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Abstract

We present and solve a path optimization problem on programs. Given
a set of program nodes, called critical nodes, we find a shortest path
through the program’s control flow graph that touches the maximum num-
ber of these nodes. Control flow graphs over-approximate real program
behavior; by adding dataflow analysis to the control flow graph, we nar-
row down on the program’s actual behavior and discard paths deemed
infeasible by the dataflow analysis. We derive an efficient algorithm for
path optimization based on weighted pushdown systems. We present an
application for path optimization by integrating it with the Cooperative
Bug Isolation Project (CBI ), a dynamic debugging system. CBI mines
instrumentation feedback data to find suspect program behaviors, called
bug predictors, that are strongly associated with program failure. Instan-
tiating critical nodes as the nodes containing bug predictors, we solve for
a shortest program path that touches these predictors. This path can
be used by a programmer to debug his software. We present some early
experience on using this hybrid static/dynamic system for debugging.

1 Introduction
Static analysis of programs has been used for a variety of purposes including
compiler optimizations, verification of safety properties, and improving program
understanding. Static analysis has the advantage of considering all possible
executions of a program and therefore gives strong guarantees on the program’s
behavior. In this paper, we present a static analysis technique that can be
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used for finding a program execution sequence that is optimal with respect to
some criteria. In particular, given a target set of program locations, which
we call critical nodes, we consider all possible execution traces through the
program to find a trace that touches the maximum number of these critical
nodes and has the shortest length among all such traces. Since reachability in
programs is undecidable in general, we over-approximate the set of all possible
traces through a program by considering all paths in the program’s control flow
graph, and solve the optimization problem on this graph. We also consider how
dataflow analysis [2] can be added to the control flow graph to narrow down
on the program’s actual behavior by discarding paths deemed infeasible by the
dataflow analysis. We show that the powerful framework of weighted pushdown
systems [23] can be used to represent and solve several variations of the path
optimization problem.

As a primary motivating application, we have implemented our path opti-
mization algorithm and integrated it with the Cooperative Bug Isolation Project
(CBI ) [15] to create the BTrace debugging support tool. CBI is an automated
bug isolation system. It adds lightweight dynamic instrumentation to software
to gain information about runtime behavior. Using this information, it identifies
certain suspect program behaviors, called bug predictors, that are strongly as-
sociated with program failure. These bug predictors help to identify the causes
and circumstances of failure, and have been used successfully to find previously
unknown bugs [18]. CBI is primarily a dynamic system based on mining feed-
back data from observed runs. Our work on BTrace represents the first major
effort to combine CBI’s dynamic, statistical approach with more formal, static
program analysis.

BTrace enhances CBI output by giving more context for interpreting the
bug predictors. We use CBI bug predictors as our set of critical nodes and con-
struct a path from the entry point of the program to the failure site that touches
the maximum number of these bug predictors. CBI associates a numerical score
with each bug predictor, with higher scores denoting stronger association with
failure. We therefore extend BTrace to find a shortest path that maximizes
the sum of prediction scores of the predictors it touches. That is, BTrace
finds a path such that the sum of predictor scores of all predictors on the path
is maximal, and no shorter path has the same score. We also allow the user to
add constraints in the form of the stack traces left behind by the failed program
to restrict attention to paths that have unfinished calls exactly in the order
they appear in the stack trace, and ordering constraints that restrict the order
in which predictors can be touched. These constraints improve the utility of
BTrace for debugging purposes by producing a path that is close enough to
the actual failing execution of the program to give the user substantial insight
into the root causes of failure. We present preliminary experimental results
in Section 5 to support this claim. Constructing a shortest path allows the
programmer to look at the smallest piece of code necessary to find the bug.

Under the extra constraints described above, the path optimization problem
solved by BTrace can be stated as follows:
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The BTrace Problem. Given the control flow graph (N,E) of a program
with nodes N and edges E; a single node nf ∈ N (representing the crash site of
a program); a set of critical nodes B ⊆ N (representing the bug predictors); and
a function µ : B → R (representing predictor scores), find a path in the control
flow graph that first maximizes

∑
n∈S µ(n) where S ⊆ B is the set of critical

nodes that the path touches and then minimizes its length. Furthermore, restrict
the search for this optimal path to only those paths that satisfy the following
constraints:

1. Stack trace. Given a stack trace, consider only those paths that reach nf

with unfinished calls exactly in the order they appear in the stack trace.

2. Ordering. Given a list of node pairs (ni,mi) where ni,mi ∈ B and
0 ≤ i ≤ k for some k, consider only those paths that do not touch node
mi before node ni.

3. Dataflow. Given a dataflow analysis framework, consider only those
paths that are not ruled out as infeasible by the dataflow analysis. The
requirements on the dataflow analysis framework are specified later in Sec-
tion 3.5.

Finding a feasible path through a program when one exists is, in general,
undecidable. Therefore, even with powerful dataflow analysis, BTrace can
return an infeasible path that can never appear in any real execution of the
program. We consider this acceptable as we judge the usefulness of a path by
how much it helps a programmer debug his program, rather than its feasibility.

The key contributions of this paper are as follows:

• We present an algorithm that optimizes path selection in a program ac-
cording to the criteria described above. We use weighted pushdown sys-
tems to provide a common setting under which all of the mentioned opti-
mization constraints can be satisfied.

• We describe a hybrid static/dynamic system that combines optimal path
selection with CBI bug predictors to support debugging.

The remainder of the paper is organized as follows: Section 2 presents a for-
mal theory for representing paths in a program. Section 3 derives our algorithm
for finding an optimal path. Section 4 gives additional background on CBI and
considers how the path optimization algorithm can be used in conjunction with
CBI for debugging programs. Section 5 presents experimental results. Section 6
discusses some of the related work in this area, and Section 7 concludes with
some final remarks and future work.

2 Describing Paths in a Program
This section introduces the basic theory behind our approach. In Section 2.1,
we formalize the set of paths in a program as a pushdown system. Next, in Sec-
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emain

n1: x = 5

n3: call p

n7: ret from p

exitmain

n2: y = 1

n6: y = 3

ep

n5: y = 2

exitp

n4: if (. . .)

n8: call p

n9: ret from p

Figure 1: An interprocedural control flow graph. The e and exit nodes repre-
sent entry and exit points of procedures, respectively. Dashed edges represent
interprocedural control flow.

tion 2.2, we introduce weighted pushdown systems that have the added ability
to associate a value with each path.

2.1 Paths in a Program
A control flow graph (CFG) of a program is a graph where nodes are program
statements and edges represent possible flow of control between statements.
Figure 1 shows the CFG of a program with two procedures. We adopt the
convention that each function call in the program is represented by two nodes:
one is the source of an interprocedural call edge to the callee’s entry node and
the second is the target of an interprocedural return edge from the callee’s exit
node back to the caller. In Figure 1, nodes n3 and n7 represent one call from
main to p; nodes n8 and n9 represent a second call.

Not all paths (sequences of nodes connected by edges) in the CFG are valid.
For example, the path

[emain n1 n2 n3 ep n4 n5 exitp n9]

is invalid because the call at node n3 should return to node n7, not node n9. In
general, the valid paths in a CFG are described by a context-free language of
matching call/return pairs: for each call, only the matching return edge can be
taken at the exit node. For this reason, it is natural to use pushdown systems
to describe paths in a program [13, 23].

Definition 1. A pushdown system is a triple P = (P,Γ,∆) where P is the
set of states, Γ is the set of stack symbols and ∆ ⊆ P ×Γ×P ×Γ∗ is the set of
pushdown rules. A rule r = (p, γ, q, u) ∈ ∆ is written as 〈p, γ〉 ↪→ 〈q, u〉.
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r1 = 〈p, emain〉 ↪→ 〈p, n1〉
r2 = 〈p, n1〉 ↪→ 〈p, n2〉
r3 = 〈p, n2〉 ↪→ 〈p, n3〉
r4 = 〈p, n3〉 ↪→ 〈p, ep n7〉
r5 = 〈p, n7〉 ↪→ 〈p, n8〉
r6 = 〈p, n8〉 ↪→ 〈p, ep n9〉
r7 = 〈p, n9〉 ↪→ 〈p, exitmain〉
r8 = 〈p, exitmain〉 ↪→ 〈p, ε〉

r9 = 〈p, ep〉 ↪→ 〈p, n4〉
r10 = 〈p, n4〉 ↪→ 〈p, n5〉
r11 = 〈p, n4〉 ↪→ 〈p, n6〉
r12 = 〈p, n5〉 ↪→ 〈p, exitp〉
r13 = 〈p, n6〉 ↪→ 〈p, exitp〉
r14 = 〈p, exitp〉 ↪→ 〈p, ε〉

Figure 2: A pushdown system that models the control flow graph shown in
Figure 1

A pushdown system is a finite automaton with a stack (Γ∗). It does not
take any input, as we are interested in the transition system it describes, not
the language it generates.

