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Abstract

We describe the design and implementation of FFE/x86
(File-Format Extractor for x86), an analysis tool that works
on stripped executables (i.e., neither source code nor de-
bugging information need be available) and extracts output
data formats, such as file formats and network packet for-
mats. We first construct a Hierarchical Finite State Machine
(HFSM) that over-approximates the output data format. An
HFSM defines a language over the operations used to gen-
erate output data. We use Value-Set Analysis (VSA) and Ag-
gregate Structure Identification (ASI) to annotate HFSMs
with information that partially characterizes some of the
output data values. VSA determines an over-approximation
of the set of addresses and integer values that each data
object can hold at each program point, and ASI analyzes
memory accesses in the program to recover information
about the structure of aggregates. A series of filtering op-
erations is performed to over-approximate an HFSM with
a finite-state machine, which can result in a final answer
that is easier to understand. Our experiments with FFE/x86
uncovered a possible bug in the image-conversion utility
png2ico.

1. Introduction
Reverse engineering helps one gain insight into a pro-

gram’s internal workings. It is often performed to retrieve
the source code of a program (e.g., because the source code
was lost), to analyze a program that may be malicious (such
as a virus), to fix a bug, to improve the performance of
a program, and so forth. This paper describes a reverse-
engineering tool that can help a human understand what a
program produces as its output.

As COTS (Commercial Off-The-Shelf) software is in-
creasingly deployed (for which source code and documenta-
tion of proprietary intermediate formats are often not avail-
able), reverse engineering becomes increasingly needed for
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interoperability. When a COTS tool uses a proprietary file
format, interoperability can be inhibited: the tool can only
be used in a tool chain with a consumer or producer of files
that have that format.

The technique presented in this paper promotes the reuse
of components of a tool chain. For example, when a soft-
ware engineer wants to build a program that can process the
files that a COTS software product generates, he can use
our tool to obtain information about the format specifica-
tion, which would be useful when creating a program that
can act as a substitute consumer (or producer).

The technique presented here might also be useful in
malware detection. For instance, when trying to identify
live versions of the same malware, one would like to have
a way to figure out the format of its network traffic. Our
technique can provide help with this problem.

Furthermore, our technique can provide a summary of a
program’s behavior: it produces a structure that consists of
a reduced number of entities (compared with the call graph
for instance), which may make it easier to understand what
the program is doing.

The contributions of our work are:
• It provides a technique for extracting an over-

approximation of a program’s output data format, in-
cluding

– a way to extract a preliminary structure for the
output data format (§3)

– a way to elaborate the structure by annotating
it with information about possible output values
and sizes (§4)

– a way to simplify the structure to provide greater
understanding of the output data format (§5)

This provides information that can lead to greater un-
derstanding of a program’s behavior.

• We report experimental results from applyingFFE/x86
on three applications. Our experiments uncovered a
possible bug inpng2ico (see§7.2).

Although we have concentrated on the problem of ex-
tracting output file formats from executables, the same ap-
proach could be applied to source code (where one could
also take advantage of information about the program’s



variables and their declared types), as well as to extracting
input file formats.

The remainder of the paper is organized as follows:§2
discusses the key observations that inspired our work and
the assumptions for our approach.§3 explains the process
of constructing a structure for the output data format, and
also provides an overview of the infrastructure on which our
implementation is based.§4 discusses how to elaborate the
structure generated from the first step with static analyses.
§5 presents a series of filtering operations for making HF-
SMs more understandable.§6 describes how we validated
FFE/x86. §7 presents experimental results.§8 describes
related work.§9 describes possible future directions.

2. Observations & assumptions

2.1. Programming styles

This section makes a few observations about program-
ming styles used in typical application programs to produce
output data.

Programming styles relevant to writing output data can
be categorized asindividual writesand bulk writes. We
present different approaches tailored to handle them in later
sections. (Some programs use both styles; our tool is capa-
ble of handling such programs, as well.)

[1] void put byte (char c)
[2] {...}
[3] void put long (long c)
[4] {...}
[5] void writes (char* c)
[6] {...}
[7] void type() {
[8] switch(...) {
[9] case 0:
[10] put byte (’a’);
[11] break;
[12] case 1:
[13] put byte (’b’);
[14] break;
[15] }
[16]}
[17]void chksum() {
[18] put long (...);
[19]}
[20]void fill data() {
[21] while(...) {
[22] put byte (c);
[23] ...
[24] }
[25]}
[26]void main() {
[27] put long (magic1)
[28] put long (magic2)
[29] writes (filename);
[30] type();
[31] put long (size);
[32] chksum();
[33] return 0;
[34]}

Figure 1. An exam-
ple that uses indi-
vidual writes.

Individual writes. The
first programming style
is to write individual
data items out separately
to a file or a network.
Standard I/O functions,
such as fputs and fputc
in C programs, could be
used. In practice, however,
wrapper functionstend to
be frequently used. Fig. 1
shows an example of this
programming style using
wrapper functions, such as
put byte, put long,
and writes. Several
fields of the output, includ-
ing magic numbers, types,
sizes, and a checksum,
are written out by calling
wrapper functions. These
functions provide an API
to append output items to
an internal buffer; once
the whole buffer has been
filled, the contents of
the buffer are flushed.

Whereas the buffer is written out in bulk, the individual

calls to the wrapper functions represent the “individual
writes” referred to in our name for this style. We refer to
both the standard I/O functions and user-defined wrapper
functions asoutput functions.

An output operationis an operation relevant to generat-
ing an output data object. Specifically, the term output oper-
ation is defined as a call site that calls an output function—
either a standard I/O library function or a wrapper function
(see lines 10, 13, 18, 22, 27, 28, 29, and 31 in Fig. 1).

