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Abstract
Applications do not typically view the kernel as a source
of bad input. However, the kernel can behave in unusual
(yet permissible) ways for which applications are badly
unprepared. We present Murphy, a language-agnostic tool
that helps developers discover and isolate run-time failures
in their programs by simulating difficult-to-reproduce but
completely-legitimate interactions between the application
and the kernel. Murphy makes it easy to enable or disable
sets of kernel interactions, called gremlins, so develop-
ers can focus on the failure scenarios that are important
to them. Gremlins are implemented using the ptrace
interface, intercepting and potentially modifying an appli-
cation’s system call invocation while requiring no invasive
changes to the host machine.

We show how to use Murphy in a variety of modes
to find different classes of errors, present examples of the
kernel interactions that are tested, and explain how to apply
delta debugging techniques to isolate the code causing the
failure. While our primary goal was the development of a
tool to assist in new software development, we successfully
demonstrate that Murphy also has the capability to find
bugs in hardened, widely-deployed software.

1 Introduction

1.1 Motivation
Despite extensive in-house regression testing, buggy soft-
ware is still released for a variety of reasons including
incomplete test coverage, unexpected user inputs, and dif-
ferent run-time environments. Software developers want
to systematically discover, identify, and fix application
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run-time failures before they affect users in the field. One
challenge towards accomplishing this lofty goal is non-
deterministic behavior at the level between the application
and the kernel. A typical application makes thousands
of calls into the kernel, and most of the time these calls
respond in a repeatable manner. However, under certain
run-time environment conditions, system calls into the ker-
nel that typically succeed may return with legitimate but
unexpected values.

A simple example is the write() system call: it usu-
ally succeeds when given valid input parameters, but fails
if the disk is full. Does a given program behave in an
acceptable and predictable manner in the event of a full
disk? Often development teams only learn the answer
when users report failures in the field. Another example
is the read() system call, which can legitimately return
fewer bytes than requested by the caller. This may happen
if an interrupt occurs or if a slow device does not have
all requested data immediately available. Do programs
always check the number of bytes returned by a read()
and react appropriately?

Complicating the situation is the fact that environmental
conditions which bring about unexpected return values
from the kernel are often hard to replicate in a typical
automated testing environment. For instance, how should
a regression test suite validate proper behavior in the event
of a full disk? Actually filling the disk to capacity causes
problems for other processes on the machine. Mounting a
loopback device volume requires superuser privileges [12].
Even creating a virtual machine with a full disk may not
solve the problem, as this could cause faults in the test
harness itself. Other environmental conditions can be even
more challenging to reproduce. The consequence is that
developers fail to perform continuous integration testing
under these conditions.

Across many imperfect human endeavors, Murphy’s
Law pessimistically predicts that “If anything can go
wrong, it will.” Unfortunately, this does not apply when

1

mailto:zmiller@cs.wisc.edu
mailto:tannenba@cs.wisc.edu
mailto:liblit@cs.wisc.edu


testing software. Testing would find more bugs sooner if
Murphy’s Law were more strictly enforced.

1.2 Approach
Given the observation that a program ultimately interacts
with its environment via the kernel interface, we offer a
tool, called Murphy, to serve as an interposition agent be-
tween the application being tested and the kernel interface.
Interposing at the kernel interface allows us to simulate a
wide variety of environmental events. We allow enabling
and disabling different sets of system call transformations,
or gremlins, so developers can focus on the failure sce-
narios that are important to them. For example, when
the application requests bytes from a file descriptor, the
readone gremlin rewrites the system call to ask for and
return one byte at a time.

Beyond the gremlins themselves, Murphy offers several
additional mechanisms to steer its behavior. A flexible
activation policy language lets developers focus gremlin
activity based on the call location, values of actual argu-
ments to the call, and various other run-time properties.
A replayable gremlin activation log allows deterministic
reproduction of failures and iterative root-cause analysis
via delta debugging [18]. The Murphy run-time API lets
programs under test dynamically steer Murphy’s actions
based on the program’s own internal state, further support-
ing automated testing and debugging.

The remainder of this paper is organized as follows.
Section 2 details the implementation of Murphy, including
gremlins currently implemented and additional run-time
steering mechanisms. Section 3 provides our results run-
ning Murphy, and related work is presented in Section 4.
We wrap up with potential future work in Section 5 and
contributions in Section 6.

