invariant is based on our observation that, in all the correct runs, only a few

static instructions ever appear as the remote predecessor of a given static instruction’s dynamic instances.

Once a dynamic instruction’s remote predecessor does not belong to this trusted set, the manifestation

of a concurrency bug can be anticipated and prevented by stalling a thread at this moment.
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Test run

Thread 1 Thread 2

Remote predecessor

RPre(I1)=nil
BSet(S1)={nil}
RPre(I2)=S1,RPre(I4)=S3
BSet(S2)=RPre(I2)∪RPre(I4)={S1,S3},
RPre(I3)=RPre(I5)=S2
BSet(S3)=RPre(I3),∪RPre(I5)={S2},

I1S1:Write,X
I3S3:Read,X
I5S3:Read,X

I2S2:Read,X
I4S2:Read,X

Figure 5 Demonstration of belonging sets.

Incorrect Interleaving                               Correct Interleaving i

S1 and S2 are assumed to be executed atomically.
Wrong interleaving will lead to crash.

void innobase_mysql_print_th(...) {            bool do_command(...){
  ...                                                                 ...
  if (thd->proc_info) {
    putc(' ', f);
                                                                      thd->proc_info = 0;

    fputs(thd->proc_info, f);
  } ...                                                               ...
}                                                                   }

 S1

 S2

         S3

Thread 1 Thread 2

ha_innodb.cc sql_parse.cc

2

1

i

2

I3S2 in Correct run 2 is enclosed with dotted line,
because that it will be bypassed by an if-condition 
in this interleaving.

Remote predecessor

BSet(S1)=RPre1(I1)∪RPre2(I2)={nil,S3} RPreZ means the remote predecessor  
obtained from run Z.BSet(S2)=RPre1(I2)={nil}

BSet(S3)=RPre1(I3)∪RPre2(I1)={nil,S2}

Correct run 1

Thread 2

I3S3:Write X

Thread 1

I1S1:Read X

I2S2:Read X

Correct run 2

Thread 2

I1S3:Write X

Thread 1

I2S1:Read X

I3S2:Read X

Incorrect run

Thread 2

I2S3:Write X

Thread 1

I1S1:Read X

I3S2:Read X

BSet(S3)
RPre1(I1)=RPre1(I2)=nil
RPre1(I3)=S2

RPre2(I1)=nil
RPre2(I2)=S3

RPrein(I2)=S1

Figure 6 A real-world atomicity violation in MySQL and the corresponding simplified code.

The remote predecessor mentioned above will be expressed as RPre(Ix) for every dynamic instruction

Ix in the execution traces. RPre(Ix) is a static instruction, which has at least one dynamic instruction

derived from it that (1) accesses the same memory address as Ix; (2) comes from another thread (besides

Ix’s thread); and (3) accesses the same address immediately before Ix. We consider I2 from Thread 2 to

be immediately before I1 from Thread 1 if and only if, except instructions from Thread 1, there is no

instruction that accesses the same address of I1 between the execution of I2 and I1. If there is no such

dynamic instruction, then RPre(Ix) = nil.

To strictly define the AI, we calculate a Belonging Set, expressed as BSet(Sy), for every static instruc-

tion, which is the union of all the remote predecessors of its dynamic instructions that have been seen in

verified interleavings. And we define AI to be

RPre(IxSy) ∈ BSet(Sy), IxSy is derived from Sy.

As an illustration, BSet of S2 in Figure 5 is calculated as BSet(S2) = RPre(I2) ∪ RPre(I4) = {S1, S3}.
How it works for atomicity violations. Figure 6 shows a real-world atomicity violation from the
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(b)

Thread 1b Thread 2b

Correct run

Thread 1b Thread 2b

Incorrect run

(a)

Thread 1a Thread 2a

Correct run

Thread 1a Thread 2a

Incorrect run

Remote predecessor

I1S1a:Read X

I2S2a:Write X I2S1a:Read X

I1S2a:Write X I1S1b:Write X

I2S2b:Write X

I1S2b:Write X

I2S1b:Write X

BSet(S1a)=RPre(I1)={nil}
BSet(S2a)=RPre(I2)={S1a}

RPrein(I1)=nil      BSet(S2a) BSet(S1b)=RPre(I1)={nil}
BSet(S2b)=RPre(I2)={S1b}

RPrein(I1)=nil      BSet(S2b)

Figure 7 Interleavings of two typical order violations.