Our experience so far is that many application programs
are coded in this programming style. For instance,gzip,
[6]1 compress95 [2], and png2ico [8] follow such a
programming style.

[1] typedef struct header {
[2] byte magic[2];
[3] char name[100];
[4] char type;
[5] long size;
[6] long chksum;
[7] } header;
[8] void write file() {
[9] header* h;
[10] h=(header*)malloc(...);
[11] h->magic[0] = ...;
[12] strcpy(h->name, ...);
[13] h->type = ...;
[14] h->size = ...;
[15] h->chksum = ...;
[16] fwrite(h,
[17] sizeof(header), 1,fp);
[18] write data();
[19] ...
[20]}

Figure 2. An example
of a bulk write.

Bulk writes. The
second program-
ming style is to use
structs or classes
to manipulate headers.
Fig. 2 shows an exam-
ple of using a header
structure to write
output data. A header
struct object is cre-
ated at line 10. Each
field of the struct
is set to some value in
lines 11–15. Finally, at
lines 16–17, the object
is written out to the file
in its entirety. In this

programming style, calls like the one tofwrite are the
output operations.

In practice, we observed thattar [9] andcpio [3] use
such aggregate structures as storage in preparation for a
bulk write. We suspect that this style would be used for
more than just headers by applications whose output files
consist of a sequence of records.

2.2. User-supplied information

In our current implementation, the user must identify the
output functions and supply some additional information
about them, in particular, information about each output-
relevant parameter:
• whether it is a numeric value to be written out

1Because thegzip source uses macros instead of functions, output op-
erations are not call sites in thegzip executable. This is not compatible
with our approach of having the user identify the output operations by sup-
plying the names of output functions. To convertgzip into an example
in which output operations are visible as procedure calls—so that it could
be used for proof of concept in our experimental study—we modified the
gzip source code to change all output macro definitions into explicit func-
tions. Automatically identifying low-level code fragments that represent
output operations remains a challenging problem for futurework.
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• whether it is an address pointing to the memory con-
taining the data to be written out

• whether it indicates how many bytes are written out
See§4.1 for more details. In the case of standard I/O func-
tions, such information is already known.

3. First step
In our approach, aHierarchical Finite State Machine

(HFSM) is used to represent an output data format. An
HFSM is a structure in which nesting of finite automata
within states is allowed [12, 13]. An HFSM captures com-
monalities by organizing states in such a hierarchy. Note
the following two points about HFSMs:
• The languages of paths in recursive HFSMs are exactly

the context-free languages.
• The languages of paths in non-recursive HFSMs are

the regular languages.

(a)

call bar

foo

(b)
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7
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baz

call bar

call baz

call baz

1 2 5 6 9 10 7 9 10 8

3 5’ 6’ 9’ 10’ 7’ 9’ 10’ 8’ 4

Figure 3. (a) An FSM, (b) A hierarchical FSM.

However, non-recursive hierarchical FSMs can be ex-
ponentially more succinct than conventional FSMs due to
sharing, as illustrated in Fig. 3.

3.1. Construction of an HFSM

We will use the code fragment shown in Fig. 1 to ex-
plain our approach. The code emulates an archive utility.
It writes two magic numbers, followed by the file’s name,
layout type, size, and check-sum, using wrapper functions.
Fig. 5 shows its disassembled code as generated by IDAPro.

Each procedure involved with at least one output op-
eration gives rise to an FSM. The program’s wrapper
functions includeput byte (sub 401050 in the disas-
sembled code),put long (sub 401075), andwrites
(sub 4010E4), and calls to these functions represent out-
put operations.FFE/x86 finds the output operations and
constructs an HFSM based on the CFGs provided by
CodeSurfer/x86 [23]. Our analyzer creates a reduced inter-
procedural control-flow graph (i.e., the HFSM) that is the
projection of the interprocedural control-flow graph onto
enter nodes, exit nodes, call nodes, and output operations.

Fig. 4 shows the outcome from runningFFE/x86. Each
node in the HFSM is either an output operation (such as

4011B3

call sub_401075

(put_long)

4011BE

call sub_401075

(put_long)

4011D1

call sub_4010E4

(write_bytes)

4011DB

call sub_401167

(fill_data)

4011E6

call sub_401075

(put_long)

4011D6

call sub_401120

(type)

4011EB

call sub_401154

(chksum)

40117A

call sub_401050

(put_byte)

401160

call sub_401075

(put_long)

401140

call sub_401075

(put_long)

40114D

call sub_401075

(put_long)

Figure 4. The HFSM for Fig. 1. The shaded
boxes signify calls to FSMs. Dotted lines indi-
cate implicit connections between FSMs.

401120 sub_401120 proc near; type
401120     push    ebp
401121     mov ebp, esp
401123     sub     esp, 0Ch
401126     mov eax, [ebp-4]
401129     mov [ebp-8], eax
40112C     cmp [ebp-8], 0
401130     jz short loc_40113A
401132     cmp [ebp-8], 1
401136     jz short loc_401147
401138     jmp short loc_401152
40113A loc_40113A:
40113A     mov eax, [ebp-4]
40113D     mov [esp], eax
401140     call    sub_401050
401145     jmp short loc_401152
401147 loc_401147:
401147     mov eax, [ebp-4]
40114A     mov [esp], eax
40114D     call    sub_401050
401152 loc_401152:
401152     leave
401153     retn
401154 sub_401154 proc near; chksum
401154     push    ebp
401155     mov ebp, esp
401157     sub     esp, 8
40115A     mov eax, [ebp-4]
40115D     mov [esp], eax
401160     call    sub_401075
401165     leave
401166     retn
401167 sub_401167 proc near; fill_data
401167     push    ebp
401168     mov ebp, esp
40116A     sub     esp, 8
40116D loc_40116D:
40116D     cmp [ebp-1], 0
401171     jz short loc_401181
401173     movsx eax, [ebp-1]
401177     mov [esp], eax
40117A     call    sub_401050
40117F     jmp short loc_40116D
401181 loc_401181:
401181     leave
401182     retn