2 Architecture and Implementation

2.1 System Call Interposition
We use a customized version of the Parrot Virtual File Sys-
tem tool [16] as the basis for our interposition mechanism.
Parrot handles core tasks such as intercepting I/O-related
system calls, decoding arguments, and replacing selected
calls with new functionality. All of these actions are per-
formed in user-space with no kernel modifications or spe-
cial administrative privileges. Most uses of Parrot concern
I/O virtualization for large-scale, distributed systems. We
use Parrot here to simplify building gremlins.

2.1.1 Use of ptrace

Our Parrot-based Murphy implementation uses the Linux
ptrace interface to optionally modify interactions with

Application Process Tree

Kernel

1 2 3 4

Murphy

Figure 1: System call control flow. Murphy traps a
system call from the application and either passes it to the
kernel unchanged (label 1), directly returns a given result
without passing to the kernel (label 2), or passes it to the
kernel after changing input arguments (label 3). Murphy
currently does not modify any results coming back from
the kernel (label 4).

the kernel. When the application under test invokes a
system call, the kernel suspends that process and passes
control to Murphy. Murphy intercepts and inspects the call.
At this point, Murphy may decide to tamper with the pro-
gram’s execution via the ptrace mechanism to peek (read)
or poke (write) bytes into the traced program’s address
space – see Figure 1. Depending upon the system call
trapped and which gremlins are configured to be active,
Murphy does one of the following:

• Pass the system call to the kernel and then pass the
response back to the application without any modifi-
cation of the input or output arguments, per labels 1
and 4 in Figure 1.

• Immediately return a failure to the application without
ever actually passing the request to the kernel, per
label 2 in Figure 1. This is accomplished by changing
the actual system call requested to a different call
without any side-effects (e.g. getpid()) and then
modifying the response from this call to the desired
error code before returning control to the application.

• Modify the input arguments to the system call before
passing the call to the kernel, and then pass the actual
response back to the application, per labels 3 and 4 in
Figure 1.

Even if Murphy alters the response, it only does so such
that the response is still legitimate under the terms of the
documented call semantics or API.
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The system calls fork() and clone() are always
trapped to enable tracing of an entire family of processes.
This way, when a process being traced forks, Murphy can
invoke the necessary ptrace calls to trap all the system calls
of the child process as well. A side effect of this method
is that the newly-forked process is a child of Murphy and
not the process that called fork(), and in order to hide
this artifact from the application Murphy must: (1) inter-
cept getppid() in order to return the correct parent pid
from the application’s point of view, (2) reap and store
children’s exit statuses upon receipt of a SIGCHLD signal,
(3) forward SIGCHLD to the proper application process,
and (4) intercept wait4() and correctly forward stored
exit status codes to the application.

2.1.2 Trade-offs of ptrace Interposition

Our system call interposition approach has pros and cons.
One major benefit is that it is language agnostic: Murphy
works with applications written in any language, including
increasingly popular managed languages such as Python
and Java. No source code is required, and environmental
failures can be simulated without special root privileges
and without impacting other processes on the system not
targeted for testing. Because Murphy supports tracing an
entire process tree, it is appropriate to test an entire soft-
ware stack consisting of many different processes perhaps
written in different languages, such as the LAMP stack.
By using ptrace instead of dynamic linker LD_PRELOAD
approaches [6], all programs can be tested, including those
that are statically linked and/or linked with C runtimes
other than glibc. If a program is linked with glibc, the
ptrace approach enables Murphy to find problems within
glibc as well. Finally, trapping via ptrace removes sensitiv-
ity to frequent glibc updates.

This approach also has challenges. The Linux sys-
tem call interface does not necessarily correspond neatly
to application actions. For example, all of the network
socket calls are multiplexed into one (complicated) sys-
tem call. Similarly, the mapping between thread cre-
ation and coordination as familiarly described by the
POSIX threads API manifests itself via a strange brew
of clone() and futex() system calls. When devel-
oping new gremlins, figuring out how these APIs map
onto the system call interface can be a time-consuming
exercise. Furthermore, recent versions of the Linux kernel
introduced vsyscall and vDSO mechanisms to accelerate
system calls that do not require any real level of privilege
to run, such as gettimeofday() [1]. The kernel al-
lows the page containing the current time to be mapped
read-only into user space. That page also contains a fast
gettimeofday() implementation that does not require
crossing the user/kernel boundary and is therefore invisible

to Murphy. While vsyscalls can be disabled 1, doing so
requires root access.

