CS559: Computer Graphics

Lecture 4: Compositing and Resampling

Li Zhang

Spring 2008

Compositing

- Compositing combines components from two or more images to make a new image
 - Special effects are easier to control when done in isolation
 - Even many all live-action sequences are more safely shot in different layers

Compositing

- Compositing combines components from two or more images to make a new image
 - Special effects are easier to control when done in isolation
 - Even many all live-action sequences are more safely shot in different layers

Perfect Storm

Animated Example

over

Mattes

- A matte is an image that shows which parts of another image are foreground objects
- Term dates from film editing and cartoon production
- How would I use a matte to insert an object into a background?
- How are mattes usually generated for television?

Working with Mattes

- To insert an object into a background
 - Call the image of the object the source
 - Put the background into the destination
 - For all the source pixels, if the matte is white, copy the pixel, otherwise leave it unchanged
- To generate mattes:
 - Use smart selection tools in Photoshop or similar
 - They outline the object and convert the outline to a matte
 - Blue Screen: Photograph/film the object in front of a blue background, then consider all the blue pixels in the image to be the background

Compositing

- Compositing is the term for combining images, one over the other
 - Used to put special effects into live action
 - Or live action into special effects

Alpha

- Basic idea: Encode opacity information in the image
- Add an extra channel, the alpha channel, to each image
 - For each pixel, store R, G, B and Alpha
 - alpha = 1 implies full opacity at a pixel
 - alpha = 0 implies completely clear pixels
- Images are now in RGBA format, and typically 32 bits per pixel (8 bits for alpha)
- All images in the project are in this format

Pre-Multiplied Alpha

- Instead of storing (R,G,B, α), store (α R, α G, α B, α)
- The compositing operations in the next several slides are easier with pre-multiplied alpha
- To display and do color conversions, must extract RGB by dividing out $\boldsymbol{\alpha}$
 - $-\alpha$ =0 is always black
 - Some loss of precision as α gets small, but generally not a big problem

Basic Compositing Operation

 At each pixel, combine the pixel data from f and the pixel data from g with the equation:

$$c_f = [\alpha_f R_f, \alpha_f G_f, \alpha_f B_f, \alpha_f]$$

$$c_g = [\alpha_g R_g, \alpha_g G_g, \alpha_g B_g, \alpha_g]$$

$$c_o = 1 \cdot c_f + (1 - \alpha_f) \cdot c_g$$

"Over" Operator

"Over" Operator

• If there's some f, get f, otherwise get g

Reconstruction theorem

Let g[n] = f(nT) be the sampling sequence for f(x).

If f(x) has no freq above $\frac{1}{2}$ the sampling freq,

then
$$f(x) = \sum_{n=-\infty}^{\infty} g[n] \cdot \operatorname{sinc}(\frac{x - nT}{T})$$

Reconstruction theorem

Let g[n] = f(nT) be the sampling sequence.

If f(x) has no freq above $\frac{1}{2}$ the sampling freq,

then
$$f(x) = \sum_{n=-\infty}^{\infty} g[n] \cdot \text{sinc}(\frac{x - nT}{T})$$

Reconstruction filters

- The sinc filter, while "ideal", has two drawbacks:
 - It has large support (slow to compute)
 - It introduces ringing in practice
- We can choose from many other filters...

Cubic filters

 Mitchell and Netravali (1988) experimented with cubic filters of the following form:

$$r(x) = \frac{1}{6} \begin{cases} (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) & |x| < 1 \\ ((-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) & 1 \le |x| < 2 \\ 0 & otherwise \end{cases}$$

- The choice of B or C trades off between being too blurry or having too much ringing. B=C=1/3 was their "visually best" choice.
- The resulting reconstruction filter is often called the "Mitchell filter."

Practical upsampling

- When resampling a function (e.g., when resizing an image), you do not need to reconstruct the complete continuous function.
- For zooming in on a function, you need only use a reconstruction filter and evaluate as needed for each new sample.
- Here's an example using a cubic filter:

Practical upsampling

- This can also be viewed as:
 - 1. putting the reconstruction filter at the desired location
 - 2. evaluating at the original sample positions
 - 3. taking products with the sample values themselves
 - 4. summing it up

2D Fourier transform

$$F(s_x, s_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i2\pi (s_x x + s_y y)} dx dy$$

$$f(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(s_x, s_y) e^{i2\pi (s_x x + s_y y)} ds_x ds_y$$

Spatial domain

f(x, y)

Frequency domain

 $|F(s_x, s_y)|$

High frequency coefficients are small.

Reconstruction filters in 2D

We can also perform reconstruction in 2D...

Reconstruction filters in 2D

$$\overrightarrow{k_{1D}}(x) = \begin{cases}
1 - |x| & |x| < 1 \\
0 & \text{otherwise}
\end{cases}$$

$$\Delta x = x - n$$

$$f(x) = g[n] \cdot (1 - \Delta x) + g[n+1] \cdot \Delta x$$

$$k_{2D}(x, y) = \begin{cases} (1 - |x|)(1 - |y|) & |x| < 1, |y| < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta x = x - n, \Delta y = y - m$$

$$f(x, y) = g[n, m] \cdot (1 - \Delta x) \cdot (1 - \Delta y)$$

$$+ g[n + 1, m] \cdot \Delta x \cdot (1 - \Delta y)$$

$$+ g[n, m + 1] \cdot (1 - \Delta x) \cdot \Delta y$$

$$+ g[n + 1, m + 1] \cdot \Delta x \cdot \Delta y$$

Reconstruction filters in 2D

We've been looking at **separable** filters:

$$k_{2D}(x, y) = k(x)_{1D} k_{1D}(y)$$

How might you use this fact for efficient resampling in 2D?

Image Downsampling

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Why does this look so crufty?

Minimum Sampling requirement is not satisfied – resulting in **Aliasing effect**

Practical downsampling

- Downsampling is similar, but filter has larger support and smaller amplitude.
- Operationally:
 - given the downsampling rate, d, ratio of new sampling rate to old sampling rate
 - Choose reconstruction filter
 - 2. Stretch the filter by 1/d and scale it down by d
 - Follow upsampling procedure (previous slides) to compute new values

Subsampling with Gaussian pre-filtering

• Solution: filter the image, then subsample

Compare with...

Explanation using Fourier Transform

Spatial domain

Frequency domain

Explanation using Fourier Transform

Convolution Definition

$$g(x) = f(x) * g(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution Example

http://www.cs.brown.edu/exploratories/free\$oftware/repository/edu/brown/cs/exploratories/app lets/specialFunctionConvolution/special function convolution java browser.html

© University of Wisconsin, CS559 Spring 2004

Convolution theorems

 Convolution theorem: Convolution in the spatial domain is equivalent to multiplication in the frequency domain.

$$f * h \leftarrow \rightarrow F \cdot H$$

• **Symmetric theorem**: *Convolution* in the *frequency* domain is equivalent to *multiplication* in the *spatial* domain.

$$f \cdot h \leftarrow \longrightarrow F * H$$

Explanation using Fourier Transform

Spatial domain

Frequency domain

