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Abstract

Modern integrated development environments (IDEs) provide programmers with a variety of so-
phisticated tools for program visualization and manipulation. These tools assist the programmer in
understanding legacy code and making coordinated changes across large parts of a program. Simi-
lar tools incorporated into an integrated proof environment (IPE) would assist proof developers in
understanding and manipulating the increasingly larger proofs that are being developed. In this
paper we propose some tools and techniques developed for software engineering that we believe
would be equally applicable in proof engineering.
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1 Introduction

Modern integrated development environments (IDEs) provide programmers with a variety
of sophisticated tools for program understanding and manipulation. In addition to such
basics as syntax highlighting and project building, these tools commonly offer refactorings
and program visualization components. Many of the techniques developed for IDEs can be
transferred directly to the world of UITPs. Others can be modified to exploit the special
nature of theorem provers.

The idea of transferring IDE techniques to theorem provers is not new [2,7,21,36]. However,
there have been significant advances in IDEs in the last decade. Many of these advances
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have been motivated by the needs of developers who must maintain and extend large bod-
ies of existing code. The increasing complexity of real world programs means that even
an experienced programmer will struggle to understand the relationships between different
software components. When extending or fixing existing code the programmer may spend
hours or days merely figuring out what other parts of the program these changes may affect.
Moreover, the changes the programmer must make may be scattered across several program
components. For this reason, numerous software management tools have been developed to
assist in visualizing program properties. Others allow a programmer to navigate a project
easily and to make automatic changes across multiple files.

As automated theorem proving matures, the proportion of old proofs to new as well as their
size will continue to grow. Tools to visualize, understand, and automatically change these
proofs will become vital. Integrated proof environments (IPEs) 5 should incorporate these
tools in the same manner as IDEs.

In the following sections we discuss several techniques useful in software development that
can be extended to theorem proving. These techniques are navigation by derivation, multiple
views, automatic refactorings, and proof visualization in the large.

2 Navigation by Derivation

Formal proofs, even relatively simple ones, are necessarily very large. For example, a formal-
ization of the Sudoku puzzle and an accompanying solution procedure in Coq [35] required
approximately 5000 lines. A formal proof of the four color theorem [12, 41] took about
60,000 lines and a few years to develop. Sophisticated automated proof assistants have been
developed to assist in the construction of such proofs using tactics. These tactics may be
manually selected by the user or automatically chosen by the proof assistant. The structure
of a proof object generated by these tactics may be difficult for a user to predict even when
the user has selected the tactic. When a tactic is selected automatically the structure may
be further obscured. The proof objects themselves may be far too large to be easily read. For
example, the Sudoku development mentioned above contains a proof that the permutation
relation on two lists is invertible. That is, where a pair of lists are permutations of each
other, and the head elements of the lists are equal, the tails of the two lists must also be
permutations of each other. About ten lines of tactics are required to complete the proof
of the theorem, but at roughly 750 lines the generated proof is two orders of magnitude
larger. Nonetheless, there are many occasions on which it becomes necessary to study such
proofs. A tactic implemented in a proof assistant may not be working as expected; it may
be necessary to inspect proof objects themselves in order to debug the tactic. A user may
be developing a proof specifically to exploit a proof assistant’s extraction mechanism and
may need to inspect the proofs to understand why the extracted code is inefficient or, in
some cases, non-existent [8]. It may be necessary to rediscover what auxiliary theorems were

5 The authors would like to thank one of the anonymous reviewers for acquainting them with this term.
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Proof Script Proof Derived Program

Require Import Le.

Section Lists.

Variable A : Set.

Set Implicit Arguments.

Inductive list : Set :=
  | nil : list
  | cons : A -> list -> list.

Infix "::" := cons (at level 60, 
right associativity) : list_scope.

Open Scope list_scope.

(*************************)
(** Discrimination       *)
(*************************)

Lemma nil_cons : forall (a:A) 
(m:list), nil <> a :: m.
Proof. 
  intros; discriminate.
Qed.

(*************************)
(** Concatenation        *)
(*************************)

Fixpoint app (l m:list) {struct l} : 
list :=
  match l with
  | nil => m
  | a :: l1 => a :: app l1 m
  end.