2.2 Gremlins
Table 1 presents the initial set of gremlins implemented for
this project. In general, they can be divided into two cate-
gories: halting and non-halting gremlins. Halting gremlins
typically prohibit the application from making any further
progress. When enabling halting gremlins, such as enospc
that simulates a full disk, a developer can test that an appli-
cation does not simply crash or abort, but instead correctly
handles the situation by shutting down in an acceptable
manner and propagating the error to the end-user. On the
other hand, non-halting gremlins such as readone (causes
all read() calls to return one-byte at a time) should not
typically cause program failure. If a program’s regression
test suite passes without any gremlins, it should continue
to pass with any non-halting gremlins activated.

Gremlins require defined composition and order of
precedence rules. For example, both the enospc and the
writeone gremlins operate upon the write() system call.
If two or more gremlins trap the same system call, can
their behaviors be combined, and if not, which one should
have priority? In our current implementation, composition
and precedence rules are hard-coded into Murphy.

2.2.1 Challenges to Writing Realistic Gremlins

Many gremlins seem simple to develop at the outset, but
become more complicated as you dig down. Implemen-
tation of a single gremlin may require trapping multiple
system calls. For instance, consider the enospc gremlin.
Trapping just write() is not sufficient to simulate a full
disk. open(), mknod(), mkdir(), rename() and
over a dozen other system calls could fail due to a full
disk, and in our Murphy implementation we identified and
trapped all of them.

Other gremlins may need to trap and record data from
multiple system calls in order to correctly reconstruct ker-
nel state and keep interactions legitimate. For example,
consider the cwdlongpath gremlin. At first blush, it sounds
simple: just trap the getcwd() system call and return
errno ERANGE if the size of the caller’s buffer is smaller
than the max allowed POSIX pathname. But what if the
program explicitly does a chdir() to /usr, and then
invokes getcwd()? If /usr is not a symlink, the caller
could perhaps assume it can use a smaller buffer.

Another example is our desire for gremlins which oper-
ate on file descriptors to be conditionally activated based
on the fully qualified pathname referenced by the descrip-
tor. To accomplish this, Murphy always traps open() to
maintain mappings from file descriptors to file names. At

1echo 0 > /proc/sys/kernel/vsyscall64
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Name Severity Implementation Description

closefail halting Causes close() to fail with errno EIO. Errors from a previous write() may not be
reported until close() is called. According
to the close() man page, “not checking the
return value of close is a common but neverthe-
less serious programming error.”

cwdlongpath non-halting If the program has already called chdir()
or fchdir() then this gremlin does noth-
ing. But if the program attempts to getcwd()
without setting it first, this gremlin returns er-
rno ERANGE and remembers the size of the
buffer given. The buffer must be increased by
at least one byte for successive calls to succeed.

This gremlin simulates executing the program
with the current directory set to a very long
path.

eagain halting Returns errno EAGAIN for system calls in
which that is legal.

This gremlin simulates a system which is
highly loaded and/or is resource constrained.
For example, fork() returns this if (1) it is
unable to copy page tables, (2) it cannot allo-
cate an internal kernel task structure for the
child, or (3) rlimit was reached.

eintr halting Returns errno EINTR for all system calls in
which that is legal.

This gremlin simulates a system call which
has been interrupted by a signal. Some signals
cannot be blocked, and therefore this is valid
regardless of the signal mask and all programs
should handle this.

enospc halting Returns errno ENOSPC for all system calls in
which that is legal.

This gremlin simulates a full disk partition.

readone non-halting Rewrites read() to request one byte These three gremlins simulate a read() sys-
tem call that was (1) interrupted by a signal,
(2) reading from a pipe, FIFO, socket, or other
special file that had fewer bytes than requested
immediately available, or (3) reading from a
file that exists on a file system that may eagerly
return ready blocks (like a network file system).

readone_s non-halting Similar to readone, rewrites read(), but
keeps state between system calls. The first time
the gremlin is invoked, it returns one byte and
stores the remainder of bytes requested but not
returned. If the next call to read() requests
exactly the remainder, we allow it to occur un-
molested. Otherwise, Murphy again returns
only one byte and stores the new remainder.

readless non-halting Rewrites read() to return half as much data
as requested (minimum one byte).

sleepy1
sleepy10th
sleepy100th
sleepy1000th

non-halting Add latency to any system call, ranging from
one second to one thousandth of a second.

