Extracting Output Formats from Executables®

Junghee Lim Thomas Reps Ben Liblit
junghee@cs.wisc.edu reps@cs.wisc.edu liblit@cs.wisc.edu

Computer Sciences Department, University of Wisconsireisian

Abstract interoperability. When a COTS tool uses a proprietary file
_) _ _ format, interoperability can be inhibited: the tool canyonl

‘We describe the design and implementation of FFE/x86 e ysed in a tool chain with a consumer or producer of files
(File-Format Extractor for x86), an analysis tool thatwsrk that have that format.
on stripped executables (i.e., neither source code nor de- The technique presented in this paper promotes the reuse
bugging information ne(_ad be available) and extracts output ¢ components of a tool chain. For example, when a soft-
data formats, such as file formats and network packet for-yare engineer wants to build a program that can process the
mats. We first construct a Hierarchical Finite State Machine fjjes that a COTS software product generates, he can use
(HFSM) that over-approximates the output data format. An o ool to obtain information about the format specifica-
HFSM defines a language over the operations used to gensjon which would be useful when creating a program that
erate output data. We use Vqlue—SetAnaIyS|s (VSA) and AQean act as a substitute consumer (or producer).
gregate Structure Identification (ASI) to annotate HFSMs 11,4 technique presented here might also be useful in
with information that partially characterizes some of the - vare detection. For instance. when trying to identify
output data values. VSA determines an over-approximationjye versions of the same malware, one would like to have
of the set of addresses and integer values that each data, \,y 19 figure out the format of its network traffic. Our
object can hold at gach program point, and ASI analy;es technique can provide help with this problem.
memory accesses in the program to recover information Furthermore, our technigue can provide a summary of a

abo!“ th? structure of aggregates. A_series of filtering op- program’s behavior: it produces a structure that consists o
erations is performed to over-approximate an HESM With 5 1o ced number of entities (compared with the call graph

ahfm_lte—sta}te macf(ljlne, Wf:jlcgcan reSl_JIt In a fmzl ans/vvg(rs for instance), which may make it easier to understand what
that is easier to understand. Our experiments with FFE/x the program is doing.

uncovered a possible bug in the image-conversion utility The contributions of our work are:

png2i co. e It provides a technique for extracting an over-
. approximation of a program’s output data format, in-
1. Introduction cluding
Reverse engineering helps one gain insight into a pro- — a way to extract a preliminary structure for the
gram’s internal workings. It is often performed to retrieve output data formatid)
the source code of a program (e.g., because the source code — a way to elaborate the structure by annotating
was lost), to analyze a program that may be malicious (such it with information about possible output values
as a virus), to fix a bug, to improve the performance of and sizes{d)
a program, and so forth. This paper describes a reverse- — away to simplify the structure to provide greater
engineering tool that can help a human understand what a understanding of the output data formg)
program produces as its output. This provides information that can lead to greater un-
As COTS (Commercial Off-The-Shelf) software is in- derstanding of a program’s behavior.
creasingly deployed (for which source code and documenta- ® We report experimental results from applyFBE/x86
tion of proprietary intermediate formats are often not bvai on three applications. Our experiments uncovered a

able), reverse engineering becomes increasingly needed fo possible bug ipng2i co (seefd).
- - § by NSE und cor Although we have concentrated on the problem of ex-
*This work was supported in part by under grants - : - .
0524051 and CCR-9986308, and by ONR under contracts NOODI- tracting output file formats from executables, the same ap
{0796,0708. proach could be applied to source code (where one could
11210 W. Dayton St., Madison, W1 53706, USA. also take advantage of information about the program’s

variables and their declared types), as well as to extrgctin calls to the wrapper functions represent the “individual

input file formats.
The remainder of the paper is organized as follo¢#:

writes” referred to in our name for this style. We refer to
both the standard I/O functions and user-defined wrapper

discusses the key observations that inspired our work andunctions asoutput functions

the assumptions for our approadf explains the process

An output operatioris an operation relevant to generat-

of constructing a structure for the output data format, and ing an output data object. Specifically, the term outputoper
also provides an overview of the infrastructure on which our ation is defined as a call site that calls an output function—
implementation is basedd discusses how to elaborate the either a standard I/O library function or a wrapper function
structure generated from the first step with static analyses (see line§ I 181 B, P IA7]178] 29, 31in[Hig. 1).

88 presents a series of filtering operations for making HF- Our experience so far is that many application programs
SMs more understandabléd describes how we validated are coded in this programming style. For instarg=i p,
FFE/x86 {1 presents experimental result§8 describes [BJfl conpr ess95 [7], and png2i co [B] follow such a
related work §9 describes possible future directions. programming style.

2. Observations & assumptions [1] typedef struct header { Bulk writes. The
_ [g] b%te magi 6[1(2;1):_ second program-
2.1. Programming styles Gl o ?;‘g‘;[I ming style is to use
This section makes a few observations about program-{ 2} :ggg ehkeum structs or classes
ming styles used in typical application programs to produce[7] } header; to manipulate headers.
output data. {3} Vﬁ:egdgitﬁ;j' te() { Fig.[a shqws an exam-
Programming styles relevant to writing output data can [121 Ef()fr:ga_dgrg) mal | oc(...); ple of using a header
be categorized amdividual writesand bulk writes We {121 strcpgl(h! >]nar_re',':i.); structure o - write
present different approaches tailored to handle themén lat [13] h->type =...: output data. A header
sections. (Some programs use both styles; our tool is capar1s] n->chksum = . .. : struct objectis cre-
ble of handling such programs, as well.) [16] furite(h, ated at line(J0. Each
[21] o pzeof (Reader), L.Tp): field of the struct
[1] void put _byte (char c) |ndiVidua| Wl‘iteS. The {19% er edata(); is set to some Va|ue in
(2] {... - : . .
[3] void put_long (long c) TIrSt progr_amm_mg_ .Style (2013 I!neSm'EEB- Flna”yf at
(4 ..} is to write individual Figure 2. An example linesIBELY, the object
[5] void wriles (char= c) data items out separately is written out to the file

of a bulk write.