Infix "++" := app (right 
associativity, at level 60) : 
list_scope.

     : forall P : list -> Type,
       P nil ->
       (forall (a : A) (l : list), P 
l -> P (a :: l)) -> forall l : list, 
P l

list_ind = 
fun P : list -> Prop => list_rect P
     : forall P : list -> Prop,
       P nil ->
       (forall (a : A) (l : list), P 
l -> P (a :: l)) -> forall l : list, 
P l

list_rec : 
fun P : list -> Set => list_rect P
     : forall P : list -> Set,
       P nil ->
       (forall (a : A) (l : list), P 
l -> P (a :: l)) -> forall l : list, 
P l

nil_cons = 
fun (a : A) (m : list) (H : nil = 
a :: m) =>
let H0 :=
  eq_ind nil
    (fun ee : list => match ee with
                      | nil => True
                      | _ :: _ => 
False
                      end) I (a :: m) 
H in
False_ind False H0
     : forall (a : A) (m : list), nil 
<> a :: m

app = 
fix app (l m : list) {struct l} : 
list :=

open Specif

type 'a list =
  | Coq_nil
  | Coq_cons of 'a * 'a list

(** val list_rect : 'a2 -> ('a1 -> 
'a1 list -> 'a2 -> 'a2) -> 'a1 list -
> 'a2 **)

let rec list_rect f f0 = function
  | Coq_nil -> f
  | Coq_cons (a, l0) -> f0 a l0 
(list_rect f f0 l0)

(** val list_rec : 'a2 -> ('a1 -> 'a1 
list -> 'a2 -> 'a2) -> 'a1 list -> 
'a2 **)

let rec list_rec f f0 = function
  | Coq_nil -> f
  | Coq_cons (a, l0) -> f0 a l0 
(list_rec f f0 l0)

(** val app : 'a1 list -> 'a1 list -> 
'a1 list **)

let rec app l m =
  match l with
    | Coq_nil -> m
    | Coq_cons (a, l1) -> Coq_cons 
(a, (app l1 m))

(** val head : 'a1 list -> 'a1 option 
**)

let head = function
  | Coq_nil -> None
  | Coq_cons (x, l0) -> value x

(** val tail : 'a1 list -> 'a1 list 

Fig. 1. Overall structure of a three panel proof navigation tool. The proof is taken from the Coq
List library, one of the standard libraries in the Coq distribution. The scroll bars on the left and
right allow the user to navigate the proof script and the derived program respectively.

used to prove a given theorem; such auxiliary theorems may be selected without the user’s
intervention by a proof assistant with support for automation.

Most programmers are familiar with the Unix diff utility which identifies the textual dif-
ferences between two files. A number of visual tools exploit an underlying diff tool. For
example, the Eclipse Compare view allows the user to compare up to three files. The tool
automatically aligns the differences between the files and matches corresponding parts using
visual cues. This technique, using visual cues to identify associated entities, can be extended
to other domains. For example, a proof developer will often have two perspectives on a
given proof. The first perspective consists of the definitions and theorems along with their
corresponding tactics. The second perspective consists of the same definitions and theorems,
this time associated with their proofs. There is a correspondence between the tactics and
the terms of the proof. This correspondence differs from that arising in file comparison. In
one way it is more straightforward since the proof has a formal relationship to the tactics
whereas in a file comparison the relationship between the files must be discovered by an
heuristic. However, the correspondence is also more complex. One tactic may correspond to
multiple terms in a proof. Hence, an interactive tool which allows the user to select a tactic
or group of tactics and responds by highlighting the associated terms in a proof would be a
valuable aid to proof understanding.