401183 sub_401183 proc near; main
401183     push    ebp
401184     mov ebp, esp
401186     sub     esp, 28h
401189     and     esp, 0FFFFFFF0h
40118C     mov eax, 0
401191     add     eax, 0Fh
401194     add     eax, 0Fh
401197     shr eax, 4
40119A     shl eax, 4
40119D     mov [ebp-14h], eax
4011A0     mov eax, [ebp-14h]
4011A3     call    sub_401200
4011A8     call    __main
4011AD     mov eax, [ebp-10h]
4011B0     mov [esp], eax
4011B3     call    sub_401075
4011B8     mov eax, [ebp-0Ch]
4011BB     mov [esp], eax
4011BE     call    sub_401075
4011C3     mov [esp+4], 4
4011CB     mov eax, [ebp-8]
4011CE     mov [esp], eax
4011D1     call    sub_4010E4
4011D6     call    sub_401120
4011DB     call    sub_401167
4011E0     mov eax, [ebp-4]
4011E3     mov [esp], eax
4011E6     call    sub_401075
4011EB     call    sub_401154
4011F0     mov eax, 0
4011F5     leave
4011F6     retn

Figure 5. The disassembled code for Fig. 1.
Transparent boxes indicate output operations,
and shaded boxes indicate calls to sub-FSMs.

4011B3) or a call-site (such as4011D6) to a sub-FSM
(such astype). A call-site node, which represents a call to
a sub-FSM, implicitly connects the two FSMs in the HFSM.

The HFSM generated by our tool forgzip is shown in
Fig. 6(a). Our thesis is that HFSMs (including elaborations
and refinements of HFSMs, as explained in§4 and§5) pro-
vide a basis for gaining an understanding of the program’s
behavior. In this regard, it is instructive to compare the
HFSM with the program’s call graph, because a call graph
is another structure that a programmer may use to gain a
high-level understanding of a program.

Fig. 6(b) shows a part of the call graph forgzip. Gzip
is composed of 114 control-flow graphs (CFGs), 11491
CFG nodes, and 625 call sites. Even though the HFSM
produced by our tool appears to be quite complicated, it is
substantially less complicated than both the program’s call
graph and its interprocedural control-flow graph: the HFSM
for gzip has 12 FSMs, 64 nodes, and 36 call sites.
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call 4056df
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call 4056df

call 4056df

(a) (b)

Figure 6. (a) The HFSM for gzip. (b) a fragment of the call graph of gzip.

3.2. Existing infrastructure

FFE/x86 uses intermediate representations (IRs) pro-
vided by the CodeSurfer/x86 framework (Fig. 7), which
provides an analyst with a powerful and flexible platform
for investigating the properties and behaviors of x86 exe-
cutables [23]. CodeSurfer/x86 includes several static anal-
yses, includingValue Set Analysis (VSA)[14, 24] andAg-
gregate Structure Identification (ASI)[15].

Executable
disassemble

Executable

Build 

CFGs

IDA Pro

VSA

ASI

Connector

CodeSurfer

Back-end

File 

Format 

Extractor

CodeSurfer/x86

Figure 7. Organization of CoderSurfer/x86, and
how FFE/x86interacts with its components.

VSA is a combined numeric-analysis and pointer-
analysis algorithm that determines an over-approximation
of the set of numeric values and addresses that each mem-
ory location holds at each program point [14]. ASI recovers
information about variables and types, especially for aggre-
gates, including arrays and structs. The variables recovered
by ASI are used by VSA to obtain information about the
variables’ possible values. The values recovered by VSA
are used by ASI to identify a refined set of variables. Thus,
CodeSurfer/x86 runs VSA and ASI repeatedly, either until
quiescence, or until some user-supplied bound is reached.2

2If VSA and ASI have not quiesced when the bound is reached, it is

CodeSurfer/x86 uses an initial estimate of the program’s
variables, the call graph, and control-flow graphs (CFGs)
for the program’s procedures provided by IDAPro. IDAPro
itself does not identify the targets of all indirect jumps and
indirect calls, and therefore the call graph and control-flow
graphs that it constructs are not complete. In contrast,
CodeSurfer/x86 uses the values that VSA discovers to re-
solve indirect jumps and indirect calls, and thus is able to
supply a sound over-approximation to the call graph.

§4 discusses other ways in which VSA and ASI can be
exploited for our purposes.

4. Augmenting an HFSM with static-analyses
information

In this section, we explain how to exploit the static anal-
yses mentioned in§3.2 for elaborating HFSMs.

4.1. Value Set Analysis

The HFSM generated by the method described in§3.1
provides some information for understanding an output for-
mat. The HFSM can be made more precise by annotating it
with additional information. In particular, we wish to label
each node with information about:
• the size (in bytes) of the data that the node represents
• an over-approximation of the value written out

The values of interest are the actual parameters corre-
sponding to the formal parameters of output functions. For
example, suppose thatput byte is one of the output func-
tions (see Fig. 8(a)). Suppose that at one of the call sites that

still safe to use the results from the final round of VSA. In particular, each
round of VSA provides an over-approximation of the set of numeric values
and addresses for each memory location, modulo the treatment of possible
memory-safety violations—some of which may be due to loss ofprecision
during VSA. See [14] for more details.
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void put byte(char c) {
outbuf[outcnt++] = (uch)(c);
if(outcnt==OUTBUFSIZE)

flush outbuf();
}

mov byte ptr[esp], 1Fh
call put byte

(a) (b)

Figure 8. An example code fragment; put byte
is a output function, and call sites that call it are
output operations.

callsput byte (i.e., at one of the output operations), the
actual parameter is always 1Fh (see Fig. 8(b)). This infor-
mation can be obtained from the information collected by
VSA. Note that at the call onput byte, the relevant value
is stored on the stack in the byte pointed to byesp. The ab-
stract memory configuration (AMC) that VSA would have
for the call site would indicate this: for instance, Fig. 9(a)
illustrates the values that the AMC would contain in this
example. In particular, our tool is able to obtain an over-
approximation of the set of values that the actual may hold
by evaluating the operand expression[esp] in the AMC,
which amounts to looking up in the AMC the contents of
the cell (or cells) thatesp may point to. (For this example,
the result would be a singleton set, namely,{1Fh}.)