\g.oi.d}type() { to a file or a network. in its entirety. In this

{3} swieh(...) Standard 1/0 functions, programming style, calls like the one faw i t e are the

[10] put byte (*a'); such asfputs and fputc output operations.

13 caeey in C programs, could be In practice, we observed thear [9] andcpi o [B] use

[13] put byte (' b’); used. In practice, however, gych aggregate structures as storage in preparation for a
L) | Preaw wrapper functionsend to pylk write. We suspect that this style would be used for
[16] } be frequently used. Fi@l1 more than just headers by applications whose output files

[17]void chksum() {
[18] put dong (...);
[19]y
[20]void fill _data() {
[21] while(...) {

shows an example of this
programming style using
wrapper functions, such as

consist of a sequence of records.

2.2. User-supplied information

[22] put byte (c); put _byte, put.long, .) . .
[23] ... and wites. Several In our currentimplementation, the user must identify the
{32} }} fields of the output, includ- output functions and supply some additional information

[26]void main() { ing magic numbers, types, about them, in particular, information about each output-

27] put Jlong (magicl . .
{28% Eut _|on3 Emgi c2§ sizes, and a checksum, relevantparameter:
{gg} ¥vriteso (filenane); are written out by calling e whether it is a numeric value to be written out
e(). .
[31] pztp_long (size); wrapper functions. These 1 _ _ _
[32] chksum(); functions provide an API _Because thgzi p source uses macros instead offl_mctlons, outp_ut op-
[33] return 0; d . erations are not call sites in tlgzi p executable. This is not compatible
[34]} to append output items to with our approach of having the user identify the output afiens by sup-

an internal buffer; once
the whole buffer has been
filed, the contents of
the buffer are flushed.
Whereas the buffer is written out in bulk, the individual

plying the names of output functions. To convgei p into an example
in which output operations are visible as procedure callsthat it could
be used for proof of concept in our experimental study—we ifreztithe
gzi p source code to change all output macro definitions into ekjlinc-
tions. Automatically identifying low-level code fragmenthat represent
output operations remains a challenging problem for fuiumek.

Figure 1. An exam-
ple that uses indi-
vidual writes.

e whether it is an address pointing to the memory con- D_E“" gf;jgo,%_,[m” :f;j:;o,Ha,, oot
taining the data to be written out ot lorg) fr g) (Lot bre)
e whether itindicates how many bytes are writtenout TS provTe — —_—
See] for more details. In the case of standard I/O func- — E“" k ”“ZH“" i "’“"]7{“" o “°‘°’H“" v ”“5}’
tions, such information is already known.

aoti0 (type) (fill_datc) (put_long) (chksum)

/' Jeall sub_401075|
(put_long)

i 40114 40117A 401160
3- FIrSt Step all sub_401075) all sub_4010501—>{] “AJeall sub_40107!
(put_long) (put_t byte) (put_long)

In our approach, dlierarchical Finite State Machine))
(HFSM) is used to represent an output data format. An Figure 4. The HFSM for Fig. 1 The shaded
HFSM is a structure in which nesting of finite automata Poxes signify calls to FSMs. Dotted lines indi-
within states is allowed [12,13]. An HFSM captures com- Cate implicit connections between FSMs.
monalities by organizing states in such a hierarchy. Note

. . 401120 Sub 401120 proc near; type 401183 sub_401183 proc near; main
the following two points about HFSMs: o113 ey s 401183 push ebp
B i 401123 sub es 401184 mov ebp, esp
e Thelanguages of paths in recursive HFSMs are exactly 431135 mov eeabxp%eb‘éé‘x] 401186 sub e oM o
201136 cmp Il btpmc 40113A 40118C mov P eax, 0
the context-free languages. %(3) ’g‘%]czmp i tortey e eax omn
H H ! 401194 add eax, OFh
e The languages of paths in non-recursive HFSMs are |481138 | imp, ;. , Shortloc_401152 401197 shr eax 4
40113A mov eax, [eb&él] 40119A shl eax, 4
the regular languages. R o e 40119D mov [ebp-14h], eax
40 ShoTt IoC 4011A0 mov eax, [ebp-14h]
40 47 od1147: -~ 4011A3 call sub_401200
40 mov eax, [ebp-4] 4011A8 call __main
pir ﬁé mev espleax 4011AD mov eax, [ebp-10h]
(a) 6 40 2 loc q 4011B0 mov esp], eax
> 401152 Fave 401183 cm
4011B8 mov eax, [ebp-0Ch]
iE :ﬁsuguzlﬂllgépproc near; chksum ;07188 mov esp]. eax
@ ‘g 40 mov ebp esp 4011BE C*ﬂ sub_401075
ﬁg 27A sub esp, 8 b4 4011C3 mov lesp+4], 4
i91jzf mav cax, [ebp-4] 4011CB mov eax, [ebp-8]
40 0 cal 4011CE mov esp], eax
401165 Iea 4011D1 col_sub 4010E4
401185 sl 401167 proc. near; fill_data 401106 c 401120
2017687 *'push ™ ebp - 4011DB ¢ 401167)
401168 mov ebp, esp 4011E0 mov eax, [ebp-4]
ﬁ% /s |OCSL1§301185 0, 8 4011E3 mov [esp], eax
401160 “gmp _[ebp-1], 0 4011E6 cafl_sub 401075)
(b) 40 1 jz shortloc_401181 4011EB cdll_sub 401154)
401173 movsx eax, ebg-l] 4011F0 mov eax, 0
401177 mov espl, eax 4011F5 leave
401174
40 Short loc 4011F6 retn
aonidr log._ 4%1131
401181
401182 retn
; - - Figure 5. The disassembled code for Fig. 1.
Figure 3. (a) An FSM, (b) A hierarchical FSM. 9 9 O

Transparent boxes indicate output operations,
However, non-recursive hierarchical FSMs can be ex- and shaded boxes indicate calls to sub-FSMs.
ponentially more succinct than conventional FSMs due to
sharing, as illustrated in Fifl 3.

