
Cores, Debugging, and Coverage ∗

Peter Ohmann
University of Wisconsin–Madison

ohmann@cs.wisc.edu

Ben Liblit
University of Wisconsin–Madison

liblit@cs.wisc.edu

Abstract
Debugging is difficult and costly, especially for production
failures. To aid developers, we enhance core memory dumps
produced by crashing applications with lightweight, tunable
tracing. We propose two complementary forms of tracing,
path traces and global coverage, and demonstrate that they
can provide substantial postmortem analysis benefit at low
cost. Recent work focuses on the interplay of these mecha-
nisms, and comparison of various forms of coverage data.

1. Problem and Motivation
Testing and debugging of software is difficult, expensive,
and time-consuming. Debugging, testing, and verification
can account for 50–75% of a software project’s cost [12,
15, 33]. Even with extensive in-house testing, however, post-
deployment failures are inevitable in complex software. In
this scenario, failure reports containing traces or failure-
focused views of program state are very valuable. While
comprehensive reports with complete traces of production-
run failures are ideal, this level of detail is impractical
for complex programs. Even for simple code, full-tracing
overhead may only be acceptable during in-house testing.

A core memory dump is a useful and readily-available arti-
fact from a program crash. Coupled with symbol information,
a core dump reveals the program stack for each thread at the
time of termination, global variables, and some portion of
heap data. Importantly, a core dump provides the crashing
location and the active call-site in every other stack frame,
thus providing both a snapshot of crash state and a partial call
history for the program. Horwitz et al. [17] show a substan-
tial postmortem analysis benefit by taking advantage of this
information. Nevertheless, our prior work [28] indicates that
significant execution ambiguity remains after postmortem
analysis utilizing a stack trace alone.

The goal of this work is to enhance readily-available post-
deployment failure information with lightweight, tunable in-
strumentation. Enhanced failure information could then be
given to a developer for manual debugging, or could be used
to perform automated postmortem analysis to provide a re-
duced view of the failure state for the developer (as in this

∗ This paper originally appeared as a grand finals submission to the ACM
Student Research Competition in 2014.

work). Building on the information already available in a core
dump can yield inexpensive but valuable postmortem data.
Our existing instrumentation and analysis framework [28] val-
idates this using two customizable core-dump-enhancement
mechanisms: path traces and call-site coverage. Recent work
investigates the cost and benefit of these mechanisms inde-
pendently [27], and considers other forms of lightweight core
dump enhancement. This document focuses on work investi-
gating the cost/benefit trade-offs of different forms of cover-
age. Necessary background material is discussed in section 2.
Section 3 describes our approach to lightweight instrumen-
tation and analysis of core dump data. Section 4 discusses
previous evaluations and new data comparing different gran-
ularities of coverage data. Section 5 considers related work.
Section 6 concludes and suggests future and ongoing work.

2. Background
2.1 Program Slicing
Our primary postmortem analysis used for evaluation is
based on program slicing. Program slicing with respect to
program P, program point n, and variables V determines all
other program points and branches in P which may have
affected the values of V at n. In this work, we are concerned
with static closure slices, which are a set of statements that
might transitively affect V at n or the execution of n. This
is contrasted with static executable slices [35], which are a
reduction of P that, when executed on any input, preserves
the values of V at n.

Ottenstein and Ottenstein [29] first proposed the program
dependence graph (PDG), a useful program representation
for slicing. The nodes of a PDG are the same as those in the
control flow graph (CFG), and edges represent possible trans-
fer of control or data. A control dependence edge represents
execution flow direction via a jump or conditional branch,
and a data dependence edge represents an assignment to a
variable v at its source which may be read at its target. Thus,
the backward transitive closure from n in P’s PDG constitutes
its backward static slice. Interprocedural PDG construction is
more complex; our work is based on the System Dependence
Graphs (SDG) of Horwitz et al. [16].

A static slice considers all possible program inputs and
execution flows. When debugging, one would like the slice to
be constrained to a particular execution. To do so, Korel and

1

mailto:ohmann@cs.wisc.edu
mailto:liblit@cs.wisc.edu


1 void foo(int x, int y, bool flag) {
2 int result = 0, result2 = 0;
3 if (y == 0)
4 y = x;
5 if (flag) {
6 result = x + y;
7 result2 = x * y;
8 } else {
9 result = x − y;

10 result2 = x / y;
11 }
12 print(result);
13 print(result2);
14 }

Figure 1. Slicing example. A possible dynamic slice is
shaded; the static slice is framed (with or without shading).

