
Statistically Debugging
Massively-Parallel Applications
Tristan Ravitch and Ben Liblit

Computer Sciences Department, University of Wisconsin–Madison
{travitch,liblit}@cs.wisc.edu

Bronis R. de Supinski
Lawrence Livermore National Lab

bronis@llnl.gov

Abstract—Statistical debugging identifies program behaviors
that are highly correlated with failures. Traditionally, this ap-
proach has been applied to desktop software on which it is
effective in identifying the causes that underlie several difficult
classes of bugs including: memory corruption, non-deterministic
bugs, and bugs with multiple temporally-distant triggers.

The domain of scientific computing offers a new target for this
type of debugging. Scientific code is run at massive scales offering
massive quantities of statistical feedback data. Data collection can
scale well because it requires no communication between compute
nodes. Unfortunately, existing statistical debugging techniques
impose run-time overhead that is unsuitable for computationally-
intensive code despite being modest and acceptable in desktop
software. Additionally, the normal communication that occurs
between nodes in parallel jobs violates a key assumption of
statistical independence in existing statistical models.

We report on our experience bringing statistical debugging
to the domain of scientific computing. We present techniques to
reduce the run-time overhead of the required instrumentation
by up to 25% over prior work, along with challenges related to
data collection. We also discuss case studies looking at real bugs
in ParaDiS and BOUT++, as well as some manually-seeded bugs.
We demonstrate that the loss of statistical independence between
runs is not a problem in practice.

I. INTRODUCTION

Statistical debugging methods instrument programs to record
program behaviors at run time, along with a success or failure
label. An offline statistical analysis then identifies the program
behaviors that are highly correlated with program failure. These
techniques have most often been used after an application,
typically desktop oriented, is deployed to many users. Recorded
program behaviors are referred to as feedback data and are
reported across many independent runs of the application.

This approach to debugging has been demonstrated to be
able to identify the causes of difficult classes of bugs as varied
as input validation, bad comment handling, unchecked return
values, inconsistent data structure coordination, buffer overruns
(both with and without memory writes), configuration-sensitive
hash table mismanagement, memory exhaustion, premature
returns, poor error-path handling, race conditions, and dangling
pointers [1], [2], [3], [4]. Further, it is not restricted to bugs
that crash the program; the analysis requires only success and
failure labels, so performance and correctness bugs are equally
amenable to diagnosis via statistical debugging.

Scientific computing represents a tantalizing new arena in
which to apply statistical debugging techniques, but carries
some unique challenges. Unlike desktop software, scientific

applications are rarely, if ever, finished. Any given version of a
scientific application is run very few times by few users, rather
than many times by many users as for widely-deployed desktop
applications. Fortunately, scientific applications are often run at
a large scale, with many individual processes participating. If
we treat each process as a program run in the traditional sense,
we can gather large quantities of feedback data for analysis in
the few runs available. Unfortunately, because the processes
of a run communicate, they are no longer independent, which
violates one of the key assumptions underlying most of the
statistical models used in feedback analysis.

Performance represents another challenge. The instrumenta-
tion used to observe program behavior at run time is generally
lightweight and works well for desktop applications. This
instrumentation fares worse in the presence of the tight
loops that are common to computationally-intensive code.
However, if we can overcome this problem then we expect
statistical debugging itself will scale well, as it requires no
extra communication between compute processes.

In this paper, we address the issues outlined above and
demonstrate the applicability of statistical debugging to scien-
tific computing applications. Our main contributions are:

• Instrumentation transformations to eliminate up to 25%
of instrumentation overhead;

• An efficient feedback-collection strategy that can capture
results from 500,000 processes in under 50MB;

• Support for C++ applications; and
• Case studies of real bugs in ParaDiS and BOUT++,

as well as manually-seeded bugs, that demonstrate that
statistical models employed by statistical debugging can
effectively determine the root causes of programming
errors in scientific applications.

In Section III, we describe transformations and tech-
niques to reduce the overhead imposed by instrumentation
in computationally-intensive code. We show how to collect
feedback data efficiently from completed jobs in Section IV.
Section V discusses our implementation of these ideas in a
new instrumenting compiler. We evaluate the effectiveness of
these techniques in Section VI, and describe our experiences
with diagnosing several real and seeded bugs in Section VII.
Section VIII addresses related work and Section IX concludes.



II. STATISTICAL DEBUGGING BACKGROUND

So far we have described statistical debugging as identifying
program behaviors that are highly correlated with failure. We
formalize the notion of program behavior in terms of predicates
that are true or false at certain program points. At any given
program point, multiple predicates may exist. Consider an
int variable: at any given program point its sign can be either
negative, zero, or positive. An instrumentation site is a program
point instrumented to observe at least one predicate.

The statistical debugging process begins by instrumenting at
the source or binary level to observe and to record predicate
values. Next, users run the instrumented program. Each run
generates a feedback report that captures the true and false
counts of each observed predicate, plus a success or failure label
for the entire run. Finally, we analyze these reports statistically
to identify predicates that correlate highly with failed runs.

A. Instrumenting the Code

Programs have many potential predicates. Prior work focused
on efficiently-testable predicates [3], [5]. Examples include:
• The branch taken in a conditional;
• The signs of integral function return values; and
• The classification of floating-point values (NaN, infinity,

denormal, or normal).
Although these tests are efficient, recording the values of

these predicates every time they are encountered can be costly.
Liblit et al. [4] describe a method of sampling instrumentation
sites based on work by Arnold and Ryder [6]. Sampling treats
the occurrences of sites in a program execution as a stream of
events and uses a Bernoulli process to select a random subset
to record. Randomness ensures that periodicity inherent to a
program cannot cause the algorithm always to choose the same
sites. The Bernoulli process can be thought of as a flip of a
biased coin at each site reached by the program: if the coin
comes up as heads, the site is sampled, recording true and
false observations of its constituent predicates. This mechanism
ensures that any site in the execution is equally likely to be
sampled.