3.1. Construction of an HFSM 4011B3) or a call-site (such a4011D6) to a sub-FSM

We will use the code fragment shown in Fig. 1 to ex- (such ag ype). A call-site node, which represents a call to
plain our approach. The code emulates an archive utility. @ sub-FSM, implicitly connects the two FSMs in the HFSM.
It writes two magic numbers, followed by the file’s name,
layout type, size, and check-sum, using wrapper functions.
Fig.[H shows its disassembled code as generated by IDAPrc

Each procedure involved with at least one output op-
eration gives rise to an FSM. The program’s wrapper
functions includeput _byt e (sub_401050 in the disas-
sembled code)put | ong (sub_401075), andwr i t es
(sub_4010E4), and calls to these functions represent out-
put operations. FFE/x86 finds the output operations and
constructs an HFSM based on the CFGs provided by Fig.[d(b) shows a part of the call graph fgzi p. Gzi p
CodeSurfer/x8€123]. Our analyzer creates a reduced inter-is composed of 114 control-flow graphs (CFGs), 11491
procedural control-flow graph (i.e., the HFSM) that is the CFG nodes, and 625 call sites. Even though the HFSM
projection of the interprocedural control-flow graph onto produced by our tool appears to be quite complicated, it is
enter nodes, exit nodes, call nodes, and output operations. substantially less complicated than both the programis cal

Fig.[4 shows the outcome from runnifgE/x86 Each graph and its interprocedural control-flow graph: the HFSM
node in the HFSM is either an output operation (such asfor gzi p has 12 FSMs, 64 nodes, and 36 call sites.

The HFSM generated by our tool fgzi p is shown in
Fig.[d(a). Our thesis is that HFSMs (including elaborations
and refinements of HFSMs, as explaineddhanddg) pro-
vide a basis for gaining an understanding of the program’s
behavior. In this regard, it is instructive to compare the
HFSM with the program'’s call graph, because a call graph
is another structure that a programmer may use to gain a
high-level understanding of a program.

call 40510c call 4056df

call 4054e6 call 4054e6
call 4057a5

‘
.

G

¥ = sub_401050%
L= sub_401156+
=gub_40127B%

call 405641
call 4056df

call 4056df

203650 call 4056df
call 4056df

'/ call 404f0e 408281_ENTR 4057a5_ENTR
403e50
208414

=sub 403371+
= sub_403C7D*

sub_4078D2+ = sub_408D20

call 404f0e 4057d8 4057be

(b)
Figure 6. (a) The HFSM for gzi p. (b) a fragment of the call graph of gzi p.

3.2. Existing infrastructure CodeSurfer/x86 uses an initial estimate of the program’s
variables, the call graph, and control-flow graphs (CFGs)
for the program'’s procedures provided by IDAPro. IDAPro
itself does not identify the targets of all indirect jumpglan
indirect calls, and therefore the call graph and controiflo
graphs that it constructs are not complete. In contrast,
CodeSurfer/x86 uses the values that VSA discovers to re-
solve indirect jumps and indirect calls, and thus is able to
supply a sound over-approximation to the call graph.

& discusses other ways in which VSA and ASI can be

FFE/x86 uses intermediate representations (IRs) pro-
vided by the CodeSurfer/x86 framework (FIJ. 7), which
provides an analyst with a powerful and flexible platform
for investigating the properties and behaviors of x86 exe-
cutables[[2B]. CodeSurfer/x86 includes several statit-ana
yses, includingvalue Set Analysis (VSA14, [24] andAg-
gregate Structure Identification (ASM5].

CodeSurfer/x86. .

WAk | oo e exploited for our purposes.
- i g Format i . i
Pomemeflt 7] Soreter 4. Augmenting an HFSM with static-analyses
Il information
e Codesurfer In this section, we explain how to exploit the static anal-
yses mentioned if3.4 for elaborating HFSMs.

4.1. Value Set Analysis

Figure 7. Organization of CoderSurfer/x86 and The HFSM generated by the method describeddrl
how FFE/x86interacts with its components. provides some information for understanding an output for-

mat. The HFSM can be made more precise by annotating it
VSA is a combined numeric-ana|ysis and pointer- with additional information. In partiCUlar, we wish to ldbe

analysis algorithm that determines an over-approximationach node with information about:
of the set of numeric values and addresses that each mem- ® the size (in bytes) of the data that the node represents
ory location holds at each program poinf[14]. ASI recovers ® an over-approximation of the value written out

information about variables and types, especially foraggr The values of interest are the actual parameters corre-
gates, including arrays and structs. '_I'he vangbles reedver sponding to the formal parameters of output functions. For
by ASI are used by VSA to obtain information about the example, suppose thatit _byt e is one of the output func-

variables’ possible values. The values recovered by VSAtions (see Fidl8(a)). Suppose that at one of the call sits th
are used by ASI to identify a refined set of variables. Thus, — , _
still safe to use the results from the final round of VSA. Intjgaitar, each

CodeSurfer/x86 runs VSA and ASI repeatedly, either until round of VSA provides an over-approximation of the set of etimvalues

quiescence, or until some user-supplied bound is redthed. and addresses for each memory location, modulo the treafipnssible
memory-safety violations—some of which may be due to loggefision
2|f VSA and ASI have not quiesced when the bound is reached, it i during VSA. Seel[14] for more details.

voi d put _byte(char c) { 1Fh

out buf [outcnt ++] = (uch)(c);
i f (out cnt ==0OUTBUFSI ZE)
fl ush_out buf ();