Original 
source 
code

AIPrepare
pass

load  !ID 1

store !ID 2

...

...

...
log(1, ...)
load  !ID 1

log(2, ...)
store !ID 2

...

...

...

In-house
testing

AITrace
Pass

AITolerate
pass

Access
traces

guard(1, ...)
load  !ID 1

guard(2, ...)
store !ID 2

...

...

...

White list & marked source code

Testing phase Production phase

Figure 8 Overview of the whole system.

MySQL database server and the corresponding simplified code of this bug. The simplified part of the

figure shows two interleavings that can be found in correct test runs and one found in incorrect runs.

After observing the correct test runs, we can calculate that BSet(S3) is {nil, S2}. Then, in the incorrect

case, when I2S3 in Thread 2 wants to be executed before I3S2 in Thread 1 after I1S1 has already been

executed, its remote predecessor will be S1. Since S1 �∈ BSet(S3), a violation is reported. Note that this

bug can be anticipated before S3’s execution, at which point, the run-time environment still can prevent

the bug from happening by temporarily stalling the execution of Thread 2. There is no need to roll back

any executed instruction here.

How it works for order violations. Figure 7 shows two representative interleavings obtained from

an R–W order violation and a W–W order violation respectively. The remote predecessor of I1S2a in

subfigure (a) and the remote predecessor of I1S2b in subfigure (b) are both nil in the incorrect run. In

this case, a violation will be reported because neither BSet(S2a) nor BSet(S2b) contains nil. Similar to

atomicity violations, the bug’s manifestation is anticipated right before its turning point and hence can

be prevented without using rollback.

3.3 Design and implementation details

Implementation. To utilize the Anticipating Invariant for tolerating concurrency bugs, we implement

a software-only system using the LLVM compiler framework [36], as shown in Figure 8.

In our implementation, we built a system mainly consisting of three LLVM passes, namely AIPrepare,

AITrace, and AITolerate. Each of them will perform a corresponding transformation to the input source

code.

Specifically, the input of AIPrepare pass is the original source code. It will assign a universally unique

access ID to each load/store instruction in the LLVM IR (by adding a metadata node). The marked code

is stored in bitcode format for later usages.

Next the AITrace pass reads the marked code and adds a call to a logging function before each

memory access. The logging function will output a triplet of (Access ID y, Thread ID tid, Accessed

Memory Address addr) to the trace file. After gathering enough correct runs we can calculate the remote

predecessor of each dynamic instruction by scanning the trace files chronologically, In the meantime, the

belonging sets are updated as below:

BSet(y) = BSet(y) ∪ RPre(Tripletx) if Tripletx = (y, . . . , . . . ).
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Table 1 Evaluation results on different invariants’ bug detecting and tolerating (without using rollback) capability. Due

to space constraints, we aggregate the evaluation results of the 35 bugs into 8 patterns. All results of AI in this table

are obtained through experiments. And the results for other detectors are obtained based on our understanding of their

algorithms.

Category Pattern
AI AVIO DUI CCI PSet

Detect Prevent Detect Prevent Detect Prevent Detect Prevent Detect Prevent

Atomicity

violation

R-R | W � � � � � � �
W–R | W � � � � � � �
W–W | R � � �� � � � � �

R–W | R–W � � �� �� �
R–R–W | R–R–W � � �� �� � �

Order

violation

W–R � � �� �� �� �� �� ��

R–W � � � � � �
W–W � � � � � �

Finally, the AITolerate pass will add a call to a guarding function before every shared-memory accesses

to perform bug prevention. The guarding function will maintain a data structure Recorder[M ] to record

the last two instructions that access memory M from different threads. This is enough for calculating

the remote predecessors, because RPre of the current operation is the last access (before updating) if the

access is from a different thread, or it must be the second-to-last one. Then, after obtaining RPre, the

guarding function will check whether the corresponding Anticipating Invariant is held. An Anticipating