Definition 2. A configuration of a pushdown system P = (P,Γ,∆) is a pair
〈p, u〉 where p ∈ P and u ∈ Γ∗. The rules of the pushdown systems describe a
transition relation ⇒ on configurations as follows: if r = 〈p, γ〉 ↪→ 〈q, u〉 is
some rule in ∆, then 〈p, γu′〉 ⇒ 〈q, uu′〉 for all u′ ∈ Γ∗.

Let (N,E) be a CFG, where N is the set of nodes and E is the set of edges.
Then a pushdown system (P,Γ,∆) for the CFG can be constructed as follows:
P = {p}, Γ = N and ∆ is constructed from the following rules:

1. For each intraprocedural edge (n, m) ∈ E, add the rule 〈p, n〉 ↪→ 〈p, m〉.

2. For each exit point n ∈ N of any procedure, add the rule 〈p, n〉 ↪→ 〈p, ε〉.

3. For each interprocedural call edge (n, m) ∈ E, where n is the call site and
m the entry point of callee, if the corresponding return site of n is nr, add
the rule 〈p, n〉 ↪→ 〈p, m nr〉.

Figure 2 shows an example of this construction for the CFG in Figure 1. Note
that we just use a single state. It is not difficult to see that the transition system
of a pushdown system obtained in this fashion can describe all valid paths in the
CFG. Figure 3 shows a path in the CFG and the corresponding transitions in
the pushdown system. A path in the transition system ending in a configuration
〈p, n1 n2 · · ·nk〉, where ni ∈ Γ, is said to have a stack trace of 〈n1, · · ·nk〉: it
describes a path in the CFG that is currently at n1 and has unfinished calls
corresponding to the return sites n2, · · ·nk. In this sense, a configuration stores
an abstract run-time stack of the program, and the transition system describes
valid changes that the program can make to it.
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(a) [emain n1 n2 n3 ep n4 n5 exitp n7]
(b) 〈p, emain〉 r1==⇒ 〈p, n1〉 r2==⇒ 〈p, n2〉 r3==⇒ 〈p, n3〉 r4==⇒

〈p, ep n7〉 r9==⇒ 〈p, n4 n7〉 r10==⇒ 〈p, n5 n7〉 r12==⇒
〈p, exitp n7〉 r14==⇒ 〈p, n7〉

Figure 3: (a) A path in the CFG shown in Figure 1, and (b) the corresponding
path in the pushdown system of the CFG. The superscripts on ⇒ are the rules,
from Figure 2, used to justify the particular transition.

Having created a pushdown system, we need to associate a value with each
path that stores the set of bug predictors touched by the path. Along with this
set, we also need to store the length of a path in order to select the shortest
path in case two or more paths touch the same predictors. We accomplish this
in Section 3 using weighted pushdown systems, which we describe in the next
section.

2.2 Weighted Pushdown Systems
A weighted pushdown system (WPDS) is obtained by associating a weight with
each pushdown rule. The weights must come from a set that satisfies bounded
idempotent semiring properties [4, 23].

Definition 3. A bounded idempotent semiring is a quintuple
(D,⊕,⊗, 0, 1), where D is a set whose elements are called weights, 0
and 1 are elements of D, and ⊕ (the combine operation) and ⊗ (the extend
operation) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where
⊕ is idempotent (i.e., for all a ∈ D, a⊕ a = a).

2. (D,⊗) is a monoid with 1 as its neutral element .

3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

4. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗0 = 0 = 0⊗a.

5. In the partial order v defined by: ∀a, b ∈ D, a v b iff a⊕ b = a, there are
no infinite descending chains.

Definition 4. A weighted pushdown system is a triple W = (P,S, f) where
P = (P,Γ,∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : ∆ → D is a map that assigns a weight to each pushdown rule.
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The ⊗ operation is used to compute the weight of concatenating two paths
and the ⊕ operation is used to compute the weight of merging parallel paths.
If σ = [r1, r2, · · · , rn] ∈ ∆∗ is a sequence of rules, then define the value of σ
as val(σ) = f(r1) ⊗ f(r2) ⊗ · · · ⊗ f(rn). In Definition 3, item 3 is required by
WPDSs to efficiently explore all paths, and item 5 is required for termination
of the search for optimal path.

For pushdown configurations c and c′, let path(c, c′) be the set of all rule
sequences that transform c into c′. Let nΓ∗ ⊆ Γ∗ denote the set of all stacks
that start with n. Existing work on WPDSs allows us to solve the following
problems [23]:

Definition 5. Let W = (P,S, f) be a weighted pushdown system, where P =
(P,Γ,∆), and let c′ ∈ P × Γ∗ be a configuration. The generalized pushdown
predecessor (GPPc′) problem is to find for each c ∈ P ×Γ∗ and each n ∈ Γ:

• δ(c) def=
⊕
{ val(σ) | σ ∈ path(c, c′)}

• a witness set of paths ω(c) ⊆ path(c, c′) such that
⊕

σ∈ω(c)

val(σ) = δ(c).

• δ(nΓ∗) def=
⊕
{ val(σ) | σ ∈ path(c, c′), c ∈ P × (nΓ∗)}

• a witness set of paths ω(nΓ∗) ⊆
⋃

c∈P×(nΓ∗)

path(c, c′) such that⊕
σ∈ω(c)

val(σ) = δ(c).

The generalized pushdown successor (GPS c′) problem is to find for
each c ∈ P × Γ∗:

• δ(c) def=
⊕
{ val(σ) | σ ∈ path(c′, c)}

• a witness set of paths ω(c) ⊆ path(c′, c) such that
⊕

σ∈ω(c)

val(σ) = δ(c).

• δ(nΓ∗) def=
⊕
{ val(σ) | σ ∈ path(c′, c), c ∈ P × (nΓ∗)}

• a witness set of paths ω(nΓ∗) ⊆
⋃

c∈P×(nΓ∗)

path(c′, c) such that⊕
σ∈ω(c)

val(σ) = δ(c).

The above problems can be considered as backward and forward reachability
problems, respectively. Each aims to find the combine of values of all paths
between a given pair of configurations (δ(c)). Along with this value, we can also
find a witness set of paths ω(c) that together justify the reported value for δ(c).
This set of paths is always finite because of item 5 in Definition 3. Note that
the reachability problems do not require finding the smallest witness set, but
the WPDS algorithms always find a finite set.

We have only presented a restricted form of the reachability problems. In
general, WPDS can find the value of δ(L) for any regular set of configurations
L ⊆ P × Γ∗. The more restricted form presented here is sufficient to capture
our path finding problem; the next section presents this construction.
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3 Finding an Optimal Path
Here we apply the general theory of Section 2 to the specific BTrace problem
defined in Section 1. We begin by developing a solution to the basic path
optimization problem without considering dataflow or ordering constraints. We
then add these constraints back one by one and show how the basic solution
can be extended to accommodate these additional features.

3.1 Creating a WPDS
Let (N,E) be a CFG and P = (P,Γ,∆) be a pushdown system representing its
paths, constructed as described in Section 2.1. Let B ⊆ N be the set of critical
nodes. We will use this notation throughout this section. We now construct a
WPDS W = (P,S, f) that can be solved to find the best path.

For each path, we need to keep track of its length and also the set of critical
nodes it touches. Let V = 2B × N be a set whose elements each consist of a
subset of B (the critical nodes touched) and a natural number (the length of
the path). We want to associate each path with an element of V . Define the
weight domain for W as follows:

Definition 6. Let S = (D,⊕,⊗, 0, 1) be a bounded idempotent semiring where
each component is defined as follows:

• The set of weights D is 2V , the power set of V .

• For w1, w2 ∈ D, define w1 ⊕ w2 as reduce(w1 ∪ w2), where

reduce(A) = {(b, v) ∈ A | @(b, v′) ∈ A with v′ < v}

• For w1, w2 ∈ D, define w1 ⊗ w2 as

reduce({(b1 ∪ b2, v1 + v2) | (b1, v1) ∈ w1, (b2, v2) ∈ w2})

• The semiring constants 0, 1 ∈ D are

0 = ∅
1 = {(∅, 0)}

The semiring weight domain needs to be able to represent the weight of a set
of paths. This is accomplished by defining a weight as a set of elements from V .
The combine operation simply takes a union of the weights, but eliminates an
element if there is a better element around, i.e., if there are elements (b, v1) and
(b, v2), the one with shorter path length is chosen. This drives the WPDS to
only consider paths with shortest length. The extend operation takes a union
of the critical nodes and sums up path lengths for each pair of elements from
the two weights. This reflects the fact that when a path with length v1 that
touches the critical nodes in b1 is extended with a path of length v2 that touches
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the critical nodes in b2, we get a path of length v1 + v2 that touches the critical
nodes in b1 ∪ b2. The semiring constant 0 denotes an infeasible path, and the
constant 1 denotes an empty path that touches no critical nodes and crosses
zero graph edges.