: @ ®
Figure 8. An example code fragment; put _byte

is a output function, and call sites that call it are
output operations.

mov
call

byte ptr[esp],
put _byte

callsput _byt e (i.e., at one of the output operations), the
actual parameter is always 1Fh (see Elg. 8(b)). This infor-
mation can be obtained from the information collected by
VSA. Note that at the call oput _byt e, the relevant value

is stored on the stack in the byte pointed tcelsyp. The ab-
stract memory configuration (AMC) that VSA would have
for the call site would indicate this: for instance, Hijj. ©(a
illustrates the values that the AMC would contain in this
example. In particular, our tool is able to obtain an over-
approximation of the set of values that the actual may hold
by evaluating the operand expressf[omsp] in the AMC,
which amounts to looking up in the AMC the contents of
the cell (or cells) thaesp may pointto. (For this example,
the result would be a singleton set, namély-h}.)

value4

1003

1002f-----------1 »size:4 |-

size:4
4

1001

valuel

SIZE x COUNT =
[the T)uErn)éer ofj\t]) tes
¥ to be written out

&lze)

ize:1
esp

value—>1Fh

1000

esp

(a) () (c)

Figure 9. How to obtain information from VSA.

this category. The address of the heap-allocated memory lo-
cation that contains the data is passed as the first argument.

sizet fwite(const voi d *BUF PTR si ze_t
SIZE si ze_t COUNT, FI LE*FP);

It is known that the product of the second and third param-
eters off wr i t e is the number of bytes that are written out

(see FigB(c)).

Value roles. The kind of abstract value recovered by VSA
sometimes suggests what the value’s role is, e.g.,

e Si ngl et on - If VSA recovers a singleton value for
an actual parameter of an output operation, the param-
eter may correspond to either a magic number or a re-
served field.

e Set of numeric val ues -Ifthe value that VSA
recovers is a non-singleton set of numeric values, the
parameter may correspond to an optional field.

e Top - If VSA givesTop, which means any value, for an
actual parameter of an output operation, the parameter
may correspond to variant data.

4.2. Aggregate Structure Identification

As mentioned indd, programmers frequently use a
st ruct ora class to collect data before it is written out.

[1] u_char out pack[MAXPACKET] ;

[2] static void pinger(void) {

[3] regi ster struct icnphdr xicp;
[4] register int cc;

[5] int i;

icp = (struct icnphdr*)outpack;

[7] icp->icnp_type = | CMP_ECHO,

[8] icp->icnp_code = 0;

[9] icp->i cnpcksum = 0;

[10] icp->icnp-seq = ntransmtted++;

[11] icp->icnpid = ident;

[12] ..

[13] i = sendto(s, (charx)outpack, cc, 0, &whereto,
[14] si zeof (struct sockaddr));

[15]

[16] }

There are two kinds of parameters that can be passed into Figure 10. Code fragment used to illustrate the

a output function: numeric values and addresses.

Numeric values. The case where an actual parameter

holds a numeric value has been already explained above
(see Fig[P(a)). The corresponding size of the value can

be obtained from ASI, which infers the size from the us-
age pattern of the formal parameter in the called function.

(In the case where an output operation calls a standard o

function, this information is available from the signatofe
the function.) For exampl@ut _byt e would have a 1-byte
argumentput _short a 2-byte argument, and so forth.

Addresses. If the type of a formal parameter is a pointer,

use of ASI information.

Fig.[I0 shows a fragment fropi ng [[7] in which a net-
work packet is constructed. Instead of writing individual
data items one at a time using output operatiorsg, rauct
object is used to store output data while multiple fields are
repared, as shown in linEb[Z3-11 of Higl 10. Then the ag-
gregate object is written out (i.e., sent out) all together o
lines[T3ETH.

Aggregate Structure IdentificatiofASI) [15, [22] is a
unification-based, flow-insensitive algorithm to identify
structure of aggregates in a program. Whenever a read or

the set of addresses in the memory location correspondingwrite to a part of a memory object is encountered, ASI

to the actual parameter would be used to look up in the
AMC the values in the cells to which the actual parameter
could point (see Fidl19(b)).

The case of wri t e at linesdIBETN in Fidd2 falls into

records how the memory object should be subdivided into

smaller objects that are consistent with the memory access.
In this example, we assume that the user has indicated

that sendt o, which is a GNU C library function, is the

L] oy b, operd Py Leop - 1on Soreni In each of the following cases, a node (or a node set)
[3] nov edx, dword ptr [ebp - 10h] would not provide meaningful information:
[4] nov byte ptr [edx + 1], O byte_1 out pack. 0; i
[5] mov eax, dword ptr [ebp - 10h] byte_l out pack. L; e Anode ofTop- si ze andTop- val ue
[6] nov word ptr [eax + 2], O byte_2 out pack. 2; . .
[7] nov eax, dword ptr [ntransnitted] byte 2 out pack. 4; e A node set in an unbounded |00p, each of which has
[8] nov edx, dword ptr [ebp - 10h] byt e2 out pack. 6; e _
[9] mov word ptr [edx + 6 ax pyte=s od bothTop- si ze andTop- val ue
[10]inc dword ptr [ntransmitted] i i
[11] mow oo, duord ptr Lidort] } To be considered asmaeaningful nodea node must be
[12] nov edx, dword ptr [ebp - 10h] Qi
L oy oo b P e A node of nonTop- si ze
@ (b)
Figure 11. (a) The disassembled code fragment Algorithm 1 Simplification algorithm.
for Fig. 0] (b) The outcome of ASI. Input: HFSM
Output: Trimed HFSM
only output function. The second argumentsa&ndt o is Set the status of all FSMs to leeaningful
known to be a pointer to at r uct object with unknown while There exists aneaningfulFSM that contains only

substructure. ASI provides information about this sulustru non-meaningful nodesr calls tonon-meaningful FSMs
ture. The instructions that correspond to the assignment do
statements at lin€3 [/311 of Hig] 10 are shown in[Elh. 11(a) at SetM to be anon-meaningful FSM
linesI2[A[®B[P, and13, respectively. VSA provides informa- TransformM into an FSM with a self-loop on a node
tion about the extent of memory accessed by each of these labeled with Top- si ze/ Top- val ue)
instructions. ASI uses that information to subdivide the po end while
tion of memory accessed, thereby producing the structure
shown in Fig[IlL(b). This indicates that the structure of the
packet header may consist of two 1-byte fields, followed by
three 2-byte fields.

