

Computer
Sciences
Department

Heap Typability is NP-Complete

Matt Elder
Ben Liblit

Technical Report #1618

October 2007

Heap Typability is NP-Complete

Matt Elder
elder@cs.wisc.edu

Ben Liblit
liblit@cs.wisc.edu

Computer Sciences Department
University of Wisconsin–Madison

October 4, 2007

Abstract

Given a snapshot of a running program’s memory heap,
and a set of types representing data in the program,dy-
namic heap type inferenceattempts to assign types to
memory locations such that certain global consistency
constraints are satisfied. Previous work has used brute-
force searches to solve heap typing problems. We prove
that a problem derived from dynamic heap type inference
is NP-complete by reduction from 3-colorability. Thus, it
is unlikely that a polynomial-time algorithm for heap type
inference exists.

1 Introduction

When debugging a program, it can be useful to examine
the values and data structures in a snapshot of the program
heap. This can be especially important when diagnosing
memory corruption bugs in low-level, non-type-safe lan-
guages such as C. Deciphering the heap requires deter-
mining the types of allocated blocks of memory, a task
which recent work has defined as thedynamic heap type
inferenceproblem [2, 3].

Dynamic heap type inference can be thought of as a
constraint-resolution problem where the key constraints
are agreement between the types of pointers and pointed-
to data. For example, if one memory location holds a
pointer to integer, the memory location to which it points
must hold an integer or some structural subtype thereof.

Due to the heap-spanning (global) nature of these con-
straints, manual heap typing is tedious even for tiny pro-

grams. It quickly becomes impractical for programs of
realistic size. Therefore, we would like to automate heap
typing and integrate it into a debugger. WHATSAT is a
working implementation of heap typing for the heaps of
C programs [3]. This implementation is fundamentally a
brute-force, heuristically-guided, iterative search through
the solution space with backtracking when a partial solu-
tion can no longer make progress. WHATSAT works well
in some experiments but performs slowly in others. In one
reported case, the search neither succeeds nor terminates
after many hours of execution [2].

Perhaps, then, an improved constraint resolution algo-
rithm could solve the heap typing problem more directly,
without resorting to heuristics and backtracking. Unfor-
tunately, as this report demonstrates, a simplified prob-
lem derived from dynamic heap type inference is NP-
complete. Thus, it is unlikely that any polynomial-time
dynamic heap type inference exists.

2 Heap Typability

Dynamic heap type inference may involve sophisticated
type systems, programmer hints, and information avail-
able at run time. We abstract away these implementation
details and instead analyze the following decision sub-
problem, calledHeap Typability:

A site is a single continuous portion of the heap that
must take a single type. A site may contain several sub-
sites if, for example, the site is astruct. We can properly
assign a type to a site if and only if:

1

mailto:elder@cs.wisc.edu
mailto:liblit@cs.wisc.edu

• the size of the site equals the size of the type;

• the values in the site are consistent with the allowed
values for the type;

• the subsites of the site are typed as the type demands;
and

• if the type is a pointer, then the referenced site is
assigned the pointer type’s referent type.

For a given heap and set of types, the Heap Typability
problem asks whether all sites in the heap can be properly
assigned types from the given type set.

3 Reduction From 3-Colorability

The 3-colorability problem asks, for a given undirected
graphG, whether one of three colors can be assigned to
each vertex so that no two adjacent vertices have the same
color. 3-colorability is a known NP-complete problem
[1], so we can show that Heap Typing is NP-complete by
reduction from 3-colorability.

Our reduction transforms a graphG into a heapH and
the following set of types:

enum tiny { ZERO };

typedef struct blue { tiny t; } blue;
typedef struct gray { tiny t; } gray;
typedef struct pink { tiny t; } pink;

struct bg_edge { blue *x; gray *y; };
struct bp_edge { blue *x; pink *y; };
struct gb_edge { gray *x; blue *y; };
struct gp_edge { gray *x; pink *y; };
struct pb_edge { pink *x; blue *y; };
struct pg_edge { pink *x; gray *y; };

/* no bb_edge, gg_edge, or pp_edge. */

Assume that the graphG is a connected graph with at
least two vertices. For every vertexv in the graphG, we
place intoH the vertex site v′, which contains just the
valueZERO. For each edgee= (u,v) in G, we place intoH
the edge site e′, which is composed of two pointers, one
to siteu′ and one to sitev′.

Figure 1: Reducing graphG to heapH. In H, circles
represent vertex sites, and pairs of squares represent edge
sites.

Because each vertex site is of the size of oneenum, it
can be typed only withtiny, blue, gray, or pink. Sim-
ilarly, the edge sites can be typed only with the six edge
struct types. Since each vertex site is referenced by at
least one edge site, no vertex site may be typed bytiny.

Edge sites may point to node sites of any two distinct
node types, but cannot point to two node sites of the same
type. So, given a possible typing of all of the node sites,
the edge sites can be properly typed if and only if the cor-
responding coloring ofG has no adjacent nodes of the
same color. Thus,H can be properly typed if and only if
G is 3-colorable.

This reduction fromG to H requires only polynomial
time. Thus, if a polynomial time algorithm could tell
whetherH has a proper typing, then that algorithm could
also determine whetherG has a 3-coloring in polynomial
time. 3-colorability is known to be NP-hard, so Heap Ty-
pability is NP-hard. Heap Typability is trivially in NP,
since any proposed heap typing can easily be checked for
validity. Therefore, Heap Typability is NP-complete.

4 Conclusions

We have shown that Heap Typability is NP-complete by
reduction from 3-colorability. A polynomial-time algo-
rithm for dynamic heap type inference would trivially
provide Heap Typability decisions in polynomial time as
well. Thus, if P6= NP, then no polynomial-time algorithm
for dynamic heap type inference can exist.

While this does not prove that the current brute-force
search strategy used by WHATSAT is the best possible al-

2

gorithm, it does put limits on how much better a refined
approach could be. Future work in dynamic heap type
inference may instead explore efficient approximation al-
gorithms for NP-complete problems. It is an open ques-
tion whether approximate heap typings can be as useful
as exact typings for real debugging tasks.

References

[1] Michael R. Garey and David S. Johnson.Comput-
ers and Intractability : A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., January 1990.

[2] Marina Polishchuk, Ben Liblit, and Chloë Schulze.
WHATSAT: Dynamic heap type inference for pro-
gram understanding and debugging. Technical Report
1583, University of Wisconsin–Madison, December
2006.

[3] Marina Polishchuk, Ben Liblit, and Chloë Schulze.
Dynamic heap type inference for program under-
standing and debugging. InProceedings of the 34th
Annual ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages, Nice, France,
January 17–19 2007. Association for Computing Ma-
chinery.

3

	Introduction
	Heap Typability
	Reduction From 3-Colorability
	Conclusions