A number of theorem provers, e.g., PX [13], Minlog [22], Isabelle/HOL [23], NuPRL [24] and
Coq [34], exploit the Curry-Howard isomorphism [10,40] to offer a program extraction facility
[19, 20, 27]. A program extraction facility automatically generates programs from proofs. In
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Lemma list_eq_dec =
fun (H : forall x y : A, {x = y} + {x <> y}) (x : list) =>
list_rec (fun x0 : list => forall y : list, {x0 = y} + {x0 <> y})
  (fun y : list =>
   match y as l return ({nil = l} + {nil <> l}) with
   | nil => 
   | a0 :: l0 => 
   end)
  (fun (a : A) (l : list) (IHl : forall y : list, {l = y} + {l <> y})
     (y : list) =>
   match y as l0 return ({a :: l = l0} + {a :: l <> l0}) with
   | nil => 
   | a0 :: l0 =>
       let s := H a a0 in
       match s with
       | left e =>
           let s0 := IHl l0 in
           match s0 with
           | left e' =>
               left (a :: l <> a0 :: l0)
                 (eq_ind_r (fun a1 : A => a1 :: l = a0 :: l0)
                    (eq_ind_r (fun l1 : list => a0 :: l1 = a0 :: l0)
                       (refl_equal (a0 :: l0)) e') e)
           | right e' =>
               right (a :: l = a0 :: l0)
                 (fun H0 : a :: l = a0 :: l0 =>
                  e'
                    (let H1 :=
                       f_equal
                         (fun e0 : list =>
                          match e0 with
                          | nil => a
                          | a :: _ => a
                          end) H0 in
                     (let H2 :=
                        f_equal
                          (fun e0 : list =>
                           match e0 with
                           | nil => l
                           | _ :: l => l
                           end) H0 in

Proof

fun (H : forall x y : A, {x = y} + {x <> y}) (x : list) =>
list_rec (fun x0 : list => forall y : list, {x0 = y} + {x0 <> y})
  (fun y : list =>
   match y as l return ({nil = l} + {nil <> l}) with
   | nil => 
   | a0 :: l0 => 
   end)
  (fun (a : A) (l : list) (IHl : forall y : list, {l = y} + {l <> y})
     (y : list) =>
   match y as l0 return ({a :: l = l0} + {a :: l <> l0}) with
   | nil => 
   | a0 :: l0 =>

Lemma list_eq_dec :
 (forall x y:A, {x = y} + {x <> y}) -> forall x y:list, {x = y} + {x <> y}.
Proof.
  induction x as [| a l IHl]; destruct y as [| a0 l0];            .
  destruct (H a a0) as [e| e].
  destruct (IHl l0) as [e'| e'].
  left; rewrite e; rewrite e'; trivial.
  right; red in |- *; intro.
  apply e'; injection H0; trivial.
  right; red in |- *; intro.
  apply e; injection H0; trivial.
Qed.

Tactics

auto

left (nil <> nil) (refl_equal nil)
right (nil = a0 :: l0) (nil_cons (a:=a0) (m:=l0))

right (a :: l = nil) (sym_not_eq (nil_cons (a:=a) (m:=l)))

(** val list_eq_dec : ('a1 -> 'a1 -> bool) -> 
'a1 list -> 'a1 list -> bool **)

let rec list_eq_dec h x y =
  match x with
    | Nil -> (match y with
                | Nil -> 
                | Cons (a0, l0) ->              )
    | Cons (a, l) ->
        (match y with
           | Nil -> 
           | Cons (a0, l0) ->
               (match h a a0 with
                  | true -> list_eq_dec h l l0
                  | false -> false))

Program

false
true

false

Fig. 2. Proof of the decidability of equality on lists. The Tactics pane on the left displays the
proof tactics while the Program pane on the right displays the extracted program. The Proof pane
displays the proof proper.

the extraction process the logical parts of a proof are deleted and the computational parts are
translated into the source code of the target language. Programs extracted from the proofs
of their desired properties are known as certified programs. As long as the extraction facility
and proof checker are themselves correct, a certified program is guaranteed to be a correct
implementation of its specification, i.e., the proof from which it is extracted. Generally, the
extracted programs are several orders of magnitude smaller than their associated proofs and
much easier to understand. In the case of theorem provers with an extraction mechanism a
three way association would be appropriate and useful. Figure 1 shows the overall structure
of such a navigation tool.