Directly implementing a Bernoulli process as a series of
coin flips reduces performance even more than observing every
predicate at every site. A more efficient formulation considers
the inter-arrival times between observations. Equivalently, we
treat this inter-arrival time as a countdown of sites to ignore
before sampling. We model this quantity by a geometric
distribution parametrized by the desired average sampling rate.

In terms of implementation, we could decrement the count-
down every time that a site executes. When the countdown
reaches zero, we observe the associated site’s predicates and
draw a new random countdown from a geometric distribution.
This approach still suffers from too much overhead; to reduce
the number of countdown tests against zero, we segment the
control-flow graph of a program into acyclic regions. Each
acyclic region has a finite and known maximum number of
sites along each possible path, known as the weight of the
region. At the beginning of any acyclic region there are two

possibilities: if countdown > weight, we know that we will not
have to sample in the acyclic region. Otherwise, we may have
to take a sample and must check at each decrement. To exploit
this observation, we can clone each acyclic region and remove
all checks of the countdown against zero in one copy. This copy
is called the fast path; it still retains its countdown decrements,
but these operations typically disappear into instruction-level
parallelism. The other copy is the instrumented path.

B. Statistical Analysis

We introduce no new statistical methods over previous work;
we cover several formulations of the statistical analysis in
Section VIII. We review one model [7] that has been demon-
strated to work well in a variety of debugging contexts. We
choose this model because its relatively simple mathematical
foundations scale well to large data sets, such as those we
expect to generate from supercomputing applications.

Predicate counts are meaningless alone; we must relate them
to failure and success labels. To grasp the intuition of the
analysis, consider how predicates can identify deterministic
bugs. Any predicate P is a perfect predictor of failure if it is
always true in every failing run and never true in a correct run.

Unfortunately, many bugs, such as buffer overflows in C and
C++, are not so deterministic. Even when a buffer overflows,
execution might not necessarily fail: the overwritten memory
may have been unused. Thus, a predicate that exactly describes
when the buffer overflow occurs can be true in some successful
runs. While the program technically misbehaved in those runs,
it terminated without exhibiting any overtly-incorrect behavior.

A statistical model of failure can overcome this type of noisy
data by giving a probability that P being true leads to failure.
The most basic measure of failure-predictive power is

Failure(P)≡ Pr(failed run | P observed to be true)

Failure (P) is high when P being observed to be true is highly
correlated with program failure. Failure is not a sufficient
metric for identifying failure causes: it is far too aggressive
and many predicates on the path between the root error and
the program failure could receive high Failure scores.

We can trim incidental predicates that just happen to hold
on a failing path by considering whether we ever observe
a predicate (regardless of whether it was true or false) in a
non-failing run. We first define an intermediate quantity:

Context(P)≡ Pr(failed run | P observed)

Context is high for predicates rarely observed in correct runs.
We now define a more direct measure of failure-predictivity:

Increase(P)≡ Failure(P)−Context(P)

Increase(P) is high if program failure is much more likely
when P is observed to be true, contrasted with always being
likely to execute the code associated with P. Thus, the model
tends to find predictors near the root cause of failure instead of
ones simply on the path from a bug to an observable failure.

We can discard predicates with an Increase score below
a threshold. We then must rank the remaining predicates by



1 for (i = 0; i < vec_len; i += STRIDE) {
2 if (countdown > WEIGHT) {
3 // Fast path
4 } else {
5 // Instrumented path
6 }
7 }

Listing 1. A simple sampled loop

their predictive value, which we will call Importance. Ranking
predicates by the number of failing runs in which they appear
true boosts the scores of predicates that are weakly correlated
with many failures. Alternatively, using the Increase score
directly favors predicates that are rarely true but almost always
lead to failure. A common technique to combine multi-modal
ranking inputs is to use the harmonic mean:

Importance≡ 2
1

Increase(P) +
logNumF
logF(P)

where NumF is the number of failed runs and F(P) is the
number of failed runs in which P holds. This ranking favors
predicates that are both predictive of failure (high specificity)
and appear to explain many failures (high sensitivity).

III. SAMPLING SCIENTIFIC WORKLOADS

The sampling procedure described in Section II-A works well
for typical interactive desktop applications, which spend most of
their time waiting for user input. However, scientific workloads
are CPU-bound and spend most of their time in loops that
perform numeric computations. The logic to choose between
the fast or instrumented path is executed once per acyclic path,
and therefore, once per loop iteration. This frequency imposes
a significant overhead, especially for short loops. We present an
optimization to the sampling transformation to reduce sampling
overhead substantially for most numeric loops.

A. Sampling Optimizations for Loops

Listing 1 shows a normal loop after the sampling transforma-
tion. The path check on line 2 is based on the countdown and
the two copies of the loop body: one instrumented and the other
with only countdown decrements (the fast path). The WEIGHT
constant is, again, the maximum number of instrumentation
sites in any path through the loop body.

For small loops, the weight of the loop body is much less
than the countdown. Further, we waste many checks that simply
lead to choosing the fast path. Our optimization amortizes the
cost of the path check over as many iterations as possible. If
the loop meets the conditions that we discuss in Section III-A1
then we can precisely bound the number of loop iterations that
can execute before we must check countdown again.

We rewrite the loop in three parts. First, it executes without
any instrumentation, not even countdown decrements, up to
the computed bound. Next, since the optimized loop body has
no countdown decrements, we must decrement the countdown

1 i = 0;
2 while (i < vec_len) {
3 int loop_start = i;
4 int bound = vec_len;
5 if (countdown <= (bound − i) / STRIDE * WEIGHT)
6 bound = i + (countdown − 1) / STRIDE * WEIGHT;
7 for (; i < bound; i += STRIDE) {
8 // Completely uninstrumented path
9 }

10 countdown −= (i − loop_start) / STRIDE * WEIGHT;
11 if (i < vec_len) {
12 // Instrumented path
13 }
14 i += STRIDE;
15 }

Listing 2. Optimized variant of listing 1

by the total number of executed instrumentation sites. Finally,
execution enters a fully instrumented version of the loop body
in which we take a sample. We wrap these two steps inside of
a driving loop to repeat the process as often as necessary to
reach the total iteration count.