Invariant Violation is reported if it does not, that is, RPre(Ix) �∈ BSet(Sy), although Ix is derived from

Sy. As analyzed in Subsection 3.2, due to Ai’s capability of anticipating bugs before their occurrence, we

can tolerate this violation by stalling the violating thread until the violation gets resolved. The violated

AI will be checked again and again until a maximum stalling time, to determine whether the accesses

from other threads have resolved it. If the check passes or the threshold is reached, the stalled thread

will resume its execution.

Custom instrumentation strategy. We also propose an optional bias instrumentation scheme.

The scheme is based on a key observation that, in a well-tested program, bugs usually occur in cold

(less-executed) regions. Thus if an access is deemed to be very “hot”, we chose to not instrument it. We

expect this scheme to miss few harmful bugs in practice, because, if a bug is lurking in these instructions,

it will probably be found by the in-house testing (or is benign). As shown in Subsection 3.4, this scheme

is effective in lowering the run-time overhead of AI, especially for applications with intensive memory

accesses. Similar approaches have been used in several sampling-based race detecting methods [37], and

achieve a good result in Google’s practice [38].

3.4 Results and discussion

We analyzed Ai’s capability of anticipating (detecting) and preventing concurrency bugs by using 35

representative real-world bugs from 11 multithreaded applications. The results are shown in Table 1,

in which � represents that all the manifestations from this kind of bug are detected/prevented in our

experiments; �� means that the bugs can only be detected/prevented on particular interleavings; and

blank cells represent that the corresponding invariant is not violated in all executions even when the bug

is triggered. Table 1 groups the found bugs into eight patterns: (1) for atomicity violations, symbols

on each side of the vertical line represent the assumed atomicity region in that thread. Thus, a R–R |
W Atomicity Violation is a bug in which two consecutive read operations in one thread are assumed to

be executed atomically, but in fact they can be interleaved by a write operation from another thread;

and (2) for order violations, the symbols represent the assumed order. For example, in a W–R Order

Violation, the programmer intends that a write operation should always be executed before another read

operation, but this intention is not guaranteed.
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Table 2 Run-time overheads. The “Bias” and “Default” columns give the overhead with and without bias instrumentation

respectively.

Applications
Overhead

Default (%) Bias (%)

Desktop application
PBZip2 0.38

Pigz 0.20

Server application
Apache 0.34

MySQL 0.57

SPLASH–2 benchmarks
FFT 1345 115

LU 1613 127

As shown in Table 1, AI can detect all the patterns of bugs we have found, which is more than each

prior invariant. Also, it has a superior anticipating ability and thus can tolerate more bugs without using

rollback.

Table 2 gives the evaluation result of the performance for our current AI implementation3). As we

can see, AI only incurs negligible overhead (< 1%) for many nontrivial desktop and server applications.

Furthermore, its slowdown on computation-intensive programs can be reduced to about 2× after using

the bias instrumentation (with threshold 30%).

Overall, AI provides a general solution for proactively preventing a wide variety of hidden concurrency

bugs through temporary thread stalling. The main drawbacks of AI are that (1) it requires training; and

(2) its overhead for some applications, such as scientific computing applications, is not negligible.

4 Reactively recovering from concurrency-bug failures

4.1 High-level ideas

Goals & Challenges. Our CFix work can statically fix detected concurrency bugs (Section 2) and

our AI work can dynamically prevent some undetected concurrency bugs from manifesting (Section 3).

However, neither technique is perfect, and some concurrency bugs will inevitably manifest and trigger

failures at run time. Our goal here is to transparently recover a just-triggered concurrency-bug failure,

so that end-users will not be affected by the failure.

An ideal failure recovery technique should have several key properties:

• Generality: helping bugs with a wide variety of root-cause interleaving patterns without reliance on

accurate bug detection;

• Performance: small run-time overhead and fast failure recovery on commodity systems without any

OS/hardware modification; and

• Correctness: not generating results infeasible for original software.