Each component is associated with its corresponding component in the adjacent panel. Ex-
amples of proof script components are definitions or theorems with tactics, examples of proof
components are definitions or proofs, examples of components in an extracted program are
definitions of types or functions. Corresponding components are automatically aligned as the
user focuses on different areas in the proof script or extracted program. Light gray is used

4



Mulhern

Lemma list_eq_dec =
fun (H : forall x y : A, {x = y} + {x <> y})       (x : list) =>
list_rec (fun x0 : list => forall y : list, {x0 = y} + {x0 <> y})
  (fun y : list =>
   match y as l return ({nil = l} + {nil <> l}) with
   | nil => left (nil <> nil) (refl_equal nil) 
   | a0 :: l0 => right (nil = a0 :: l0) (nil_cons (a:=a0) (m:=l0)) 
   end)
  (fun (a : A) (l : list) (IHl : forall y : list, {l = y} + {l <> y})
     (y : list) =>
   match y as l0 return ({a :: l = l0} + {a :: l <> l0}) with
   | nil => right (a :: l = nil) (sym_not_eq (nil_cons (a:=a) (m:=l)))
   | a0 :: l0 =>
       let s := H    a a0 in
       match s with
       | left e =>
           let s0 := IHl l0 in
           match s0 with
           | left e' =>
               left (a :: l <> a0 :: l0)
                 (eq_ind_r (fun a1 : A => a1 :: l = a0 :: l0)
                    (eq_ind_r (fun l1 : list => a0 :: l1 = a0 :: l0)
                       (refl_equal (a0 :: l0)) e') e)
           | right e' =>
               right (a :: l = a0 :: l0)
                 (fun H0 : a :: l = a0 :: l0 =>
                  e'
                    (let H1 :=
                       f_equal
                         (fun e0 : list =>
                          match e0 with
                          | nil => a
                          | a :: _ => a
                          end) H0 in
                     (let H2 :=
                        f_equal
                          (fun e0 : list =>
                           match e0 with
                           | nil => l
                           | _ :: l => l
                           end) H0 in

H

(H : forall x y : A, {x = y} + {x <> y})

Proof

(** val list_eq_dec : ('a1 -> 'a1 -> bool) -> 
'a1 list -> 'a1 list -> bool **)

let rec list_eq_dec      x y =
  match x with
    | Nil -> (match y with
                | Nil -> true 
                | Cons (a0, l0) -> false)
    | Cons (a, l) ->
        (match y with
           | Nil -> false 
           | Cons (a0, l0) ->
               (match h     a a0 with
                  | true -> list_eq_dec h l l0
                  | false -> false))

Program

h

h

Fig. 3. Proof of the decidability of equality on lists. The user has highlighted the h parameter
in the list eq dec function. Uses of the h parameter in the function and the corresponding H
parameter of the proof are highlighted.

for portions of the proof script that are not incorporated into the proof such as directives
to the proof engine or comments. Narrow gray bars are also used to separate proof and
program components. Pale blue indicates that a component has been generated indirectly
from a component in the proof script. In this example, some induction principles for the
list type have been automatically generated. Some components of the proof do not have
corresponding components in the extracted program. In this case the adjacent separators
are merged in the program pane.

The tool in Figure 1 is useful for high-level inspection. The user may also want to examine
individual proof entities in more detail. Figure 2 shows a proof and its associated tactics
and program. In the Tactics pane on the left the auto tactic has been selected. Preceding
tactics are green and subsequent tactics are left in black. The proof terms generated by the
highlighted tactic are themselves highlighted and proof terms generated by the preceding
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Require Import Le.

Section Lists.

           : Set.

Set Implicit Arguments.

          list : Set :=
  | nil : list
  | cons : A -> list -> list.

Infix "::" := cons (at level 60, right associativity) : list_scope.

Open Scope list_scope.

(*************************)
(** Discrimination       *)
(*************************)

              : forall (a:A) (m:list), nil <> a :: m.
Proof. 
  intros; discriminate.
Qed.

Inductive

Variable A

Lemma nil_cons

Fig. 4. View of a proof script showing syntax highlighting. The highlighting scheme is adapted
from that in the CoqIDE.

tactics are in green. The bar on the left of the Proof pane summarizes the entire proof. Note
that there is a green line at the bottom of the bar indicating that the last few lines of the
proof are generated by the tactics preceding auto. The Program pane on the right shows
the extracted program. The corresponding terms in the generated program are highlighted.