Listing 2 shows the optimized form of the previous code
example. The induction variable changes by an amount equal to
the constant STRIDE each iteration. Line 2 shows the driving
loop that ensures we execute the correct total iteration count.
We compute the bound in lines 4 to 6, and determine the
number of consecutive uninstrumented loop body iterations
in line 7. We decrement the countdown in line 10 by the
number of executed instrumentation sites. The additional check
in line 11 ensures that we do not execute the loop body an
extra time when the fully uninstrumented path includes the
last iteration.

The optimization generalizes to support nested loops if each
loop meets the transformation requirements. In practice we
can rarely apply the optimization to loops nested more than
three deep. More complicated nested looping constructs are
rare and typically contain other violations of the conditions in
Section III-A1. Further, doubly-nested loops usually maximize
the performance benefits of the optimization due to the
complexity of the loop bound calculation for more deeply-
nested structures and limits imposed by the sampling rate.

1) Conditions on the Loop Body: Loop bodies must satisfy
two high-level requirements in order to qualify for the loop
optimization: the weight of the loop body must be finite and
the iteration count must be symbolically expressible. Further,
all paths through the loop body must have the same weight
and must not have control-flow–altering constructs such as
break. In principle, this restriction is unnecessary; we can insert
dummy instrumentation sites to balance all paths through a
loop. In practice, loops with unbalanced instrumentation counts
usually fail to meet the finite-weight requirement and do not
benefit from the path balancing. The dummy instrumentation
sites are undesirable, particularly in loop bodies, because they



consume randomness without the chance to provide useful
feedback data. Thus, we do not use them.

In order for the number of loop iterations to be symbolically
expressible, the following conditions must hold:
• The loop body must not modify the induction variable;
• The loop body must not modify the iteration count bound;
• The stride must be constant;
• The loop condition must be idempotent; and
• The induction variable must be local.

We require idempotence because the transformation duplicates
the evaluation of the loop upper bound. With nested loops,
loop upper bounds and initial induction variable values must
not depend on variables defined in enclosing loops.

B. Non-uniform Sampling Rates

The preceding optimization effectively amortizes path checks
in numeric loops over many iterations. Unfortunately, useful
sampling rates are about 1⁄100, which limits the scope of the
amortization. By definition the transformation applies to loops
that are computational leaves and cannot call functions with
side effects. The instrumentation sites in these loops are usually
floating-point operations that are less interesting for debugging
than other operations. Further, they occur frequently, with event
counts reaching hundreds of millions.

We leverage the nature of these loops by dynamically
reducing the sampling rate for their duration, in the style of
Hauswirth and Chilimbi [8]. This reduction, in turn, magnifies
the benefit of the loop-splitting optimization. Each optimized
loop runs in a learning mode in which we discover how many
iterations it executes during its first execution. Each time the
loop completes a set of uninstrumented iterations, we reduce
the sampling rate by a factor of 10, with a minimum sample
rate controlled by an environment variable. This mechanism
exponentially decays the sample count in each loop based on
the size of its inputs. The new sampling rate for the loop is
memoized and re-used in future loop executions.

C. Revisiting Numeric Loops

The loop-splitting transformation optimizes a class of
numerically- and computationally-intensive loops. The in-
formation that we obtain by instrumenting these loops has
little diagnostic value for many bug classes. Consider a
vector normalization function. The loop termination condition
contributes two predicates since it can be true or false on
each iteration. However, these predicates are often redundant:
if the loop executes at least once, predicates that precede
the loop imply that we could observe the loop condition as
true. Similarly, predicates after the loop imply that we could
observe the loop condition as false. If the loop never terminates,
we will not observe any predicates after the loop, yielding
approximately equivalent results. When diagnosing these bug
types, we could omit the instrumentation from these loops.

IV. DATA COLLECTION

Prior work, such as that of Liblit et al. [9], relies on
the instrumented application to report its own feedback data

by writing to a file. This approach is a scalability barrier
due to I/O pressure. Also, reporting feedback data from a
failing process requires handling POSIX signals to catch events
like segmentation faults. Performing complex tasks in signal
handlers is unwise in the best of times; when the process is
failing and in an unsteady state, it is even riskier. To address
these problems, we move the reporting infrastructure from the
instrumented process to an external watchdog, and propagate
feedback data to a reporting node using MRNet [10].

A. Reporting Machinery

The watchdog process uses the Dyninst framework [11] to
monitor instrumented processes for termination, abnormal or
otherwise. There is one watchdog per physical compute node.
Each of these watchdogs attaches to all of the application
processes local to its node via the debug interface (ptrace). To
communicate feedback data efficiently from an instrumented
process to the watchdog, we employ a shared memory segment
visible to both processes. The instrumented process stores its
feedback data within the shared memory segment. When the
instrumented process terminates, the watchdog simply reads
the feedback data out of the shared memory segment. In the
event of an abnormal termination, the watchdog also captures
a stack trace.

Besides efficiency, the shared memory segment is sig-
nificantly more robust than in-process reporting. With in-
process reporting, heap corruption could easily render the
instrumented application unable to produce a report or, worse,
could cause it to produce a seemingly-valid report with hidden
corruption. Standard library components such as I/O buffers or
file descriptors are also vulnerable. By contrast, when using
a shared memory segment, only the small area occupied by
that segment is exposed to corruption. Relative to the entire
address space, this vulnerability surface is much smaller. Even
in the face of extreme termination measures such as SIGKILL,
a shared memory segment still allows feedback to be captured,
whereas in-process reporting does not.

After the watchdog collects all available feedback reports, it
sends the data to a reporting node via MRNet, a scalable Mul-
ticast/Reduction Network. MRNet provides a tree-structured
communication network in which our watchdog processes form
leaves, or MRNet backends. We propagate data up the tree to
a frontend that writes the feedback data to disk.

Once feedback data enters the MRNet tree, it passes through
filter functions at each level of the tree until it reaches the
frontend. These filters can transform the data as it propagates;
we use them to compress samples losslessly. Each watchdog
process sends its feedback data into the communication tree
uncompressed and the first layer compresses it with a standard
compression algorithm. Further levels in the tree concatenate
the data that they receive. This approach allows the compression
algorithm to exploit a large window of redundancy across more
feedback reports than are available to a single watchdog.