This family of gremlins simulates a highly-
loaded system, and is meant to expose bugs
where specific timings or races between sepa-
rate processes are assumed to have predictable
results.

writeone non-halting Rewrites write() to transmit one byte. These three gremlins simulate a write() sys-
tem call that (1) was interrupted by a signal,
(2) is writing into a pipe, FIFO, or other spe-
cial file that does not have enough buffer space
available, (3) has caused the disk to become
full, or (4) reached the maximum file size.

writeone_s non-halting Similar to readone_s, it keeps state between
system calls and allows write() to pass
through unmolested if the byte count is exactly
equal to the number of bytes not written on the
previous invocation.

writeless non-halting Rewrites write() to transmit half as much
data as requested (minimum one byte).

Table 1: Initial gremlins implemented in Murphy
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[
Gremlin = "readone"
SyscallCount = 20
InvokedCount = 1
EvilCount = 0
Pid = 24068
VirtualPid = 1
Meta = ""
SyscallNum = 0
SyscallName = "read"
FD = 3
Name = "/lib64/libc.so.6"
Length = 832

]

Figure 2: Sample gremlin ClassAd context

later calls, these mappings allow “decoding” file descrip-
tors so that they can be made available as file names for
use with gremlin conditional activation (see Section 2.3).
Argument decoding requires extra care for gremlins that
operate on multiple system calls, as the meanings of argu-
ments vary from one call to another. Finally, to make this
useful in practice (for example, simulating /tmp being
full), Murphy also needs to store path names that are fully
qualified and canonicalized, meaning Murphy needs to
track the current working directory, resolve relative paths,
and expand symbolic links.

2.3 Usage and Policy Configuration
To use Murphy, a developer simply invokes it with the
name of the program to debug as a command-line argument.
Command-line switches can optionally specify the location
of a configuration file, and/or request the creation or replay
of a gremlin activation log (see Section 2.4).

Each gremlin can be independently configured to be
active, inactive, active only a specific random percent of
the time, or active based upon a declarative policy language
constraint. The general format of a Murphy configuration
file is one line per gremlin with the following fields:

gremlin:percentage:seed:constraint

The gremlin field is the name of the gremlin being
configured. The percentage field is a number between
0 and 100 that represents a random percentage the gremlin
should be active (i.e. when to alter interaction with the
kernel). The percentages 0 (always inactive) and 100
(always active) are special cases such that the pseudo-
random number generator (PRNG) is not actually invoked.
The optional seed field allows the developer to explicitly
choose a seed for the PRNG for this gremlin.

The constraint field is an optional Boolean expres-
sion that must evaluate to true in order for a gremlin to

activate. The expression is written in the language of
ClassAds [14]. A ClassAd is a mapping from attribute
names to values. A ClassAd Boolean expression uses a
syntax reminiscent of C or Java, and may reference any
of the named properties in the ClassAd as parameters to
a rich set of functions and operators. Conditionals, string
operations, and regular expression pattern matching are all
supported [15]. Whenever a gremlin could potentially do
mischief, Murphy creates a ClassAd context like the one
in Figure 2 that contains state information regarding the
gremlin and the system call parameters. The integration of
a policy language like ClassAds into Murphy enables the
developer to conditionally enable gremlins
based upon, for instance, how many times a call has been
trapped, and/or a pattern match upon the input parame-
ters to the kernel call being trapped. For example, the
configuration line

readone:100:0:!regexp("(\\.so(\\.[0-9]+)*)$",Name,"")

uses regular expression pattern matching on the Name
attribute to prevent the readone gremlin from activating
upon files that look like a shared library.

2.4 Reproduction of Failures
Reliably reproducing failures is essential to software test-
ing and debugging. If Murphy is to assist developers be-
yond just alerting them to the existence of a bug, it must
be able to reproduce the problem on demand. Note that
even if a program’s system call profile is deterministic, the
interleaving of system calls across multiple processes is
decidedly non-deterministic. In order to reproduce gremlin-
induced failures in multi-process code, we minimize non-
deterministic behavior as follows:

1. Each gremlin has a separate pseudo-random num-
ber generator (PRNG) seed and state. Invoking the
readone gremlin any number of times does not affect
the PRNG for the writeone gremlin.