To complete the description of the WPDS W, we need to associate each
pushdown rule with a weight. If r = 〈p, n〉 ↪→ 〈p, u〉 ∈ ∆, then associate it with
the following weight:

f(r) =
{
{(∅, 1)} if n /∈ B
{({n}, 1)} if n ∈ B

Whenever the rule r is used, the length of the path is increased by one and
the set of critical nodes grows to include n if n is a critical node. It is easy
to see that for a sequence of rules σ ∈ ∆∗ that describes a path in the CFG,
val(σ) = {(b, v)} where b is the set of critical nodes touched by the path and v
is its length. Note that by starting with the weights associated with pushdown
rules and using the semiring operations ⊗ and ⊕, we can only create weights
that contain at most one element for each subset of the set of all critical nodes.
In particular, the reduce operation ensures that we only store a shortest path
that touches a given set of critical nodes.

3.2 Solving the WPDS
An optimal path can be found by solving the generalized pushdown reachability
problems on this WPDS. We consider two scenarios here: when we have the
crash site but do not have the stack trace of the crash, and when both the crash
site and stack trace are available. We start with just the crash site. Let ne ∈ N
be the entry point of the program, and nf ∈ N the crash site.

Theorem 1. In W, solving GPS 〈p,ne〉 gives us the following values: δ(nfΓ∗) =
{(b, v) ∈ V | there is a path from ne to nf that touches exactly the critical nodes
in b, and the shortest such path has length v }. Moreover, ω(nfΓ∗) is a set of
paths from ne to nf such that there is at least one path for each (b, v) ∈ δ(nfΓ∗)
that touches exactly the critical nodes in b and has length v.

The above theorem holds because paths(〈p, ne〉, 〈p, nfΓ∗〉) is nothing but the
set of paths from ne to nf , which may or may not have unfinished calls. Taking a
combine over the values of such paths selects, for some subsets b ⊆ B, a shortest
path that touches exactly the critical nodes in b, and discards the longer ones.
The witness set must record paths that justify the reported value of δ(nfΓ∗).
Since the value of a path is a singleton-set weight, it must have at least one
path for each member of δ(nfΓ∗).

When we have a stack trace available as some s ∈ (nfΓ∗), with nf being the
top-most element of s, we can use either GPS or GPP .

Theorem 2. In W, solving GPS 〈p,ne〉 (GPP 〈p,s〉) gives us the following values
for Wδ = δ(〈p, s〉) (δ(〈p, ne〉)) and Wω = ω(〈p, s〉) (ω(〈p, ne〉)): Wδ = {(b, v) ∈
V | there is a valid path from ne to nf with stack trace s that touches all critical
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nodes in b, and the shortest such path has length v }. Wω = a set of paths from
ne to nf , each with stack trace s such that there is at least one path for each
(b, v) ∈ Wδ that touches exactly the critical nodes in b and has length v.

The above theorem allows us to find the required values using either GPS
or GPP . The former uses forward reachability, starting from ne and going
forward in the program, and the latter uses backward reachability, starting
from the stack trace s and going backwards. The next section compares the
computational complexity of these two approaches.

Having obtained the above δ and ω values (Wδ and Wω), we can find an
optimal path easily. Let µ : B → R be a user-defined measure that associates
a score with each critical node. We compute a score for each (b, v) ∈ Wδ by
summing up the scores of all critical nodes in b and then choose the pair with
highest score. Extracting the path corresponding to that pair in Wω gives us
an optimal path. Some advantages of having such a user-defined measure are
the following:

• The user can specify bug predictor scores given by CBI, or make up his
own scores.

• The user can give a negative score to critical nodes that should be avoided
by the path.

• The user can add critical nodes with zero score and use them to specify
ordering constraints (Section 3.4).

This lets our tool work interactively with the user to find a suitable path.
More generally, we can allow the user to give a measure µ̂ : (2B ×N) → R that
directly associates a score with a path. Using such a measure, the user can
decide to choose shorter paths instead of paths that touch more critical nodes.
In terms of using path optimization with CBI, this also allows for inserting
predictors of multiple bugs and associating a zero score with paths that touch
predictors of more than one bug. However, the exponential complexity related
with the number of critical nodes, as shown in the next section, suggests that
it is better to create multiple WPDSs, one for each bug, instead of inserting all
bugs’ predictors into the same WPDS.

3.3 Complexity of Solving the WPDS
Each of the methods outlined in Theorems 1 and 2 require solving either GPS
or GPP and then reading the value of δ(c) for some configuration c. We do not
consider the time required for reading the witness value as it can be factored
into these two steps. Let |∆| be the number of pushdown rules (or the size of
the CFG), |Proc| the number of procedures in the program, ne the entry point
of the program, |B| the number of critical nodes, L the length of a shortest path
to the most distant CFG node from ne. The height of the semiring (length of
the longest descending chain) we use is H = 2|B|L and the time required to
perform each semiring operation is T = 2|B|.
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To avoid requiring more WPDS terminology, we specialize the complexity
results of solving reachability problems on WPDS [23] to our particular use.
GPS 〈p,ne〉 can be solved in time O(|∆| |Proc| H T ) and GPP 〈p,s〉 requires
O(|s| |∆| H T ) time. Reading the value of δ(〈p, ne〉) is constant time and
δ(〈p, s〉) requires O(|s| T ) time. We can now put these results together.

When no stack trace is available, the only option is to use Theorem 1. Ob-
taining an optimal path in this case requires time O(|∆| |Proc| 22|B| L). When
a stack trace is available, Theorem 2 gives us two options. Suppose we have
k stack traces available to us (corresponding to multiple failures caused by
the same bug). In the first option, we solve GPS 〈p,ne〉, and then ask for the
value of δ(〈p, s〉) for each stack trace available. This has worst-case time com-
plexity O(|∆| |Proc| 22|B| L + k |s| 2|B|) where |s| is the average length of
the stack traces. The second option requires a stack trace s, solves GPP 〈p,s〉
and then asks for the value of δ(〈p, ne〉). This has worst-case time complexity
O(k |s| |∆| 22|B| L). As is evident from these complexities, the second option
should be faster, but its complexity grows faster with an increase in k. Note that
these are only worst-case complexities, and comparisons based on them need not
hold for the average case. In fact, in WPDS++ [11], the WPDS implementation
that we use, solving GPS is usually faster than solving GPP .1

Let us present some intuition into complexity results stated above. Consider
the CFG shown in Figure 4. If node n2 is a critical node, then a path from n1

to n6 that takes the left branch at n2 has length 5. The path that takes the
right branch has length 4, and touches the same critical nodes as the first path.
Therefore, at n6, the first path can be discarded and we only need to remember
the second path. In this way, branching in the program, which increases the total
number of paths through the program, only increases the complexity linearly
(|∆|). Now, if node n3 is also a critical node, then at n6 we need to remember
both paths: one touches more critical nodes and the other has shorter length.
(For a path that comes in at n1, and has already touched n3, it is better to
take the shorter right branch at n2.) In general, we need to remember a path
for each subset of the set of all critical nodes. This is reflected in the design of
our weight domain and is what contributes to the exponential complexity with
respect to the number of critical nodes.

This exponential complexity is, unfortunately, unavoidable. The reason is
that the path optimization problem we are trying to solve is a strict generaliza-
tion of the traveling salesman problem: our objective is to find a shortest path
between two points that touches a given set of nodes.

3.4 Adding Ordering Constraints
We now add ordering constraints to the path optimization problem. Suppose
that we have a constraint “node n must be visited before node m,” which says
that we can only consider paths that do not visit m before visiting n. It is

1The implementation does not take advantage of the fact that the PDS has been obtained
from a CFG. Backward reachability is easier on CFGs as there is at most one known prede-
cessor of a return-site node.
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Figure 4: A simple control flow graph

relatively easy to add such constraints to the WPDS given above. The extend
operation is used to compute the value of a path. We just change it to yield
0 for paths that do not satisfy the above ordering constraint. For w1, w2 ∈ D,
redefine w1 ⊗ w2 as reduce(A) where

A =
{

(b1 ∪ b2, v1 + v2)
∣∣∣∣ (b1, v1) ∈ w1, (b2, v2) ∈ w2,
¬(m ∈ b1, n ∈ b2)

}
If σ ∈ ∆∗ is a sequence of rules that describes a path in the CFG, then

val(σ) = {(b, v)} where b is the set of critical nodes visited by the path and v is
its length provided it does not visit m before n, and val(σ) = ∅ = 0 if the path
does visit m before visiting n. If we have more than one ordering constraint,
then we simply add more clauses, one for each constraint, to the above definition
of extend. For the use of BTrace as a debugging application, it is essential
that we let the user interact with the tool. These constraints provide a way for
the user to use his own intuition to guide the optimization problem solved by
BTrace.