The state-of-the-art for concurrency-bug failure recovery is the checkpoint-and-rollback approach [39–

41]. At run time, this approach periodically takes system checkpoints. When a failure is triggered, it

rolls back the software to some recent checkpoints and reexecutes from the selected checkpoint. Given

the non-determinism of multithreaded software, there is a good chance that the concurrency bug will not

manifest during the reexecution, and hence the failure is transparently recovered.

This checkpoint-and-rollback approach achieves good correctness and generality, as it can help recover

almost all types of concurrency bugs without changing the program semantics. Unfortunately, existing

techniques based on this approach require periodic whole-program checkpoint at run time and whole-

program rollback for failure recovery. As a result, they require OS/hardware modifications to achieve

good performance, compromising the goal of achieving good performance on commodity systems.

3) Since the overhead for desktop and server applications are low enough even when instrumenting all the shared-memory

accesses, their overheads after applying bias instrumentation are omitted.
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(a)                                                                             (b)                                                                 (c)

Figure 9 An overview of ConAir. (a) Key design points in rollback recovery; (b) traditional rollback recovery; (c) ConAir.

ConAir ideas. ConAir is a static analysis and code-transformation tool that automatically inserts

rollback-recovery code into multithreaded software and allows software to recover from a wide variety of

known and hidden concurrency bugs with little run-time overhead on existing OS/hardware platforms.

As shown in Figure 9, the design of a rollback-recovery system for multithreaded software includes

two key components: (1) how many threads participate in the rollback recovery; and (2) what is the

reexecution point in each participant thread. ConAirtakes a novel approach to both components:

1. Single-threaded rollback. ConAir only rolls back a single thread where the failure occurs, different

from previous work that rolls back multiple (all) threads.

2. Idempotent reexecution with no checkpoints. ConAir always reexecutes an idempotent re-

gion4) surrounding the failure site. Consequently, no memory-state checkpoints are needed. This is

different from previous work that periodically takes memory-state checkpoints and reexecutes from the

latest checkpoint.

The above two ideas work together to make sure ConAir can achieve good run-time performance,

with no modifications to OS/hardware. Its idempotent reexecution also guarantees that it never changes

program semantics (correctness).

Finally, ConAir can still recover from a wide variety of concurrency bugs (generality), because of a key

observation that many concurrency-bug failures occur quickly after incorrect interleaving and hence can

be effectively recovered by rolling back and reexecuting an idempotent region in a single failing thread,

while other threads make forward progress. We will discuss this in more detail below.

4.2 How ConAir works for different types of concurrency bugs

In the following, we will explain how ConAir works for all major types of concurrency bugs [6,42]:

atomicity violations, order violations, and deadlocks. Particularly, we will focus on how the two key

ideas work for each type of bug: (1) no multithreaded rollback; and (2) no memory checkpoints with

idempotent reexecution.

How it works for atomicity violations. Atomicity violations contribute to about 70% of real-

world non-deadlock bugs [6]. They occur when two code regions R1 and R2 from two threads interleave

unserializably, which violates the expected atomicity of one or both regions. Clearly, if we can rollback

and reexecute any one involved thread, the execution of R1 and R2 will be serialized and the failure will

be recovered.

To understand whether ConAir recovery works, we need to answer two questions: (1) whether the failing

thread is involved in the unserializable interleaving and (2) whether an idempotent region surrounding

the failure site is large enough to cover the buggy code region.