2. Multiple invocations of Murphy yield the same se-
quence of pseudo-random numbers.

3. For each process spawned by the application under
test, Murphy maintains distinct system call statistics,
gremlin states, PRNG state, and metadata.

4. Because the process ID (pid) assigned by the operat-
ing system changes during each re-run, Murphy as-
signs each newly spawned processes a virtual, mono-
tonically increasing pid, or vpid. System call activity
by this process is tracked using the tuple (pid, vpid).

Murphy can log an event whenever a gremlin modifies
a system call. This log, called the gremlin activation log,
contains a record indexed by the tuple (gremlin name,
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vpid) with the following fields: (1) how many times this
particular gremlin was consulted to see if it wanted to
modify the system call, (2) how many times Murphy has
actually modified the system call, (3) the total count of
all system system calls invoked by this vpid, and (4) the
current value of user-supplied metadata for this process.
Because this log uses the virtualized pid, and keeps track
of the various system call statistics per vpid, successive
runs of Murphy tracing the same program yield the same
results, provided the program itself is deterministic.

Murphy can be instructed to replay the gremlin activa-
tion log while executing the program again, which pro-
duces the same results for deterministic programs. Murphy
prints a warning if the count of total system calls for a
given process does not match the log when a gremlin ac-
tivation is replayed, letting the user know that things are
not replaying identically. However, this is not fatal. In fact,
it must be allowed later when minimizing the replay log
(Section 2.6): removing certain gremlin invocations (such
as readone) can affect how many subsequent system calls
(such as read()) occur.

2.5 Control Functions
To facilitate practical usage of Murphy, we provide sev-
eral Murphy “control functions" that the application being
debugged can invoke to help bridge the gap between a
gremlin causing a failure and finding the code actually
responsible for the failure. The functions currently imple-
mented are:

Set metadata. Metadata supplied in the high-level
source language is placed into the gremlin activation log. A
programmer can of course manually add calls to update the
metadata at function entry or surrounding some suspicious
code that is under investigation. Alternatively, a program-
mer could automatically wrap specific function calls that
are being investigated by using preprocessor macros or
other techniques to insert filename and line numbers into
the metadata. Since the metadata is free-form, even the
values of variables could be tracked if desired.

Update configuration. To further help debug their code,
programmers can dynamically reconfigure gremlins. This
can be used to (1) reseed the PRNG, (2) narrow the scope of
gremlin activity by enabling and disabling certain gremlins,
or (3) change a gremlin’s activation constraints in order to
improve the signal-to-noise ratio of the Murphy output.

Suspend and detach (with gdb). These control func-
tions aid in live debugging of a suspected bug. When
invoked, Murphy suspends the process being traced and
detaches from the ptrace interface, allowing the program-
mer to attach to the process themselves with a debugger.

Because gdb is so prevalent, we also provide a control func-
tion for convenience which automatically attaches with gdb.
These mechanisms allow the programmer to follow their
code into an area where they suspect it misbehaves.

2.5.1 Interface to Control Functions

Originally, we assumed programs could use ioctl()
to trap into the Murphy controller and perform run-time
control functions. However, we find that many languages
do not pass ioctl() on directly to the kernel, or do not
implement it at all. For example, in Java it requires using
the Java Native Interface. As such, we settled on using
mkdir() which is much more widely supported.

With mkdir(), we implement a filesystem interface
similar to the /proc interface on Linux. If the filename
starts with “/Murphy/” followed by the desired control
function name, Murphy intercepts the mkdir() and in-
stead passes it to the Murphy controller subsystem. Exam-
ple invocations of the Murphy control functions include:

mkdir /Murphy/set-metadata/foo.c:115

(set metadata to “foo.c:115”)
mkdir /Murphy/update-config/readone:0

(update configuration to disable readone gremlin)
mkdir /Murphy/suspend

(suspend and detach)
mkdir /Murphy/suspend-and-debug

(suspend and reattach with gdb)

2.6 Fixing Failures
One disadvantage of interposing at the system-call level is
a disconnect between these calls and the application devel-
oper’s view of the operations being performed. This discon-
nect could create an understanding gap when it comes time
for the developer to localize and fix errant behavior discov-
ered by Murphy. While we assert that the mere existence
of a tool that can discover such errors on a multi-process
and possibly multi-language application is of value, we
also support an automated strategy to help bridge this gap.