These constraints do not change the worst case asymptotic complexity of
solving reachability problems in WPDS. However they do help prune down the
paths that need to be explored, because each constraint cuts down on the size
of weights produced by the extend operation.

3.5 Adding Dataflow
So far we have not considered interpreting the semantics of the program other
than its control flow. This implies that the WPDS can find infeasible paths:
ones that cannot occur in any execution of the program. An example is a path
that assigns x := 1 and then follows the true branch of the conditional if (x
== 0). In general, it is undecidable to restrict attention to paths that actually
occur in some program execution, but if we can rule out many infeasible paths,
we increase the chances of presenting a feasible or near-feasible path to the user.
This can be done using dataflow analysis.

Dataflow analysis is carried out to approximate, for each program variable,
the set of values that the variable can take at each point in the program. When a
dataflow analysis satisfies certain conditions, it can be integrated into a WPDS
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by designing an appropriate weight domain [13, 23]. Examples of such dataflow
analyses include uninitialized variables, live variables, linear constant propaga-
tion [24], and affine relation analysis [21, 22]. In particular, we can use of any
bounded idempotent semiring weight domain Sd = (Dd,⊕d,⊗d, 0d, 1d) provided
that when given a function fd : ∆ → Dd that associates each PDS rule (CFG
edge) with a weight, it satisfies the following property: given any (possibly
infinite) set Σ ⊆ ∆∗ of paths between the same pair of program nodes, we have⊕

σ∈Σ

vald(σ) = 0d only if all paths in Σ are infeasible (1)

where vald( [r1, · · · , rk] ) = fd(r1)⊗d · · ·⊗d fd(rk). In particular this means that
vald(σ) = 0d only if σ is an infeasible path, i.e., the path can never be executed
in the program. This imposes a soundness guarantee on the dataflow analysis:
it can only rule out infeasible paths. The computability of such a dataflow
analysis comes from the fact that it can be encoded as a bounded idempotent
semiring Sd. We briefly describe how classical dataflow analysis frameworks [2]
can be encoded as weight domains. More details can be found in Reps et al.
[23].

In classical dataflow analysis, we have a meet semilattice (D,u) where

• D is a set of dataflow facts. Each element e ∈ D represents a set of possible
program states or memory configurations.

• The meet operator u is used to combine dataflow facts obtained along
different paths.

• > ∈ D is the greatest element in D, i.e., > u e = e for all e ∈ D. It
represents the empty set of program states.

Each program statement is associated with a dataflow transformer τ : D →
D that represents the effect of executing the statement on the state of the
program. The effect of executing a path σ in the program can then be computed
by composing the dataflow transformers associated with each statement. Let
pfσ be the transformer obtained for path σ. Then the dataflow analysis problem
is to compute, for each program point n, the “meet-over-all-paths” solution as
follows:

MOPn =
σ∈paths(ne,n)

pfσ(es)

where ne is the starting point of the program and es ∈ D is the dataflow fact
representing the set of states at the beginning of the program. MOPn represents
the set of states that can arise at n as it combines the values contributed by each
path in the program that leads to n. This value is not always computable but
a sufficient condition for computability is that the transfer functions associated
with program statements be distributive, i.e., τ(e1 u e2) = τ(e1) u τ(e2) for all
e1, e2 ∈ D.

Dataflow analysis, as presented above, can be encoded as a weight domain
provided the following conditions are met:
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• The dataflow transformers associated with program statements must be
chosen from a set F ⊆ (D → D) that is closed under meet and composition,
i.e., for all τ1, τ2 ∈ F , τ1 ◦ τ2 ∈ F and τ1 u τ2 ∈ F where τ1 u τ2 =
λe.τ1(e) u τ2(e).

• All transformers in F must be distributive.

• All transformers in F must be strict in >, i.e., for all τ ∈ F , τ(>) = >.

• F has no infinite descending chains.

The weight domain is (F,u,�, λe.>, λe.e) where τ1 � τ2 = τ2 ◦ τ1. Reps
et al. give example of such an encoding for simple constant propagation [23,
Section 4.2]. In such a weight domain, the value of a path is the dataflow
transformer associated with the path: vald(σ) = pfσ for any path σ ∈ ∆∗. As
dataflow analysis is concerned with computing an over-approximation of the
set of states that can arise at a program point, vald(σ) = λe.> only when the
path cannot contribute any set of program states, i.e., it is infeasible. The more
general requirement of Equation 1 is also satisfied using a similar reasoning:
the combine over the values of a set of paths corresponds to calculating the
contribution of those sets of paths on program states, which is empty (>) only
when the paths are infeasible. If we consider all paths from the entry of the
program to a particular node n, then the combine of values of these paths applied
to es is simply MOPn.

Such a translation from dataflow transformers to a weight domain allows
us to talk about the meet-over-all-paths between configurations of a push-
down system. For example, solving GPS 〈p,ne〉 on this weight domain gives
us δ(〈p, n1n2 · · ·nk〉) as the combine (or meet) over the values of all paths from
ne to n1 that have the stack trace n1n2 · · ·nk. This is a unique advantage that
we gain over conventional dataflow analysis by using WPDSs.

Assume that Sd = (Dd,⊕d,⊗d, 0d, 1d) is a weight domain that satisfies Equa-
tion 1, and that fd : ∆ → Dd is a function that associates a dataflow weight
with each rule of our pushdown system. We change the weight domain of our
WPDS as follows.

Definition 7. Let S = (D,⊕,⊗, 0, 1) be a bounded idempotent semiring where
each component is defined as follows:

• The set of weights D is 22B×N×Dd , the power set of the set 2B × N×Dd.

• For w1, w2 ∈ D, define w1 ⊕ w2 as reduced(w1 ∪ w2) where reduced(A) is
defined as {

(b, min{v1, · · · vn},
d1 ⊕d · · · ⊕d dn)

∣∣∣∣ (b, vi, di) ∈ A,
1 ≤ i ≤ n

}
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• For w1, w2 ∈ D, define w1 ⊗ w2 as reduced(A) where A is the set (b1 ∪ b2, v1 + v2, d1 ⊗d d2)

∣∣∣∣∣∣∣∣∣∣
(b1, v1, d1) ∈ w1,
(b2, v2, d2) ∈ w2,
d1 ⊗d d2 6= 0d,
(b1, b2) satisfy all
ordering constraints


• The semiring constants 0, 1 ∈ D are

0 = ∅
1 = {(∅, 0, 1d)}

Here (b1, b2) satisfy all ordering constraints iff for each constraint “visit n before
m,” it is not the case that m ∈ b1 and n ∈ b2.

The weight associated with each rule r = 〈p, n〉 ↪→ 〈p, u〉 ∈ ∆ is given by

f(r) =
{
{(∅, 1, fd(r))} if n /∈ B
{({n}, 1, fd(r))} if n ∈ B

Each path is now associated with the set of predictors it touches, its length,
and its dataflow value. Infeasible paths are removed during the extend operation
as weights with dataflow value 0d are discarded. More formally, for a path
σ ∈ ∆∗ in the CFG, val(σ) = {(b, v, wd)} if wd = vald(σ) 6= 0d is the dataflow
weight associated with the path, v is the length of the path, b is the set of critical
nodes touched by the path, and the path satisfies all ordering constraints. If σ
does not satisfy the ordering constraints or if vald(σ) = 0d, then val(σ) = ∅ = 0.
Analysis using this weight domain is similar to the “property simulation” used
in ESP [6], where a distinct dataflow value is maintained for each property-state.
We maintain a distinct dataflow weight for each subset of critical nodes.

Instead of repeating Theorems 1 and 2, we just present the case of using
GPS when the stack trace s ∈ (nfΓ∗) is available. Results for other cases can
be obtained similarly.

Theorem 3. In the WPDS obtained from the weight domain of Definition 7,
solving GPS 〈p,ne〉 gives us the following values:

• δ(〈p, s〉) = {(b, v, wd) | there is a path from ne to nf with stack trace s
that visits exactly the critical nodes in b, satisfies all ordering constraints,
is not infeasible under the weight domain Sd, and the shortest such path
has length v }.