In the preceding example, elements in the proof were selected via the proof script. It is
also possible to select these elements via the extracted program or to select elements in the
program via the proof. Figure 3 shows the same proof as before. In this example, however,
the user has selected an element in the Program pane, specifically h, the formal argument of
the list eq dec function. Uses of h in list eq dec and corresponding elements in the proof
are highlighted. The summary bar in the Proof pane indicates that there are no matches
other than those visible in the text. This confirms our intuition about the proof. h is a
function which decides whether two list elements are equal. Its corresponding proof, H, is
a proof of the decidability of equality on list elements. h is applied to the head element of
each list to determine whether the two are equal and in the case where the elements are
equal is passed as an argument in the recursive call (otherwise list eq dec returns false).
In the corresponding inductive proof we would expect that H is also used just once, as an
hypothesis in the proof that lists are equal if their heads and their tails are equal, and we
see that this is the case.

When a program is compiled with debugging enabled the compiler encodes extra information
for the debugger’s use in the generated object files. In particular, it stores debugger “symbol
tables” [33] which are mappings between the source code and the generated object code.
Using this information a symbolic debugger can execute a machine instruction and yet display
to the user the corresponding source code. We envision a similar approach for a theorem
prover. As the prover executes tactics to generate a proof it can store a mapping between
the tactics and the generated proof object, making it available to a program navigation tool
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►    Require commands
►    Lists
►    Resolve

►    Immediate

►    Functions_on_lists

►    Resolve

►    Resolve
►    Resolve
►    Resolve
►    Resolve

(a) Collapsed Outline
View

►    Require commands
►    Lists
►    Resolve

►    Immediate
►    Resolve

►    Resolve
►    Resolve
►    Resolve
►    Resolve
▼    Functions_on_lists

►    Map

►    Fold_Left_Recursor
►    Fold_Right_Recursor

      in_map

    in_prod_aux

    in_prod

    fold_symmetric

    flat_map

    list_prod

    list_power

(b) Outline View with Sec-
tion Functions on lists ex-
panded

Fig. 5. View of a proof script outline.

such as that described above. We have observed that the correspondence between the tactics
and the proof object may be complex; but compilers and debuggers are able to generate and
navigate the equally intricate mappings between source code and highly optimized machine
code.

3 Common Conveniences

3.1 Multiple Views

Syntax highlighting, which is ubiquitous in IDEs, is available in some form in a number of
proof assistants [29, 34]. Figure 4 shows a Coq proof script. The various sorts of keywords
are distinguished by the use of different colors, and this helps us to understand the basic
structure of the small portion of the program we are looking at. When we zoom out, the
syntax coloring becomes virtually useless. But this problem can be addressed by techniques
already in use in a number of IDEs. For example, the Eclipse [9] Java Perspective provides an
Outline view which allows the user to see the basic structure of an individual file at a glance.
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list_eq_dec = 
fun (A : Set) (H : forall x y : A, {x = y} + {x <> y}) (x : list A) =>
list_rec (fun x0 : list A => forall y : list A, {x0 = y} + {x0 <> y})
  (fun y : list A =>
   match y as l return ({nil = l} + {nil <> l}) with
   | nil => left (nil <> nil) (refl_equal nil)
   | a0 :: l0 => right (nil = a0 :: l0) (nil_cons (a:=a0) (m:=l0))
   end)
  (fun (a : A) (l : list A) (IHl : forall y : list A, {l = y} + {l <> y})
     (y : list A) =>
   match y as l0 return ({a :: l = l0} + {a :: l <> l0}) with
   | nil => right (a :: l = nil) (sym_not_eq (nil_cons (a:=a) (m:=l)))
   | a0 :: l0 =>
       let s := H a a0 in
       match s with
       | left e =>
           let s0 := IHl l0 in
           match s0 with
           | left e' =>
               left (a :: l <> a0 :: l0)
                 (eq_ind_r (fun a1 : A => a1 :: l = a0 :: l0)
                    (eq_ind_r (fun l1 : list A => a0 :: l1 = a0 :: l0)
                       (refl_equal (a0 :: l0)) e') e)
           | right e' =>
               right (a :: l = a0 :: l0)
                 (fun H0 : a :: l = a0 :: l0 =>
           end
       | right e =>
           right (a :: l = a0 :: l0)
             (fun H0 : a :: l = a0 :: l0 =>
       end
   end) x
     : forall A : Set,
       (forall x y : A, {x = y} + {x <> y}) ->
       forall x y : list A, {x = y} + {x <> y}

...