Laski [19] first proposed dynamic slicing; we are interested
in closure (rather than executable) dynamic slices similar
to those proposed by Agrawal and Horgan [3]. However,
dynamic slicing can be very expensive, as it requires data
equivalent to a full execution trace plus all memory accesses
due to pointer variables, arrays, and structures [4, 20]. Thus,
this work will lie somewhere between these two extremes:
enhanced core dumps will not contain full execution traces,
but could be useful in constraining a static slice over a PDG.

Figure 1 shows an example program with its static slice
taken from line 13 with respect to variables {result2}. The
corresponding dynamic slice for the inputs 〈1, 2, false〉 is
shaded. Note that it is a subset of the static slice, which
summarizes all possible executions.

2.2 Basic Block Coverage and Optimization
One of our lightweight tracing mechanisms involves gath-
ering coarse-grained coverage data. Program coverage is a
common quality metric used for test suites. Testers often use
statement coverage: the set of statements in the program that
executed at least once. To gather statement coverage, though,
one need not place instrumentation after every statement in
the program; one probe per basic block is sufficient. For com-
plete executions, coverage instrumentation can be optimized
further. Agrawal [1] introduces the notion of a superblock: a
set of basic blocks such that all complete function executions
either execute all of the blocks or none of them. Therefore,
coverage data for one basic block in each superblock is equiv-
alent to coverage data for all basic blocks. In addition, a
superblock may not require probing if its coverage can be
derived from the coverage of another set of superblocks.

The algorithm to compute the superblocks for function
F begins by computing the dominator and post-dominator
trees for F. For two CFG nodes n and m, n dominates m
if all paths from function entry to m must execute n, and

entry

2

3

4 5

6

exit
(a) CFG with annotated superblocks

{entry, 2, exit}

{3, 6}

{4} {5}

(b) Supergraph

Figure 2. Supergraph example

n post-dominates m if all paths from m to function exit
must execute n. The two trees are then merged (preserving
all dominator and post-dominator edges). Each strongly-
connected component of the resulting graph is collapsed
into a single superblock; these blocks now form a DAG (the
supergraph). To obtain 100% statement coverage, test cases
need only cover the leaves of the supergraph. In order to
optimize probes for gathering unknown coverage, for each
superblock s with a set of child superblocks C, s must be
probed if there exists a path from function entry to function
exit containing s but no basic blocks in any superblock in C.

The example shown in fig. 2 has four superblocks:
{entry, 2, exit}, {3, 6}, {4}, and {5}. Superblock {3, 6}, how-
ever, need not be probed, as its coverage can be derived from
that of its supergraph children, {4} and {5}.

3. Approach and Uniqueness
Recall that the high-level goal of this work is to enhance core
dumps produced by crashing applications, leaving additional
“breadcrumbs” to disambiguate the crashing execution cor-
responding to the dump. Ideally, tracing data will be useful
for postmortem analysis but inexpensive to gather. Our in-
strumentation must be efficient enough (in time and space)
for production use, keeping all data in memory and avoiding
I/O and expensive logging. Tracing must be customizable
after deployment (due to failure requirements or overhead
sensitivity) without requiring recompilation. The data traced
must scale with execution state, particularly readily-available
core dump data (such as stack depth).

Our first tracing mechanism, titled path tracing, is a vari-
ant on a classic path profiling technique [8] that efficiently
profiles all acyclic, intraprocedural paths. The algorithm as-
signs a unique integer value to each acyclic path—beginning
at function entry or a loop head and ending at function exit
or a back edge—and increments a global table of counters
on each acyclic path execution at run time. Necessary instru-
mentation is optimized by finding chord edges in a maximum
spanning tree, with edges weighted by path values. The final

2



product is a table counting the number of occurrences of each
path. Our variant on this approach moves all storage into the
stack, giving each activation record with activated tracing a
fixed-size, stack-allocated circular buffer to store the last N
acyclic paths. Thus, we are able to obtain very dense infor-
mation close to the point of failure in each stack frame via a
stack-local execution suffix leading up to the failure point in
that frame. Our focus on the failure location is a conscious
choice for several reasons: this is the best place to tie to ex-
isting core dump data, empirical studies indicate that bugs
tend to have short propagation distances [13, 30, 39], and
developers are likely to begin from the failure point during
debugging.