Figure 1 compares simulated data collections for several
compression strategies. First, compressing feedback reports
only on the watchdogs is fast because the work is distributed



0 100,000 200,000 300,000 400,000 500,000 600,000
CPUs

0

20

40

60

80

100

120

140
M

B

Compress on watchdogs
Compress on comm leaves
Re-compress on comm leaves
Re-compress twice

Fig. 1. Feedback data sizes

across more nodes. This approach also imposes more than 50%
overhead in the size of the collected data. Alternatively, the
watchdog processes compress their feedback reports, which
are then decompressed and recompressed by a tree node. This
approach yields the same compression ratio as our strategy
with a minor time penalty. Another variant repeats this recom-
pression higher in the tree to increase space savings slightly at
the cost of two orders of magnitude longer completion time.

B. Data Format

Feedback reports are ordered integer tuples. Each tuple
represents an instrumentation site and each tuple entry denotes
the number of times that the individual predicate was observed
to be true at that site. Many predicates are never observed to be
true, or are observed to be true only a few times. Alternatively,
we can easily observe predicates in nested loops hundreds
of millions of times. This range of data benefits from the
implicitly variable-length encoding afforded by plain text;
however, textual formats waste space for delimiters and to
represent large numbers. Alternatively, we use the standard
Abstract Syntax Notation (ASN.1), which is a binary encoding
with variable-length integer representations.

A given program run never reaches many instrumentation
sites. We use a sparse representation to reduce the space
overhead of unreached code. Each feedback report has an
associated bitmask and represents tuples that contain all zeros
by a zero in the bitmask. We represent all tuples that contain
data by a one and reconstruct the full sequence of tuples
at analysis-time. The sparse ASN.1 format has shown space
savings of 35% to nearly 700% in report encodings.

Our simulated data collections in Figure 1 use feedback
reports generated by IRS. We use the sparse ASN.1 represen-
tation and compress with bzip2. We also randomly perturb the
reports to prevent the compression algorithm from achieving
trivial best-case behavior. This simulation indicates that data
format and communication infrastructure can collect reports
from 500,000 processes in less than 50MB.

V. IMPLEMENTATION

We implement a new instrumenting compiler as a source-to-
source translator using the ROSE compiler infrastructure [12].
To coordinate our watchdog processes with the applications that
we debug, we start them simultaneously using LaunchMON
[13]. These watchdogs monitor applications via the Dyninst
StackwalkerAPI [11] and report results using MRNet [10]. We
leverage the OpenMP, C++, and Fortran support in ROSE to
handle a larger set of applications than previous source-based
instrumenting compilers. This support is particularly important
for scientific applications, many of which use some features
from (or components written in) these languages.

Three C++ language features complicate our instrumentation
mechanism: (1) reference types, (2) objects with user-defined
constructors or destructors (known as non-Plain Old Data, or
non-POD, types), and (3) try blocks. These features cause
problems for the same underlying reason: they inhibit jumping
between fast and instrumented paths. At the beginning of each
acyclic region, execution can either stay on its current path or
jump to the other one, depending on the value of the countdown.
After this jump, the same variables must be in scope with the
same values, which is easily facilitated in C by lifting all
variable declarations, with proper renaming, to the top of a
function body. We also instrument C++ code that does not use
any of the complicating features in this way.

Reference types are complicated because we must initialize
them and they cannot refer to another object after initialization.
If we lift the declaration of the reference to the top of the
function, its initializer may not be in scope. Thus, we rewrite
reference-typed variables as pointer-typed variables and make
previously implicit dereferences explicit.

Non-POD declarations also pose a scoping problem: if we
move or duplicate these declarations then we also move or
duplicate the side effects of their constructors or destructors.
Also, execution cannot jump past the declaration of non-POD
objects. We do not move non-POD declarations; instead we
recursively treat the code that they dominate as a new function
when we create fast and instrumented paths. Effectively, we split
the code around them. In principle, this technique could apply
to all variable declarations. However, it reduces performance
by making fast code paths shorter. Therefore, we apply this
transformation only for non-POD variables. We continue to
lift POD variables up to the top-level scope in each function.

C++ try blocks introduce a similar difficulty to non-POD
declarations: execution cannot jump from the middle of one
try block into the middle of another. Thus, we treat try blocks
similarly to non-POD variable declarations: we never clone
them, but instead recursively treat try block bodies as though
they were the entry points of new functions for purposes of
fast versus instrumented path creation.

VI. EXPERIMENTAL EVALUATION

We evaluate several aspects of the performance overhead of
our data collection infrastructure:

1) the overhead imposed on serial codes,



2) the overhead imposed on parallel codes, and
3) the additional communication overhead.
We run all experiments on 4-way dual-core 2.4GHz AMD

Opterons with 16GB of RAM with an InfiniBand interconnect.
Where applicable, we compile all benchmark applications in
several configurations using
• GCC as a performance baseline,
• the instrumenting compiler from Liblit et al. [7], and
• our new ROSE-based instrumenting compiler.
The instrumenting compiler of Liblit et al. serves as a

performance degradation baseline. While we use a different
instrumentation infrastructure, comparison to this baseline
demonstrates the improvements that our techniques provide for
scientific applications. We use our instrumenting compiler in
three modes: (1) with no optimizations, (2) with just the loop
splitting optimization, and (3) with the loop splitting optimiza-
tion and adaptive sampling rates for numeric loops. We also
explore the performance benefits of omitting instrumentation
from computational kernels.

A. Loop Optimization Impact

First, we evaluate the run-time overhead of our sampled
instrumentation on serial program execution. We compile these
benchmarks without MPI support and run them with a single
thread. All instrumented runs sample the same set of sites,
monitoring the directions of branches and for the signs of
function return values. All runs in this section use a sampling
rate of 1⁄100.

