CS559: Computer Graphics

Lecture 3: Digital Image Representation

Li Zhang

Spring 2008

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled

From http://www.unl.edu/dpilson/sunflower.html

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled
 - Object based →

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled
 - Object based

from James O'Brien

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled
 - Object based
 - Functional

$$f(z) = z^*z+c$$
 where z is a complex number

Set of c such that $\{f(0), f(f(0), f(f(f(0)), ...\}$ is bounded

Mandelbrot Fractal Plot by Vincent Stahl

http://upload.wikimedia.org/wikipedia/en/c/ce/Mandelbrot_zoom.gif

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled
 - Object based
 - Functional

- Images
 - Something that represents a pattern of light that will be perceived by something
- Computer representation
 - Sampled
 - Object based
 - Functional →

Images

Something that represents a pattern of light that

will be perceived by something

- Computer representation
 - Sampled
 - Object based
 - Functional →

L-system tree http://gamedev.cs.cmu.edu/graphics1/lab4.php

Image as a discreet function

Q1: How many discrete samples are needed to represent the original continuous function?

Q2: How to reconstruct the continuous function from the samples?

Represented by a matrix:

	$\frac{j}{}$	→						
i	62	79	23	119	120	105	4	0
	10	10	9	62	12	78	34	0
*	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Sampling a continuous function (1D)

Continuous Function

Discrete Samples

The denser the better, but what's the minimum requirement?

Consider a simple case – sine wave

Intuitively, each period should have at least 2 samples to represent the up-and-down shape of sine wave.

Theoretically, it can be proved that if we have more than 2 samples per period, we can recover the sine wave from the samples.

How about general functions?

Idea: represent an arbitrary function using sine waves.

Fourier Series

 Any periodic function f(x) can be expressed by summing up a sequence of sine and cosine waves. For example

If we approximate the function by a finite number of sine terms, we can sample this function at a sampling frequency that is twice its highest sine wave frequency.

Fourier Transform

 In general, a non periodic function f(x) can be represented as a sum of sin's and cos's, using all frequencies. For example,

Fourier Transform

 In general, a non periodic function f(x) can be represented as a sum of sin's and cos's, using all frequencies.

$$f(x) = \int_{-\infty}^{\infty} F(s)e^{i2\pi sx} ds$$

$$F(s) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi sx} dx$$

F(s) is the **Fourier Transform** of f(x)

Another example of Fourier Transform

$$Gauss(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

The Fourier Transform of a Gauss is still a Gauss

Sampling theorem

 This result is known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 1949:

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above ½ the sampling frequency.