BUF_PTR

SIZE

COUNT

FP

esp

(c)

esp

size:4

1000

.

.

.

1000
value1

value2

value3

value4

(b)

1Fhvalue size:1

(a)

SIZE x COUNT = 
the number of bytes 

to be written out 
(size)4

.

.

. size:?

1001

1002

1003

1004

esp

Figure 9. How to obtain information from VSA.

There are two kinds of parameters that can be passed into
a output function: numeric values and addresses.

Numeric values. The case where an actual parameter
holds a numeric value has been already explained above
(see Fig. 9(a)). The corresponding size of the value can
be obtained from ASI, which infers the size from the us-
age pattern of the formal parameter in the called function.
(In the case where an output operation calls a standard I/O
function, this information is available from the signatureof
the function.) For example,put bytewould have a 1-byte
argument,put short a 2-byte argument, and so forth.

Addresses. If the type of a formal parameter is a pointer,
the set of addresses in the memory location corresponding
to the actual parameter would be used to look up in the
AMC the values in the cells to which the actual parameter
could point (see Fig. 9(b)).

The case offwrite at lines 16–17 in Fig. 2 falls into

this category. The address of the heap-allocated memory lo-
cation that contains the data is passed as the first argument.

size t fwrite(const void *BUF PTR, size t
SIZE, size t COUNT, FILE *FP);

It is known that the product of the second and third param-
eters offwrite is the number of bytes that are written out
(see Fig. 9(c)).

Value roles. The kind of abstract value recovered by VSA
sometimes suggests what the value’s role is, e.g.,
• Singleton - If VSA recovers a singleton value for

an actual parameter of an output operation, the param-
eter may correspond to either a magic number or a re-
served field.

• Set of numeric values - If the value that VSA
recovers is a non-singleton set of numeric values, the
parameter may correspond to an optional field.

• Top - If VSA givesTop, which means any value, for an
actual parameter of an output operation, the parameter
may correspond to variant data.

4.2. Aggregate Structure Identification

As mentioned in§2, programmers frequently use a
struct or a class to collect data before it is written out.

[1] u char outpack[MAXPACKET];
[2] static void pinger(void) {
[3] register struct icmphdr *icp;
[4] register int cc;
[5] int i;
[6] icp = (struct icmphdr*)outpack;
[7] icp->icmp type = ICMP ECHO;
[8] icp->icmp code = 0;
[9] icp->icmp cksum = 0;
[10] icp->icmp seq = ntransmitted++;
[11] icp->icmp id = ident;
[12] ...
[13] i = sendto(s, (char*)outpack, cc, 0, &whereto,
[14] sizeof(struct sockaddr));
[15] ...
[16]}

Figure 10. Code fragment used to illustrate the
use of ASI information.

Fig. 10 shows a fragment fromping [7] in which a net-
work packet is constructed. Instead of writing individual
data items one at a time using output operations, astruct
object is used to store output data while multiple fields are
prepared, as shown in lines 7–11 of Fig. 10. Then the ag-
gregate object is written out (i.e., sent out) all together on
lines 13–14.

Aggregate Structure Identification(ASI) [15, 22] is a
unification-based, flow-insensitive algorithm to identifythe
structure of aggregates in a program. Whenever a read or
write to a part of a memory object is encountered, ASI
records how the memory object should be subdivided into
smaller objects that are consistent with the memory access.

In this example, we assume that the user has indicated
that sendto, which is a GNU C library function, is the
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[1] mov eax, dword ptr [ebp - 10h]
[2] mov byte ptr [eax], 8
[3] mov edx, dword ptr [ebp - 10h]
[4] mov byte ptr [edx + 1], 0
[5] mov eax, dword ptr [ebp - 10h]
[6] mov word ptr [eax + 2], 0
[7] mov eax, dword ptr [ntransmitted]
[8] mov edx, dword ptr [ebp - 10h]
[9] mov word ptr [edx + 6], ax
[10]inc dword ptr [ntransmitted]
[11]mov eax, dword ptr [ident]
[12]mov edx, dword ptr [ebp - 10h]
[13]mov word ptr [edx + 4], ax

Global:
struct {

...
byte 1 outpack.0;
byte 1 outpack.1;
byte 2 outpack.2;
byte 2 outpack.4;
byte 2 outpack.6;
...

}

(a) (b)

Figure 11. (a) The disassembled code fragment
for Fig. 10, (b) The outcome of ASI.

only output function. The second argument ofsendto is
known to be a pointer to astruct object with unknown
substructure. ASI provides information about this substruc-
ture. The instructions that correspond to the assignment
statements at lines 7–11 of Fig. 10 are shown in Fig. 11(a) at
lines 2, 4, 6, 9, and 13, respectively. VSA provides informa-
tion about the extent of memory accessed by each of these
instructions. ASI uses that information to subdivide the por-
tion of memory accessed, thereby producing the structure
shown in Fig. 11(b). This indicates that the structure of the
packet header may consist of two 1-byte fields, followed by
three 2-byte fields.

ASI is also capable of recovering information about the
structure of aggregates that are allocated in the heap.

