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Image Representation
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— Sampled

From http://www.unl.edu/dpilson/sunflower.html
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f(z) = z*z+c
where z is a complex number

Set of ¢ such that

{f(0), f(f(0), f(f(f(0)), ...} is bounded
Mandelbrot Fractal Plot by Vincent Stahl

http://upload.wikimedia.org/wikipedia/en/c/ce/Mandelbrot zoom.qif



http://upload.wikimedia.org/wikipedia/en/c/ce/Mandelbrot_zoom.gif
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L-system tree
http://gamedev.cs.cmu.edu/graphics1/lab4.php




Image as a discreet function

Q1: How many discrete samples are needed to
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Continuous Function
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Sampling a continuous function (1D)

0

32 64 96 128 160 192 224 256

Discrete Samples

0 0 0 0
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

Sampling Period T = 32 Sampling Period T = 16 Sampling Period T = 8 Sampling Period T =4

The denser the better, but what’s the minimum requirement?



Consider a simple case — sine wave
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8 samples per period
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2 samples per period

Intuitively, each period should have at least 2
samples to represent the up-and-down shape of
sine wave.

Theoretically, it can be proved that if we have more
than 2 samples per period, we can recover the sine
wave from the samples.



How about general functions?

e |dea: represent an arbitrary function using sine
waves.



Fourier Series

* Any periodic function f(x) can be expressed by
summing up a sequence of sine and cosine
waves. For example
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Sum of the first 1 term

Sum of the first 4 terms
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Sum of the first 12 terms Sum of the first 25 terms

If we approximate the function by a finite number of sine terms, we can sample this
function at a sampling frequency that is twice its highest sine wave frequency.



Fourier Transform

* In general, a non periodic function f(x) can be
represented as a sum of sin’s and cos’s, using all
frequencies. For example,
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Fourier Transform

* In general, a non periodic function f(x) can be
represented as a sum of sin’s and cos’s, using all
frequencies.
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f(x) = jF(s)e'z”Sde

F %s) = T f (x)e "*™dx
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F(s) is the Fourier Transform of f(x)



Another example of Fourier Transform
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The Fourier Transform of a Gauss is still a Gauss



Sampling theorem

e This result is known as the Sampling Theorem
and is due to Claude Shannon who first
discovered it in 1949:

A signal can be reconstructed from its samples without

loss of information, if the original signal has no
frequencies above % the sampling frequency.
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