The first step is to use delta debugging [18] to shrink the
failure-inducing gremlin activation log, thereby isolating
just a few system calls that need to be manipulated to re-
produce the failure. The second step uses Murphy to replay
the minimized gremlin activation log, but now configured
to suspend and detach from the application immediately
upon replaying the last event in the log.

Delta debugging makes it easy for the programmer to
focus their attention on the important system calls that
behaved differently under Murphy. However, while very
effective at minimizing gremlin activity, this does not com-
pletely bridge the gap between kernel interactions and
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source code. Thus, suspending after the last event leaves
the program in a state where things are just about to go
wrong. The user can attach with a debugger and directly
observe the program’s response to the manipulated system
calls. In our experiments, this often results in a stack trace
that pinpoints the exact line of buggy code.

3 Experimental Results

3.1 Methodology

In order to evaluate the utility and effectiveness of Murphy,
we apply it to a variety of heavily-used open source pack-
ages. We run the regression test suites of these packages
primarily with non-halting gremlins enabled, and looked
at failed tests as candidates for potential bugs. If bug can-
didates are found, we apply delta debugging to the gremlin
activation log in order to minimize the number of system
calls with which Murphy interfered, thereby reducing the
amount of code that needed to be inspected. Often the
activation log shrinks down to just a single system call that
correlates to exactly one line of code. For example, the perl
interpreter bug was found by starting with an activation log
containing 114,019 interleaved read and write systemcalls
which was delta-debugged down to just one.

Packages we test include some with source code writ-
ten in languages other than C, in particular the Perl and
Python regression test suites. We also experiment with
using Murphy in conjunction with glibc, Bash, OpenSSL,
and gcc.

3.2 Ability to Detect and Pinpoint Bugs

We discovered our first bug early in our development pro-
cess: a defect in the Linux dynamic loader which is used
by all dynamically-linked executables. If the dynamic
loader cannot load the Linux executable ELF header in
one read(), it fails. Even the trivial /bin/true pro-
gram fails in this manner. This is a sobering sign that the
problems Murphy targets are truly endemic, affecting even
the most basic functionality of the system. In fact, we
actually needed to work around this obstacle before other
meaningful results could be gathered, which helped guide
our decision to implement the policy language described
in Section 2.3.

Practically everything we tested fails when the eagain
and eintr gremlins are enabled. We cannot even run a
single regression test suite with these gremlins active, as
many test harnesses rely on tools like make that fail under
the influence of these gremlins. It seems that despite the
man page for various system calls documenting that they
may return errno EAGAIN or errno EINTR, almost noth-
ing actually checks for them. We also decided to forgo

Configuration Time

No Murphy 6 seconds
Murphy with no gremlins 34 seconds
Murphy with non-halting gremlins 325 seconds

Table 3: Performance impact on OpenSSL test suite

systematic testing with the sleepyX gremlin given the lim-
ited time available to us for experimentation, because it
obviously makes the test suites run much slower.

Given the above, we focus our efforts primarily on test-
ing with the readone and writeone gremlins, and find that
even widely-deployed software has bugs involving not
checking for or not retrying after a short read or write oc-
curs. We find bugs of this class in the Perl and Python
test suites, the Perl interpreter, glibc, OpenSSL, and Bash.
Table 2 summarizes these findings. In addition to detecting
the existence of a problem (evidenced by having regres-
sion test suites fail under the influence of gremlins), the
methodology discussed in Section 2.6 allows us to quickly
and easily pinpoint each bug in the source code. We have
submitted bug reports to upstream developers and plan to
submit more in the future. 2 3

3.3 Performance
Instrumenting a process through the ptrace interface on
Linux incurs overhead due to the nature of trapping every
system call, whether it is interfered with or not, which
involves several context switches between user and ker-
nel space. To get a feel for this overhead, we measure
the wall-clock time of running the OpenSSL test suite
with and without instrumentation by Murphy. First we
run the test suite with no gremlins enabled, thus measur-
ing the overhead of the instrumentation itself and not of
the repercussions resulting from manipulating the system
calls. Next we run the test suite again with the non-halting
gremlins enabled, which may incur significant overhead
primarily due to the fact that the readone and writeone
gremlins can dramatically increase the number of system
calls that are actually invoked over the lifetime of a pro-
cess. Timing results for running the OpenSSL test suite
are provided in Table 3.