Path tracing data is tied directly to the program stack. This
is both good and bad. The data naturally scales with stack size,
and one need not maintain global or heap-allocated storage,
making it efficiently maintainable. However, all data is lost
immediately on a function’s return. Thus, no information is
maintained by this mechanism at global scope.

Coverage data provides coarser-grained global informa-
tion, allowing tracing to scale gracefully as the debugging
task departs from the active crash stack. Coverage can ad-
dress two blind spots in path traces: execution within stack
frames prior to the gathered suffix, and execution from called
functions that have already returned. For the former, a fixed-
size, stack-allocated array maintains one flag for each trace
point, indicating whether that point was executed in the cur-
rent invocation of the stack frame’s function. For the latter,
a global array of the same size maintains one flag for each
trace point, indicating whether that point was executed in any
invocation of each function for which tracing is active. Thus,
coverage information provides crash-focused tracing in each
active stack frame, and also global coverage that summarizes
the data from all completed calls.

Note that the prior discussion intentionally leaves vague
which program points are traced for coverage. Indeed, there
are many options here with different cost/accuracy trade-offs,
and the best choice is an empirical matter. Thus far, we have
considered three alternatives: function coverage, call-site cov-
erage, and statement coverage. Function coverage places one
probe at the exit of each traced function. While this is the
coarsest granularity (and thus the least expensive to gather),
function coverage carries no intraprocedural value whatso-
ever; it cannot enhance the crash stack as functions in the
active stack are already clearly executing. Statement cover-
age is gathered as basic block coverage, and can be further
optimized via superblock analysis as discussed in section 2.2.
This is the finest granularity considered (though “finer” gran-
ularities could include path or data-flow coverage), and thus
the most expensive to gather. Call-site coverage places one
probe after each relevant call instruction in traced functions.
Note that it resides between the previous two extremes: if
only one call in each basic block is instrumented, the probes
are a subset of those for basic block coverage.

Optimization of call coverage is a reasonably straightfor-
ward extension of the algorithm from section 2.2, with some
caveats. In order to optimize call-site coverage without losing
data, we must specialize the set of child nodes in the super-
graph when deciding whether to instrument a superblock. To
be specific, for each superblock, we can cover the block if
we can instrument it (i.e., it contains a call instruction) or it
does not need instrumentation. For superblock n, we call the
set of n’s superblock children we can cover C′. Note that C′

is a subset of C (all of n’s children) from section 2.2. A block
n needs instrumentation if there exists a path from function
entry to exit containing n but containing none of C′. These
definitions are mutually recursive. However, since the super-
graph is always guaranteed to be a DAG [1], there exists a
reverse topological ordering in which we can safely process
the superblocks. The original optimization algorithm is now
a special case of this refinement wherein we can instrument
all superblocks. We will instrument any superblock we can
instrument that needs instrumentation. For example, given
the CFG shown in fig. 2, suppose that a call instruction exists
in basic block 4, but none exists in 5. Then, superblock {3, 6}
must be probed, as a path now exists from entry to exit that
does not contain its only can cover child, {4}. Coverage gath-
ered for incomplete executions is not necessarily complete
when using these optimizations. Consider the CFG shown
in fig. 2, and an execution crashing in basic block 4. If opti-
mized instrumentation is used, coverage will not be gathered
for block 6, and, thus, one cannot infer whether the loop has
executed prior to crashing in 4. This could decrease the utility
of traced information; this is evaluated in section 4.

Tracing is customizable to meet performance requirements
or to focus on specific recurring failures. We enable and
disable tracing at function granularity, and replicate the body
of each instrumented function. Each replica is instrumented
with one set of tracing options. Simple binary modification
of a global flag selects between alternatives post-deployment.
In Ohmann and Liblit [28], we show that specializing tracing
to particular failures significantly reduces tracing overheads.