The overheads in this section are presented as run times of
instrumented binaries compared to a baseline version compiled
with GCC. The runs labeled as cil are instrumented using the
instrumenting compiler of Liblit et al. [7]. We present results
for four different configurations of our instrumenting compiler:
• rose-baseline is a mode with no optimizations beyond

the sampling transformation discussed in Section II-A,
roughly equivalent to the transformation applied by the
cil runs;

• rose-opt utilizes the loop-splitting transformation de-
scribed in Section III-A up to doubly-nested loops;

• rose-opt-adapt is rose-opt plus adaptive reduction of the
sampling rate for simple numerical loops as discussed in
Section III-B; and

• rose-no-numeric removes all instrumentation from nu-
meric loops, as in Section III-C.

The graph in Figure 2 shows runs of AMG on the default
inputs using solver 5 and problem 2 at problem sizes ranging
from 1503 to 3003. As expected, the loop-splitting transforma-
tion benefits greatly from adaptively modifying the sampling
rate for numeric loops. The combination reduces overheads
compared to previous work by 5-20%. Further, adaptively
modifying the sampling rate for numeric loops achieves similar
efficiency to not instrumenting them at all.

Figure 3 shows runs of IRS with 8, 27, 64, 125, and 216
domains. The version using an adaptive sampling rate averages
about a 4% improvement over the cil baseline. For non-trivial

140 160 180 200 220 240 260 280 300
Problem Size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

O
v
e
rh

e
a
d
 c

o
m

p
a
re

d
 t

o
 G

C
C

cil
rose-baseline
rose-no-numeric
rose-opt
rose-opt-adapt

Fig. 2. Serial overhead for AMG

0 50 100 150 200 250
NDOMS

1.05

1.10

1.15

1.20

1.25

1.30

1.35

O
v
e
rh

e
a
d
 c

o
m

p
a
re

d
 t

o
 G

C
C

cil
rose-baseline
rose-no-numerics
rose-opt
rose-opt-adapt

Fig. 3. Serial overhead for IRS

problem sizes, the absolute overhead imposed compared to
GCC is less than 12%. Not instrumenting numeric loops at all
yields a modest improvement of 2% on top of the adaptive
sampling rate approach.

The runs of ParaDiS, shown in Figure 4, use the default
problem (fmm_8cpu.ctrl) modified to run on a single processor
and to use 43, 83, and 163 cells with 20 time steps. The
adaptively-sampled version cuts the overhead imposed by the
cil baseline by over 40%, with approximately 10% overhead
compared to GCC.

TABLE I
APPLICABILITY OF THE LOOP SPLITTING TRANSFORMATION

Benchmark Total Loops Split Loops Fraction Split

AMG 2,859 1,508 52%
IRS 2,566 1,188 46%
ParaDiS 1,785 702 39%



4 6 8 10 12 14 16
Cells^3

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
O

v
e
rh

e
a
d
 c

o
m

p
a
re

d
 t

o
 G

C
C

cil
rose-baseline
rose-no-numeric
rose-opt
rose-opt-adapt

Fig. 4. Serial overhead for ParaDiS

0 200 400 600 800 1,000
CPUs

1.00

1.05

1.10

1.15

1.20

1.25

1.30

O
v
e
rh

e
a
d
 c

o
m

p
a
re

d
 t

o
 G

C
C

AMG-200
AMG-150
ParaDiS
IRS

Fig. 5. Overhead versus GCC in parallel executions

Despite the many conditions restricting its applicability, our
loop splitting transformation effectively reduces instrumentation
overhead. Table I shows the number of times the optimization
was applied in each benchmark. Overall, about 45% of loops
in these benchmarks are amenable to the transformation.

B. Parallel Execution Overhead

We also examine the overhead imposed by our instrumen-
tation on the execution of parallel programs. This analysis
includes both computational overhead due to instrumentation
and communication overhead contributed by random sampling.
Figure 5 compares the execution times of AMG (with per-
processor problem sizes of 1503 and 2003), IRS, and ParaDiS
against baseline versions compiled with GCC. Each binary is
instrumented to observe the directions of branches and the signs
of function return values. All instrumented binaries are subject
to our loop optimization and adaptive sampling technique.

We run each application in each problem-size/CPU config-

uration four times. The reported numbers are the overhead
due to instrumentation: the ratio of the mean run-times of
our instrumented binaries versus uninstrumented binaries. We
use a sampling rate of 1⁄100, as in our previous experiments.
Observed overheads are between 10% and 15% for IRS
and ParaDiS, closely tracking the serial overheads reported
previously. AMG also falls largely within this range, but with
spikes at some problem sizes up to 25% overhead. The spike
in the AMG results for the 512 CPU configuration is due
to some characteristic of the input. Both with and without
instrumentation, that configuration takes significantly less time
to execute than most other problem sizes. The short running
time provides little opportunity for instrumentation costs to be
amortized, resulting in a higher relative overhead.

These overheads do not include the time required to report
feedback data to the frontend; we separate them to simplify the
analysis of the impact of our instrumentation. Our experimental
configuration compresses feedback reports only in the leaf
nodes of the communication tree. No runs took more than 5
seconds to finish reporting to the frontend, including network
communication costs.

C. Communication Overhead

Finally, we attempt to separate the overhead that our
instrumentation imposes on inter-process communication from
computational overhead. Since the instrumentation samples
randomly, nodes that choose to take many samples may reach
communication points more slowly than those that take few.
Thus, although our instrumentation adds no direct inter-process
communication, it can randomly perturb the execution time
on each node, leading to additional communication delays. To
measure this effect, we instrument MPI collective operations
in AMG.

In runs with 1,024 processes with problem size 1503, we
record the time each process spends waiting in collective
operations at each dynamic call-site using the mpiP profiling
library. We repeat this 40 times each for uninstrumented and
instrumented binaries. About 15% of (process, dynamic call)
pairs exhibit an increase in time spent waiting on collective
operations, as determined by a t-test with 95% confidence. The
affected (process, dynamic call) pairs span 43% (281 out of
652) of all dynamic calls. The increase in wait time averaged
56% with a standard deviation of 85 percentage points. The
median increase was 46%. Taking the sum of the maximum wait
time increases for each dynamic call as an over-approximation,
communication overhead accounts for at most 13% of observed
overhead in this configuration.