This example illustrates a case where each output func-
tion emits a completely-constructed chunk of output data,
and the HFSM represents the program’s output operations
at a high level of abstraction. In bulk writes as this example,
structure information recovered by ASI can help identify-
ing the structure of output data format. This can be seen in
Fig. 17(b), wherepinger’s call to sendto is elaborated
as a sequence of 1- and 2-byte header-field writes, followed
by a larger packet payload.

5. Filtering

Because an HFSM can be hard to understand, we ex-
perimented with applying a series of filtering operations—
including simplification, conversion of each FSM to a regu-
lar expression, and inline expansion—to generate a simpler
representation of the output format as a regular expression.
In our experiments, this has been done manually; however,
the process would be relatively easy to automate.

Simplification. Not all nodes in the HFSM are helpful in
understanding an output format. An unnecessarily compli-
cated HFSM could prevent users from understanding key
aspects of an output format.

Most portions of the HFSM shown in Fig. 6(a) turn out to
be eitherTop-value, Top-size, or an unbounded loop
that includes them.Top-valuemeans that the node could
have any value;Top-size means that the node could be
of any size.

In each of the following cases, a node (or a node set)
would not provide meaningful information:
• A node ofTop-size andTop-value
• A node set in an unbounded loop, each of which has

bothTop-size andTop-value
To be considered as ameaningful node, a node must be
• A node of non-Top-size

Algorithm 1 Simplification algorithm.
Input: HFSM
Output: Trimed HFSM

Set the status of all FSMs to bemeaningful
while There exists ameaningfulFSM that contains only
non-meaningful nodesor calls tonon-meaningful FSMs
do

SetM to be anon-meaningful FSM
TransformM into an FSM with a self-loop on a node
labeled with (Top-size/Top-value)

end while

Alg. 1 describes an algorithm for simplifying HFSMs
generated byFFE/x86. The idea behind the algorithm is
to consider the cases mentioned above: for an FSM that
consists of only nodes withTop-value andTop-size,
or an unbounded loop that includes only such items, it may
be better to simplify it to(Top)∗ because the original FSM
would not provide much meaningful information about the
output format.

size:
Top

value:
Top

size:
Top

value:
Top

call
A

size:
Top

value:
Top

size:
Top

value:
Top

size:
Top

value:
Top

call
B

size:
Top

value:
Top

Figure 12. An example of simplification.

Fig. 12 shows an example of simplification. The shaded
FSM that contains twonon-meaningful FSMs and three
non-meaningful nodes is simplified to an unbounded self-
loop consisting of a node (Top-size/Top-value).

Conversion to a regular expression. We can convert
each FSM in an HFSM into a regular expression using the
Kleene construction.

Expansion. The final step is to apply inline expansion.
Recursion was not encountered in any of the applications
that we used for our experiments (see§7), so inline ex-
pansion could be applied without worrying about non-
termination. If recursion had been encountered, we could
have summarized strongly connected components of the
call graph.

Fig. 13 represents the final outcome from using these
techniques on our example.
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Top
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Top
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size:
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size:
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Top

* size:
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Figure 13. The final result after simplification,
conversion, and inline expansion.

6. Validation against dynamic output
We validate our approach by testing whether the out-

come from our algorithm (i.e., the regular expression)
matches output data produced during actual runs of the ap-
plication.

We usedflex [5], a tool for generating scanners for com-
pilers. Given an input specification in the form of a list
of pattern-action pairs (where the pattern is a regular ex-
pression),flex generates a program that repeatedly finds
the longest prefix of the (remaining) input that matches
one of the patterns. To create a tool for testing whether
a regular expressionR generated by our algorithm de-
scribes the output of an application, we giveflexa 2-pattern
specification—consisting ofR (with an action to report suc-
cess), plus a default pattern (with an action to report failure).

As discussed earlier, each box (as shown in Fig. 13) in
the regular expression generated by our technique is labeled
with two kinds of information: a value and a size. Value
and size are eitherTop, aSingleton, or a set of numeric
values.
• Singleton
• A set of numeric values
• Top

Thus, to be able to feed it toflex, the regular expression
needs to be transformed to one in which the basic unit is
a 1-byte character. Table 1 shows the transformation rules
that are applied to boxes.3

Table 1. Transformation of boxes.
size value conversion

Singleton
n

Singleton According to the value ofn, this is split into
multiple boxes that contain a 1-byte value.
(E.g., the first box in Fig. 14(a) is trans-
formed to the first four boxes in Fig. 14(b).)

Singleton
n

Top Top is transformed to ‘.’, which matches
any character. Thus, this is transformed to a
sequence ofn boxes that contain ‘.’. (E.g.,
the fifth box in Fig. 14(a) is transformed to
the last two boxes in Fig. 14(b).)

Top Top This is transformed to a box that contains
‘.’ with a self-loop. (E.g., the third box in
Fig. 14 (a) is transformed to the box that has
a loop in Fig. 14(b).)

Table 1 describes only the cases when size and value
have eitherSingleton orTop.(Note that there is no case
when size isTop and the value is non-Top because this is
not a possible outcome of VSA.) For the case when either
size, value, or both have a set of numeric values, we split

3We use ‘.’ as a shorthand for “any character”. Inflex, it is necessary to
use the pattern ‘.|\n’.

size:
4

value:
0x1234

size:
Top

value:
Top

size:
1

value:
{2,4}

size:
2

value:
Top

size:
{1,2}
value:
Top

0x34 0x12 ●0 0 ●

2

4

● ●

●

(a)

(b)
●

Figure 14. An example of the transformation. ‘.’
means any character.

the box into multiple boxes that have aSingleton value
and aSingleton size. For example, the second box in
Fig. 14(a), which has two values (2 and 4), is transformed
to the two boxes in Fig. 14(b) that have the values 2 and 4,
respectively. For the case where size is not aSingleton,
the shaded boxes in Fig. 14(b) show how it is converted.

