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Compositing

e Compositing combines components from two or
more images to make a new image

— Special effects are easier to control when done in
isolation

— Even many all live-action sequences are more safely
shot in different layers
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Compositing

e Compositing combines components from two or
more images to make a new image

— Special effects are easier to control when done in
isolation

— Even many all live-action sequences are more safely
shot in dlfferent layers




Perfect Storm




Animated Example
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Mattes

A matte is an image that shows
which parts of another image are
foreground objects

Term dates from film editing and
cartoon production

How would | use a matte to insert an
object into a background?

How are mattes usually generated for
television?




Working with Mattes

 To insert an object into a background
— Call the image of the object the source
— Put the background into the destination

— For all the source pixels, if the matte is white, copy the
pixel, otherwise leave it unchanged

 To generate mattes:
— Use smart selection tools in Photoshop or similar

* They outline the object and convert the outline to a
matte

— Blue Screen: Photograph/film the object in front of a blue
background, then consider all the blue pixels in the image
to be the background



Compositing

e Compositing is the term for combining images, one over the other

— Used to put special effects into live action
e Or live action into special effects




Alpha

Basic idea: Encode opacity information in the image
Add an extra channel, the alpha channel, to each image
— For each pixel, store R, G, B and Alpha
— alpha = 1 implies full opacity at a pixel
— alpha = 0 implies completely clear pixels

Images are now in RGBA format, and typically 32 bits per pixel
(8 bits for alpha)

All images in the project are in this format



Pre-Multiplied Alpha

* |nstead of storing (R,G,B,a), store (oR,0.G,aB,a)

* The compositing operations in the next several
slides are easier with pre-multiplied alpha

* To display and do color conversions, must
extract RGB by dividing out o
— a=0is always black

— Some loss of precision as a gets small, but generally
not a big problem



Basic Compositing Operation

e At each pixel, combine the pixel data from f and
the pixel data from g with the equation:

Ci =la¢R; Gy a¢By o]

Cy :[agRg’agGg’ang’ag]

C,=1-¢c; +(1-«;)-C,

“Over” Operator



“Over” Operator

e |f there’s some f, get f, otherwise get g
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Reconstruction theorem

Let g[n]= f (nT) be the sampling sequence for f(x).
If f(x) has no freq above % the sampling freq,

then f(x)= g[n]-sinc(x__l_nT)
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Reconstruction theorem

Let g[n]= f (nT) be the sampling sequence.

If f(x) has no freq above % the sampling freq,

then f(x)= g[n]-sinc(x__l_nT)

N=—o0




Reconstruction filters

 The sinc filter, while “ideal”, has two drawbacks:

— It has large support (slow to compute)
— |t introduces ringing in practice

 We can choose from many other filters...
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Cubic filters

 Mitchell and Netravali (1988) experimented with
cubic filters of the following form:

(12 -9B-6C)|x|"+(-18+12B+6C)|x|"+ (6 -2B) |x | < 1
r(x) = é— ((-B - 6C)|x|"+ (6B +30C)|x|"+(-12B - 48C)|x|+ (8B +24C) 1< |x|< 2
0 otherwise

e The choice of B or C trades off between being too blurry or having too
much ringing. B=C=1/3 was their “visually best” choice.

 The resulting reconstruction filter is often called the “Mitchell filter.”



Practical upsampling

* When resampling a function (e.g., when resizing
an image), you do not need to reconstruct the
complete continuous function.

 For zooming in on a function, you need only use a
reconstruction filter and evaluate as needed for
each new sample.

e Here’s an example using a cubic filter:
A
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f(x)= > gln]-k(x—nT)

N=—c0




Practical upsampling

* This can also be viewed as:

1. putting the reconstruction filter at the desired
location

2. evaluating at the original sample positions

3. taking products with the sample values themselves

4. summing it up

f(x)= S gn]-k(nT - x)

N=—c0



2D Fourier transform

F(s,.s,)= j jf(x,y)e“”‘SxX”v”dxdy

f(x,y)= J. J F(SX,Sy)eiZ”(SXX+Syy)dSXdSy

— 0 — ©

Spatial domain Frequency domain

F(s,.s,)

High frequency coefficients are small.



Reconstruction filters in 2D

 We can also perform reconstruction in 2D...
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1D example:

Reconstruction filters in 2D

|

g[n+1]

AN
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) 1-|x X <1
k. (X) =
0 (X { 0 otherwise

AX=X-n
f (x)=g[n]-(1—AXx) + g[n+1]- Ax

2D example:

g[n,m]
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g[n+1,m]
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g[n,m+1]

g[n+1,m+1]

AX=X—-N,Ay=y—m

f(x,y)=g[n,m]-(1-Ax)-(1-Ay)
+g[n+1,m]-Ax-(1—Ay)
+g[n,m+1]-(1-AXx)-Ay
+g[n+1 m+1]-Ax- Ay




Reconstruction filters in 2D

We’ve been looking at separable filters:

k2D (X’ y) — k(X)lD le (Y)

How might you use this fact for efficient resampling in 2D?
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‘Image Downsampling

Throw away every other row and
column to create a 1/2 size image
- called image sub-sampling



1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so crufty?

Minimum Sampling requirement is not satisfied — resulting in Aliasing effect



Practical downsampling

e Downsampling is similar, but filter has larger
support and smaller amplitude.

e Operationally:

— given the downsampling rate, d, ratio of new sampling rate to old sampling rate

1.
2.
3.

Choose reconstruction filter
Stretch the filter by 1/d and scale it down by d

Follow upsampling procedure (previous slides) to compute new
values




Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

o Solution: filter the image, then subsample



Compare with...

1/2 1/4 (2x zoom) 1/8 (4x zoom)



Explanation using Fourier Transform

Spatial domain
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Explanation using Fourier Transform

g(x,y)

1G(SwSy)l




Convolution Definition

0

g(x) = 1(x)*g(x) = If(X')g(X—X')dX'

—00



Convolution Example
g(x) = t(x)*g(x)= If(X')g(X—X')dX'

| / x | Result

Fiter — ~Function

http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/app
lets/specialFunctionConvolution/special function convolution java browser.html
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http://www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/specialFunctionConvolution/special_function_convolution_java_browser.html
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Convolution theorems

 Convolution theorem: Convolution in the
spatial domain is equivalent to multiplication
in the frequency domain.

f *h«—> F-H

 Symmetric theorem: Convolution in the
frequency domain is equivalent to
multiplication in the spatial domain.

f-h«e—> F=*H



Explanation using Fourier Transform

Spatial domain

» ()

Frequency domain

Convolution =<
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