ASl is also capable of recovering information about the
structure of aggregates that are allocated in the heap.

Alg. [describes an algorithm for simplifying HFSMs
generated byrFE/x86 The idea behind the algorithm is
to consider the cases mentioned above: for an FSM that
consists of only nodes withop- val ue andTop- si ze,
or an unbounded loop that includes only such items, it may

. This _example illustrates a case where each output funC'be better to simplify it tqTop)* because the original FSM
tion emits a completely-constructed chunk of output data, would not provide much meaningful information about the

and the HFSM represen_ts the program’s outpu_t operationsoutput format.
at a high level of abstraction. In bulk writes as this example

structure information recovered by ASI can help identify-
ing the structure of output data format. This can be seen in.
Fig.[T2(b), wherei nger's call to sendt o is elaborated

as a sequence of 1- and 2-byte header-field writes, followed

by a larger packet payload. Figure 12. An example of simplification.

5. Filtering Fig.[12 shows an example of simplification. The shaded
Because an HFSM can be hard to understand, we ex+SM that contains twahon-meaningful FSBI and three

perimented with applying a series of filtering operations— non-meaningful nodeis simplified to an unbounded self-

including simplification, conversion of each FSM to a regu- loop consisting of a nod&pp- si ze/Top- val ue).

lar expression, and inline expansion—to generate a simpler _)

representation of the output format as a regular expressionCONversion to a regular expression. We can convert

In our experiments, this has been done manually; however€ach FSM in an HFSM into a regular expression using the

the process would be relatively easy to automate. Kleene construction.

size: size:)i size:
Top Top Top

value: value: value:
Top Top Top

Simplification. Not all nodes in the HFSM are helpful in Expansion. The final step is to apply inline expansion.
understanding an output format. An unnecessarily compli- Recursion was not encountered in any of the applications
cated HFSM could prevent users from understanding keythat we used for our experiments (sg#), so inline ex-
aspects of an output format. pansion could be applied without worrying about non-
Most portions of the HFSM shown in Fid. 6(a) turn outto termination. If recursion had been encountered, we could
be eithefTop- val ue, Top- si ze, or an unbounded loop have summarized strongly connected components of the
that includes themiTop- val ue means that the node could ~ call graph.
have any valueTop- si ze means that the node could be Fig. I3 represents the final outcome from using these
of any size. techniques on our example.

size: size: size: size: size: size:)| * size: size:
4 4 Top 1 1 1 4 4

value: value: value: value: value: value: value: value:

Ox1F Ox8F Top ‘a’ ‘b’ Top Top Top

Figure 13. The final result after simplification,
conversion, and inline expansion.

6. Validation against dynamic output

We validate our approach by testing whether the out-
come from our algorithm (i.e., the regular expression)
matches output data produced during actual runs of the ap the box into multiple boxes that havesangl et on value
plication. and aSi ngl et on size. For example, the second box in

We usedlex[B], a tool for generating scanners for com- Fig.[I4(a), which has two values (2 and 4), is transformed
pilers. Given an input specification in the form of a list to the two boxes in Fig.14(b) that have the values 2 and 4,
of pattern-action pairs (where the pattern is a regular ex-respectively. For the case where size is n8t agl et on,
pression),flex generates a program that repeatedly finds the shaded boxes in Fig.J14(b) show how it is converted.
the longest prefix of the (remaining) input that matches Note that this process is only for validation, because the
one of the patterns. To create a tool for testing whether original values or sets of values are more likely to be under-
a regular expressio® generated by our algorithm de- standable to a human than the subdivided values.
scribes the output of an application, we gfiexa 2-pattern .
specification—consisting @ (with an action to report suc- 7. Experimental results
cess), plus a default pattern (with an action to reportfajlu We evaluated=FE/x86 on three applicationsgzi p,

As discussed earlier, each box (as shown in [Eig. 13) inpng2i co, andpi ng.
the regular expression generated by our technique is lébele 71.qzi

. : . : ' .1.gzip
with two kinds of information: a value and a size. Value
and size are eithérop, aSi ngl et on, or a set of numeric
values.

e Singleton

e A set of numeric val ues

e TOp
Thus, to be able to feed it thhex the regular expression

Figure 14. An example of the transformation.
means any character.

Gzi p is a GNU data-compression program. [Eg. 15 rep-
resents the outcome after filtering the HFSM from Elg. 6(a).

size))*
Top

value:
Top

size: size: size: size: size:

size:

size: size: size:
1 4

Sizet))*

Top 4
value:

Top

value: value:
Top Top

value:
Top

value:
Top

value: || value

0x08

value:
0x8B

val
Ox1F

; : - o Figure 15. The final result for gzi p.
needs to be transformed to one in which the basic unit is
a 1-byte character. Tablé 1 shows the transformation rules Taple 2. Part of the specification of gzi p’s for-
that are applied to box@s. mat [ICT].
Table 1. Transformation of boxes (ot [m2] cm [e | HTE [[os [.
[size [value [conversion | Tf FLG.FHCRC set
Singl eton | Singleton | According to the value af, this is split into .. compressed blocks ... | CRC32 | ISIZE |
" ?;”g'p'fhgc’ffresf Lho";t P “;334(1a§’3’ltset‘r’:r'1“s DIand D2 | These are the fixed values: IDI=31 (OXIF), ID2=139 (0x8E)
for.m.éd to the first four boxes in FIELIL4(b). CM This identifies compression method: CM=0-7 are reserved,
Singleton | Top Top is transformed to *’, which matche CN_I:S def"."‘es t_he c!efl_at_e compression method. -
n any character. Thus, this is transformed tq a FLG This is divided into individual bits: bit 0 FTEXT, bit 1
sequence of. boxes that contain ‘.. (E.g.| FHCRC and so forth. N _
the fifth box in FigET}(a) is transformed t MTIME 1_'h|s gives the most recent modification time of the origirfal
the last two boxes in Fif14(b).) file being compressed. _ _
Top Top This is transformed to a box that contains XFL This is available for use by specific compression methods|
** with a self-loop. (E.g., the third box in ¢S] This identifies the type of file system on which compressijon
Fig.[T4 (a) is transformed to the box that has took place: 0 - FAT filesystem, 1 - Amiga, and so forth.
aloop in FigCTh(b).) CRC32 This contains a cyclic redundancy check value of the uncgm-
pressed data.
ISIZE This contains the size of the original input data modzifg.

Table[d describes only the cases when size and value
have eitheSi ngl et on or Top.(Note that there is no case
when size isTop and the value is noffop because this is
not a possible outcome of VSA.) For the case when either
size, value, or both have a set of numeric values, we split

The format of. gz files generated byzi p is de-
scribed in RFC 1952 (see Tallk 2). The outcome shown
in Fig.[I3 correctly over-approximates the specification. |
other words, the language of the outcome is a superset of
the output language afzi p. The outcome has the two
magic numbersl (D1=0x1f andl D2=0x8b) and a constant

SWe use ‘.’ as a shorthand for “any character”flex it is necessary to
use the pattern|\n’.

(CM=8) at the same positions shown in Talle 2. This is fol- in Table[3, most of the constant data items in the for-
lowed by a 4-byte element (correspondingMdl ME), two
1-byte elements (correspondingfBL andCOS). At the end,
it has two 4-byte elements, which correspon@R32 and

I SI ZE.

We also applied the validation process describeffito

this outcome. Thélexgenerated validator accepted each of

five. gz files (chosen arbitrarily from the Internet).

7.2.png2ico

size: size: size: size: size!
2 2 1 1 1
value: value: ||| value: || value: || value:
(] Top Top Toj To
: size: size: size: size: size! size: size:
4 2 2 4 4 4 4 4
|| value: || value: || value: || value: || value: || value: || value:
Top 1 Top 4] To) [o] 0 0
* %

size: size: size
4

value: || value: || value

size: size:
2 4

size: size:
1 2
value: || value:
0 0 Tol To)

value: || value:

size:))*
4
value:
Top

o o\ (7 <z
size: size: size:

4 4 Top
value: value: value:

0 Top To)

size: size:
1 Top

value: value:
(] Top

t

Figure 16. The outcome for png2i co.
Table 3. An unofficial specification of the ico
format [\
[Name [Size [Description |
Reserved 2 byte =0
Type 2 byte =1
Count 2 byte Number of Icons in this file
Entries Count * List of icons
16
Width 1 byte Cursor Width (16, 32 or 64)
Height 1 byte Cursor Height (16, 32 or 64 , mos|
commonly = Width)
ColorCount | 1 byte Number of Colors (2,16, 0=256)
Reserved | 1byte =0
Planes 2 byte =1
BitCount 2 byte bits per pixel (1, 4, 8)
SizelnBytes | 4 byte Size of (InfoHeader + ANDbitmap +
XORDbitmap)
FileOffset 4 byte FilePos, where InfoHeader starts
repeated Count times
InfoHeader 40 Variant of BMP infoHeader
bytes
Size 4 bytes Size of InfoHeader structure = 40
Width 4 bytes Icon Width
Height 4 bytes Icon Height (added height of XOR
Bitmap and AND-Bitmap)
Planes 2 bytes number of planes = 1
BitCount 2 bytes bits per pixel =1, 4, 8
Compression 4 bytes Type of Compression =0
ImageSize 4 bytes Size of Image in Bytes = 0 (uncom
pressed)
XpixelsPerM 4 bytes unused =0
YpixelsPerM 4 bytes unused =0
ColorsUsed 4 bytes unused =0
Colorsimportant 4 bytes unused =0
Colors | Number-of-Colors * 4 bytes| Color Map for XOR-Bitmap
Red 1 byte red component
Green 1 byte green component
Blue 1 byte blue component
reserved 1 byte =0
repeated NumberOfColors times
XORBitmap [.. bitmap

ANDBitmap |

monochrome bitmap

mat have been recovered BfFE/x86 For example, sev-
eral fields in thel co format, includingReser ved and
Type, have constant values that are recovered through our
technique. Furthermore, the overall structure of Eid. 16
is similar to Table[B. One difference is that the for-
mat recovered byrFE/x86 shows two loops at top level:
one for a sequence of Entries, and one for a sequence
of structures that each consist of an InfoHeader, a se-
guence of Colors, a sequence of XORBitmaps, and a se-
guence of ANDBitmaps. In constrast, Talflk 3 shows
only a single InfoHeader/Color/XORBitmapANDBitmap
structure. An inspection of the source code confirmed
that png2i co definitely supports a sequence of Info-
Header/Color/XORBitmapANDBitmap structures.