Note that this process is only for validation, because the
original values or sets of values are more likely to be under-
standable to a human than the subdivided values.

7. Experimental results
We evaluatedFFE/x86 on three applications:gzip,

png2ico, andping.

7.1.gzip

Gzip is a GNU data-compression program. Fig. 15 rep-
resents the outcome after filtering the HFSM from Fig. 6(a).
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size:
1

value:
0x8B

size:
1

value:
0x08

size:
1

value:
Top

size:
Top

value:
Top

* size:
Top

value:
Top

*size:
4

value:
Top

size:
4

value:
Top

size:
4

value:
Top

size:
1

value:
Top

size:
1

value:
Top

Figure 15. The final result for gzip.

Table 2. Part of the specification of gzip’s for-
mat [11].

OS ...XFLMTIMEFLGCMID2ID1

...

If FLG.FHCRC set

ISIZECRC32... compressed blocks …

ID1 and ID2 These are the fixed values: ID1=31 (0xlF), ID2=139 (0x8B)
CM This identifies compression method: CM=0-7 are reserved,

CM=8 demotes the ”deflate” compression method.
FLG This is divided into individual bits: bit 0 FTEXT, bit 1

FHCRC and so forth.
MTIME This gives the most recent modification time of the original

file being compressed.
XFL This is available for use by specific compression methods.
OS This identifies the type of file system on which compression

took place: 0 - FAT filesystem, 1 - Amiga, and so forth.
CRC32 This contains a cyclic redundancy check value of the uncom-

pressed data.
ISIZE This contains the size of the original input data modulo2

32.

The format of .gz files generated bygzip is de-
scribed in RFC 1952 (see Table 2). The outcome shown
in Fig. 15 correctly over-approximates the specification. In
other words, the language of the outcome is a superset of
the output language ofgzip. The outcome has the two
magic numbers (ID1=0x1f andID2=0x8b) and a constant
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(CM=8) at the same positions shown in Table 2. This is fol-
lowed by a 4-byte element (corresponding toMTIME), two
1-byte elements (corresponding toXFL andOS). At the end,
it has two 4-byte elements, which correspond toCRC32 and
ISIZE.

We also applied the validation process described in§6 to
this outcome. Theflex-generated validator accepted each of
five .gz files (chosen arbitrarily from the Internet).

7.2.png2ico
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Figure 16. The outcome for png2ico.

Table 3. An unofficial specification of the ico
format [1].
Name Size Description

Reserved 2 byte =0
Type 2 byte =1
Count 2 byte Number of Icons in this file
Entries Count *

16
List of icons

Width 1 byte Cursor Width (16, 32 or 64)
Height 1 byte Cursor Height (16, 32 or 64 , most

commonly = Width)
ColorCount 1 byte Number of Colors (2,16, 0=256)
Reserved 1 byte =0
Planes 2 byte =1

BitCount 2 byte bits per pixel (1, 4, 8)
SizeInBytes 4 byte Size of (InfoHeader + ANDbitmap +

XORbitmap)
FileOffset 4 byte FilePos, where InfoHeader starts

repeated Count times
InfoHeader 40

bytes
Variant of BMP infoHeader

Size 4 bytes Size of InfoHeader structure = 40
Width 4 bytes Icon Width
Height 4 bytes Icon Height (added height of XOR-

Bitmap and AND-Bitmap)
Planes 2 bytes number of planes = 1
BitCount 2 bytes bits per pixel = 1, 4, 8
Compression 4 bytes Type of Compression = 0
ImageSize 4 bytes Size of Image in Bytes = 0 (uncom-

pressed)
XpixelsPerM 4 bytes unused = 0
YpixelsPerM 4 bytes unused = 0
ColorsUsed 4 bytes unused = 0
ColorsImportant 4 bytes unused = 0

Colors Number-of-Colors * 4 bytes Color Map for XOR-Bitmap
Red 1 byte red component

Green 1 byte green component
Blue 1 byte blue component

reserved 1 byte =0
repeated NumberOfColors times

XORBitmap ... bitmap
ANDBitmap ... monochrome bitmap

Png2ico converts PNG files to Windows icon-resource
files. Fig. 16 shows the final outcome. Compared with an
unofficial specification of theico image format [1] given

in Table 3, most of the constant data items in the for-
mat have been recovered byFFE/x86. For example, sev-
eral fields in theico format, includingReserved and
Type, have constant values that are recovered through our
technique. Furthermore, the overall structure of Fig. 16
is similar to Table 3. One difference is that the for-
mat recovered byFFE/x86 shows two loops at top level:
one for a sequence of Entries, and one for a sequence
of structures that each consist of an InfoHeader, a se-
quence of Colors, a sequence of XORBitmaps, and a se-
quence of ANDBitmaps. In constrast, Table 3 shows
only a single InfoHeader/Color/XORBitmapANDBitmap
structure. An inspection of the source code confirmed
that png2ico definitely supports a sequence of Info-
Header/Color/XORBitmapANDBitmap structures.

FFE/x86 also revealed a possible bug inpng2ico—
that is, it showed that the format produced bypng2ico
does not satisfy the specification given in Table 3. Ac-
cording to Table 3, the Planes field of Entries should be
1; however, as shown by the eighth box withsize=2 and
value=0 in the first row of Fig. 16,png2ico always pro-
duces0, rather than1. This discrepency was discovered
when we ran theflex-generated validator (which checks for
conformance to thepng2ico output format extracted by
FFE/x86) on some pre-existing.ico files. Those files
came from a Windows XP installation (and presumably
were not created by running the freewarepng2ico util-
ity). The validator rejected those files, but accepted all 23
.ico files that we generated usingpng2ico. We tracked
down the problem to the following line in thepng2ico
source:

writeWord(outfile,0); //wPlanes

7.3.ping

Ping [7] sends ICMP ECHOREQUEST packets to a
host to see if the host is reachable via the network.Sendto
is the only output function ofping.