We repeated the experiment with the same number of
processors, but at problem size 2003. The same percentage
of (process, dynamic call) pairs exhibit a significant increase
in collective wait times. By the conservative metric above,
communication delays account for at most 30% of the overhead
observed in this configuration. Subtracting these estimated
communication overheads from the runs at problem sizes 1503

and 2003 leaves both configurations at approximately the same
overhead.



TABLE II
FAILURE PREDICTORS FOR PARADIS

Predicate Function

i < home−>newNodeKeyPtr SortNativeNodes
inode < home−>newNodeKeyPtr MonopoleCellCharge
tag.domID == home−>myDom GetNodeFromTag
cycleEnd == 0 DD3dStep
iNbr > nXcells InitCellNeighbors
remDom == 0 GetNodeFromTag
node != 0 CommPackGhosts

Based on these observations, we claim that communication
overhead explains the difference between the serial overheads in
Section VI-A and the parallel overheads in Section VI-B. The
serial overheads were approximately the same for most problem
sizes, while the parallel runs showed additional overhead for
larger problem sizes. Intuitively, the larger problem sizes allow
each process to run independently for longer without commu-
nication. These longer periods between communication points
allow the processes to diverge in the number of instrumentation
sites randomly sampled. This divergence manifests as increased
overhead due, in part, to time spent waiting for collective
operations to complete.

VII. ROOT-CAUSE ANALYSIS OF APPLICATION BUGS

A. ParaDiS 2.0

We have applied our techniques to ParaDiS [14], a dislo-
cation dynamics simulator. Version 2.0 of this code suffers
from a bug that causes it to crash on most of its inputs. We
instrument the code to sample predicates on branches taken
and function return values. After finding a working input, we
apply our analysis to several crashing runs and a few runs on
the successful input; the analysis identifies the predicates in
Table II as significant failure predictors.

This code divides the problem space, and hence dislocations,
into domains that are distributed among compute nodes.
ParaDiS refers to dislocations as “nodes” internally, particularly
in function names; except for direct references to ParaDiS
functions with “node” in the name, we use the term to refer
only to compute nodes in a cluster. Each domain is divided
into cells and is responsible for a set of native dislocations;
non-native dislocations are represented as ghosts. At each step
in the computation, each compute node

1) migrates ownership of dislocations that cross the bound-
ary of its domain to appropriate neighbors,

2) organizes its remaining native dislocations into cells,
3) sends updates of ghost information to neighboring nodes,

and
4) computes the local effects of forces on dislocations.
The bug manifests as a segmentation fault in the OrderNodes

function. This function is called by MonopoleCellCharge in
the loop controlled by the predicate identified by our analysis.
We can explain the bug by working backwards in the call
graph from this point of failure. The nearest failure predictor
is remDom == 0 evaluating to true in GetNodeFromTag.

This returns a NULL pointer, which eventually causes the
segmentation fault.

Temporally, the next preceding predictors are in CommPack-
Ghosts and SortNativeNodes, which update ghost dislocations
in neighboring domains and divide local dislocations into cells,
respectively. Both of these predictors arise because they are
executed more frequently in failing runs, thus appearing in
fewer successful runs. This suggests a correlation between
failure and runs with many dislocations.

Temporally, the next nearest predictor is in InitCellNeighbors.
This function is called before the first time step. Note that each
step of the computation begins by migrating some dislocations
to neighboring nodes. From here, we hypothesize that the crash
arises because dislocation ownership is not tracked correctly.
This leaves nodes with an inconsistent view of the dislocations
owned by their neighbors after the first migration. Monopole-
CellCharge causes the crash when it attempts to inspect non-
existent dislocations on a neighbor node. The cases in which
the application succeeds are those with few dislocations which
happen to not fall near cell boundaries. Inspection of the next
ParaDiS release (2.2) shows that the code tracking dislocations
eligible for migration and ghosts has been completely rewritten,
suggesting that this was indeed a significant contributor to the
underlying bug.

The predictor trace offers significant detail not available
from backtraces. Backtraces can only show the state of the
stack when a problem occurs; predictor traces can link together
events from different branches of the run-time call graph. In
this case, the backtrace would not include GetNodeFromTag,
InitCellNeighbors, SortNativeNodes, or CommPackGhosts,
which are essential to our understanding of the actual root
cause.

B. BOUT++

We have also applied our tools to a bug in version 0.7 of
BOUT++ [15], a fluid dynamics simulator. The bug manifests
as non-deterministic output; in particular, the right-hand side
of an equation is evaluated different numbers of times for
identical inputs. Our tools require some program runs to be
successful and others to fail, but in this situation the correct
output for a given input is not obvious to non-experts in the
domain of fluid dynamics.

To fit this bug into our model, we cluster runs into two
groups: one in which the outputs are similar up to some
common prefix, and the rest. We treat the runs with output
sharing a common prefix as successful, and the other runs
as failing. The top three failure-predicting predicates returned
by the analysis strongly indicate that uninitialized memory is
used in the ModifiedGS function. This is consistent with the
observed non-deterministic behavior. The inputs to the program
are completely deterministic, so the randomized contents
of uninitialized memory could explain the non-deterministic
behavior.

Specialized tools can be extremely helpful if the nature of
the bug is known or suspected. Although our analysis is not
specifically focused on finding uninitialized-memory bugs, it



actually performs quite well at this task. As a comparison
to other debugging tools, our analysis for this bug exhibits
diagnostic power approximately equivalent to that of Valgrind’s
memcheck [16], a much more specialized, narrowly-focused
tool.

C. Manually-Seeded Bugs

To test the effectiveness of statistical debugging techniques
on a wider range of bugs, we performed a blind experiment
in which a colleague inserted some common types of bugs
into AMG and ParaDiS. We then applied statistical debugging
techniques to find these bugs, as in the case of the real bugs
above. The types of bugs that could be inserted are limited by
two factors:
• we have only a few inputs to these programs, and
• we require some program runs to be successful in addition

to the failing runs.
Nevertheless, we report our experiences. The first bug was

seeded into AMG. When run on this buggy version of the code,
the analysis identified a single strong predicate. This predicate
was within a function called directly by the function containing
the actual bug. The bug, a pair of swapped dimensions, was
easily apparent by tracing the data dependencies backwards.