FFE/x86 also revealed a possible bug jimg2i co—
that is, it showed that the format produced [yg2i co
does not satisfy the specification given in Table 3. Ac-
cording to Tabld13, the Planes field of Entries should be
1; however, as shown by the eighth box withze=2 and
val ue=0 in the first row of FigCZIbpng2i co always pro-
ducesO, rather thanl. This discrepency was discovered
when we ran thélexgenerated validator (which checks for
conformance to th@ng2i co output format extracted by
FFE/x86) on some pre-existingi co files. Those files
came from a Windows XP installation (and presumably
were not created by running the freewgmeg2i co util-
ity). The validator rejected those files, but accepted all 23
. i co files that we generated usimpgng2i co. We tracked
down the problem to the following line in theng2i co
source:

witewWwrd(outfile, 0); //wPlanes

7.3.ping

Pi ng [[7/] sends ICMP ECHOREQUEST packets to a
host to see if the host is reachable via the netwSdadt o
is the only output function gbi ng.

As discussed 44, the whole structure of the HFSM
shown in Fig[IlF(a) represents the program’s output oper-
ations at a high level of abstraction. From the HFSM, it
can be inferred thatrei n calls pi nger andcat cher,
andpi nger callssendt 0. Thepi nger sub-FSM (see
Fig.[Id(b)), which is constructed from the information re-
covered forsendt o by the ASI, has a format where the
sizes of successive elements are 1, 1, 2, 2, and 2 bytes, re-
spectively, as shown in FigIL1(a).

As shown in Fig.[IB, thei cnp packet st ruct
includes two 1-byte fieldsuf nt8 i cnp_type and
uint8 i cnp_code), one 2-byte field int16
i cnp_checksun), and two unions—cnp_hun and

Png2i co converts PNG files to Windows icon-resource i cnp_dun. The outcome fron-FE/x86 satisfies a part

files. Fig.[I® shows the final outcome. Compared with an of the specification.
unofficial specification of thé co image format([l] given

The first two 1-byte fields match
with uint8 icnp_type and uint8 icnp_code,

\ [1] (void)signal (SITINT, finish);
BRI ——— —N : [2] (void)signal (SIGALRM catcher);
[3] while(preload--)

[4] pinger();

[5] if((options & F.FLOOD) == 0)

[6] catcher (0);

[7] for(;:) {)

[8] struct sockaddr.in from

size: size: size: size: size: size: . .
® call sendto [> 1 1 2 2 2 || Top [9] register int cc;
entry exit entt value || value || value || value|| value|| value exit [10] sizet fronlen:
Top Top Top Top Top Top = 1

[11] if(options & F.FLOOD) {

@

_) [12] i f(floodok) {
Figure 17. The outcome for pi ng. (@) The HFSM [13] f10odok = 0;
hints the program behavior of pi ng, (b) The [l pinoerl
packet contains an 8-byte i cnp header followed [16] .
by data. H;} } _
[19]}
typedef struct icmp { . .
uint8 icmp_type; /* type of message, see below */ Figure 19. A code fragment from pi ng.
uint8 icmp_code; /* type sub code™/
uint16 icmp_checksum; /* ones complement cksum of struct */ 3 . A A
s#define icmp._cksum icip_checksum pear in the handler function thas& gnal call establishes,
int8 ih_pptr: /* ICMP_PARAMPROB */ i - i i
;"f;ucf iﬁfg ggr in_qwaddr: o SOME PARAMPROE, the resultant HFSM might not over-approximate all possible
s
e un!nT_llési(zgfid; outputs.
. uint16 icd_seq;
}ih_idseq; 8. Related work
lad ICW\P_UNREACH_NEEDFRAG -- Path MTU Discovery (RFC1191) */
sTrucTu;LlFén'\i;:‘(void Most previous work on reverse engineering of file for-
" pm}fz ipm_nextmtu; mats has been dynamic and manual. Eilam describes a
sfru‘c*uiizf_gfi;gd;(fm addrs: strategy for deciphering file formats given a symbol table
3;:1§6iri:;v1§g;im and a sample output file [lL9]. This approach requires man-
}icmp) th_rtrady; ually stepping through disassembled code and inspecting
#define icmp_pptr icmp_hun.ih_pptr memory contents in a debugger while the program pro-
wion{ ot duces the given file. Other approaches ignore the pro-
'tﬂzfgg its_otime; gram and rely on heuristic generalization from one or more
J g pomts2 its_ttime; sample output files. For example, one reverse-engineering
stract id_ip C i o case study searched fof i b-compressed data, file names,
b ip(* options and then 64 bits of data*/ length bytes, and other typical structurgs [4]. All of these
Stract femp_ra_addr id_radv approaches require considerable manual effort and one can-
yieme o nigi_d‘a'ra[l]E not guarantee that the chosen sample files are sufficiently
#define icmp_ofime icmp_dun.id_ts.its_otime general. In constrast, the static approach described here
Yiemp_t: over-approximates a file format without relying on sample

files, symbol tables, or extensive manual analysis. Human

[. i Ol) L . . :
Figure 18. The i cnp packet structure [10] intervention is only needed to identify output functionslan

respectively. The first 2-byte field matches withnt 8 to assign higher-level interpretations (e.g., “file names)

i cmp_cksum The last two 2-byte fields match with selected fields identified by the analysis.

the first union, namelyj cnp_hun, which includes a There have been similar attempts to statically recover
struct ih. dseq that consists ofui nt 16 icd.i d information about program data. Christensen et al. have
andui nt 16 i cd_seq. presented a technique for discovering the possible val-

However, the last uniori €np_dun) was not discovered ~ U€S of string expressi(_Jns in Java programs [17]. First, a
by ASI: there is no assignment to that union in the code, andCONtext-free grammar is generated by constructing depen-
thus ASI does not partition the memory locations to which dence graphs from class files. The grammar is then widened

the union corresponds. into a regular language, which contains all possible string
that could be dynamically generated.
Signal . The outcome fronFFE/x86 is incomplete in The method of Christensen et al. has also been applied

one respect: as shown in Fig] 19, liké§l1lpng calls the to low-level code; Christodorescu et al. used the method in
si gnal library function. Si gnal allows asynchronous a string analysis for x86 executablési[18]. This approach
event handling, which means that the statically generatedis similar to ours in the sense that x86 executables are the
control-flow graph might not cover all possible flows of targets of both tools, and the recovered output data fommat i

control. Our technique is based on a CFG statically gen-the analysis is represented as a regular language thategenot
erated by CodeSurfer/x86. Thus, if output operations ap-a superset of the actual output language. Their approach,

however, is different from ours in the sense that the initial the information about a loop’s iteration bounds would pro-
context-free structure recovered by their tool comes from vide users with more precise information about the output
the structure of operations purely internal to each proeedu format.

rather than from the call-return structure of the prograsn, a References

in our tool.