...

▼

▼

►

►

(fun H0 : a :: l = a0 :: l0 =>
                  e'
                    (let H1 :=
                       f_equal
                         (fun e0 : list A =>
                          match e0 with
                          | nil => a
                          | a :: _ => a
                          end) H0 in
                     (let H2 :=
                        f_equal
                          (fun e0 : list A =>
                           match e0 with
                           | nil => l
                           | _ :: l => l
                           end) H0 in
                      fun _ : a = a0 => H2) H1))

Fig. 6. A proof of the decidability of equality on lists with two functions collapsed. The collapsed
function is inspected by allowing the cursor to hover over the arrow; pressing the arrow causes the
function to be expanded.

The Outline view is used for navigation as well. Figure 5 shows a suggested outline for the
proof script of Figure 4. Another idea that could be extended directly to proof assistants is
the technique of collapsing and expanding parts of a source file. Often a programmer wishes
to elide certain parts of a source file that are irrelevant, so that the rest of the file becomes
easier to understand. In a similar fashion a proof developer may wish to elide portions of
a proof script, of a proof, or of its associated program. Figure 6 shows the proof of the
decidability of equality on lists with two of the functions in the proof collapsed. The first
collapsed function is a proof that equality of the heads of the lists is irrelevant under the
hypothesis that the tails are unequal (in which case it is clear that the lists are unequal). The
second function is a similar proof, with heads and tails reversed. Such subproofs, although
required to complete a formal proof, and in some cases constituting a significant proportion
of the whole proof, are generally uninteresting to the human reader.

3.2 Automatic Refactoring

A refactoring is a way of restructuring a program so that the overall organization of the
program is improved but the behavior is unchanged [25]. Where large parts of a proof have
been developed separately, refactoring may be necessary to make common the underlying
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assumptions of the different components [12]. Refactorings may also facilitate proof reuse
[16]. While modern IDEs offer extensive support for automatic refactorings [30,37,38] UITPs
offer very little. IDEs offer support for renaming of functions and variables; UITPs should
offer a similar facility for renaming lemmas. IDEs offer facilities for restructuring programs;
for example, a local variable may be converted to a field in a Java class definition. In the
same way, UITPs should offer facilities for restructuring existing proof scripts; in Coq, for
example, a user might wish to encapsulate a group of proof entities within a module. In
the Eclipse Java IDE, a developer can generalize the type of a field, lifting the field to its
supertype [38] and changing all uses of the field appropriately. Similarly, UITPs should
offer refactoring support for abstracting over definitions and hypotheses [28]. Many other
refactorings are likely to be dependent on the logic and organization of the individual proof
assistant.

Additionally we propose a requirement for transformations similar to the “best effort” stan-
dard used by IDE developers. When a developer changes the signature of a method an IDE
may “do its best” by changing the signature of all overriding and overridden methods appro-
priately. However, if the signature is changed by the addition of a formal parameter, it will
generally be impossible to automatically determine the actual parameter to be passed at the
invocation site. After the transformation the resulting type mismatch will induce compiler
errors in the program. However, the IDE has eased the programmer’s task by automati-
cally performing a task that the programmer would otherwise need to perform manually.
The programmer can complete the transformation by identifying the call sites that must be
changed, determining the actual parameter to be passed at each call site, and updating the
code correctly. Generally, the compiler itself will assist the programmer in identifying the
call sites which must be updated through specific error messages.