The next bug was also seeded into AMG. The analysis
returned three strong predicates in the second major setup phase
of the application. Two of the three predicates were closely
related and indicated that failure was highly correlated with
a particular intermediate value being large. This intermediate
value was extracted from a matrix constructed in the first
setup phase: the construction of a Laplacian matrix. The bug
was indeed in the code constructing this matrix; however, we
did not find it ourselves due to a lack of familiarity with
the algorithm being implemented. Someone familiar with the
algorithm would have seen that an input matrix was traversed
in the wrong order.

The third bug was seeded into ParaDiS, and the analysis
again returned three strong predicates. The execution of
ParaDiS proceeds in steps, with the same sequence of calls
repeated each time step. These predicates pointed to two calls
that occur in sequence in a time step. The bug, a set of missing
initializers, was actually in a function called right before the
temporally first predicate. Again, we did not find this bug
directly, but a developer familiar with the algorithm in question
would be able to identify it.

Our experience with these manually seeded bugs demon-
strates that statistical debugging produces useful predicates.
Some predicates, as in the first AMG bug and the ParaDiS bug,
identify the region of a program in which errors occur. Others,
as in the second AMG bug, identify strong data-dependence
chains that point backwards through the program execution to
real errors. Combined with domain knowledge of the intended
function of a program, these can be powerful debugging aids.

VIII. RELATED WORK

Two main bodies of work relate to ours: statistical debugging
and debugging of large-scale parallel programs.

A. Statistical Debugging

Our work is closest to that of Liblit et al. [4], [7]. They
instrument programs to collect predicates over multiple runs
and then identify bug predictors by correlating predicates with
program failures. Chilimbi et al. [17] improve the precision
of statistical debugging by examining program path profiles
instead of simple predicates. These prior efforts operate on
desktop software with few threads (usually just one), while we
address the challenges of statistical debugging of massively-
parallel applications. Recent work by Bond et al. [18] and
Jin et al. [19] consider sampled instrumentation strategies
for detecting concurrency bugs, but their focus remains on
desktop-class software. Jin et al. propose an instrumentation
strategy that detects bad thread interleavings without adding
new synchronization to the original code; this option could
also apply to supercomputing environments.

Arumuga Nainar and Liblit [20] achieve low run-time
overheads by instrumenting few predicates in each execution
and directing the choice of predicates based on the feedback
of prior runs. This approach could achieve low overheads for
scientific applications, particularly if instrumentation is applied
in the communication tree as binaries are being distributed.
Unfortunately, the feedback-directed predicate search must
analyze many runs before the next choice can be made; most
individual versions of scientific applications do not receive
enough runs to make this search practical.

Numerous statistical models have been proposed for identi-
fying failure-predictive behaviors once data has been collected.
These models include regularized logistic regression [5], [21],
probability density function comparison [22], likelihood ratio
testing [23], [7], iterative bipartite graph voting [24], [25],
hypothesis testing [26], three-valued logic [1], support vector
machines [27], random forests [27], and document topic
analysis [28]. We do not propose new statistical models; instead
we design efficient mechanisms to gather the raw data that these
models require from scientific applications at supercomputing
scales. Additionally, these existing models assume that runs are
mutually independent while our applications have strong inter-
dependencies among nodes. We find that at least the model
used in our evaluation continues to perform well, discovering
good bug predictors despite of this lack of independence.

B. Distributed Tools

While single-process debuggers are impractical at scale, To-
talView and Allinea DDT are distributed debuggers that enable
traditional debugging techniques for clusters. Unfortunately,
bugs that are non-deterministic or otherwise difficult to resolve
with traditional debuggers are even harder to find at scale. Our
work investigates an alternative debugging paradigm that can
provide deeper insight into the root causes of failures.

The Stack Trace Analysis Tool (STAT) of Ahn et al. [29]
groups related processes into equivalence classes based on stack
traces and program execution order. These equivalence classes
make analyzing large numbers of processes manageable, and
the associated stack traces have been used to diagnose large-
scale application hangs. This type of tool complements our



work and is especially valuable when no successful program
runs are available for statistical analysis.

Execution traces are another tool for debugging large-scale
applications; Ratn et al. [30] describe a lossless MPI trace
collection tool. In a sense, our work records highly lossy
program execution traces, throwing away event ordering but
recording non-MPI events.

IX. CONCLUSION

Essentially all non-trivial programs contain bugs. Scientific
applications, which are normally under constant development,
are especially susceptible. The relative lack of debugging tools
that are effective at supercomputing scales exacerbates this
unfortunate situation. We have described our experience with
bringing statistical debugging from the realm of desktop appli-
cations to the computationally-intensive domain of scientific
computing. Statistical debugging identifies program predicates
that correlate highly with failure. The statistical component of
the analysis allows it to diagnose the root causes of traditionally-
difficult bug classes, such as ones with non-deterministic or
temporally-distant manifestations.

We have introduced optimizations to the run-time instru-
mentation required by statistical debugging to reduce the
overhead by up to 25%. We have also described new data
representations and collection mechanisms that efficiently and
losslessly aggregate feedback data from 500,000 CPUs into
less than 50MB. We have also found that, in practice, statistical
debugging can remain effective even when the assumption of
independence between runs, or compute nodes, is violated.
Taken together, these advances point the way toward scalable,
informative diagnosis of bugs in massively-parallel applications.

REFERENCES

[1] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical debug-
ging using compound Boolean predicates,” in ISSTA, D. S. Rosenblum
and S. G. Elbaum, Eds. ACM, 2007, pp. 5–15.

[2] A. Lal, J. Lim, M. Polishchuk, and B. Liblit, “Path optimization in
programs and its application to debugging,” in ESOP, ser. Lecture Notes
in Computer Science, P. Sestoft, Ed., vol. 3924. Springer, 2006, pp.
246–263.