To answer the first question, we checked 51 real-world atomicity-violation bugs collected by a previous

work [6]. About 92% of them cause failures in a thread that is involved in the unserializable interleaving

and hence can potentially be recovered by single-threaded recovery. This observation can be better

understood through bug examples shown in Figure 10. This figure depicts the most common types of

real-world atomicity violations [6,18,43]. As we can see, an atomicity violation usually causes an involved

thread to read an unexpected value from a shared variable, such as log in Figure 10(a), ptr in Figure 10

4) A code region is idempotent if it can be reexecuted any number of times without changing the program semantics.
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/*Thread 1*/
log=CLOSE;
log=OPEN;

/*Thread 2*/
if(log!=OPEN)
   {//output failure}

/*Thread 1*/
ptr=aptr;
tmp=*ptr;

/*Thread 2*/

ptr=NULL;

/*Thread 1*/
if(ptr)
   fputs(ptr);

/*Thread 2*/

ptr=NULL;

/*Thread 1*/
cnt+=deposit1;
printf(“Balance=%d”,cnt);

/*Thread 2*/

cnt+=deposit2;

(a)                                     (b)                                 (c)                                 (d)

Figure 10 Most failures caused by atomicity violations can be recovered by rolling back one thread: the failing thread.

Different checkpoint/sandbox techniques may be needed to guarantee correctness. (a) Violating WAW atomicity: roll back

Thread 2 to recover; (b) violating RAW atomicity: roll back Thread 1 to recover; (c) violating RAR atomicity: roll back

Thread 1 to recover; (d) violating WAR atomicity: roll back Thread 1 to recover.

(b) and (c), and cnt in Figure 10(d). This incorrect value quickly leads to a failure in that thread. Clearly,

the failure can be recovered by rolling back and reexecuting that thread.

It is not easy to answer the second question quantitatively. Qualitatively, we observe that failures

caused by many concurrency bugs can be recovered by reexecuting an idempotent region surrounding

the failure site, such as the one shown in Figure 10 (a) and (c). In fact, several previous empirical

studies [23,44] indicate that many concurrency bugs have short error propagation and rarely contain I/O

operations. This indicates that constraining reexecution regions to be free of idempotency-destroying

operations does not eliminate the chance of recovering from many concurrency-bug failures.

How it works for order violations. Order violations contribute to nearly 30% of real-world non-

deadlock concurrency bugs [6]. They occur when an operation A is expected to execute before an operation

B, but instead executes after B due to lack of synchronization. Clearly, if we can rollback and reexecute

the thread of B, the occurrence of B will be effectively delayed and the failure will be recovered.

To understand whether ConAir recovery works, we need to know (1) whether the thread of B is the

failing thread; and (2) whether an idempotent region surrounding the failure site is large enough to

cover B.

To answer the first question, we checked all 21 real-world order-violation bugs collected by a previous

work [6]. We found that about 50% of order-violation bugs lead to failures in the thread of B, and hence

can be recovered by the single-threaded recovery. Failures of the other bugs manifest in the thread of A

and occasionally some other threads.

To better understand this observation, one can consider a common type of order-violation bugs; thread

tB reads a shared-variable V before V is initialized by thread tA. In this case, the uninitialized value in

V usually leads to a failure in tB. By rolling back tB, we can postpone the read of V until V is initialized.

The answer to the second question is similar to that for recovering atomicity violations. That is,

since many concurrency bugs have short propagation distances, an idempotent reexecution region is long

enough in many cases.

How it works for deadlock bugs. Deadlock contributes to about 40% of all concurrency bugs [42].

When a deadlock occurs, every thread involved is holding some resource that is blocking another thread.

In a typical deadlock, making any thread release a resource will break the circular resource dependence.

Clearly, ConAir can help recover from a deadlock, as long as any single failing thread t contains an

idempotent region that covers both the location where t is blocked waiting for resources as well as the

location where t acquires a resource another failing thread is waiting for.

Overall, ConAir does not aim to handle all possible software failures. Instead, it aims to handle a

significant portion of concurrency-bug failures with a wide variety of symptoms and root causes with

negligible overhead and no modification to the OS or hardware. ConAir also provides guarantee to never

deviate from the original software semantics.

4.3 Design and implementation details

The basic ConAir framework includes three static analyses and code-transformation components.