We developed two postmortem analyses to evaluate the
utility of core dump enhancement. The first, active nodes
and edges, identifies CFG nodes and edges which could not
have executed in the failing run given the crashing program
stack and traced data. This analysis eliminates all unexecuted
coverage points, and then performs backward control-flow
reachability from the crash point, constrained by traced path
data. The second analysis, static PDG restriction, computes
a restriction of the static PDG (see section 2.1) based on the
crash location and traced data. Note that a static PDG over-
approximates those control and data flows actually active
in any particular run. The algorithm begins by removing
all unexecuted coverage points, and then maintains only
dependence edges implied by the execution suffix derived
from path trace data. When departing from the active stack or
running out of trace, the algorithm falls back on static PDG

3



program source(s)

instrument

executable

run1

run2

runn

core+
1

core+
2

core+
n

analyze

analyze

analyze

developer

Figure 3. System organization

information. The restricted PDG can then be used to compute
partially-dynamic slices from any point of interest.

Figure 3 shows an example usage scenario. The executable
is instrumented once at build time, and, for each execution,
tracing is customized as desired. Postmortem analysis is
performed on enhanced core files, the results of which can be
given to a developer to aid in debugging.

4. Results and Contributions
We implemented core dump enhancement instrumentation
in a tool called csi-cc1. We use the LLVM compiler frame-
work [22] to compile and instrument programs. For present
evaluations, we restrict our evaluation to PDG restriction, as
active nodes and edges show similar patterns. Our PDGs are
produced by CodeSurfer 2.2p0 [6].

In Ohmann and Liblit [28], we show that, with realistically
customized tracing, run-time overhead ranges from 0–5%,
averaging only 1.3%. We traced the last 10 acyclic paths
in any function appearing in any crashing stack of each
application’s test suite and enabled call-site coverage for
all functions. To evaluate analysis effectiveness, we took
interprocedural static slices from the crash point for each
crashing test case, and intraprocedural static slices from the
crashing location in each still-active stack frame at the time
of the crash. We assessed the utility of enhanced data by
comparing results against a stack-sensitive slicing approach
(using the active stack to restrain possible call paths) similar
to that in Horwitz et al. [17]. Postmortem analysis shows the
data to be very valuable, reducing intraprocedural static slice
sizes by 21–52%, and stack-sensitive interprocedural static
slice sizes by 49–78% in larger applications.

In Ohmann [27], we investigated path traces and call-site
coverage independently. The dense information from path
traces is significantly more expensive to collect (maximum
3.5% overhead, averaging 0.8%) than call-site coverage (max-
imum 1.7% overhead, averaging 0.3%). Analysis results indi-
cate that path traces tend to be preferable for intraprocedural
analysis due to finer-grained information closer to the point of
failure, while coverage information is preferable for interpro-
cedural analysis where significant ambiguity exists outside
the active stack. Neither, however, is completely sufficient
on its own in either category, lending support to the use of
multiple lightweight tracing mechanisms.

1http://pages.cs.wisc.edu/~liblit/ase-2013/code/

siemens ccrypt flex grep gzip sed gcc

1×

1.05×

1.1×

1.15×

1.2×

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

in
st

ru
m

en
te

d Function Coverage
Optimized Call Coverage
Call Coverage
Optimized Basic Block Coverage
Basic Block Coverage

Figure 4. Run-time overhead

We recently investigated the cost/benefit trade-offs of
different coverage mechanisms. For these experiments, we
obtained a set of buggy applications with test suites from
the Software-artifact Infrastructure Repository [32]. Some
applications have multiple versions and/or faults which can
be enabled independently. For the following experiments, we
aggregate results across the application test suite, then by
bug, by version, and finally by application so as not to over-
represent particular bugs/versions causing more failures. All
applications are written in C, but vary in size and functionality,
ranging from 173 to 222,196 mean lines-of-code across
versions. The smaller, simpler applications of the Siemens
test suite are grouped for brevity in results presentation.
In Ohmann [27], we showed that path tracing and coverage
complement each other well. However, to avoid adding
further dimensions to present evaluations, we consider only
coverage alternatives independently. In addition, we do not
re-evaluate the cost of customization, and instrument each
function only once.