[3] B. Liblit, Cooperative Bug Isolation (Winning Thesis of the 2005 ACM
Doctoral Dissertation Competition), ser. Lecture Notes in Computer
Science. Springer, 2007, vol. 4440.

[4] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Sampling user
executions for bug isolation,” in Proceedings of the Workshop on Remote
Analysis and Measurement of Software Systems, Portland, Oregon, May
9 2003, pp. 5–8.

[5] ——, “Bug isolation via remote program sampling,” in PLDI. ACM,
2003, pp. 141–154.

[6] M. Arnold and B. G. Ryder, “A framework for reducing the cost of
instrumented code,” in PLDI, 2001, pp. 168–179.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in PLDI, V. Sarkar and M. W. Hall, Eds. ACM,
2005, pp. 15–26.

[8] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak detection
using adaptive statistical profiling,” in ASPLOS, S. Mukherjee and K. S.
McKinley, Eds. ACM, 2004, pp. 156–164.

[9] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Public
deployment of Cooperative Bug Isolation,” in Proceedings of the Second
International Workshop on Remote Analysis and Measurement of Software

Systems (RAMSS ’04), A. Orso and A. Porter, Eds., Edinburgh, Scotland,
May 24 2004, pp. 57–62.

[10] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A software-based
multicast/reduction network for scalable tools,” in SC. ACM, 2003,
p. 21.

[11] “Dyninst API,” Apr. 2011. [Online]. Available: http://www.dyninst.org/
[12] K. Davis and D. J. Quinlan, “ROSE: An optimizing transformation

system for C++ array-class libraries,” in ECOOP Workshops, ser. Lecture
Notes in Computer Science, S. Demeyer and J. Bosch, Eds., vol. 1543.
Springer, 1998, pp. 452–453.

[13] D. H. Ahn, D. C. Arnold, B. R. de Supinski, G. L. Lee, B. P. Miller,
and M. Schulz, “Overcoming scalability challenges for tool daemon
launching,” in ICPP. IEEE Computer Society, 2008, pp. 578–585.

[14] V. Bulatov, W. Cai, J. Fier, M. Hiratani, G. Hommes, T. Pierce, M. Tang,
M. Rhee, K. Yates, and T. Arsenlis, “Scalable line dynamics in ParaDiS,”
in SC. IEEE Computer Society, 2004, p. 19.

[15] B. Dudson, M. Umansky, X. Xu, P. Snyder, and H. Wilson, “Bout++:
A framework for parallel plasma fluid simulations,” Computer Physics
Communications, vol. 180, no. 9, pp. 1467 – 1480, 2009.

[16] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in PLDI, J. Ferrante and K. S. McKinley,
Eds. ACM, 2007, pp. 89–100.

[17] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vaswani,
“Holmes: Effective statistical debugging via efficient path profiling,” in
ICSE. IEEE, 2009, pp. 34–44.

[18] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: Proportional
detection of data races,” in PLDI, B. G. Zorn and A. Aiken, Eds. ACM,
2010, pp. 255–268.

[19] G. Jin, A. Thakur, B. Liblit, and S. Lu, “Instrumentation and sampling
strategies for Cooperative Concurrency Bug Isolation,” in Proceeding-
sof the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2010),
M. Rinard, Ed., SIGPLAN. Reno/Tahoe, Nevada: ACM, Oct. 2010.

[20] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” in ICSE (1),
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM, 2010,
pp. 255–264.

[21] A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken, “Statistical debugging
of sampled programs,” in NIPS, S. Thrun, L. K. Saul, and B. Schölkopf,
Eds. MIT Press, 2003.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical
model-based bug localization,” in ESEC/SIGSOFT FSE, M. Wermelinger
and H. Gall, Eds. ACM, 2005, pp. 286–295.

[23] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique,” in ASE, D. F. Redmiles, T. Ellman,
and A. Zisman, Eds. ACM, 2005, pp. 273–282.

[24] H. M. G. H. Wassel, “An enhanced bi-clustering algorithm for automatic
multiple software bug isolation,” Master’s thesis, Alexandria University,
Egypt, Sep. 2007.

[25] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statistical
debugging: Simultaneous identification of multiple bugs,” in ICML, ser.
ACM International Conference Proceeding Series, W. W. Cohen and
A. Moore, Eds., vol. 148. ACM, 2006, pp. 1105–1112.

[26] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debugging: A
hypothesis testing-based approach,” IEEE Trans. Software Eng., vol. 32,
no. 10, pp. 831–848, 2006.

[27] L. Jiang and Z. Su, “Context-aware statistical debugging: From bug
predictors to faulty control flow paths,” in ASE, R. E. K. Stirewalt,
A. Egyed, and B. Fischer, Eds. ACM, 2007, pp. 184–193.

[28] D. Andrzejewski, A. Mulhern, B. Liblit, and X. Zhu, “Statistical
debugging using latent topic models,” in ECML, ser. Lecture Notes
in Computer Science, J. N. Kok, J. Koronacki, R. L. de Mántaras,
S. Matwin, D. Mladenic, and A. Skowron, Eds., vol. 4701. Springer,
2007, pp. 6–17.

[29] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit, B. P.
Miller, and M. Schulz, “Scalable temporal order analysis for large scale
debugging,” in SC. ACM, 2009.

[30] P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz, “Preserving time
in large-scale communication traces,” in ICS, P. Zhou, Ed. ACM, 2008,
pp. 46–55.

http://www.dyninst.org/

	Introduction
	Statistical Debugging Background
	Instrumenting the Code
	Statistical Analysis

	Sampling Scientific Workloads
	Sampling Optimizations for Loops
	Conditions on the Loop Body

	Non-uniform Sampling Rates
	Revisiting Numeric Loops

	Data Collection
	Reporting Machinery
	Data Format

	Implementation
	Experimental Evaluation
	Loop Optimization Impact
	Parallel Execution Overhead
	Communication Overhead

	Root-Cause Analysis of Application Bugs
	ParaDiS 2.0
	BOUT++
	Manually-Seeded Bugs

	Related Work
	Statistical Debugging
	Distributed Tools

	Conclusion