• ω(〈p, s〉) contains at least one path for each (b, v, wd) ∈ δ(〈p, s〉) that
goes from ne to nf with stack trace s, visits exactly the predictors in
b, satisfies all ordering constraints and has length v. More generally,
for each (b, v, wd) ∈ δ(〈p, s〉) it will have paths σi, 1 ≤ i ≤ k for some
constant k such that val(σi) = {(b, vi, wi)}, min{v1, · · · , vk} = v, and
w1 ⊕d · · · ⊕d wk = wd.
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The worst case time complexity in the presence of dataflow increases by a
factor of Hd(Cd +Ed) where Hd is height of Sd, Cd is time required for applying
⊕d, and Ed is the time required for applying ⊗d.

Theorem 3 completely solves the BTrace problem mentioned in Section 1.
The next section presents the dataflow weight domain that we used for our
experiments along with some extensions that were necessary to increase the
practical utility of dataflow analysis in our framework.

3.6 Example and Extensions for Using Dataflow Analysis
3.6.1 Copy Constant Propagation

We now give an example of a weight domain that can be used for dataflow
analysis. We encode copy-constant propagation [26] as a weight domain. A
similar encoding is used by Sagiv, Reps, and Horwitz [24]. Copy-constant prop-
agation is concerned with determining if a variable has a fixed constant value
at some point in the program. It interprets constant-to-variable assignments
(x := 1) and variable-to-variable assignments (x := y) and abstracts all other
assignments as x := ⊥, which says that x does not have a constant value. We
ignore conditions on branches for now, i.e., we assume all branches to be non-
deterministic. However, for this analysis to be useful in ruling out infeasible
paths, we will need to put in conditionals later.

Let Var be the set of all global variables of a given program. Let Z>
⊥ =

Z ∪ {⊥,>} and (Z>
⊥,u) be the standard constant propagation meet semilattice

obtained from the partial order ⊥ vcp c vcp > for all c ∈ Z. Then the set
of weights of our weight domain is Dd = Var → (2Var × Z>

⊥). Here, τ ∈ Dd

represents a dataflow transfer function that can be used to summarize the effect
of a path as follows: if env : Var → Z is the state of the program before the
path is executed and τ(x) = ({x1, · · · , xn}, c) for c ∈ Z>

⊥, then the value of x
after the path is executed is env(x1) u env(x2) · · · u env(xn) u c. Let τ v(x) be
the first component of τ(x) and τ c(x) be the second component. Then we can
define the semiring operations as follows: for τ1, τ2 ∈ Dd,

τ1 ⊕d τ2 = λx.(τ v
1 (x) ∪ τ v

2 (x), τ c
1 (x) u τ c

2 (x))

τ1 ⊗d τ2 = λx.(
⋃

y∈τ v
2(x)

τ v
1 (y), τ c

2 (x) u (
y∈τ v

2(x)
τ c
1 (y)))

The combine operation is simply a concatenation of expressions and the ex-
tend operation is substitution. For example, if Var = {x, y} then the weight
(or transformer) associated with the statement x := 1 is τ1 = [x 7→ (∅, 1), y 7→
({y},>)] and the weight associated with the statement y := x is τ2 = [x 7→
({x},>), y 7→ ({x},>)]. Taking their combine gives us τ1 ⊕d τ2 = [x 7→
({x}, 1), y 7→ ({x, y},>)], and their extend gives us τ1 ⊗d τ2 = [x 7→ (∅, 1), y 7→
(∅, 1)].

The semiring constants are given by 0d = λx.(∅,>) and 1d = λx.({x},>).
This constructs a perfectly valid weight domain Sd = (Dd,⊕d,⊗d, 0d, 1d) for
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copy-constant propagation, but it is not very useful to us. The reason is that
this weight domain considers all paths to be feasible, which can be seen from
the fact that the extend of any two non-zero weights is never 0d. To remedy
this, and disqualify some paths as infeasible, we need to add interpretation for
branch conditions.

3.6.2 Handling Conditionals

Handling branch conditions is problematic because dataflow analysis in the
presence of conditions is usually very hard. For example, finding whether a
branch condition can ever evaluate to true, even for copy-constant propagation,
is PSPACE-complete [20]. Therefore, we have to resort to approximate dataflow
analysis i.e., we give up on computing meet-over-all-paths. This translates into
relaxing the distributivity requirement on the weight domain Sd. Fortunately,
WPDSs can handle non-distributive weight domains [23] by relaxing Definition 3
item 3 to the following:

If D is the set of weights, then for all d1, d2, d3 ∈ D,

d1 ⊗ (d2 ⊕ d3) v (d1 ⊗ d2)⊕ (d1 ⊗ d3)
(d1 ⊕ d2)⊗ d3 v (d1 ⊗ d3)⊕ (d2 ⊗ d3)

where v is the partial order defined by ⊕ : d1 v d2 iff d1 ⊕ d2 = d1. Under
this weaker property, the generalized reachability problems can only be solved
approximately, i.e., instead of obtaining δ(c) for a configuration c, we only ob-
tain a weight w such that w v δ(c). For our path optimization problem, this
inaccuracy will be limited to the dataflow analysis. We would only eliminate
some of the paths that the dataflow can potentially find infeasible and might
find a path σ such that vald(σ) = 0d. This is acceptable because it is not possi-
ble to rule out all infeasible paths anyway. Moreover, it allows us the flexibility
of putting in a simple treatment for conditions in most dataflow analysis. The
disadvantage is that we lose a strong characterization of the type of paths that
will be eliminated.

For copy-constant propagation, we bring conditions into the picture by
adding weights {ρe | e is an arithmetic condition}. We associate weight ρe with
the rule 〈p, n〉 ↪→ 〈p, m〉 (n, m ∈ Γ) if the corresponding CFG edge can only
execute when e evaluates to true on the program state at n. For example, we
associate the weight ρx=0 with the CFG edge corresponding to the true branch
of the conditional if (x == 0) and weight ρx 6=0 with the false branch. The
combine and extend operations are modified as follows: for all τ ∈ Dd,

τ ⊕d ρe = τ
ρe1 ⊕d ρe2 = 1d

τ ⊗d ρe =


0d if τ(xi) = (∅, ci), ci ∈ Z for all

xi appearing in e and e[xi = ci]
evaluates to false

τ otherwise
ρe1 ⊗d ρe2 = ρe1

ρe ⊗d τ = τ
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This gives a very simple treatment for conditionals.
The extend operation, as defined here, is not associative. This implies a

further loss in precision by not being able to evaluate conditions whose variables
depend on input parameters of the procedure the condition is in because they
only get instantiated at a call. One might choose a more powerful treatment
of conditions based on weakest preconditions by associating each weight with a
precondition. Then, for example, [x := y] ⊗d [x == 0] can be written as [y ==
0; x := y]. This makes extend associative, at least for simple conditions. We
have opted for the previous, simpler treatment for conditionals as it is easier to
implement and the benefit from using preconditions in a practical setting is not
directly evident. We leave judging the benefit of more precise dataflow analyses
as future work.

3.6.3 Handling Local Variables

Another extension we make to our dataflow analysis is the treatment of local
variables. A recent extension to WPDSs [13] shows how local variables can
be handled by using merge functions that allow for local variables to be saved
before a call and then merged with the information returned by the callee to
compute the effect of the call. This treatment for local variables allows us to
restrict each weight to just manage the local variables of only one procedure.

Let Proc be the set of all procedures in a given program, Var be the set of
all global variables, and Varpr be the set of all global variables together with
local variables of procedure pr ∈ Proc. Then the set of weights is

Dl
d = Var → (2Var × Z>

⊥)⋃
pr∈Proc(Varpr → (2Varpr × Z>

⊥))⋃
{ρe | e is an arithmetic condition}

The extend and combine operations are the same as defined before, except
that when they are applied on weights over different set of local variables, we
first drop all local variables and then do the operation on global variables. For
conditional weights, if there is a mismatch of variables, we assume that the
condition evaluates to true (i.e., we ignore the condition). Next, we have to
define the merge operation that will calculate the effect of a call. If τ1 is over
variables Varpr1

and τ2 is over variables Varpr2
, then define merged as follows:

merged(τ1, τ2) = (τ1 ⊗d (l⊥pr2
⊗d τ2)global)⊕d (τ1)local

merged(ρe, τ1) = τ1

merged(τ1, ρe) = τ1

merged(ρe1 , ρe2) = ρe1

where l⊥pr2
is a weight over variables Varpr2

and assigns (∅,⊥) to all local vari-
ables and ({g},>) to all global variables g. It effectively discards local variables
of τ2. (τ)local and (τ)global remove the assignments for local and global variables
from τ , respectively. This merge operation is needed, for example, to conclude
that l = g2 after a call when l = g1 before the call and the callee assigns
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g2 = g1. Note that we could not have simply created weights over all (local
and global) variables of the program because that would not deal with recursive
calls correctly.