As discussed in§4.2, the whole structure of the HFSM
shown in Fig. 17(a) represents the program’s output oper-
ations at a high level of abstraction. From the HFSM, it
can be inferred thatmain calls pinger andcatcher,
andpinger callssendto. Thepinger sub-FSM (see
Fig. 17(b)), which is constructed from the information re-
covered forsendto by the ASI, has a format where the
sizes of successive elements are 1, 1, 2, 2, and 2 bytes, re-
spectively, as shown in Fig. 11(a).

As shown in Fig. 18, theicmp packet struct
includes two 1-byte fields (uint8 icmp type and
uint8 icmp code), one 2-byte field (uint16
icmp checksum), and two unions—icmp hun and
icmp dun. The outcome fromFFE/x86 satisfies a part
of the specification. The first two 1-byte fields match
with uint8 icmp type and uint8 icmp code,
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call sendto
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1

value
Top

size:
1

value
Top

size:
2

value
Top

size:
2

value
Top

size:
2

value
Top

pinger pinger
*

pinger
* ?

pinger
entry

pinger

pinger

size:
Top
value
Top

pinger
exit

pinger
entry

pinger
exit

catcher
entry

catcher
exit
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exit

pinger catcher
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Figure 17. The outcome for ping. (a) The HFSM
hints the program behavior of ping, (b) The
packet contains an 8-byte icmp header followed
by data.

typedef struct icmp {
uint8 icmp_type; /* type of message, see below */ 
uint8 icmp_code; /* type sub code */ 
uint16 icmp_checksum; /* ones complement cksum of struct */ 

#define icmp_cksum icmp_checksum
union { 

uint8 ih_pptr; /* ICMP_PARAMPROB */ 
struct in_addr ih_gwaddr; /* ICMP_REDIRECT */ 
struct ih_idseq { 

uint16 icd_id; 
uint16 icd_seq; 

} ih_idseq; 
int ih_void; 
/* ICMP_UNREACH_NEEDFRAG -- Path MTU Discovery (RFC1191) */ 
struct ih_pmtu { 

uint16 ipm_void; 
uint16 ipm_nextmtu; 

} ih_pmtu; 
struct ih_rtradv { 

uint8 irt_num_addrs; 
uint8 irt_wpa; 
uint16 irt_lifetime; 

} ih_rtradv; 
} icmp_hun; 

#define icmp_pptr icmp_hun.ih_pptr
...

union { 
struct id_ts { 

uint32 its_otime; 
uint32 its_rtime; 
uint32 its_ttime; 

} id_ts; 
struct id_ip { 

struct ip idi_ip; 
/* options and then 64 bits of data */ 

} id_ip; 
struct icmp_ra_addr id_radv; 
uint32 id_mask; 
char id_data[1]; 

} icmp_dun; 
#define icmp_otime icmp_dun.id_ts.its_otime
...
} icmp_t; 

Figure 18. The icmp packet structure [10].

respectively. The first 2-byte field matches withuint8
icmp cksum. The last two 2-byte fields match with
the first union, namely,icmp hun, which includes a
struct ih idseq that consists ofuint16 icd id
anduint16 icd seq.

However, the last union (icmp dun) was not discovered
by ASI: there is no assignment to that union in the code, and
thus ASI does not partition the memory locations to which
the union corresponds.

Signal . The outcome fromFFE/x86 is incomplete in
one respect: as shown in Fig. 19, lines 1–2,ping calls the
signal library function. Signal allows asynchronous
event handling, which means that the statically generated
control-flow graph might not cover all possible flows of
control. Our technique is based on a CFG statically gen-
erated by CodeSurfer/x86. Thus, if output operations ap-

[1] (void)signal(SITINT, finish);
[2] (void)signal(SIGALRM, catcher);
[3] while(preload--)
[4] pinger();
[5] if((options & F FLOOD) == 0)
[6] catcher(0);
[7] for(;;) {
[8] struct sockaddr in from;
[9] register int cc;
[10] size t fromlen;
[11] if(options & F FLOOD) {
[12] if(floodok) {
[13] floodok = 0;
[14] pinger();
[15] }
[16] ...
[17] }
[18] ...
[19]}

Figure 19. A code fragment from ping.

pear in the handler function that asignal call establishes,
the resultant HFSM might not over-approximateall possible
outputs.

8. Related work
Most previous work on reverse engineering of file for-

mats has been dynamic and manual. Eilam describes a
strategy for deciphering file formats given a symbol table
and a sample output file [19]. This approach requires man-
ually stepping through disassembled code and inspecting
memory contents in a debugger while the program pro-
duces the given file. Other approaches ignore the pro-
gram and rely on heuristic generalization from one or more
sample output files. For example, one reverse-engineering
case study searched forzlib-compressed data, file names,
length bytes, and other typical structures [4]. All of these
approaches require considerable manual effort and one can-
not guarantee that the chosen sample files are sufficiently
general. In constrast, the static approach described here
over-approximates a file format without relying on sample
files, symbol tables, or extensive manual analysis. Human
intervention is only needed to identify output functions and
to assign higher-level interpretations (e.g., “file name” )to
selected fields identified by the analysis.

There have been similar attempts to statically recover
information about program data. Christensen et al. have
presented a technique for discovering the possible val-
ues of string expressions in Java programs [17]. First, a
context-free grammar is generated by constructing depen-
dence graphs from class files. The grammar is then widened
into a regular language, which contains all possible strings
that could be dynamically generated.