Figure 4 shows results for run-time overhead relative to
uninstrumented builds (lower is better). The primary research
questions are: (i) How do the coverage mechanisms compare
to one another? and (ii) What benefit does coverage optimiza-
tion have? For some applications (siemens, ccrypt), more
detailed basic block information is not substantially more
expensive than call-site coverage, at least within experimen-
tal variance. For other, larger applications (gzip, sed, gcc),
though, the cost is substantial. For gzip, the cost of gathering
optimized basic block coverage increases from 0.7% to 4.9%
over unoptimized call-site coverage. Optimization is clearly
very beneficial for basic block coverage, decreasing sed’s
overhead from 18.2% to 4.1%. Given that call-site coverage
is significantly less expensive, the results here are less clear.
Some applications (e.g., gcc) seem to indicate some benefit,
but others (e.g., sed) show that variance with overheads under
1% can make results difficult to interpret.

4

http://pages.cs.wisc.edu/~liblit/ase-2013/code/


siemens ccrypt flex grep gzip sed gcc
0%

20%

40%

60%

80%

100%

sl
ic

e
as

%
of

en
tir

e
pr

og
ra

m

None
Function Coverage
Optimized Call Coverage
Call Coverage
Basic Block Coverage

(a) Intraprocedural Slicing

siemens ccrypt flex grep gzip sed
0%

20%

40%

60%

80%

100%

sl
ic

e
as

%
of

en
tir

e
pr

og
ra

m

None
Function Coverage
Optimized Call Coverage
Call Coverage
Basic Block Coverage

(b) Interprocedural Slicing

Figure 5. Slice reduction due to feedback analysis

Figures 5a and 5b show intraprocedural and interproce-
dural slicing results, respectively. These plots show slice
size as a percent of the entire program (lower numbers are
better), with the largest bar representing the slice size for
stack-sensitive slicing with no enhanced core data. We were
unable to gather interprocedural results for gcc due to the size
of the whole-program PDG and our memory-bound analysis.
The primary research questions are: (i) How do the coverage
mechanisms compare to one another? and (ii) Does ambiguity
introduced by optimization hurt results (section 3)? It is clear
that, for the applications evaluated, call-site coverage can
substantially reduce execution ambiguity that function cover-
age cannot. Thus, simply eliminating unexecuted functions
outside the active stack appears to leave significant, relevant
ambiguity about paths taken through those functions. Note
again that function coverage cannot assist with intraprocedu-
ral analysis. The dense information from basic block coverage
is clearly relevant in many cases, but the improvement here
is less extreme, lending support to focus on call sites as a
likely source of ambiguity (interactions between functions).
With this in mind, we gathered optimized call-site coverage
results. Ambiguity introduced by incomplete executions is
small, though a small impact is measurable.

Overall, there are substantial trade-offs regarding coverage
in our domain. While function coverage has unmeasurably
small overhead, its postmortem analysis benefit is often
significantly smaller than other options. Basic block coverage
comes at a high overhead cost, but is useful where its cost can
be tolerated. Call-site coverage provides most of the benefit of
full basic block coverage at significantly less cost; thus, it is
likely the best choice in many real-world deployed scenarios.

5. Related Work
Previous work uses symbolic execution with dynamic feed-
back data to reproduce failing executions [10, 11, 18, 31, 38].
We intentionally sacrifice perfect replay in favor of low over-
head and tunable instrumentation. Symbolic execution can
be very expensive and is undecidable in the general case;
our analyses could provide useful constraints for a symbolic
execution engine. Yuan et al. [36, 37] use static analysis with
logs from failing runs to identify paths that must, may, or can-
not have executed between logging points. Run-time logging
provides a source of valuable information complementary to
our techniques. Burger and Zeller [9] minimize failing test
cases using call/return traces. Our work is similar in spirit,
but focuses on lightweight tracing of deployed software.

Gupta et al. [14] compute slices within a debugger; or-
dered break points and call/return traces restrict the possible
paths taken. While debugging is the ultimate beneficiary, our
work focuses on extremely lightweight tracing with overheads
low enough for production use. Nishimatsu et al. [26] shrink
static slices by marking calls that execute during a given run
to prune possible execution paths. Our coverage data works
similarly, though our information is more detailed: we have
both global coverage information as well as segregated infor-
mation for each stack frame; we pair this information with
more fine-grained, specialized path tracing; and we focus on
customization and production failure enhancement.

Prior work optimizes coverage data by dynamically remov-
ing and customizing instrumentation [7, 34] and extending
optimization to interprocedural paths [2, 21]. While not tar-
geting in-memory core dump enhancement, these approaches
provide venues for further improvement of our mechanisms.