. . [1] Basic file format forlCO files.
Our approach is also related to work on host-based in- “http:/Awww.daubnet.com/formats/ICO.html”.

trus_ion detection, in which models of expected program be-] compress95SPEC benchmark.

havior are also constructed. The model over-approximates =~ “http:/mww.itee.uq.edu.aslemmerik/specbench.html”.
the possible sequences of system calls, and, by compar-[3] cpio, GNU project.

ing the actual sequence of system calls to those allowed by “http://www.gnu.org/software/cpio/cpio.html”.

the model, is used to detect when malicious input has hi- [4] File Format Reversing - EverQuest Il VPK

jacked the program. Pushdown-system models have been “http://www.openrce.org/articles/fulflew/16".

employed for this purpose, either constructed from source [5] flex “http://www.gnu.org/software/flex/".

code [25] or from low-level code [20, 21] (in particular, [6] gzip GNU project. “http://www.gzip.org/".

SPARC executables). Our HFSMs are similar in that they [7] ping. “http:/packages.debian.org/stable/net/netkit-ping
also yield context-free languages that are a projection of a [8] pngzica “http://www.winterdrache.de/freeware/png2ico/".
portion of the program’s behavior. We have gone beyond [9] tar, GNU project. “http://www.gnu.org/software/tar/tar.html".
previous work by using the results from two dataflow anal- [10] FreeBSD/Linux Kernel Cross Reference.

yses (namely, VSA and ASI) to elaborate our models with “http://fxr.watson.org/fxr/source/netinet/ipmp.h”.

information about possible sets of values and value sizes. [11] GZIPfile format specification version 4.3.
http://www.gzip.org/zlib/rfc-gzip.html”.

9. Conclusion and future work [12] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps

and M. Yannakakis. Analysis of recursive state machines.
In this paper, we focus on output operations. However, TOPLAS27(4), 2005.

the same approach can be applied to other kinds of operaf13] R.Alur and M. Yannakakis. Model checking of hieraraic

tions. For example, one could tréaput operationswhich state machines. IRSE pages 175-188, 1998.

are associated with examining or parsing an input file, us-[14] G. Balakrishnan. and T. Reps. Analyzing memory aceesse

ing the same approach taken in this paper. In this case, on?15 QXBSS:;;SC::‘Z?Z? dl%cclf’eezogllﬁecover ofvariables h

would want to consider only paths to exit points that rep- I G - REPS- y @a

structure in x86 executables. Tech. Rep. TR-1533, Comp.
resent successful runs of the program (because these corre- Sci. Dept., Univ. of Wisconsin, Madison, WI, Sept. 2005.

spond to successful uses of an well-formed input files). In [16] H. Chen and D. Wagner. MOPS: An infrastructure for exam-

addition, one could apply our approach to network commu- ining security properites of software. @CS 2002.

nication operations that parse or construct packets. [17] A.S. Christensen, A. Mgller, and M. Schwartzbach. Reec
As suggested by one of the referees, it may be possible @nalysis of string expressions. A2003.

to use such a characterization of the input language as a way!8l M. Christodorescu, N. Kidd, and W. Goh. String analysis

to generate test inputs. Similarly, knowledge of the output X86 binaries. IPASTE 2005.
) Y [19] E.Eilam.Reversing—Secrets of Reverse Engineeiivigey

language for componemt in a tool chain could be used Publishing, Inc., 2005.

as a source of test inputs for the next compongnn the [20] J. T. Giffin, S. Jha, and B. Miller. Detecting manipuléte

chain. remote call streams. IMSENIX Security Symposiu2002.
As described in the discussion gfi ng, signal [21] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-

calls are a factor that can cause the HFSM to not over- sensitive intrusion detection. MDS$ 2004.

approximate the actual output language of the program. Thel22] G. Ramalingam, J. Field, and F. Tip. Aggregate struetur

only description of a static-analysis tool that is able ta-ha identification and its application to program analysis. In

. POPL, pages 119-132, 1999.
dle such features is the paper on MOES [16]. The approaci}zs] T. Reps., G. Balakrishnan, and J. Lim. A next-generatio

used in MOPS could be used with our HFSMs, as well. platform for analyzing executables. APLAS 2005.
As mentioned earlier, we assume that output functions[24] T. Reps., G. Balakrishnan, and J. Lim. Intermediate-
are identified by the user. To create a more automatic tool representation recovery from low-level code. REPM
for extracting data formats, it would be desirable to find a 2006.
way to automatically identify output functions, espegiall [25] D. Wagner and D. Dean. Intrusion detection via statialan
wrapper functions. ysis. InIEEE Symposium on Security and Priva2901.
Each loop in an HFSM is currently transformed to ei-
ther(node- set)* or (node- set)™. However, there can
be cases when the bound on the number of possible itera-
tions of a loop can be obtained from VSA. In such cases,

10

	. Introduction
	. Observations & assumptions
	. Programming styles
	. User-supplied information

	. First step
	. Construction of an HFSM
	. Existing infrastructure

	. Augmenting an HFSM with static-analyses information
	. Value Set Analysis
	. Aggregate Structure Identification

	. Filtering
	. Validation against dynamic output
	. Experimental results
	. gzip
	. png2ico
	. ping

	. Related work
	. Conclusion and future work