To mitigate the large increase in the number of sys-
tem calls and the resulting performance decrease, we
added stateful gremlins for readone and writeone, called
readone_s and writeone_s respectively, that read/write one
byte on the first invocation but remember the count of bytes
that were requested but not read/written. If the next invo-

2http://sourceware.org/bugzilla/show_bug.cgi?
id=13601

3http://lists.gnu.org/archive/html/bug-bash/
2012-01/msg00066.html
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Package Language Gremlin Description

glibc C readone Fails to load dynamic libraries when it cannot read the entire ELF
header (832 bytes) from a shared library file in one system call

Perl interpreter C writeone When spawning a new process fails in Perl’s popen implementation,
child cannot write the error code (4 bytes) from exec() in one system
call onto a pipe read by the parent, and as a result the parent panics
when all 4 bytes cannot be read

Perl test suite Perl writeone Regression test through.t fails due to not checking the return code
from a call to Perl’s syswrite subroutine.

Bash interpreter C writeone Fails during a file redirection operation when it cannot write all bytes
into a temporary file in one system call.

Python test suite Python writeone Regression test test_cmd_line.py fails testing Python’s Popen
routine when it cannot write all bytes to stdin in one system call

OpenSSL library C readone Fails when it cannot read all requested bytes from /dev/urandom in
one system call

Table 2: Bugs found with readone and writeone gremlins. Murphy both detected bugs and successfully pinpointed
the bug at the source code level when monitoring the test suites of some popular software packages.

cation asks to transmit exactly that remainder, then this is
a strong sign that the program under test is noticing the
incomplete read/write and looping accordingly. It is likely
that the program will continue to do so until its original
request is fully satisfied. Therefore, when we see a second
invocation that is compensating in this manner, we allow
that second call to pass into the kernel unmolested.

3.4 Validity
After identifying bug candidates, some manual investiga-
tion is often required to confirm the existence of an actual
bug. In some cases, semantics of specific I/O devices or
other POSIX mechanisms may render the bug candidate in-
nocuous as other conditions prevent this specific instance
from occurring. For example, the man page on Linux
for pipe() specifies that small writes (i.e. smaller than
PIPE_BUF) must be atomic. This may mean that Murphy
writing only one byte is not valid behavior on our reference
platform if the device involved is a pipe.

Another example is reading from /dev/urandom,
the pseudo-random number source. Some specifica-
tions declare that read() will block when reading from
/dev/urandom until enough system entropy is available
to satisfy the entire read() request. This is not a set-
tled matter, however, and has been debated among highly
knowledgeable developers, including Ulrich Drepper (lead
contributor and maintainer of glibc) [2]. We suggest that
the mere existence of this debate argues in favor of pro-
gramming defensively, regardless of what Drepper and
others may eventually decide.

Regardless of validity on any individual platform, one

goal of Murphy is to help identify potentially problematic
code before it reaches an environment in which it fails. If
an application is ported to another platform, the specialized
semantics of one OS may not apply. For example, it is
conceivable that an OS designed to run on embedded de-
vices may have much smaller internal buffers and may not
make the same guarantees as our reference platform. Some
target platforms may not claim to support all of POSIX.1,
or may not support the most recently ratified standard.

As such, the ability of Murphy to help identify these po-
tential problems, even on a platform where such behavior
is impossible, is part of the value provided by the Murphy
tool.

4 Related Work
This work is related to the concept of fuzz testing [9, 10].
Normally, fuzzing is done by providing a stream of ran-
dom inputs to the program and checking whether it crashes
or hangs. Because the source of the inputs is normally
user-provided, from a configuration file or environment
variable, or received over the network, programs should be
validating these inputs and often already are (or intend to).
However, applications do not typically view the kernel as
potentially disruptive. Consequently, they are sometimes
lax about validating the data returned by a system call, pro-
viding a different class of potential failure. In our project,
the “fuzz" comes from the opposite direction. In addition,
fuzz testing often produces invalid inputs, while Murphy
only introduces injections that are semantically legitimate.