5



6. Conclusions and Future Work
We have shown that substantial postmortem analysis ben-
efit can be provided by customizable, low-cost core dump
enhancement. Path tracing and global coverage provide com-
plementary tracing strategies. We also evaluated the costs
and benefits of various forms of coverage, and found that this
choice can have a significant impact on run-time overhead
and postmortem utility of traced data.

This work suggests a number of promising future direc-
tions. We continue to investigate new tracing mechanisms
such as interprocedural call paths and dataflow hints. Reduc-
ing the cost of tracing is always a priority; thus, automatically
using the static structure of programs and dynamic features of
previous failures is under active investigation. We currently
do not perform fault localization explicitly, but many prior
efforts use slicing [5, 23, 25] and/or coverage [5, 24] for fault
localization. We are interested in exploring this possibility.

7. Acknowledgments
This research was supported in part by NSF grants CCF-
0953478 and CCF-1420866, and a CodeSurfer license gen-
erously provided by GrammaTech, Inc. Opinions, findings,
conclusions, or recommendations expressed herein are those
of the authors and do not necessarily reflect the views of NSF
or other institutions.

References
[1] H. Agrawal. Dominators, super blocks, and program coverage.

In Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’94,
pages 25–34, New York, NY, USA, 1994. ACM.

[2] H. Agrawal. Efficient coverage testing using global dominator
graphs. In Proceedings of the 1999 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engi-
neering, PASTE ’99, pages 11–20, New York, NY, USA, 1999.
ACM.

[3] H. Agrawal and J. R. Horgan. Dynamic program slicing.
In Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, PLDI ’90,
pages 246–256, New York, NY, USA, 1990. ACM.

[4] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dynamic slic-
ing in the presence of unconstrained pointers. In Proceedings
of the symposium on Testing, analysis, and verification, TAV4,
pages 60–73, New York, NY, USA, 1991. ACM.

[5] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and dataflow tests. In
Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, pages 143–151, Oct 1995.

[6] P. Anderson, T. Reps, and T. Teitelbaum. Design and imple-
mentation of a fine-grained software inspection tool. IEEE
Trans. Softw. Eng., 29(8):721–733, Aug. 2003.

[7] P. Arumuga Nainar and B. Liblit. Adaptive bug isolation. In
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, editors,
ICSE (1), pages 255–264. ACM, 2010.

[8] T. Ball and J. R. Larus. Efficient path profiling. In Proceedings
of the 29th annual ACM/IEEE international symposium on
Microarchitecture, MICRO 29, pages 46–57, Washington, DC,
USA, 1996. IEEE Computer Society.

[9] M. Burger and A. Zeller. Minimizing reproduction of software
failures. In Proceedings of the 2011 International Symposium
on Software Testing and Analysis, ISSTA ’11, pages 221–231,
New York, NY, USA, July 2011. ACM.

[10] J. Clause and A. Orso. A technique for enabling and support-
ing debugging of field failures. In Proceedings of the 29th
international conference on Software Engineering, ICSE ’07,
pages 261–270, Washington, DC, USA, 2007. IEEE Computer
Society.

[11] O. Crameri, R. Bianchini, and W. Zwaenepoel. Striking a
new balance between program instrumentation and debugging
time. In Proceedings of the sixth conference on Computer
systems, EuroSys ’11, pages 199–214, New York, NY, USA,
2011. ACM.

[12] B. Gauf and E. Dustin. The case for automated software testing.
Journal of Software Technology, 10(3):29–34, Oct. 2007.

[13] W. Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Z. Yang.
Characterization of Linux kernel behavior under errors. In
Dependable Systems and Networks, 2003. Proceedings. 2003
International Conference on, pages 459–468, June 2003.

[14] R. Gupta, M. L. Soffa, and J. Howard. Hybrid slicing: inte-
grating dynamic information with static analysis. ACM Trans.
Softw. Eng. Methodol., 6(4):370–397, Oct. 1997.

[15] B. Hailpern and P. Santhanam. Software debugging, testing,
and verification. IBM Syst. J., 41(1):4–12, Jan. 2002.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26–60, Jan. 1990.

[17] S. Horwitz, B. Liblit, and M. Polishchuk. Better debugging
via output tracing and callstack-sensitive slicing. IEEE Trans.
Softw. Eng., 36(1):7–19, Jan. 2010.