A static analyses component identifying potential failure sites. Without any knowledge of

hidden concurrency bugs, ConAir statically identifies program locations where four most common types
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if(e){
}else{

   __assert fail(...);
}

__thread jmp buf c;
__thread int RetryCnt=0;
setjmp(c); //Reexecution point
... //an idempotent region
if(e){
}else{
   while(RetryCnt++<maxRetryNum)
      longjmp(c,0);
   __assert fail(...); //A potential failure site
}

(a)                                                          (b)

Figure 11 ConAir code transformation for assert. (a) Original code; (b) transformed code.

of failures [23] could occur: assertion failures, wrong output failures, segmentation-fault failures, and

deadlocks. For example, ConAir would identify the invocation of assert fail in Figure 11 as a potential

failure site.

A static analyses component identifying reexecution points. In ConAir, every reexecution

region is an idempotent region that ends at a potential failure site. This component conducts a backward

depth-first search from every site f along the control-flow graph. It identifies every location right after an

idempotency-destroying operation as a reexecution point.

A static code-transformation component. As shown in Figure 11, this component inserts setjmp

at the reexecution point and longjmp at the potential failure site, which work together to maintain correct

reexecution during failure recovery.

ConAir further extends the above three basic components to handle interprocedural recovery and con-

tains some library functions, such as malloc and pthread mutex lock, in reexecution regions. Furthermore,

ConAir optimizes away useless reexecution points that can never help the recovery of concurrency-bug

failures. The details of these algorithms and implementations can be found in our conference paper.

4.4 Results and discussion

Our evaluation uses 10 real-world concurrency bugs from 8 different open-source multithreaded software.

These 10 bugs represent different types of root causes (atomicity violations, order violations, and dead-

locks) and different types of failure symptoms. The evaluation shows that ConAir helps widely used

open-source software recover from a wide variety of concurrency-bug failures on unmodified OS/hard-

ware platforms, where ConAir incurs negligible overhead (� 0.2%) and takes just a few microseconds for

failure recovery.

Overall, our ConAir work makes two key contributions: (1) a novel observation that rolling back a single

thread and reexecuting an idempotent region is sufficient to recover from many concurrency-bug failures;

and (2) a static analysis and code-transformation algorithm that automatically harden multithreaded

software against hidden concurrency bugs, and an implementation in LLVM.

The main drawback of ConAir is that it cannot help recover from failures that are preceded by a long

and non-idempotent error propagation.

5 Related work

5.1 Software bug fixing

For general software bugs, automated bug fixing is very challenging. The recent GenProg [45] project

smartly uses stochastic search methods like genetic programming with lightweight program analyses to

find patches for real bugs. Although inspiring, it does not provide guarantee that the program is indeed

fixed without new bugs introduced. Recent work by Logozzo and Ball [46] focuses on a small number of

program repair patterns, such as fixing off-by-one errors. Software verification is used to make sure that

the repairs do not make the programs more buggy regarding specifications provided by programmers.
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For concurrency bugs, automated deadlock fixing has been studied before [26]. After our CFix work

[1,2], researchers also tried using Petri-Net mechanisms to automatically fix concurrency bugs [47,48].

Hot-patching tools focus on how to apply program repairing while it is running. ClearView [49] patches

security vulnerabilities by modifying variable values at run time. Its design is not suitable for concurrency

bugs. The LOOM system [50] provides a language for developers to specify synchronizations they want to

add to a running program and deploys these synchronization changes safely. Similar to CFix, LOOM also

uses CFG reachability analysis for safety, and has a run-time component to recover from deadlocks. Since

LOOM has different design goals from CFix, it does not need to consider issues like working with bug

detectors, fix-strategy design, locating synchronization operations, handling statically unknown numbers

of signals, simplicity concerns, patch merging and testing. Tools like CFix can potentially complement

LOOM by automatically generating patches for LOOM to deploy.

5.2 Concurrency-bug failure prevention and recovery

Concurrency-bug prevention. AI is not the first tool to help prevent the manifestation of concurrency

bugs. However, previous tools either rely on checkpoint and replay to some extent [51–53], which can lead

to huge run-time overhead, or rely on the knowledge of previous manifestations of the same bug [24,50,54],

which cannot handle failures caused by previously unknown bugs. Furthermore, some previously proposed

tools [51,53] are constrained in their generality: they only handle certain types of concurrency bugs like

data races or atomicity violations. In comparison, AI can handle a wide variety of previously unknown

concurrency bugs without any rollback.