The merge function carries over to the semiring of Definition 7 as follows:
for w1, w2 ∈ D, merge(w1, w2) = reduce(A) where A is the set (b1 ∪ b2, v1 + v2, d1 ⊗d d2)

∣∣∣∣∣∣∣∣∣∣
(b1, v1, d1) ∈ w1,
(b2, v2, d2) ∈ w2,
merged(d1, d2) 6= 0d,
(b1, b2) satisfy all
ordering constraints


Extending WPDSs in this manner does not change Theorem 3, except for

the inaccuracies of dataflow analysis that we already had.

4 Finding Bug Predictors
The formalisms of Section 3 may be used for solving a variety of optimiza-
tion problems concerned with touching key program points along some path.
BTrace represents one application of these ideas: an enhancement to the sta-
tistical debugging analysis performed by the Cooperative Bug Isolation Project
(CBI). In this section we briefly review the existing CBI system, paying partic-
ular attention to the kind of data its analysis yields and the ways in which this
could be enhanced using path optimization.

4.1 Distributed Data Collection
The Cooperative Bug Isolation Project provides a low-overhead sampling in-
frastructure for gathering small amounts of information from every run of a
program executed by its user community. It inserts instrumentation to test a
large number of predicates on program values during execution. A CBI predi-
cate can be thought of as a simple local assertion on program state at a specific
code location. Predicates cast a very wide net to catch many different, poten-
tially interesting program behaviors. For example, branch predicates record the
direction of branches, with two such predicates (true, false) for each conditional
in the program. Return predicates monitor the sign of function return values,
with three such predicates (negative, zero, positive) at each function call site.
Additional predicate schemes compare assigned variables to other nearby vari-
ables and constants, track the behavior of reference counts, test programmer-
specified assertions, etc. A moderate-sized program can easily have hundreds of
thousands or even millions of predicates, all injected automatically by the CBI
instrumenting compiler [17].

CBI uses sparse random sampling of instrumentation sites, which keeps per-
formance overhead low by spreading the performance cost thinly among a large
number of end users. However, it is also fair in a statistically rigorous sense: in
aggregate, the sampled behavior is representative of the true, complete program
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behavior across all users and runs. In addition, only a few of the predicates col-
lected on a given run have strong predictive power: a moderate-sized program
might contain a million distinct predicates, only a dozen of which are actually
associated with failure.

4.2 Debugging Support
CBI collects a feedback report from each run that identifies the run as suc-
cessful or failed (e.g., crashed) and gives the number of times each predicate
was observed to be true. Given a collection of such reports, CBI applies a set
of statistical debugging techniques to generate a ranked list of bug predictors:
those few predicates that are strongly associated with many program failures.
Each bug predictor is assigned a numerical score in R+ that balances two key
factors: (1) how much this predictor increases the probability of failure, and (2)
how many failed runs this predictor accounts for. Thus, high-value predictors
warrant close examination both because they are highly correlated with failure
and because they account for a large portion of the overall failure rate seen by
end users [18].

A bug predictor list helps a human programmer identify, perhaps reproduce,
and ultimately fix a bug. To provide the most direct correspondence between
a predictor list and a bug, the initial bug predictor list is further clustered into
lists that contain distinct failure scenarios, by grouping predictors that behave
similarly. The high-ranked predictors in a single bug predictor list are the
most likely direct failure causes. Lower-ranked predictors in the same list are
other program behaviors that are also strongly associated with the same kind
of failure; these may help the programmer better understand the circumstances
under which the bug appears.

4.3 A Need for Failure Paths
Because predicates are sampled throughout the entire dynamic lifetime of a run,
they often reveal suspect behaviors that precede the actual point of failure. This
is particularly common in the case of memory corruption bugs, where the bad
operation that trashed the heap may have occurred long before an eventual crash
inside malloc(). The ability to make observations throughout an entire run is
a strength of CBI, but it can also make interpreting bug predictors challenging.
The programmer must think both forward and backward in time: she must
consider not only what earlier events could have caused the predictor to be
true, but also what the later consequences may be once the predictor is already
true. This contrasts with the task of interpreting a postmortem stack trace,
where there are no future events and one only considers how past behavior
could have led the program to its terminal state.

For this reason we believe that it is important to join isolated bug predic-
tors into extended failure paths. The BTrace system lets us reconstruct a
path from start to halt that hits several high-ranked bug predictors along the
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way. When working with a single bug predictor, this path helps guide the pro-
grammer’s attention forward and backward in time from that critical point. If
several bug predictors all relate to the same failure scenario, a feasible path that
touches them all can help the programmer draw connections between seemingly
unrelated sections of code all of which act in concert to bring the program down.

5 Evaluation
We have implemented BTrace using the WPDS++ library [11]. To manage
the exponential complexity in the number of bug predictors, we use abstract
decision diagrams (ADDs) to efficiently encode weights. Appendix A contains
additional details on how the semiring operations are implemented on ADDs.
We use the CUDD library [25] for manipulating ADDs. The CBI instrumenting
compiler provides a CFG for the instrumented program, though it does not
currently handle indirect function calls and in general may represent only the
instrumented portion of a multi-component system.

A BTrace debugging session starts with a list of related bug predictors,
believed by CBI to represent a single bug. We designate this list (or some
high-ranked prefix thereof) as the critical nodes and insert them at their cor-
responding locations in the CFG. Branch predictors, however, may be treated
as a special case. These predictors associate the direction of a conditional with
failure, and therefore can be repositioned on the appropriate branch. For exam-
ple, if we have a conditional of the form “if (x == 0)”, and CBI reports that
“x == 0 is false” is predictive of failure at this point, then this bug predictor is
moved to the first node in the else branch of the conditional. This can be seen
as one example of exploiting not just the location but also the semantic mean-
ing of a bug predictor; branch predicates make this easy because their semantic
meaning directly corresponds to control flow.

As an optimization, we compress the original program CFG into its basic
blocks before converting it to a WPDS. Each basic block is a connected part of
the CFG with unique entry and exit nodes, and all nodes inside it are connected
in a single straight-line path. The weight on a pushdown rule r = 〈p, n〉 ↪→
〈p, u〉 ∈ ∆ is now computed as follows: f(r) = {(BP(n), Len(n), Df(n))}, where
BP(n) is the set of bug predictors inside basic block n, Len(n) is the number of
nodes inside it, and Df(n) is obtained by taking an extend of dataflow weights
associated with nodes in n. This WPDS is still an accurate model of the CFG
as a path that visits one node in a basic block is forced to visit all nodes in the
basic block, provided it does not stop inside it. The failure site is kept in a basic
block of its own and is not joined with other nodes. This, of course, requires
that we identify the failure site before constructing the WPDS; we extract this
information from CBI feedback reports.

For dataflow analysis, we track all integer- and pointer-valued variables and
structure fields. We do not track the contents of memory and any write to
memory via a pointer is replaced with non-deterministic (⊥) assignments to
all variables whose address was ever taken. Direct structure assignments are
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expanded into component-wise assignments to all fields of the structure.
Without dataflow, BTrace seeks the shortest available path through any

procedure that has no bug predictors. In our experience this does not add to
the usefulness of the path because a programmer who understands the code
is better equipped to judge the effect of executing the procedure, rather than
what the shortest path tells him. Therefore, we allow for the addition of extra
edges in the CFG that skip over calls. In Figure 1, for example, extra edges
would appear from node n3 to node n7 and from node n8 to n9, giving BTrace
the option to bypass p entirely if no valuable bug predictors can be reached by
entering it.

5.1 Case Studies: Siemens Suite
We have applied BTrace to three buggy programs from the Siemens test suite
[9]: replace v8, tcas v37, and print_tokens2 v6. These programs do not
crash; they merely produce incorrect output. Thus our analysis is performed
without a stack trace, instead treating the exit from main() as the “failure”
point. We find that BTrace can be useful even for non-fatal bugs.

tcas has an array index error in a one-line function that contains no CBI
instrumentation and thus might easily be overlooked. Without bug predictors,
BTrace produces the shortest possible path that exits main(), revealing noth-
ing about the bug. After adding the top-ranked predictor, BTrace isolates
lines with calls to the buggy function.

replace has an incorrect function return value. BTrace with the top
two predictors yields a path through the faulty statement. Each predictor is
located within one of two disjoint chains of function calls invoked from main(),
and neither falls in the same function as the bug. Thus, while the isolated
predictors do not directly reveal the bug, the BTrace failure path through
these predictors does.

print_tokens2 has an off-by-one error. Again, two predictors suffice to
steer BTrace to the faulty line. Repositioning of branch predictors is critical
here. Even with all nineteen CBI-suggested predictors and dataflow analysis
enabled, a correct failure path only results if branch predictors are repositioned
to steer the path in the proper direction.