[18] W. Jin and A. Orso. BugRedux: reproducing field failures for
in-house debugging. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 474–
484, Piscataway, NJ, USA, 2012. IEEE Press.

[19] B. Korel and J. Laski. Dynamic program slicing. Inf. Process.
Lett., 29(3):155–163, Oct. 1988.

[20] B. Korel and J. Laski. Dynamic slicing of computer programs.
J. Syst. Softw., 13(3):187–195, Dec. 1990.

[21] J. R. Larus. Whole program paths. In Proceedings of the
ACM SIGPLAN 1999 Conference on Programming Language
Design and Implementation, PLDI ’99, pages 259–269, New
York, NY, USA, 1999. ACM.

[22] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings
of the 2004 International Symposium on Code Generation and
Optimization (CGO’04), Palo Alto, California, Mar. 2004.

[23] Y. Lei, X. Mao, and T. Y. Chen. Backward-slice-based
statistical fault localization without test oracles. In Quality
Software (QSIC), 2013 13th International Conference on,
pages 212–221, July 2013.

6



[24] B. R. Liblit. Cooperative Bug Isolation. PhD thesis, University
of California, Berkeley, Dec. 2004.

[25] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang. Slice-based
statistical fault localization. J. Syst. Softw., 89:51–62, Mar.
2014.

[26] A. Nishimatsu, M. Jihira, S. Kusumoto, and K. Inoue. Call-
mark slicing: an efficient and economical way of reducing
slice. In Proceedings of the 21st international conference on
Software engineering, ICSE ’99, pages 422–431, New York,
NY, USA, 1999. ACM.

[27] P. Ohmann. CSI: Crash scene investigation. In Proceedings
of the 2013 Companion Publication for Conference on Sys-
tems, Programming, & Applications: Software for Humanity,
SPLASH ’13, pages 123–124, New York, NY, USA, 2013.
ACM.

[28] P. Ohmann and B. Liblit. Lightweight control-flow instrumen-
tation and postmortem analysis in support of debugging. In
28th International Conference on Automated Software Engi-
neering (ASE 2013), Palo Alto, California, Nov. 2013. IEEE
and ACM.

[29] K. J. Ottenstein and L. M. Ottenstein. The program dependence
graph in a software development environment. In Proceedings
of the first ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments,
SDE 1, pages 177–184, New York, NY, USA, 1984. ACM.

[30] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failures. In
Proceedings of the Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05, pages 235–248, New York, NY,
USA, 2005. ACM.

[31] J. Rößler, A. Zeller, G. Fraser, C. Zamfir, and G. Candea.
Reconstructing core dumps. In ICST ’13: Proceedings of
the Sixth IEEE International Conference on Software Testing,
Verification and Validation, Mar. 2013.

[32] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do. Software–
artifact infrastructure repository. http://sir.unl.edu/
portal/, Sept. 2006.

[33] G. Tassey. The economic impacts of inadequate infrastructure
for software testing. National Institute of Standards and
Technology, RTI Project, 7007(011), 2002.

[34] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation
for code coverage testing. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’02, pages 86–96, New York, NY, USA, 2002.
ACM.

[35] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):
352–357, July 1984.

[36] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy.
SherLog: error diagnosis by connecting clues from run-time
logs. In Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and
operating systems, ASPLOS XV, pages 143–154, New York,
NY, USA, 2010. ACM.

[37] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving
software diagnosability via log enhancement. In Proceedings of
the sixteenth international conference on Architectural support
for programming languages and operating systems, ASPLOS
XVI, pages 3–14, New York, NY, USA, 2011. ACM.

[38] C. Zamfir and G. Candea. Execution synthesis: a technique
for automated software debugging. In Proceedings of the
5th European conference on Computer systems, EuroSys ’10,
pages 321–334, New York, NY, USA, 2010. ACM.

[39] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu,
and T. Reps. ConSeq: Detecting concurrency bugs through
sequential errors. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVI, pages 251–264,
New York, NY, USA, 2011. ACM.

7

http://sir.unl.edu/portal/
http://sir.unl.edu/portal/

	Problem and Motivation
	Background
	Program Slicing
	Basic Block Coverage and Optimization

	Approach and Uniqueness
	Results and Contributions
	Related Work
	Conclusions and Future Work
	Acknowledgments