Concurrency-bug failure recovery. As discussed in Section 4, several rollback-recovery systems

have been built before, such as Rx [39], ASSURE [40], and Frost [41]. They all change operating systems to

support whole program checkpoint and rollback. Rx changes the program environment during reexecution

to handle deterministic bugs. ASSURE rolls back a failed execution to an existing error-handling path. It

is designed to mitigate the impact of deterministic bugs, and cannot help software generate correct results

after the manifestation of a non-deterministic concurrency bug. Frost [41] proposes a novel solution to

survive data races. With OS support, it executes multiple replicas of the program with complementary

thread schedules at the same time. Periodically, it compares the states of different replicas and tries

to survive state divergence caused by data races. In general, these systems all require checkpointing

the whole program states and rolling back all threads during a failure. Consequently, they all require

sophisticated changes to operating systems.

Microreboot [55] is a recovery technique that reboots only application components, instead of the whole

program, when failures occur. To benefit from microreboot, programmers have to manually separate their

systems into components (groups of objects) that can be individually restarted, such as Enterprise Java

Beans components in J2EE applications. The ConAir technique discussed in this article shares a common

high-level philosophy with microreboot of not rolling back the whole program. However, the similarity

ends there. ConAir focuses on concurrency-bug failure recovery. It works on any C/C++ multithreaded

software without manual changes. It automatically identifies reexecution points and conducts automated

code transformation.

5.3 Others

Concurrency-bug detection. Many techniques have been proposed to detect data races [9,12,13,56],

atomicity violations [15,18,57,58], order violations [20–22,27,52], and others concurrency problems. Bug-

detection tools help developers discover and understand the defects in software. However, they cannot

directly decrease software downtime or improve the dependability of software. The work presented in

this article has a different goal from bug-detection tools. It aims to alleviate or eliminate the impact of

concurrency-bug failures with or without the help of bug-detection tools.

Deterministic execution. Deterministic systems [59–63] force a multithreaded program to execute

a deterministic interleaving under a given input. This promising approach still faces challenges, such

as overhead, integration with system non-determinism, language design, etc. In general, these tools
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address different problems from what are discussed in this article. Even inside a deterministic run time,

concurrency bugs can still occur and require failure handling techniques.

Automated synchronization-primitive insertion. Techniques have been proposed to insert lock

operations into software based on annotations [43,64], atomic regions inferred from profiling [65], and

whole-program serialization analysis [66]. QuickStep [67] automatically selects functions to put into

critical sections based on race-detection results during loop parallelization. Recent work by Navabi et

al. [68] parallelizes sequential software based on future-style annotations. It automatically inserts barriers

to preserve sequential semantics during parallelization.

Compared with the above techniques, our CFix is unique in fixing concurrency bugs reported by a wide

variety of bug detectors and in synchronizing using both locks and condition variables. CFix addresses

unique challenges such as fix-strategy design, simplicity optimization, patch merging, and patch testing.

The static analysis conducted by CFix differs from that of Navabi et al. [68] by considering additional

issues such as simplicity and performance.

6 Conclusion

This article reviews our recent work on fixing concurrency bugs (CFix), preventing concurrency bug

manifestations (AI), and recovering from concurrency bug failures (ConAir). The three techniques,

CFix, AI, and ConAir, aim the same goal—improving the dependability of multithreaded software—from

different angles. They can well complement each other: CFix is most suitable when some concurrency bugs

are already detected and not fixed yet; AI and ConAir are useful without any bug-detection information.

Among AI and ConAir, ConAir provides better performance for a wide range of software applications

and has no requirements on training. However, ConAir only works for concurrency bugs that have short

error propagation distances, while AI does not have this limitation. Of course, the work presented in this

article is just a starting point to concurrency bug fixing, prevention, and recovery. Future work can help

further improve the simplicity and performance of automatically generated concurrency-bug patches and

help further improve the generality and performance of concurrency-bug prevention and recovery.
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