5.2 Case Studies: ccrypt and bc
We have also run BTrace on two small open source utilities: ccrypt v1.2
and bc v1.06. ccrypt is an encryption/decryption tool and bc is an arbitrary
precision calculator. Both are written in C. Fatal bugs in each were first char-
acterized in prior work by Liblit et al. [17]. Sections 5.2.1 and 5.2.2 illustrate
how BTrace might be used in a typical debugging support role. Section 5.2.3
considers performance trends seen across both case studies.
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5.2.1 ccrypt

ccrypt has an input validation bug. In function prompt(), the char * pointer
returned by xreadline() is dereferenced without being checked first. When
xreadline() returns NULL to caller prompt(), failure is certain and immediate.
CBI identifies two ranked lists of bug predictors, suggesting two distinct bugs.
Each of the lists includes returning a NULL value from xreadline() as the
eleventh strongest bug predictor, but have several other related behaviors in the
same procedure as higher ranked predictors. Below we present our experience
on using BTrace on the first bug predictor list under two different scenarios.
In each case we used a valid stack trace from CBI feedback reports.

In the first scenario, we turn off dataflow, i.e., we use the weight domain from
Definition 6. The path returned by BTrace, when given anywhere from the first
0 to 14 bug predictors, is the same: a NULL value is returned from xreadline()
and then dereferenced prompt(). Adding higher ranked predictors does not
change the path significantly. The interesting observation here is that even if we
do not add any bug predictors, BTrace still finds the same path. This suggests
that the stack trace (actually just the crash site) is a fairly good indication of the
bug and is enough for BTrace to produce a path that illustrates the bug. This
path returns NULL from xreadline() because it is the shortest path through
that function.

Even though this path indicates the bug, it is actually infeasible. The proce-
dure xreadline() is also called from initialization routines in main() that check
for the return value of xreadline() and gracefully terminate the program if
the value is NULL. The path obtained from BTrace returns NULL from each of
these calls to xreadline(), and then incorrectly takes the wrong branch for
the checks in main(). This suggests a need for dataflow analysis, but the user
can use his own intuition to correct the path. As initialization routines rarely
have a bug, the user can insert an ordering constraint that forces BTrace to
hit bug predictors in xreadline(), or any bug predictor for that matter, only
after going through the initialization code. This corrects the infeasibility of the
path.

In the second scenario, we turn on dataflow. However, we not obtain any
change in the path till we include the eleventh predictor. The reason is that our
dataflow analysis is not distributive. Consider the code for xreadline() shown
in Figure 5. Our dataflow analysis summarizes the return value of xreadline()
as ⊥ or non-constant because NULL (line 46) and non-NULL (line 58) values get
combined. When we insert the eleventh predictor, which is at line 45 (the first
node of the then branch) the return value is summarized as ⊥ when the eleventh
predictor is not hit, and 0 or NULL when it is hit. Now the path correctly avoids
returning NULL in xreadline() until the point when its return value is not
checked i.e., when it is called from the procedure prompt().2

2Some manual modifications are needed to the ccrypt code to prevent the CBI instru-
menting compiler from fooling our conditional-weight placement. When tracking branches,
the instrumenting compiler rewrites even simple conditionals in a more complex form not
modeled by our BTrace implementation.
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37: char *xreadline(FILE *fin, char *myname) {
38: int buflen = INITSIZE;
39:
40: char *buf = xalloc(buflen, myname);
41: char *res, *nl;
42:
43: res = fgets(buf, INITSIZE, fin);
44: if (res==NULL) {
45: free(buf);
46: return NULL;
47: }
48: nl = strchr(buf, ’\n’);

...
58: return buf;
59: }

Figure 5: Code for the procedure xreadline() used in ccrypt
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Figure 6: Summaries of paths returned by BTrace for bc. Boxes show the
procedures that the path visits; edge labels show the order of calls and returns.

5.2.2 bc

bc has a buffer overrun in the function more_arrays(). The function allocates
some memory to an array and then uses a wrong loop bound to walk through the
array and NULL out its elements. The program eventually crashes in a subsequent
call to bc_malloc(). The stack at the point of failure has unfinished calls to
main(), yyparse(), strcpyof() and bc_malloc() in order. The presence of
bc_malloc() suggests heap corruption but the stack provides no real clues as to
when the corruption occurred or by what piece of code. Statistical debugging
analysis by CBI identifies several suspect program behaviors. Predictors are
scattered across several files and their relationship may not be clear on first
examination.

24



Typical Debugging Session Suppose we wish to find the bug represented
by one of CBI’s two bug predictor lists. Some feedback reports include a valid
stack trace, so we require that BTrace find paths ending in this stack config-
uration. We ask BTrace to hit the single top-ranked bug predictor, found in
more_arrays(). Figure 6a summarizes the resulting path. This path shows a
call from main() to init_storage() to more_arrays() that touches the de-
sired bug predictor. Execution then continues through a set of additional calls
(yyparse() to strcpyof() to bc_malloc()) that leave the stack in the desired
final configuration.

However, this path is questionable. Cursory examination of the code, or data
mining applied to CBI feedback reports, shows that more_arrays() is always
called once at initialization time. If we believe that the initialization code is
correct, we should disregard this call to more_arrays() and consider other ways
of reaching that bug predictor. We therefore insert a zero-score bug predictor at
the return-site of init_storage() along with the ordering constraint that the
first bug predictor in more_arrays() must be visited after this new predictor in
init_storage(). Under these new restrictions, BTrace gives the path shown
in Figure 6b. BTrace bypasses init_storage() entirely, this time deeming
it irrelevant to the bug. This revised path is more informative; indeed, while
more_arrays() is always called once from init_storage(), it is the second or
subsequent call from lookup() that spells trouble.

Additional Predictors If we show BTrace the top two predictors, it di-
rectly produces the path given in Figure 6b with no ordering constraints or
other special intervention from the user. As before, the top predictor is in
more_arrays(). The second predictor is in lookup(), which conditionally
calls more_arrays(). BTrace hits both predictors in a single excursion from
yyparse(). There is no benefit in hitting the same predictor twice, and there-
fore no reason to also include the call from init_storage() to more_arrays()
as seen in Figure 6a. BTrace correctly bypasses that entire call, showing the
more direct failure path given in Figure 6b while steering the programmer away
from irrelevant code elsewhere.

The path remains unchanged as we increase the number of bug predictors
from two to eight; these additional predictors are syntactically close to the first
two, and are already touched by the path in Figure 6b. The ninth and later bug
predictors have scores very near zero, suggesting they have low relevance and
therefore are not useful to include in a reconstructed failure path.

Alternate Predictor Lists CBI actually produces two ranked lists of related
bug predictors for bc, suggesting two distinct bugs. If we run BTrace using the
single top predictor from the second list instead of the first, the reconstructed
failure path is exactly the same. Up to twelve additional predictors leave the
path unchanged, and even beyond that the path changes only slightly. The
second predictor list is much more homogeneous, with more_arrays() code
dominating the upper ranks, so most paths that hit one hit them all.
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The tendency of BTrace to produce identical or similar paths from both
lists suggests that they do correspond to a single bug, in spite of CBI’s conclu-
sions to the contrary. This is correct: the two lists do correspond to a single
bug. CBI can be confused by sampling noise, statistical approximation, incom-
pleteness of dynamic data, and other factors. BTrace may be a useful second
check on CBI, letting us unify equivalent bug lists that CBI has incorrectly held
apart. This finding also emphasizes the value of spreading predictors widely
across an application: we see here that the greater heterogeneity of the CBI’s
first predictor list helps BTrace produce a correct path with fewer predictors
than with the second list.

Unavailability of the Stack Trace The terminal state of the system, with
outstanding calls from main() to yyparse() to strcpyof() to bc_malloc(),
matches the stack trace reported by CBI and given to BTrace as path con-
straint. Critical bug predictors in lookup() and more_arrays() do not appear
in the stack because those calls completed (and did their damage) long before
the actual crash. The full BTrace path neatly integrates the terminal stack
trace with the high-value bug predictors reported by CBI, and shows a short
execution trace that is consistent with both of these key pieces of evidence.

However, a stack trace may not always be available. Buffer overruns and
other memory corruption bugs can scramble the stack, leaving us with nothing
more than the current program counter at the point of failure. If we give
BTrace the failure location in bc_malloc() but no other information about
the stack, the resultant paths change slightly from those we have already seen.
The critical call sequence from lookup() to more_arrays() remains. However,
after hitting the high-valued predictors in these two functions, BTrace simply
takes the shortest path it can find into any call to bc_malloc(). This is an
optimal path that is consistent with the available evidence, and the fact that
the call from lookup() to more_arrays() is preserved means the path remains
informative and useful.