UITP developers may feel that an automatic transformation that makes a correct proof in-
correct is simply unacceptable. We argue that if the transformation gets the proof developer
“closer” to the correct proof that he actually desires such a “best effort” transformation is
still of value and worth incorporating in a UITP. A developer may realize only after substan-
tial work has been done on a proof that some component must be changed. For example,
it may turn out to be the case that a list must have not only the familiar properties of
lists but also the extra property that its elements are sorted for a proof to be completed.
One method of expressing this additional property in Coq is through the use of dependent
types [3]. If the developer changes the type of the list to include a proof that it is sorted then
any previously developed theorems that include this list must also have their type changed.
It is relatively easy to implements such a straightforward transformation. It may even be
possible for a refactoring tool to modify the tactic scripts for certain proofs that do not
rely on the sorted property so that the proof can be reconstructed entirely. But perhaps
the developer must now construct additional lemmas to prove that the sorted property is
preserved by some transformations defined in the proof. The proof cannot be completed
without this additional manual work on the part of the developer. Still, a refactoring tool
that automated the straightforward steps and left the developer to perform the more difficult
steps that cannot easily be automated would be desirable.
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4 Proof Visualization in the Large

Program visualization is a well established field. Techniques to represent programs visu-
ally are used in teaching [5, 15] and in the professional world [39] and new techniques are
continually developed [18, 26, 31, 32]. These techniques incorporate both static visualiza-
tion [18,5,39,26,32] and animations [15]. Often they use a complicated visual vocabulary to
communicate relationships among many entities in a program.

An important insight of Ball and Eick [1] is that a less complicated visual vocabulary can also
convey useful information. They show how a coloring scheme can be used to convey to the
programmer the overall “shape” of an application. They use color to encode unary properties
of individual lines such as the number of times a line has been changed. Such coloring can
allow a programmer to see at a glance some overall property of the program. For example,
parts of the system that are predominantly red are edited frequently and most likely contain
bugs. Parts that are blue are edited less frequently and are likely to be relatively bug free.
This approach can be extended to textual units of larger granularity such as procedures or
files and has been used in applications such as fault localization [17].

Techniques for proof visualization are less common. Proof animations [14] exist for restricted
domains such as graph properties [11]. Static visualization techniques are used to describe
the relationships among proof entities [4, 6]. We argue that the insights of Ball and Eick
can be applied to proof visualization as well as program visualization. They can be applied
in a straightforward way to encode such properties as revision information which are really
identical between proofs and programs. Other properties are more specific to UITPs. In
a proof assistant with an automatic component theorems may be applied without a user
specifically requesting them. A coloring scheme that encoded the relative frequency with
which different theorems were used could be used to visualize “hot spots” in much the same
way a coloring scheme that encodes software profiling information is used.

5 Conclusion

We have described a number of ways in which techniques developed to assist programmers
in maintaining and extending large programs can be of use to proof developers who must
maintain and extend large proofs. Many software projects involve a considerable number of
people working over several years. As the discipline of automated theorem proving matures
proofs of similar size and complexity, which are now considered extraordinary [41], will grow
more common. Program extraction is gaining acceptance as a technique for developing
programs which must be correct. As these trends continue, the tools we have described will
become more and more valuable to proof developers.

Moreover, we feel that the theoretical difficulties of developing the tools that we have de-
scribed are negligible. For example, the navigation tool described in Section 2 requires an
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underlying encoding which records the correspondence between the proof script, its associ-
ated proof, and the derived program. It is clear that this data is available. The relationship
between the entities in a proof script and its corresponding proof must be calculated by the
proof engine that develops the proof. Similarly, the relationship of the terms in a proof to
the corresponding terms in the extracted program must be calculated by the program ex-
traction mechanism. The difficulty does not lie in establishing these relationships but rather
in recording them and displaying them in a useful manner.

On the other hand, work in this area may yield significant theoretical insights. The refactor-
ings described in Section 3.2 are all quite straightforward; just a bit more sophisticated than
textual replacement. Some program refactorings are much more ambitious. For instance,
Tip et al. [37] describe a refactoring from Java programs that do not exploit a polymorphic
type system to ones that do. More ambitious refactorings for theorem provers could very
well yield unexpected insights.
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