The method of Christensen et al. has also been applied
to low-level code; Christodorescu et al. used the method in
a string analysis for x86 executables [18]. This approach
is similar to ours in the sense that x86 executables are the
targets of both tools, and the recovered output data format in
the analysis is represented as a regular language that denotes
a superset of the actual output language. Their approach,
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however, is different from ours in the sense that the initial
context-free structure recovered by their tool comes from
the structure of operations purely internal to each procedure,
rather than from the call-return structure of the program, as
in our tool.

Our approach is also related to work on host-based in-
trusion detection, in which models of expected program be-
havior are also constructed. The model over-approximates
the possible sequences of system calls, and, by compar-
ing the actual sequence of system calls to those allowed by
the model, is used to detect when malicious input has hi-
jacked the program. Pushdown-system models have been
employed for this purpose, either constructed from source
code [25] or from low-level code [20, 21] (in particular,
SPARC executables). Our HFSMs are similar in that they
also yield context-free languages that are a projection of a
portion of the program’s behavior. We have gone beyond
previous work by using the results from two dataflow anal-
yses (namely, VSA and ASI) to elaborate our models with
information about possible sets of values and value sizes.

9. Conclusion and future work

In this paper, we focus on output operations. However,
the same approach can be applied to other kinds of opera-
tions. For example, one could treatinput operations, which
are associated with examining or parsing an input file, us-
ing the same approach taken in this paper. In this case, one
would want to consider only paths to exit points that rep-
resent successful runs of the program (because these corre-
spond to successful uses of an well-formed input files). In
addition, one could apply our approach to network commu-
nication operations that parse or construct packets.

As suggested by one of the referees, it may be possible
to use such a characterization of the input language as a way
to generate test inputs. Similarly, knowledge of the output
language for componentc1 in a tool chain could be used
as a source of test inputs for the next componentc2 in the
chain.

As described in the discussion ofping, signal
calls are a factor that can cause the HFSM to not over-
approximate the actual output language of the program. The
only description of a static-analysis tool that is able to han-
dle such features is the paper on MOPS [16]. The approach
used in MOPS could be used with our HFSMs, as well.

As mentioned earlier, we assume that output functions
are identified by the user. To create a more automatic tool
for extracting data formats, it would be desirable to find a
way to automatically identify output functions, especially
wrapper functions.

Each loop in an HFSM is currently transformed to ei-
ther(node-set)∗ or (node-set)+. However, there can
be cases when the bound on the number of possible itera-
tions of a loop can be obtained from VSA. In such cases,

the information about a loop’s iteration bounds would pro-
vide users with more precise information about the output
format.

References
[1] Basic file format forICO files.

“http://www.daubnet.com/formats/ICO.html”.
[2] compress95, SPEC benchmark.

“http://www.itee.uq.edu.au/∼emmerik/specbench.html”.
[3] cpio, GNU project.

“http://www.gnu.org/software/cpio/cpio.html”.
[4] File Format Reversing - EverQuest II VPK.

“http://www.openrce.org/articles/fullvew/16”.
[5] flex. “http://www.gnu.org/software/flex/”.
[6] gzip, GNU project. “http://www.gzip.org/”.
[7] ping. “http://packages.debian.org/stable/net/netkit-ping”.
[8] png2ico. “http://www.winterdrache.de/freeware/png2ico/”.
[9] tar, GNUproject. “http://www.gnu.org/software/tar/tar.html”.

[10] FreeBSD/Linux Kernel Cross Reference.
“http://fxr.watson.org/fxr/source/netinet/ipicmp.h”.

[11] GZIPfile format specification version 4.3.
“http://www.gzip.org/zlib/rfc-gzip.html”.

[12] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps,
and M. Yannakakis. Analysis of recursive state machines.
TOPLAS, 27(4), 2005.

[13] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. InFSE, pages 175–188, 1998.

[14] G. Balakrishnan. and T. Reps. Analyzing memory accesses
in x86 executables. InCC, 2004.

[15] G. Balakrishnan and T. Reps. Recovery of variables and heap
structure in x86 executables. Tech. Rep. TR-1533, Comp.
Sci. Dept., Univ. of Wisconsin, Madison, WI, Sept. 2005.

[16] H. Chen and D. Wagner. MOPS: An infrastructure for exam-
ining security properites of software. InCCS, 2002.

[17] A. S. Christensen, A. Møller, and M. Schwartzbach. Precise
analysis of string expressions. InSAS, 2003.

[18] M. Christodorescu, N. Kidd, and W. Goh. String analysisfor
x86 binaries. InPASTE, 2005.

[19] E. Eilam.Reversing—Secrets of Reverse Engineering. Wiley
Publishing, Inc., 2005.

[20] J. T. Giffin, S. Jha, and B. Miller. Detecting manipulated
remote call streams. InUSENIX Security Symposium, 2002.

[21] J. T. Giffin, S. Jha, and B. P. Miller. Efficient context-
sensitive intrusion detection. InNDSS, 2004.

[22] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
POPL, pages 119–132, 1999.

[23] T. Reps., G. Balakrishnan, and J. Lim. A next-generation
platform for analyzing executables. InAPLAS, 2005.

[24] T. Reps., G. Balakrishnan, and J. Lim. Intermediate-
representation recovery from low-level code. InPEPM,
2006.

[25] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. InIEEE Symposium on Security and Privacy, 2001.

10


	. Introduction
	. Observations & assumptions
	. Programming styles
	. User-supplied information

	. First step
	. Construction of an HFSM
	. Existing infrastructure

	. Augmenting an HFSM with static-analyses information
	. Value Set Analysis
	. Aggregate Structure Identification

	. Filtering
	. Validation against dynamic output
	. Experimental results
	. gzip
	. png2ico
	. ping

	. Related work
	. Conclusion and future work