5.2.3 Performance

Figure 7b, appearing on the right, shows analysis performance using bug pre-
dictors selected from bc’s second predictor list. These and all following mea-
surements were collected on a 1 GHz Athlon AMD processor with 1 GB RAM.
Total time is split into the three key phases of the algorithm: creating the ini-
tial WPDS, solving the generalized pushdown successor (GPS ) problem, and
extracting a witness path from the solved system.

As expected, the GPS phase dominates. Using more predictors takes more
time, but the increase is gradual. Recall that bc’s second predictor list is fairly
homogeneous and therefore yields paths which vary little as more predictors
are used. The same path is produced for 0-12 predictors, then changes at 13
and again at 14. Thus, the performance slope in Figure 7b is primarily due
to adding more bug predictors, with other factors held constant. Although
Section 3.3 showed that solving the WPDS may require time exponential in the
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Figure 7: BTrace performance on bc using varying numbers of predictors

number of bug predictors, we find that the actual slowdown is gradual and that
the absolute performance of BTrace is good.

Figure 7a, appearing on the left, shows a similar performance profile. Grad-
ual slowdown from 2-8 predictors represents the cost of adding more bug pre-
dictors with no change to the result path. The result path grows larger at nine
predictors and again at fourteen, and analysis time increases accordingly. Thus,
in practice the total length of the result path may be a more significant perfor-
mance factor than the number of critical nodes visited along the way. Recall
that the ninth and later predicates have CBI-assigned scores very near zero,
which suggests that these longer paths are unlikely to even be requested by a
BTrace user. For more realistic bug predictor counts of eight or below, the
entire analysis completes in a few seconds.

bc has 45,234 CFG nodes, and a typical failure path produced by BTrace
is about 3,000 nodes long. ccrypt is significantly smaller: 13,661 CFG nodes,
with about 1,300 on a typical failure path. BTrace requires 0.10 seconds to
find a path using zero ccrypt predictors, increasing gradually to 0.97 seconds
with fifteen predictors. As with bc, more predictors slow the analysis gradually
while longer failure paths have a larger effect.

Adding dataflow slows the analysis by a factor of between four and twelve,
depending on the details of the configuration. Analysis with dataflow and re-
alistic numbers of bug predictors takes about thirteen seconds for bc and less
than two seconds for ccrypt.

6 Related Work
The Path Inspector tool [3, 7] makes similar use of weighted pushdown systems.
It makes use of WPDSs for verification: to see if a program can drive an au-
tomaton, summarizing a program property, into a bad state. If this is possible,
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it uses witnesses to produce the program path. It can also use dataflow analyses
by encoding them as weights to rule out infeasible paths. We use WPDSs for
optimization, which has not been previously explored.

Liblit and Aiken directly consider the problem of finding likely failure paths
through a program [16]. They present a family of analysis techniques that ex-
ploit dynamic information such as failure sites, stack traces, and event logs to
construct the set of possible paths that a program might have taken. They could
not, however, optimize path length or the number of events touched when all of
them might be unreachable in a single path. Our approach is, therefore, more
general. BTrace incorporates these techniques, along with dataflow analysis,
within the unifying framework of weighted pushdown systems. Another differ-
ence is that instead of using event logs, we use the output of CBI to guide the
path-finding analysis. The theory presented in Section 3 can be extended to
incorporate event logs by adding ordering constraints to appropriately restrict
the order in which events must be visited by a path.

PSE is another practical tool for finding failing paths [19]. It requires a user-
provided description of how the error could have occurred, e.g., “a pointer was
assigned the value NULL, and then dereferenced.” This description is in the form
of a finite state automaton, and the problem of finding a failing run is reduced
to finding a backward path that drives this automaton from its error state to
its initial state. Their tool solves this in the presence of pointer-based data
structures and aliasing. Our work does not require any user description of the
bug that might have caused the crash, but we do not yet handle pointer-based
structures.

Our work can also be compared with dynamic slicing [1, 12] that is concerned
with identifying relevant program statements that affected the value of a variable
at a certain point in the program’s execution. Static information about the
program can be used to reduce the runtime overhead of dynamic slicing [8, 10].
By using CBI, we only have to extract small amounts of dynamic information
from each program run. We use static analysis to piece together this information
and find a path in the program. Recent work by Zeller [27] uses a technique
called Delta Debugging to find a cause-effect chain of program events that leads
to failure. It exercises fine-grained control over a program’s execution including
going backwards in the execution to find the cause-effect chain.

In Definitions 6 and 7, we define semirings that are the power set of the
values we want to associate with each path. This approach has been presented
in a more general setting by Lengauer and Theune [14]. The power set operation
is used to add distributivity to the semiring, and a reduction function, such as
our reduce, ensures that we never form sets of more elements than necessary.

7 Conclusions and Future Work
We have presented a static analysis technique to build BTrace, a tool that can
find an optimal path in a program under various constraints imposed by a user.
Using bug predictors produced by CBI, BTrace can perform a postmortem
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analysis of a program and reconstruct a program path that reveals the circum-
stances and causes of failure. The paths produced by BTrace might not be
feasible, but we intend for them to help programmers understand the bug pre-
dictors produced by CBI and locate bugs more quickly. BTrace provides user
options to supply additional constraints in the form of stack traces and ordering
constraints, the latter of which allow the user to guide the tool interactively
while locating a bug. In summary, more experiments are required to prove the
utility of BTrace in debugging software, but initial results look promising.

For future work, we would like to evaluate the benefit of using better dataflow
analysis in improving the quality of the path returned by BTrace. We would
also like to interpret the dataflow information provided by the bug predictors
themselves. If x = 7 is a bug predictor, then we can use of this information to
restrict the value of x when a path hits that predictor.

Another open area is to design incremental algorithms for weighted push-
down systems that do not recompute the solution each time the user makes a
small change to the optimization problem. An example is adding bug predictors
and ordering constraints on the fly. Currently, no such incremental algorithms
exist, but their development could substantially improve the interactivity of an
integrated BTrace bug hunting system.
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A Implementation Details
The worst-case running time of our analysis is exponential in the number of
critical nodes. A part of this complexity is due to the expensive operations on
weights as described in Definition 7. For this reason, we represent a weight
from this semiring using an abstract decision diagram (ADD). An ADD is a
variant of the well known binary decision diagrams [5] that are used to represent
multi-valued functions on boolean variables. Let n = |B| be the number of
critical nodes, and x1, · · ·xn be boolean variables. If B = {a1, · · · , an}, then let
set(x1, · · · , xn) = {ai | xi = 1}. A weight w can be represented by the following
function.

fw(x1, · · · , xn) =

{
(v, d) if (set(x1, · · · , xn), v, d) ∈ w

(∞, 0d) otherwise

Similar to BDDs, ADDs can also have canonical representations, i.e., each
function has a unique representation. To take advantage of the compactness
of such representations, the combine and extend operations on weights can be
computed as follows. We write x1 to denote the function f(x1, · · · , xn) = x1,
and x1 for the function f(x1, · · · , xn) = x1. Then

w1 ⊕ w2 = x1(w1(x1 = 0)⊕ w2(x1 = 0))⊕
x1(w1(x1 = 1)⊕ w2(x1 = 1))

w1 ⊗ w2 = (x1 w1(x1 = 0)⊕ x1 w1(x1 = 1))⊗
(x1 w2(x1 = 0)⊕ x1 w2(x1 = 1))

= x1(w1(x1 = 0)⊗ w2(x1 = 0))⊕
x1((w1(x1 = 0)⊗ w2(x1 = 1))⊕

(w1(x1 = 1)⊗ w2(x1 = 0))⊕
(w1(x1 = 1)⊗ w2(x1 = 1)))
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This gives a recursive way of computing the combine and extend of two
weights in time proportional to the product of the sizes of their ADD repre-
sentations. The base case of this recursion is applying the operations on two
constant-valued functions:

(v1, d1)⊕ (v2, d2) = (min{v1, v2}, d1 ⊕d d2)
(v1, d1)⊗ (v2, d2) = (v1 + v2, d1 ⊗d d2)

In the presence of ordering constraints, the extend operation becomes a little
more complicated. Suppose we have a list of constraints c, with each constraint
being a pair (i, j) representing that node ai must be visited before node aj .
Let (i, j) c denote the list whose first constraint is (i, j). The extend of two
weights under a list c of constraints is written as w1⊗c w2. It can be recursively
computed as follows:

w1 ⊗(i,j) c w2 = (w1 ⊗c w2(xi = 0))⊕
(w1(xj = 0)⊗c w2)
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