Existing tools like eFence [13], valgrind [11], and Pu-
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rify [4] can aid in run-time detection of errors, but just for
a very narrow class of error which is related to memory
access. While these tools are useful for exposing program-
mer error in the normal operation of a program, they do
not necessarily help expose errors that occur only rarely
in adverse environments unless the program is actually
run in such an adverse environment. Murphy creates ex-
actly these adverse environments, and thus could be a
powerful compliment to dynamic memory-safety checkers:
by running a program under both Murphy and a memory-
access checker simultaneously, we may discover additional
memory-access bugs that only manifest under the unusual
circumstances that Murphy brings forth.

This project is most closely related to techniques of pre-
vious work in software fault injection (SFI), which are
techniques that trap certain calls and introduce faults [5].
Some of these techniques actually corrupt the data being
returned, the memory, or the registers as an extreme form
of fuzz testing [3]. We return values that are completely
legitimate during rare circumstances while not corrupting
an otherwise valid system. Many of the SFI techniques tar-
get only specific areas of the system and are implemented
by writing a device driver [17], while others operate at the
boundary between shared libraries and the application [7].
In comparison, Murphy traps at the ptrace level and is able
to intercept all system calls, allowing a much broader range
of types of faults to be injected.

User Mode Linux (UML) provides a useful virtualized
environment for testing modifications to the kernel itself.
One approach we could have taken would be to actually
modify the kernel to behave maliciously, rather than trap
the calls and manipulate the data going to and from the
kernel. Ultimately, this would not provide Murphy any
more information about the application than we can get
via the ptrace interface, and could introduce instability in
places we are not targeting for testing, potentially making
the analysis less deterministic.

Many, but not all, of the tools in these fields require
access to the program’s object code or source code to be
of use, while our approach is a purely black-box testing
system.

5 Future Work

Clearly, Murphy will expose more classes of bugs with the
implementation of additional gremlins. Especially useful
would be additional gremlins to simulate environmental
failures, such as gremlins that cause temporary network
problems. Enriching the information in the system call
context will allow more fine-grained triggering of gremlin
activation and thus a more targeted hunt for some spe-
cific bugs. Enhancing existing gremlins with more state
could provide fewer false positive bug candidates as well

as reduce performance overhead.
To continue to improve Murphy and its utility to pro-

grammers, we intend to build the next version of Murphy
on top of the strace [8] tool instead of Parrot. This would
allow for better interpretation of system call arguments,
better coverage of system calls, and implementation of
more varied gremlins. Additionally, this will enhance the
portability of Murphy to other platforms.

We would like to explore the creation of a defensive
software-hardening tool that squashes exactly the types of
errors that Murphy simulates. So many programs seem
to have problems correctly handling various responses,
particularly errno EAGAIN and errno EINTR. Therefore
perhaps there is a need for such a hardening tool, complete
with its own policy language describing how to handle er-
rors (e.g. retries, block until success, timeouts, no change,
etc.).

To that end, we feel it would be useful to do a more
comprehensive survey of running Murphy on additional
existing software and classify results by gremlin to better
understand the implicit assumptions of software in the
wild. This may motivate further research on mitigation
strategies.

6 Conclusion

We have identified system calls which typically behave
in a predictable manner under predictable environmental
conditions, but can return unexpected results under condi-
tions that can be difficult to reproduce while testing. Using
these sets of system calls we developed a tool, which we
named Murphy, applicable for use in typical automated
testing environments which helps application developers
pro-actively discover bugs resulting from failure to handle
legitimate but unexpected kernel responses. Along the
way, we devised an automated process to reproduce fail-
ures, identify specific gremlins responsible for the failures,
and map system failures back to the errant source code

Additionally, we identified some classes of bugs that are
pervasive, even in well-tested programs. Nothing we tested
handled errno EINTR or errno EAGAIN without failure.
This raises an important question: is it wise for a kernel
to return these responses if nothing is going to deal with
them correctly? Perhaps instead these types of failures
should be squashed before returning to the application, as
this may be the only practical means to ensure they are
handled correctly.

Finally, we observed that the approach taken by Murphy
uncovered several bugs even in widely deployed and well-
tested code. Given this, we anticipate this approach will
be even more valuable in the hardening and testing of new
software.
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